

# General Model-Based Decomposition Framework for Polarimetric SAR Images

Stephen Dauphin

March 6, 2017

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Outline

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

## Introduction

### Decomposition Building Blocks

## Model-Based Decompositions

Chen

## General Model-Based Decomposition Framework

Linear Independence for Scatter-Types

Number of Parameters

## Results

## Application

## Conclusion

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen

GMBDF  
Lin. Ind.  
Number of  
Parameters

Results

Application

Conclusion

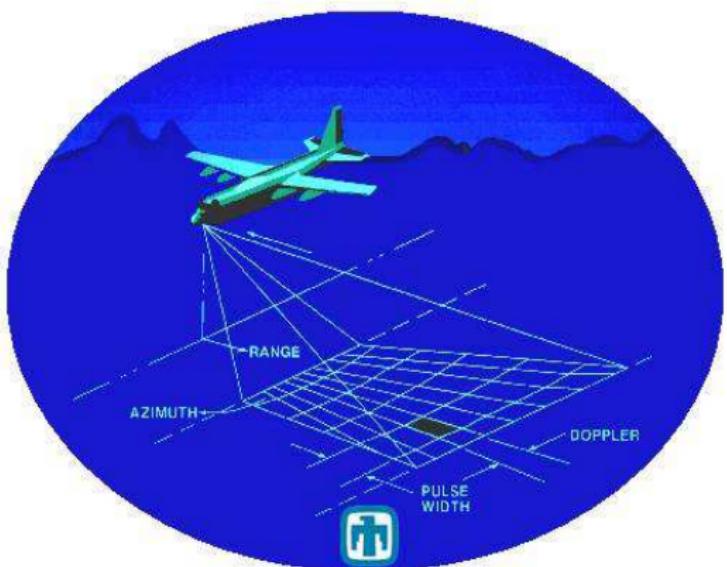
References

# Introduction

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

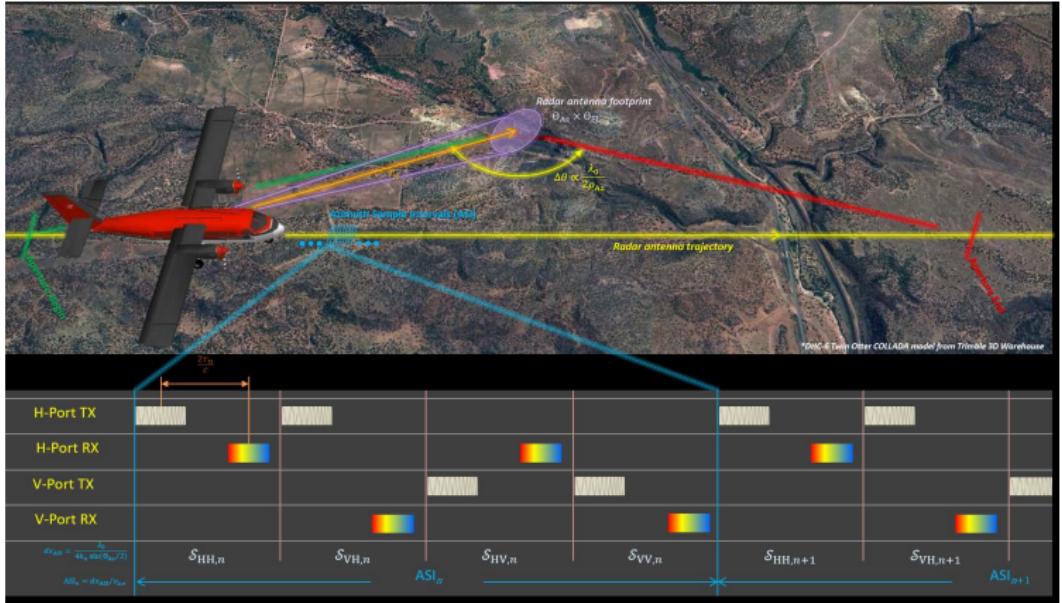
With the growing number of model-based decompositions of polarimetric SAR images, with their various canonical scatter-types, there is a need for a **general model-based decomposition framework** to *implement* and *evaluate* these decompositions.


Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Introduction

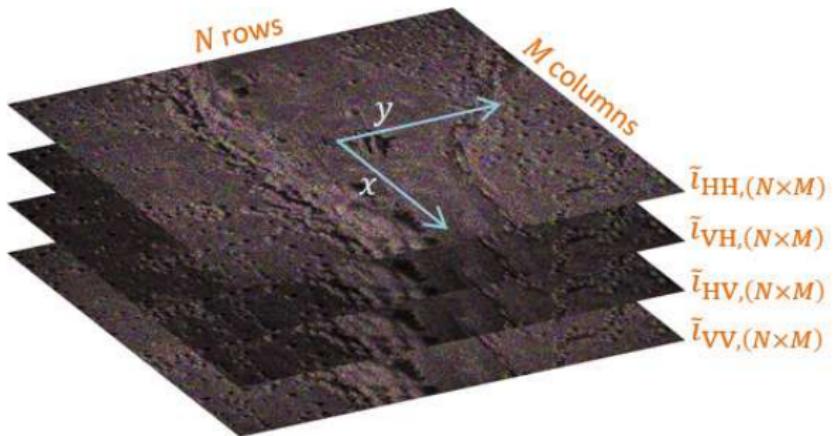
General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin


## Geometry of Synthetic Aperture Radar (SAR)



Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References


# Introduction

## Polarimetric SAR Diagram



# Introduction

The collected phase histories are converted to 2D images that represent the scene's reflectivity at each pixel using the method described in Jakowatz's text<sup>1</sup>.



<sup>1</sup> Jakowatz C.V., et al.,  
Spotlight-mode Synthetic Aperture Radar, Springer 1996.

# Decomposition Building Blocks

The main building blocks for decompositions<sup>2</sup> are the Sinclair scattering matrix,  $S$ , and the Pauli feature vector,  $k_P$ , defined as

$$S = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix} \quad k_P = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{HH} + S_{VV} \\ S_{HH} - S_{VV} \\ 2S_{HV} \end{bmatrix} \quad (1)$$

The corresponding coherency matrix  $T$  is

$$\langle T \rangle = \langle k_P k_P^H \rangle = \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{bmatrix} \quad (2)$$

where  $\langle \cdot \rangle$  denotes the spatial average

---

<sup>2</sup>Lee J., Pottier E., **Polarimetric Radar Imaging**, CRC Press, 2009.

# Model-Based Decompositions

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Model-based decompositions decompose the coherency matrix into contributions from canonical scatter-types.

$$\langle T \rangle = \sum_{i=1}^n f_i [T]_i, \quad (3)$$

$f_i$  is scalar, and  $[T]_i$  represents the coherency matrix that describes the  $i^{\text{th}}$  canonical scatter-type.

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Model-Based Decompositions

Freeman-Durden

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

The Freeman-Durden decomposition<sup>3</sup> assumes reflection symmetry and models the coherency matrix with three scatter-types.

$$\langle T \rangle = \begin{bmatrix} T_{11} & T_{12} & 0 \\ T_{21} & T_{22} & 0 \\ 0 & 0 & T_{33} \end{bmatrix} \quad (4)$$

$$\langle T \rangle = f_s T_s + f_d T_d + f_v T_v \quad (5)$$

s - Surface, d - Double-bounce, v - Volumetric

Intro  
Decomp Basics

Model-Based  
Decompositions  
Chen

GMBDF  
Lin. Ind.  
Number of  
Parameters

Results  
Application

Conclusion

References

# Model-Based Decompositions

## Freeman-Durden Surface Scattering

Scattering from a Bragg surface has the form

$$S_s = \begin{bmatrix} R_H & 0 \\ 0 & R_V \end{bmatrix} \quad (6)$$

The reflection coefficients for horizontally and vertically polarized waves are given by

$$R_H = \frac{\mu_r \cos \phi - \sqrt{\varepsilon_r \mu_r - \sin^2 \phi}}{\mu_r \cos \phi + \sqrt{\varepsilon_r \mu_r - \sin^2 \phi}} \quad (7)$$

$$R_V = \frac{\varepsilon_r \cos \phi - \sqrt{\varepsilon_r \mu_r - \sin^2 \phi}}{\varepsilon_r \cos \phi + \sqrt{\varepsilon_r \mu_r - \sin^2 \phi}} \quad (8)$$

where  $\phi$  is the local incidence angle,  $\varepsilon_r$  and  $\mu_r$  are the relative permittivity and permeability respectively .

