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Abstract: We consider the problem of an arbitrary shaped rigid punch pressed against the
boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or
inclusion, located in the plane parallel to the boundary. The set of governing integral equations is
derived for the most general conditions, namely, presence of both normal and tangential stresses
under the punch, as well as general loading of the crack faces. In order to verify correctness of
the derivations, two different methods were used to obtain governing integral equations:
generalized method of images and utilization of the reciprocal theorem. Both methods gave the
same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat
circular punch both centered along the z -axis is considered as an illustrative example. Most of
the final results are presented in terms of elementary functions.

Introduction



Mechanical characteristics of solids and surfaces are relevant in multiple areas of science and
engineering applications ranging from structural mechanics to bioengineering to corrosion. The
need to probe mechanical behavior of surfaces have spurred the development of multiple
characterization techniques ranging from micro and nanoindentation! to scanning probe
microscopies including Atomic Force Acoustic Microscopy?!! and frequency tracking'? and
band excitation!>!7 dynamic probes. Measured in these methods are the tip-surface forces as a
function of indentation depth (nanoindentation), or resonance frequency shifts (AFAM) directly
related to the tip-surface stiffness.

Interpretation of this data in terms of materials functionalities requires the known functional
relationships between the force acting on the probe and measured displacement or resonant
frequency shift, i.e. relevant contact mechanics model.

Voluminous and significant research has been published by the authors (with other co-
authors) > 13-27 where the results of theoretical and experimental investigations were presented on
validation of Hertzian type solutions for the cases of nanoindentation and their practical
applications to various types of scanning probe microscopy and piezo-response force
microscopy. A variety of materials were studied both inorganic and biological!®!®. The
theoretical basis for the research is given?>, where the exact solution in terms of elementary
functions was obtained for an arbitrary point force and point source acting on the boundary of a
piezoelectric transversely isotropic half-space. Nanoindentation of flat, conical and spherical
indenters?*?¢ was studied in the cases of normal as well as tangential (frictional) contact. The
more complicated case of flat and non-flat indenters of arbitrary planform is presented?’. The
investigation of the weak and strong indentations and their applications to piezo-response force
microscopy can be found in?2.

However, these analyses are limited to the surfaces of uniform materials of various
symmetries and dissimilar piezoelectric or thermal properties, and generally allow only for the
certain deviations of surface geometry from planar. The effect of this topographic cross-talk on
SPM imaging is well explored.'® At the same time, realistic materials can contain below surface
imperfections such as cracks, voids, and inclusions. A number of studies has visualized such
below-surface objects;!*-?¢ however, the general analytical theory for these imaging modes is
generally missing and the studies are limited to finite element models.?* 27-28

The next section is devoted to formulation of the problem. It is based on fundamental
results’®, namely, the main potential functions for a general contact problem and the main
potential functions for a crack, located inside a transversely isotropic elastic half-space in a
plane, parallel to the boundary. We also use the Green’s function due to the action of an arbitrary
point force, acting on the boundary of the half-space.

The third section provides the derivation of the governing integral equations of the problem.
The procedure is executed in two different ways: the method of images and the use of reciprocal
theorem. Both derivations give the same results, which proves their correctness. In the general
case of a punch interacting with a crack, we need to solve four integral equations, two of them
real and the other two in complex form. In the case of the general punch interacting with an
inclusion, the problem reduces to two integral equations.

The last section provides the simplest example: an axisymmetric problem of a flat smooth
circular punch interacting with a circular inclusion of different radius. This case is chosen
because here we need to solve just one equation, which is solvable exactly and in terms of



elementary functions. The integrals involved are very non-trivial, so the necessary details of
integration are presented in the Appendix.

2. Formulation of the Problem

We consider a transversely isotropic elastic half-space z >0 with plane of isotropy being parallel
to the boundary z=0. A rigid punch of general shape is pressed against the boundary, creating
the domain of contact S, which might be known in advance or unknown and be defined from the
condition that stresses vanish at the boundary of S'. In general case, the punch might exert both
normal o and tangential 7 stresses on the boundary of the half-space.

