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Abstract: We consider the problem of an arbitrary shaped rigid punch pressed against the 
boundary of a transversely isotropic half-space and interacting with an arbitrary flat crack or 
inclusion, located in the plane parallel to the boundary. The set of governing integral equations is 
derived for the most general conditions, namely, presence of both normal and tangential stresses 
under the punch, as well as general loading of the crack faces. In order to verify correctness of 
the derivations, two different methods were used to obtain governing integral equations: 
generalized method of images and utilization of the reciprocal theorem. Both methods gave the 
same results. Axisymmetric coaxial case of interaction between a rigid inclusion and a flat 
circular punch both centered along the -axis is considered as an illustrative example. Most of z
the final results are presented in terms of elementary functions.

Introduction



Mechanical characteristics of solids and surfaces are relevant in multiple areas of science and 
engineering applications ranging from structural mechanics to bioengineering to corrosion. The 
need to probe mechanical behavior of surfaces have spurred the development of multiple 
characterization techniques ranging from micro and nanoindentation1 to scanning probe 
microscopies including Atomic Force Acoustic Microscopy2-11 and frequency tracking12 and 
band excitation13-17 dynamic probes. Measured in these methods are the tip-surface forces as a 
function of indentation depth (nanoindentation), or resonance frequency shifts (AFAM) directly 
related to the tip-surface stiffness.

Interpretation of this data in terms of materials functionalities requires the known functional 
relationships between the force acting on the probe and measured displacement or resonant 
frequency shift, i.e. relevant contact mechanics model.

Voluminous and significant research has been published by the authors (with other co-
authors) 2, 18-27, where the results of theoretical and experimental investigations were presented on 
validation of Hertzian type solutions for the cases of nanoindentation and their practical 
applications to various types of scanning probe microscopy and piezo-response force 
microscopy. A variety of materials were studied both inorganic and biological18,19. The 
theoretical basis for the research is given25, where the exact solution in terms of elementary 
functions was obtained for an arbitrary point force and point source acting on the boundary of a 
piezoelectric transversely isotropic half-space. Nanoindentation of flat, conical and spherical 
indenters24,26 was studied in the cases of normal as well as tangential (frictional) contact. The 
more complicated case of flat and non-flat indenters of arbitrary planform is presented27. The 
investigation of the weak and strong indentations and their applications to piezo-response force 
microscopy can be found in22.

However, these analyses are limited to the surfaces of uniform materials of various 
symmetries and dissimilar piezoelectric or thermal properties, and generally allow only for the 
certain deviations of surface geometry from planar. The effect of this topographic cross-talk on 
SPM imaging is well explored.18 At the same time, realistic materials can contain below surface 
imperfections such as cracks, voids, and inclusions. A number of studies has visualized such 
below-surface objects;19-26 however, the general analytical theory for these imaging modes is 
generally missing and the studies are limited to finite element models.24, 27, 28 

The next section is devoted to formulation of the problem. It is based on fundamental 
results39, namely, the main potential functions for a general contact problem and the main 
potential functions for a crack, located inside a transversely isotropic elastic half-space in a 
plane, parallel to the boundary. We also use the Green’s function due to the action of an arbitrary 
point force, acting on the boundary of the half-space.

The third section provides the derivation of the governing integral equations of the problem. 
The procedure is executed in two different ways: the method of images and the use of reciprocal 
theorem. Both derivations give the same results, which proves their correctness. In the general 
case of a punch interacting with a crack, we need to solve four integral equations, two of them 
real and the other two in complex form. In the case of the general punch interacting with an 
inclusion, the problem reduces to two integral equations.

The last section provides the simplest example: an axisymmetric problem of a flat smooth 
circular punch interacting with a circular inclusion of different radius. This case is chosen 
because here we need to solve just one equation, which is solvable exactly and in terms of 



elementary functions. The integrals involved are very non-trivial, so the necessary details of 
integration are presented in the Appendix.

2. Formulation of the Problem

We consider a transversely isotropic elastic half-space  with plane of isotropy being parallel 0z
to the boundary . A rigid punch of general shape is pressed against the boundary, creating 0z
the domain of contact , which might be known in advance or unknown and be defined from the S
condition that stresses vanish at the boundary of . In general case, the punch might exert both S
normal  and tangential  stresses on the boundary of the half-space. 