# Model-Based Decompositions

## Freeman-Durden Surface Scattering

The associated Pauli feature vector and coherency matrix are

$$k_{P_s} = \frac{1}{\sqrt{2}} \begin{bmatrix} R_H + R_V \\ R_H - R_V \\ 0 \end{bmatrix} \quad (9)$$

$$T_s = \begin{bmatrix} \langle |R_H + R_V|^2 \rangle & \langle (R_H + R_V)(R_H - R_V)^* \rangle & 0 \\ \langle (R_H + R_V)^*(R_H - R_V) \rangle & \langle |R_H - R_V|^2 \rangle & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$T_s = f_s \begin{bmatrix} 1 & \beta^* & 0 \\ \beta & |\beta|^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad (10)$$

with  $|\beta| < 1$  and  $\beta \in \Re$

# Model-Based Decompositions

## Freeman-Durden Double-Bounce Scattering

Scattering from a dihedral is modeled by.

$$S_d = \begin{bmatrix} e^{j2\gamma_H} R_{WH} R_{GH} & 0 \\ 0 & e^{j2\gamma_V} R_{WV} R_{GV} \end{bmatrix} \quad (11)$$

The horizontal and vertical reflection coefficients are

$$R_{iH} = \frac{\cos \phi_i - \sqrt{\varepsilon_i - \sin^2 \phi_i}}{\cos \phi_i + \sqrt{\varepsilon_i - \sin^2 \phi_i}} \quad (12)$$

$$R_{iV} = \frac{\varepsilon_i \cos \phi_i - \sqrt{\varepsilon_i - \sin^2 \phi_i}}{\varepsilon_i \cos \phi_i + \sqrt{\varepsilon_i - \sin^2 \phi_i}} \quad (13)$$

where  $i \in \{W, G\}$  and the incidence angles  $\phi_G = \theta$  and  $\phi_W = \frac{\pi}{2} - \theta$ .

# Model-Based Decompositions

## Freeman-Durden Double-Bounce Scattering

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

The corresponding coherency matrix is

$$T_d = f_d \begin{bmatrix} |\alpha|^2 & \alpha & 0 \\ \alpha^* & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad (14)$$

where

$$\alpha = \frac{R_{WH}R_{GH} + e^{j\phi}R_{WV}R_{GV}}{R_{WH}R_{GH} - e^{j\phi}R_{WV}R_{GV}} \quad \text{and} \quad \phi = 2\gamma_V - 2\gamma_H \quad (15)$$

$\alpha$  is complex valued, and  $|\alpha| < 1$ .

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Model-Based Decompositions

## Freeman-Durden Volume Scattering

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

Volume scattering is modeled by a distribution of randomly oriented dipoles about the radar line of sight.

$$\langle T_{\text{vol}} \rangle = \int_0^{2\pi} T(\theta) p(\theta) d\theta = \begin{bmatrix} a & d & e \\ d^* & b & f \\ e^* & f^* & c \end{bmatrix} \quad (16)$$

where the entries  $a$ ,  $b$ , and  $c$  are real, and  $d$ ,  $e$ , and  $f$  are complex.

For the case where  $p(\theta)$  is uniform,

$$\langle T_v \rangle = \frac{1}{4} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (17)$$

# Model-Based Decompositions

## Freeman-Durden Assigning Powers

The Freeman-Durden Decomposition with these three models

$$\langle T \rangle = f_s \begin{bmatrix} 1 & \beta^* & 0 \\ \beta & |\beta|^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} + f_d \begin{bmatrix} |\alpha|^2 & \alpha & 0 \\ \alpha^* & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \frac{f_v}{4} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (18)$$

$$T_{11} = f_s + f_d |\alpha|^2 + \frac{f_v}{2}$$

$$T_{22} = f_s |\beta|^2 + f_d + \frac{f_v}{4}$$

$$T_{33} = \frac{f_v}{4}$$

$$T_{12} = f_s \beta^* + f_d \alpha$$

# Model-Based Decompositions

## Freeman-Durden Assigning Powers

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

The power of a scatter-type is the trace.

$$P_s = f_s (1 + |\beta|^2) \quad (19)$$

$$P_d = f_d (1 + |\alpha|^2) \quad (20)$$

$$P_v = f_v \quad (21)$$

## Several Issues

- ▶ Overestimation of Volume Power
- ▶ Volume model has priority
- ▶ Negative Powers
- ▶ Only handles reflection-symmetric case