Further, there exists an arbitrary flat crack S, in the plane z =c. The crack faces might be

subjected to arbitrary normal tractions o,, symmetric with respect to the plane of the crack, as

well as tangential tractions 7., which act anti-symmetrically with respect to the plane of the

crack, namely in opposite directions on the crack faces. In the case of a rigid inclusion filling up
the crack, we shall have normal discontinuity

w. =Dl +0)=w(p.pc 0] for (p.g)< s, (1)
and complex tangential discontinuity
u, = %{ux(p,¢,c + 0)— u, (,0,¢,c — 0)+ i[uy (,0,¢,c + 0)— uy(,o,¢,c - 0)]} for (p,¢)g S.(2)

prescribed on the crack faces. From the above consideration?? it is obvious that the punch will
interact with the crack (inclusion), so we need to derive governing integral equations describing
this interaction and to solve them. It was shown in (Fabrikant, 2010) that the most general
solution for any transversely isotropic body can be expressed in terms of three harmonic
functions F, , k =1,2,3 satisfying the following differential equations:

O°F O°F  ,0F
ox’ " oy’ g oz’ =0 ®)

where y, are constants defined in (Fabrikant, 2010) as

v, = \/( C11C33 _C13 \/C11C33 +C13 +2C44)i\/(‘\/C11C33 +C13 C11C33 _C13 _2C44) (4)
o 2 C11C44
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and C,,, C,, C;;, C,, and C, are the transversely isotropic elastic constants of the material of

the half-space. After the functions £, are defined, the field of displacements can be expressed as
follows (Fabrikant, 2010)

u:ux+iuy:A(Fl+F2+iF3), w:mI%erz% (6)
Here
A=2.; 0 )
o oy
and the constants m, and m, are defined as:
Cyi-C C,y;-C
m, = el “ m, = /> —Cu (8)
C13 + C44 C13 + C44
The stresses can be defined as follows (Fabrikant, 2010)
6120x+o-}':2C66 {[7/1 m+17/3]F [7/2 m2+173]F} )
o,=0,-0,+2it, =2C66A2(F1 +F, +iF,) (10)
0')2
0.=Cux |(m, + 02 F, 4 (my +1)2 ) (11)
T, =71, +ir, = C44A§[(m1 +1)F, + (m, +1)F, +iF, | (12)

In the case of a crack inside a transversely isotropic half-space and free of stresses on the
boundary the main potential functions are derived in section 3.10 of (Fabrikant, 2010):

S z,—¢ )+ z +¢,)-(y + z,+¢)) |-
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F3,Z—[Y(Z3—C3)—Y(Z3+C3)], (15)

C Ar
Here,
<1>(z)=”%, zo=zy,, c,=cy,, fork=123 (16)
X(z)= A[[n[R(M,N)+ 2]z dS, + A[[In[R(M,N)+ z}u a5, (17)
¥(z)= Af[In[R(M,N)+z]g.dS, — A [[n[R(M,N)+ z}u.dS. , (18)

where R(M,N) stands for the distance between two points: M with polar coordinates (p,¢,z)
and N with coordinates (p,,4,,0); the overbar, here and in the text to follow, denotes the

complex conjugate value, e.g. Kz@/@x—i@/ay; S. is the surface of the crack and

c

dsS. = p,dp,dg,. One can verify that the set of quasi-harmonic functions (13-15) satisfy the

differential equation (3), and using (6-12), these set of quasi-harmonic functions (13-15)
provides for normal displacement discontinuities on the crack faces to be equal w, and the

tangential displacement discontinuities to be equal u,; they also give us the half-space boundary

z=0 free of tractions.