Further, there exists an arbitrary flat crack  in the plane . The crack faces might be cS cz 
subjected to arbitrary normal tractions , symmetric with respect to the plane of the crack, as c
well as tangential tractions , which act anti-symmetrically with respect to the plane of the c
crack, namely in opposite directions on the crack faces. In the case of a rigid inclusion filling up 
the crack, we shall have normal discontinuity

for (1)    0,,0,,
2
1  cwcwwc    cS ,

and complex tangential discontinuity

for (2)         0,,0,,0,,0,,
2
1  cucuicucuu yyxxc    cS ,

prescribed on the crack faces. From the above consideration?? it is obvious that the punch will 
interact with the crack (inclusion), so we need to derive governing integral equations describing 
this interaction and to solve them. It was shown in (Fabrikant, 2010) that the most general 
solution for any transversely isotropic body can be expressed in terms of three harmonic 
functions ,  satisfying the following differential equations:kF 3,2,1k
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and , , ,  and  are the transversely isotropic elastic constants of the material of 11C 13C 33C 44C 66C
the half-space. After the functions  are defined, the field of displacements can be expressed as kF
follows (Fabrikant, 2010)
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The stresses can be defined as follows (Fabrikant, 2010)
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In the case of a crack inside a transversely isotropic half-space and free of stresses on the 
boundary the main potential functions are derived in section 3.10 of (Fabrikant, 2010):
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where  stands for the distance between two points:  with polar coordinates   NMR , M  z,,
and  with coordinates ; the overbar, here and in the text to follow, denotes the N  0,, 00 
complex conjugate value, e.g. ;  is the surface of the crack and yix  cS

. One can verify that the set of quasi-harmonic functions (13-15) satisfy the 000  dddSc 
differential equation (3), and using (6-12), these set of quasi-harmonic functions (13-15) 
provides for normal displacement discontinuities on the crack faces to be equal  and the cw
tangential displacement discontinuities to be equal ; they also give us the half-space boundary cu

 free of tractions.0z
The normal contact problem is usually posed as mixed boundary value problem with normal 

displacement given inside the domain of contact and the rest of the half-space boundary is 
presumed to be free of tractions. The tangential contact problem is posed in a similar manner, 
except that the normal tractions are presumed absent all over the plane , while tangential 0z
displacements are prescribed inside the domain of contact and tangential tractions vanish outside 
that domain. In order to accommodate both cases of contact problems, we introduce the 
following quasi-potential functions (Fabrikant, 2010):
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Here  and  are the yet unknown normal and tangential stresses under the punch. The  
superposition of (13-15) and (19-21) yields the main quasi-potential functions, from which the 
complete field of displacements and stresses in the whole half-space can be obtained by simple 
differentiation of

, , , (22)pc FFF 111  pc FFF 222  pc FFF 333 

according to (6-12). In similar way, the proper differentiation of (22) yields the necessary 
governing integral equations of the specific problems, which can be posed for the punch-crack 
(inclusion) configuration. The derivation will be given in the next section.

Yet another approach to the subject problem of this article can be made on the basis of the 
reciprocal theorem. In order to use it, we need to recall some basic results from (Fabrikant, 2010, 
1989). First, the field of displacements in the transversely isotropic half-space due to the action 
of an arbitrary force on its boundary is given by
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Here,  is the normal component of the applied force,  is the complex tangential P yx iTTT 

component of the applied force;  is the complex tangential displacement. One can yx iuuu 
notice some difference between the formula (23-24) and formula (2.2.9-2.2.10) from (Fabrikant, 
2010); this difference is due to the fact that here the force is applied at the point with cylindrical 
coordinates , while in (Fabrikant, 2010) the force is applied at the point . The  0,,  0,, 00 
remaining notations are:
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We shall also need the following expressions for the stresses
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As far as the crack is concerned, we shall need the basic quasi-harmonic functions from Sec. 2.4 
and 2.6 of (Fabrikant, 2010)
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where , , and  are defined by (16-18).  

3. Derivation of the Governing Integral Equations



At this stage of derivation we presume the punch to be of arbitrary shape and the domain of 
contact  in general case initially unknown; the crack (or rigid inclusion) is also presumed to be S
of arbitrary shape and located in the plane . The derivation of the governing integral cz 
equation of the contact problem by the first method requires substitution of (22) in (6) while 
taking . After simplifications we get:0z
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as derivatives with respect to the argument in the parentheses and the following notations were 
introduced

, , ,qqR 2 HγγβG 211  HγγβG 212 

, (34)
44

3

2 C

 
 

 
 

11

112

2111

13
21

3311










m
mH

C
CCC 




In the case of an interaction of an arbitrary punch with rigid inclusion, where all the 
displacement discontinuities on the crack faces are known, the two governing integral equations 
(32-33) are sufficient, because they contain only two unknowns: tractions under the punch  
and . One can also note that the first line in (32-33) represents the usual integral equations for 
the bonded punch, while the second line reflects the influence of the crack or inclusion.