The normal contact problem is usually posed as mixed boundary value problem with normal
displacement given inside the domain of contact and the rest of the half-space boundary is
presumed to be free of tractions. The tangential contact problem is posed in a similar manner,
except that the normal tractions are presumed absent all over the plane z =0, while tangential
displacements are prescribed inside the domain of contact and tangential tractions vanish outside
that domain. In order to accommodate both cases of contact problems, we introduce the
following quasi-potential functions (Fabrikant, 2010):

£, :H—y_llléyz(/\”.{zl ln[R(Ml,N)+Zl]—R(Ml,N)}f(pO,%)podpod% +
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+ [[n[R(M,, N)+ 2, Jo (0, 4 )podpod%}
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Here o and 7 are the yet unknown normal and tangential stresses under the punch. The
superposition of (13-15) and (19-21) yields the main quasi-potential functions, from which the
complete field of displacements and stresses in the whole half-space can be obtained by simple
differentiation of

F=F_+F

1p>

F,=F, +F

2p>

F,=F, +F

3p s (22)
according to (6-12). In similar way, the proper differentiation of (22) yields the necessary
governing integral equations of the specific problems, which can be posed for the punch-crack
(inclusion) configuration. The derivation will be given in the next section.

Yet another approach to the subject problem of this article can be made on the basis of the
reciprocal theorem. In order to use it, we need to recall some basic results from (Fabrikant, 2010,
1989). First, the field of displacements in the transversely isotropic half-space due to the action
of an arbitrary force on its boundary is given by

2 o
(o) =2 [1+ ! 2:|+ Hr, !&(EJF ¢'T 2} Pq }L
47Z'C44 R3 R3(R3 +Z3) I’I’lz—l 2 R2 RZ(R2+22) Rz(Rz‘l‘Zz)

| 23)
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(p0=¢0’ )_ { 2(Tq+Tq{(ml —I)RI(R1 +Zl)+ (m2 _I)RZ(RZ +ZZ )i|+ (24)
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Here, P is the normal component of the applied force, T'=T, +iT, is the complex tangential
component of the applied force; u=u, +iu, is the complex tangential displacement. One can

notice some difference between the formula (23-24) and formula (2.2.9-2.2.10) from (Fabrikant,
2010); this difference is due to the fact that here the force is applied at the point with cylindrical
coordinates (p,¢,0), while in (Fabrikant, 2010) the force is applied at the point (p0,¢0,0). The

remaining notations are:

(Vl +7 )Cll (25)

q—pe —poe 5 =
27-[(( 11( —( | )

Rl=gqg+z:, for k=123 (26)

We shall also need the following expressions for the stresses
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@QM%J%*—————{}%n@E+M%fﬂﬂj——g (27)
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As far as the crack is concerned, we shall need the basic quasi-harmonic functions from Sec. 2.4
and 2.6 of (Fabrikant, 2010)

Eh - _ yICD(ZI) _ X(Zl) (29)
272(m, 1) 4z(m, —1)

sz —_ 7/2@(22) _ X(Zz) (30)
272(m, —1)  4z(m, —1)

Fy=—Y(z,) 31)
4

where @, X, and Y are defined by (16-18).

3. Derivation of the Governing Integral Equations



At this stage of derivation we presume the punch to be of arbitrary shape and the domain of
contact § in general case initially unknown; the crack (or rigid inclusion) is also presumed to be
of arbitrary shape and located in the plane z=c. The derivation of the governing integral
equation of the contact problem by the first method requires substitution of (22) in (6) while
taking z =0. After simplifications we get:

,0,¢0 J'SJ' ;00’¢0 ds, +2G qu(poa¢0)dS0_HaLj@dS0+

(32)
+1—Nz A[«D<c2>—a><cl>]+LAPZYW%Y<Cz>]+LAY<c3>
V=7, 2 V=72 2
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R’ s R
(33)
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73 W=7 27 W=7

Here dS, = p,dp,dé,; we used the property m;m, =1; the notations @' and X' are understood

as derivatives with respect to the argument in the parentheses and the following notations were
introduced

R™=qq, G =p+nnH, Gy =p-nnH,
f= 73 o= (C11C33)1/2 -Gy _ H(7/2m1 _71) (34)
21C,, Culri+72) m —1

In the case of an interaction of an arbitrary punch with rigid inclusion, where all the
displacement discontinuities on the crack faces are known, the two governing integral equations
(32-33) are sufficient, because they contain only two unknowns: tractions under the punch o
and 7. One can also note that the first line in (32-33) represents the usual integral equations for
the bonded punch, while the second line reflects the influence of the crack or inclusion.

In order to confirm the correctness of the equations (32-33), we undertake a derivation using
an alternative method, namely, the reciprocity theorem. In order to apply this theorem, we recast
the punch-crack configuration as being subjected to two different sets of loading: the first is the
actual system, characterized by normal o and tangential 7 tractions under the punch and the
displacements discontinuities #, and w, on the crack faces; the alternative system consists of a

unit normal force applied to the boundary of the half-space at the point (p, ¢,O) and normal stress
p and complex tangential tractions ¢ =7 _+it, that are applied to the crack faces in such a way

that the crack close up and the whole system behaves like a uniform transversely isotropic half-
space, so that the formulae (23-28) can be used to describe the resulting stresses and
displacements.



The reciprocal theorem states that if we have two system of forces, acting on the same
configuration and corresponding two sets of displacements, then the work of the first system of
forces on the second set of displacements shall be equal to the work of the second system of
forces on the first set of displacements. In the case of a unit normal force we arrive at the
following equation

w+2”pwdS +2”tu 1, )dS, = ”awlds +” fat, + 1,1, S (35)

Here w,, u,, and u,, are respectively the normal displacement and components of the tangential

displacements on the surface of the half-space due to the action of a unit normal force. The factor
2 appears on the left-hand side of (35) due to the definition of w, and u_ in (1-2) as half of the
relevant displacement discontinuity. We remind also that S is the domain of contact and S, is

the crack domain.
Now we can find from (23-28)

¢ 11 . q 11
p=——| ——— |, t=t +it =——(———J (36)
2x(y, —n)[Ri Ri.j T2z -\ R OR,
H . Ha
WI:?, ”1—”x1+l”y1—7 (37)

and the following new notations were introduced

R, =+R +c, R, =R +c}, (38)

We also use the identities

tu, +tu, = Re(ir, ), TU, T U, = Re(z1,) (39)

x7xl

Here Re denotes the real part of a complex expression. Substitution of (36-37) and (39) in (35)
yields

vl s el s
:Hw%dso +aReJ;J%dS0j

Comparison of (40) with (33) shows that they are identical.
The alternative derivation of (32) is more involved. We apply a unit concentrated force in Ox
direction at the point (,0,¢,0) and we apply the normal p, and tangential g, and g, tractions at

(40)



the crack faces in such a way that there is no displacement discontinuities and the whole system
behaves like an uncut half-space, so that the formulae (23-28) become applicable. The reciprocal
theorem in this case gives

u, + ZJ‘J‘pcha’Sc + 2J‘J‘(qxum, +q,u, )dSC = ”(TxuxTx +T U, )dS0 + HOWT ds,
S, S. S S

(41)

Here u,, and u,, denote the tangential displacements in the Ox and Oy directions at the point
(p0,¢0,0) respectively and w;  stands for the normal displacement at the same point due to the
unit force 7, applied at the point (p,¢,0). In a similar manner, we can apply a unit concentrated
force in 0y direction at the point (p,¢,0) and we apply the normal p, and tangential s, and s,

tractions at the crack faces in such a way that there is no displacement discontinuities and the
whole system behaves like an uncut half-space, so that the formulae (23-28) become applicable.
The reciprocal theorem in this case gives

u, + 2” pwdsS, + 2”(sxuxc +s,u, )dSC = ”(Txuﬂv +T U, )dSO + IJ.O'WT ds, (42)
Sn SC S S »
The interpretation of the notations in (42) is similar to that of (41). We can find from (23-28)

p.o+ip, = _%[L_LJ (43)

g,=- Vs |:_|m qz(2R15+clz):|+ i {_lm qz(2R2c+czz:|+
477(71_72) R1C(R1c+c1) 47[(71_7/2) ch(R2c+cz)
+L{_|mw}
4 R3C(R3(’ +Ca)