In order to confirm the correctness of the equations (32-33), we undertake a derivation using 
an alternative method, namely, the reciprocity theorem. In order to apply this theorem, we recast 
the punch-crack configuration as being subjected to two different sets of loading: the first is the 
actual system, characterized by normal  and tangential  tractions under the punch and the  
displacements discontinuities  and  on the crack faces; the alternative system consists of a cu cw
unit normal force applied to the boundary of the half-space at the point  and normal stress  0,,

 and complex tangential tractions  that are applied to the crack faces in such a way p yx ittt 
that the crack close up and the whole system behaves like a uniform transversely isotropic half-
space, so that the formulae (23-28) can be used to describe the resulting stresses and 
displacements.



The reciprocal theorem states that if we have two system of forces, acting on the same 
configuration and corresponding two sets of displacements, then the work of the first system of 
forces on the second set of displacements shall be equal to the work of the second system of 
forces on the first set of displacements. In the case of a unit normal force we arrive at the 
following equation
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Here ,  and  are respectively the normal displacement and components of the tangential 1w 1xu 1yu
displacements on the surface of the half-space due to the action of a unit normal force. The factor 

 appears on the left-hand side of (35) due to the definition of  and  in (1-2) as half of the 2 cw cu
relevant displacement discontinuity. We remind also that  is the domain of contact and  is S cS
the crack domain.

Now we can find from (23-28)

, (36)  










 3

2
3
121

11
2 cc RR

cp
   











 3

2
3
121

11
2 cc

yx RR
qittt



, (37)
R
Hw 1 q

Hiuuu yx


 111

and the following new notations were introduced

, , (38)2
1

2
1 cRR c  2

2
2

2 cRR c 

We also use the identities
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Here  denotes the real part of a complex expression. Substitution of (36-37) and (39) in (35) Re
yields
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Comparison of (40) with (33) shows that they are identical.
The alternative derivation of (32) is more involved. We apply a unit concentrated force in  x0

direction at the point  and we apply the normal  and tangential  and  tractions at  0,, xp xq yq



the crack faces in such a way that there is no displacement discontinuities and the whole system 
behaves like an uncut half-space, so that the formulae (23-28) become applicable. The reciprocal 
theorem in this case gives
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Here  and  denote the tangential displacements in the  and  directions at the point 
xxTu

xyTu x0 y0
 respectively and  stands for the normal displacement at the same point due to the  0,, 00 

xTw
unit force , applied at the point . In a similar manner, we can apply a unit concentrated xT  0,,
force in  direction at the point  and we apply the normal  and tangential  and  y0  0,, yp xs ys
tractions at the crack faces in such a way that there is no displacement discontinuities and the 
whole system behaves like an uncut half-space, so that the formulae (23-28) become applicable. 
The reciprocal theorem in this case gives
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The interpretation of the notations in (42) is similar to that of (41). We can find from (23-28)
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Hereafter the notation  stands for the imaginary part of a complex expression.Im
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Now we need to combine two equations (41-42) into one by multiplying (42) by imaginary unit 
 and adding the result to (41). We use the following identity.i
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We also notice that ,  and . The transformation of the right-yx qs  cycxc uiuu  cycxc uiuu 
hand sides in (41) and (42) is done in a similar manner. The substitution of (44-46) in (47) and 
following simplification allows us to arrive at the result of unification of (41) with (42) as 
follows
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The comparison of (48) with (32) shows that they are identical, which proves correctness of our 
derivation. In the case of interaction of a punch with inclusion, where  and  are known, the cu cw
two governing equations above are sufficient. In the case of the interaction of a punch with a 
loaded crack, where the loading is known and the crack face displacement discontinuities are not 
known, two additional equations need to be derived. The derivation of the first equation requires 
substitution of (22) in (11), while taking . After proper simplification we getcz 
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The notations  and  denote second derivative with respect to the argument in the    
parentheses. Derivation of the second equation requires substitution of (22) in (12) while taking 

, which yieldscz 
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In simplifications of (49-50) the following identities were used.
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Presuming that the normal tractions on the crack faces are prescribed as  and the tangential c
tractions are equal , the two additional governing equations will have the formc

, (52)  cz c     cz c  



In the case of a circular crack and a circular punch, all the equations are solvable in quadratures 
and majority of integrals involved are computable in terms of elementary functions. We 
demonstrate the procedure in the next section.