Hereafter the notation Im stands for the imaginary part of a complex expression.



s =— 7> {_”‘n qz(lec +Clz)}+ Vi {_"n Qj(szc +022}+
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Now we need to combine two equations (41-42) into one by multiplying (42) by imaginary unit
i and adding the result to (41). We use the following identity.

(QJC + isx)uxc + (qy +iSy)uyc =

1 o . L . (47)
= E[(qx +is, —ig, + stuxc + zuyc)+ (qx +is, +iq, —stuxc - myc)]
We also notice that s, =¢,, u,, +iu, =u, and u,—iu, =u, . The transformation of the right-

hand sides in (41) and (42) is done in a similar manner. The substitution of (44-46) in (47) and
following simplification allows us to arrive at the result of unification of (41) with (42) as
follows

I4Y#! 1 1 V26 NG
A e ds, —<-dS,
el [ LI | P O I

N

7> 2R +cl) 71(2R2 +Cz) (2R3 +C3) q’H, d
- s s < dS, = 48
+”{ [m vl RRia)) RR. )2z 49

1 1 ‘T
:EGI_U%dS+EG2LI%dS—HaLI%dS

The comparison of (48) with (32) shows that they are identical, which proves correctness of our
derivation. In the case of interaction of a punch with inclusion, where u, and w, are known, the

two governing equations above are sufficient. In the case of the interaction of a punch with a
loaded crack, where the loading is known and the crack face displacement discontinuities are not
known, two additional equations need to be derived. The derivation of the first equation requires
substitution of (22) in (11), while taking z = c¢. After proper simplification we get



)= A sl ) )0 )

+ 2(;1i—2)2 [2X"(c, +¢,) - X"(2¢,) - X"(2c, )]} -
{ Il [ R j (00 oudonddh +
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(49)

The notations ®" and X" denote second derivative with respect to the argument in the

parentheses. Derivation of the second equation requires substitution of (22) in (12) while taking
z =c, which yields

1 —
7.(c)= m[G]A”u—];dSc + GZAZ'L[(IM—I;dSC} +
{”[71 2R2¢+Cz 7/2(2R +Cl)
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26 NG q
] ( o j (pos o Joudndd, + 2| ( R —R—ija(po,qﬁo )podpod%} - 50)

3C(R3c+c3)
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In simplifications of (49-50) the following identities were used.

m, —1 1-m,

=27HC,,(y, - 7,)= , ¥y =7Cy(G, + G,) 1)
m, +1 1+m,

Presuming that the normal tractions on the crack faces are prescribed as o, and the tangential

tractions are equal 7., the two additional governing equations will have the form

o.(c)=-0c., 7.(c)="-r, (52)



In the case of a circular crack and a circular punch, all the equations are solvable in quadratures
and majority of integrals involved are computable in terms of elementary functions. We
demonstrate the procedure in the next section.

4. Example: Interaction of a Circular Punch with a Circular
Inclusion

As an illustration we consider the axisymmetric case of the interaction of a smooth flat circular
punch of radius r, with a rigid circular inclusion inside a crack of radius @ located in the plane

z=c. Both the punch and the circular inclusion are centered along the z-axis. The rigid
inclusion produces the following displacement discontinuities on the crack faces

w.(p)=w\1-(p/a) . u =0 (53)

Here w,, is a known constant. We remind that w_ is equal to a half of the total displacement

discontinuity. Since we presumed the punch to be smooth, this means that it exerts the normal
pressure only, thus 7 =0. We can pose two types of problem for the flat punch: we may presume
the normal force P to be given or we may presume that the z- coordinate of the punch in the
position of equilibrium to be given as w = w, = const. For simplicity sake, we take the second

option. The problem now effectively reduces to just one integral equation (40), from which the
normal tractions under the punch can be found; after that, the remaining equations will give us
all other unknown quantities, like tangential displacements under the punch # and the normal
o, and tangential 7, tractions between the crack faces and the inclusion.

The equation (40) will now take the form

w+;”[L—LJdeSC = H([<ads, (54)
s R

(1, -7,) Ry,

Utilization of all our presumptions and substitution of (53) into (54) yields

W, I | {———]H podpydd, =

ﬂa(yl

o'—.g’

b
O
J. (,00 Podpdd, (55)
o R

For the sake of generality, we presumed the radius of contact to be yet unknown quantity b <r, ;

as inclusion would create a bump on the surface of the half-space, when the force P is relatively
small, not all the surface of the punch will get into contact with the half-space, so that the radius
of contact b will be defined from the condition that the normal traction under the punch would
vanish at the boundary of the domain of contact.

The integral in the left-hand side of (55) is computable (Fabrikant, 2010) in terms of
elementary functions, namely,
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(56)

(57)

Now we need to solve the integral equation (56) with respect to o . Its solution is well known

(Fabrikant, 1989).

olr)= ﬁHr@rJ.\/t zatJ‘\/t
where
o)+ talr ()= 1(e,)]

The integrals in (58) are computable and the final result is

r,c ) — 7/2‘1’(1”,02)
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with

1(z)= %W(a ibY 422 —fla-by 12 ] L,(z)= %Ma ibY +22 4oflab) + } 63)
z,t(z)%waﬂ)uzz_J(a_t)uzz}, L(z) %Maﬂ)uzzw(a_t)uzz} (64)

The details of the derivation are given in the Appendix. One can see that the expression (60) for
a(r) consists of two parts: the first one has a singularity at the edge » =5b of the domain of
contact, while the second term vanishes at » =5 thus, we can find the radius o from the
condition

7/19(01)_ 729(C2) -0 (65)
aly,~7,)

Wy + W,

The normal force, applied to the punch, can be found by integration of a(r) over the circle » <b
. The result is

p- LHWO 4, 70@) =7 0e, )} OV 2 C )} (66)

7t a(y,-7,) a(y, - 7,)

)L+ )1(%} R Ht(_bj ] t( ' bﬂ R
+ aRe{i(a + iz)tan{ﬁ} - ﬂ

The details of the derivation are given in the Appendix. We note that all the results of this article
are valid for the case of isotropy, if we find the limit in each formula for y, - y, — 1 and

(67)

. G, =% (68)

1—v? -2y

1+v 2—V)(1+v)
, a= = e
2(1-v

_(
)’ﬂ E G = 7t

where E is the modulus of elasticity and v is the Poisson’s coefficient.

Conclusion



For the first time in the literature, we successfully considered here the most general case of
interaction of an arbitrary punch with a general crack or inclusion, located in the plane parallel to
the boundary of a transversely isotropic elastic half-space. When the crack is subjected to both
normal and tangential tractions and the punch is not smooth, the problem is reduced to four
simultaneous integral equations with elementary kernels, two of them are real and the remaining
two in a complex form. The case of a general punch interacting with an inclusion reduces to just
two integral equations, one real and another complex. Only one equation needs to be solved in
the case of smooth punch. The method developed in this article can be expanded and applied to
more complicated cases of a piezo-electric or even magneto-electro-elastic half-spaces.
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Appendix

We give here the details of the derivation of the formulae (60-67). The following integral is to be
computed in order to get (60)

(»ﬂp
zHrérj\/t 7’ 8t'(’)‘q/t - ©

where f (z) is defined in (56). The first integral to compute is

_t .| a| pdp
Il—J.sm (l j (70)