4. Example: Interaction of a Circular Punch with a Circular 
Inclusion

As an illustration we consider the axisymmetric case of the interaction of a smooth flat circular 
punch of radius  with a rigid circular inclusion inside a crack of radius  located in the plane pr a

. Both the punch and the circular inclusion are centered along the -axis. The rigid cz  z
inclusion produces the following displacement discontinuities on the crack faces

, (53)   2
0 1 aww cc   0cu

Here  is a known constant. We remind that  is equal to a half of the total displacement 0cw cw
discontinuity. Since we presumed the punch to be smooth, this means that it exerts the normal 
pressure only, thus . We can pose two types of problem for the flat punch: we may presume 0
the normal force  to be given or we may presume that the - coordinate of the punch in the P z
position of equilibrium to be given as . For simplicity sake, we take the second constww  0

option. The problem now effectively reduces to just one integral equation (40), from which the 
normal tractions under the punch can be found; after that, the remaining equations will give us 
all other unknown quantities, like tangential displacements under the punch  and the normal u

 and tangential  tractions between the crack faces and the inclusion.c c
The equation (40) will now take the form
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Utilization of all our presumptions and substitution of (53) into (54) yields

(55)
 

 
   
























2

0 0
000

0
2

0 0
000

2
0

2

3
2

3
121

0
0

11 ba

cc

c dd
R

Hdda
RRa

cww

For the sake of generality, we presumed the radius of contact to be yet unknown quantity ; prb 
as inclusion would create a bump on the surface of the half-space, when the force  is relatively P
small, not all the surface of the punch will get into contact with the half-space, so that the radius 
of contact  will be defined from the condition that the normal traction under the punch would b
vanish at the boundary of the domain of contact.

The integral in the left-hand side of (55) is computable (Fabrikant, 2010) in terms of 
elementary functions, namely,
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Now we need to solve the integral equation (56) with respect to . Its solution is well known 
(Fabrikant, 1989).
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The integrals in (58) are computable and the final result is
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with
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The details of the derivation are given in the Appendix. One can see that the expression (60) for 
 consists of two parts: the first one has a singularity at the edge  of the domain of  r br 

contact, while the second term vanishes at ; thus, we can find the radius  from the br  b
condition
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The normal force, applied to the punch, can be found by integration of  over the circle  r br 
. The result is
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The details of the derivation are given in the Appendix. We note that all the results of this article 
are valid for the case of isotropy, if we find the limit in each formula for  and121  

, , , , (68)
E

H


 21
  







12
21

E
 


1   

E
G


 


12

1
 

E
G


 


1

2

where  is the modulus of elasticity and  is the Poisson’s coefficient.E 

Conclusion



For the first time in the literature, we successfully considered here the most general case of 
interaction of an arbitrary punch with a general crack or inclusion, located in the plane parallel to 
the boundary of a transversely isotropic elastic half-space. When the crack is subjected to both 
normal and tangential tractions and the punch is not smooth, the problem is reduced to four 
simultaneous integral equations with elementary kernels, two of them are real and the remaining 
two in a complex form. The case of a general punch interacting with an inclusion reduces to just 
two integral equations, one real and another complex. Only one equation needs to be solved in 
the case of smooth punch. The method developed in this article can be expanded and applied to 
more complicated cases of a piezo-electric or even magneto-electro-elastic half-spaces.
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Appendix

We give here the details of the derivation of the formulae (60-67). The following integral is to be 
computed in order to get (60)
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Integration by parts in (70) yields
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Now we introduce new variable
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Substitution of (72-73) into (71) and utilization of the identity  gives usall 21
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Here  and  are defined in (64) andtl1 tl2
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The integration in (74) is elementary and the final result is
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For the sake of future reference, we present below two more integrals
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The next step is computation of the derivative
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Now we need to compute the integral
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Integration by part in (80) yields
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We remind that  and  are defined in (63). According to (69), we need to compute the  zl b1  zl b2
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The integration in (82) is done by the following transformation of the integrand
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Substitution of (83) into integral (82) will lead to four integrals of the type (84). Further 
simplification will give us
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Using the above results, we can finally write
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Now we can move to the computation of 
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As before, we introduce new variable
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Substitution of (89) in (88) gives us after simplification
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The differentiation with respect to  simplifies the result as followst
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For the future reference, we can quote the following integral

(93)
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We can also quote the following useful derivatives
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The next integral to compute is
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Integration by parts in (98) and differentiation of the result with respect to  gives usr
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The last integral in (99) does not seem to be computable in terms of elementary functions. In 
derivation of (99) we used the following integrals.
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Combination of (86) and (99) gives us (60-62)
Finding of the total force  requires computation of the following integrals.P
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We interchange the order of integration in (102), integrate with respect to  and then use the r
integration by parts to integrate with respect to . The final result ist
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The next integral is computable by parts:
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The following integrals were used

(105)
    

 
   
    


























 








 




























z

ba

z

ba

zzlzl

zlzl

aza

zatzat

dt

bb

bb

b

11

12

12

22

0
2222

tantan1ln1

4

1

    
   
    






















 







 















 z
ba

z
baa

zlzl
zlzl

z
azzatzat

dtt

bb

bb
b

11

12

12

0
2222

2

tantanln
4
1

(106)
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The above integrals are sufficient for the computation of (66-67).
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