0 tz_pz

Integration by parts in (70) yields

t l 12 _ 2
I, =tsin‘][L]—J‘ t*—p’ #dp (71)
vzt ) % Lz -1)
Now we introduce new variable
y=1 (72)

From which it follows

2 2
Pl 7—)’1’(’, <) dpzT—)ﬁ%_flg)dy 73)

Substitution of (72-73) into (71) and utilization of the identity //, = ap gives us

Il=t$n4(—:;?:;;)——abf:J[ 2E)E ) - vy (74)

lzo(z) y(y2 a2)

Here /,, and /,, are defined in (64) and

Ly(z)=~a*+2° (75)

The integration in (74) is elementary and the final result is



[\S)

. 1 2 22
I =tsin”| —2— |-~1q4 tan-{w]l}
a’+z* 2zt 2

+tcos‘!(a2 +22)2 thz(z2 az)}+zln[12t(z)+lu(z)]}

(76)

(@ +2 N2 (2)-12(2)) L(2)-1,(z)

For the sake of future reference, we present below two more integrals

j INI2 —a? pidp _l{a{g_ tanl(az g H B Zln|:12t (z)+ llt(Z)H 77

2zt lzl(z)— llt(z)

J’~ I\ —a’dp _Lcosl{(a2+zz)z+t2(zza2)} (78)
0

The next step is computation of the derivative

gt cafa) pdp . a I (a2+zz)z+tz(zz—a2)
S (s (i e e, @

Now we need to compute the integral

”COS a* +2f +t2(2 a*)| tdt
I [ a +z Xl (Z))] t (#0

Integration by part in (80) yields

I

2=\/T7’2C051[(a2+22)2+b2(22612)}— Cle \/ﬁtdt
o (a2+22)(122b(2)_112b(z)) ! ![(f+a)2+zzl(l—a)2+zz] b

We remind that llb(z) and /,, (z) are defined in (63). According to (69), we need to compute the
derivative

REAE [(a +Z)Z+b2(z —a)}

ror \/bz—r (a +z x Ilzb(z)

(82)
tdt

'[\/tz —r? l_(t+a)2 +Zzl(t—a)2 +sz

—4az




The integration in (82) is done by the following transformation of the integrand

e P ~=.1[ R - l.j (83)
[(t+a) +z2l(t—a) +22J iaz\t+a+iz t+a—-iz t—a+iz t—a-iz

We use the following basic integral

t+(a+iz)}\/t2—r2 _\/((H_iz)z_rz n\/r—(a+iz)\/r—t—\/r+(a+iz)\/r+t

J-[ dt 1 I Jr—(a+izWr—t+r+(a+iz)Vr+t (84)

Substitution of (83) into integral (82) will lead to four integrals of the type (84). Further
simplification will give us

[ tat -1 Re ! an| - YC =" || (g5
l(t + a)z + Zzl(f - a)2 + ZZJ\/IZ —r*  2az \/(a + z'z)2 —r? r?— (a + iz)2
Using the above results, we can finally write
10% . 4 a | (a2+22)2+t2(zz—a2) tdt
———|sin ——Cos =
ror,, a*+z2) 2 (az +sz122t(z)_llzt(z)) t*—r’
1 . a | (a2+22)2+b2(22—a2)
—————|sin ——cos + (86)
b* —r? [ (\/a2+zzJ 2 ((a2+zle§b(z)_llzlz(z))

1 4 b* —r?
+Re tan
(a+iz)2 —r? r —(a+iz)2

Now we can move to the computation of

1= a7 L2 (87)

t2—p2

Integration by parts gives us

I =at—j zz—pzpwz_llz dp (88)
’ 0 (122_112)

As before, we introduce new variable



2 al,  pla® =12 L2 =12
I =y, =y [l+—=—, L= L dp=-32_""1/)g 89
1=y p yw/ - op LE=P P e P ly (89)

Substitution of (89) in (88) gives us after simplification

B N ORS O o0

3 2 2
0 a -y

The integral in (90) is elementary and the final result is

(2 2 pdp at az | a’+z' -1 L, 5> 5 ZZt(Z)+llt(Z)
I, =|+a -1 =—+— —|——\t"+z" —a’ )In] 22— (91
! ’ '\/tz _,02 2 2 - [IZI(Z)_III(Z)J ( - )n[12t( ) oy

The differentiation with respect to ¢ simplifies the result as follows

Za? pdp =a—£n IZI(Z)+llt(Z)
oA R Lz,(zm(zj .

For the future reference, we can quote the following integral

C Ja fpdp 1 n{lz, z)+llt(z)}
e TR R PRy (93)

We can also quote the following useful derivatives

21 [l (Z)-i—llt(Z)] 2a(a +z° t2) (94)

ot | 1,(2)-1,(2) [l )-1;(2) ]2

—tan"~ —a tz ot ] Izzt( )+12(Z) (95)
ot 2zt [l Z)]Z

0 71_ 2azt? dazt

—tan (96)
o |+ +P (P -a J 12(2)-1()f

0 ol @rE =0 L)) 97)
o | 1L,(z) [l (2)-22)



The next integral to compute is

. _lﬁb{a_glnlet(zm(z)]} i N
t

ror’ 2 | L,(2)-1,(z)

Integration by parts in (98) and differentiation of the result with respect to » gives us

I, =; a éh{M} +Re Z_—aitan‘l b* —r? N
b1 2 l2b(Z)_Zlb(Z) (a +iZ)2 —r b* —(a +iZ)2 (99)

ljiln lzz(Z)"'llz(Z) dt

25 th(Z)_llt(Z) tz 2

-r
The last integral in (99) does not seem to be computable in terms of elementary functions. In
derivation of (99) we used the following integrals.

b 3 )2 2 2

tdt _ 1 Re (a+iz) tan! b"—r (100)
g [(t+a)2 +Zzl(t—a)2 +22 N =1 2az (a+iz) -1 ¥ —(a+iz
b 2 2 2 . 2 2
| atla® +2* = i _Re| 271 gq| MO (101)
r [lzzz(z)_llzz(z)]z t—r (a +l'Z)2 -7 r —(a +iz)2

Combination of (86) and (99) gives us (60-62)
Finding of the total force P requires computation of the following integrals.

¢t L)+ (2)|  a
I, =27 [ rdr[in| 2 t 102
g “sz)—zl,(z)] ior -

—-r
We interchange the order of integration in (102), integrate with respect to » and then use the
integration by parts to integrate with respect to ¢. The final result is

I = n{(bz —d?+ 7 )m[%} +2ab+ 2a{tan-1 (“ : b j - tan_l[a ;b ﬂ} (103)

The next integral is computable by parts:




b .
—la

. b’ -7’ o N b .
27[! \/(a s tan {\/rz i) }rdr = 27aa{(a +iz)tan (z‘(a N iz)j + zb} (104)

The following integrals were used

J:[Ha +z I(t a) +z]_
s ){ll{ w3 jgﬂ (2 bﬂ}

g (5= (7]

(106)

(105)

ttdt _

'([[t+a zzl(t—a)2+zz]_

b%{m)l{%}(s{(b](bm (o7

f >t

Q[Ha 2]e-ay +2]
gu s bl el vy

b t2dt 1 Re{ ((a+iz) tan,[(a+zzh/b2 r ]] (109)
a r ]

r[(t+a)2+zzl(t—a)2+z2 =7 _2az +iz) —

(108)

b

t*dt

r [(tJra)ZJrzzl(t—a)szz2 t—r )

Wo sy (110)
= COShIKQJ + 1 Re[ (Cl + iZ)3 tanl[(a +iz bz — }"2 }:|
r ( 2

2az a+iz) - by —(a +iz)

The above integrals are sufficient for the computation of (66-67).
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