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Model-Based Decompositions

Yamaguchi

In order to address nonreflection symmetric case, Yamaguchi introduces a fourth scatter-type<sup>4</sup>.

$$T_c = \frac{f_c}{2} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & \pm j \\ 0 & \mp j & 1 \end{bmatrix} \quad (22)$$

$$P_c = f_c \quad (23)$$

## Several Issues

- ▶ Overestimation of Volume Power
- ▶ Helical and Volume models have priority
- ▶ Negative Powers
- ▶ Does not address  $T_{13}$  or the real part of  $T_{23}$

<sup>4</sup>Yamaguchi Y., et al., IEEE Geo. R.S., 2005.

# Model-Based Decompositions

## Line of Sight Rotation

Rotated dihedrals are misclassified as volume scattering.

Therefore rotating the coherency matrix prior to the decomposition improves the decomposition<sup>5</sup>.

$$\langle T(\theta) \rangle = R(\theta) \langle T \rangle R(\theta)^* \quad (24)$$

$$R_3(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos 2\theta & \sin 2\theta \\ 0 & -\sin 2\theta & \cos 2\theta \end{bmatrix} \quad (25)$$

$\theta$  is chosen to minimize the  $T_{33}$  term

$$2\theta = \frac{1}{4} \left( \tan^{-1} \frac{2\text{Re}(T_{23})}{T_{22} - T_{33}} \pm n\pi \right) \quad n = 0, 1 \quad (26)$$

# Model-Based Decompositions

G4U

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Singh, et al.,<sup>6</sup> apply the rotation to the Yamaguchi decomp.

$$T_s(\theta) = f_s \begin{bmatrix} 1 & \beta^* \cos 2\theta & -\beta^* \sin 2\theta \\ \beta \cos 2\theta & |\beta|^2 \cos^2 2\theta & -\frac{1}{2} |\beta|^2 \sin 4\theta \\ -\beta \sin 2\theta & -\frac{1}{2} |\beta|^2 \sin 4\theta & |\beta|^2 \sin^2 2\theta \end{bmatrix} \quad (27)$$

$$T_d(\theta) = f_d \begin{bmatrix} |\alpha|^2 & \alpha \cos 2\theta & -\alpha \sin 2\theta \\ \alpha^* \cos 2\theta & \cos^2 2\theta & -\frac{1}{2} \sin 4\theta \\ -\alpha^* \sin 2\theta & -\frac{1}{2} \sin 4\theta & \sin^2 2\theta \end{bmatrix} \quad (28)$$

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Model-Based Decompositions

## X-Bragg Surface

Schuler, et al., propose an X-Bragg surface model<sup>7</sup> that extends  $T_s$  to model surfaces rougher than SPM allows.

$$T_{XB} = \int_0^{2\pi} T_s(\theta) P(\theta) d\theta. \quad (29)$$

$$P(\theta) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\theta^2/(2\sigma^2)}, \quad (30)$$

$$T_{XB} = f_g \begin{bmatrix} 1 & \beta^* e^{-2\sigma^2} & 0 \\ \beta e^{-2\sigma^2} & \frac{|\beta|^2}{2} \left(1 + e^{-8\sigma^2}\right) & 0 \\ 0 & 0 & \frac{|\beta|^2}{2} \left(1 - e^{-8\sigma^2}\right) \end{bmatrix} \quad (31)$$

# Model-Based Decompositions

## X-Bragg Surface

Hajnsek, et al., extend  $T_s$  using a uniform pdf<sup>8</sup>.

$$T_{XB} = \int_0^{2\pi} T_s(\theta) P(\theta) d\theta. \quad (32)$$

$$P(\theta) = \begin{cases} \frac{1}{2\theta_1} & |\theta| \leq \theta_1 \\ 0 & \text{otherwise} \end{cases} \quad \text{with} \quad 0 \leq \theta_1 \leq \frac{\pi}{2}, \quad (33)$$

$$T_{XB} = \begin{bmatrix} 1 & \beta^* \text{sinc}(2\theta_1) & 0 \\ \beta \text{sinc}(2\theta_1) & \frac{|\beta|^2}{2} (1 + \text{sinc}(4\theta_1)) & 0 \\ 0 & 0 & \frac{|\beta|^2}{2} (1 - \text{sinc}(4\theta_1)) \end{bmatrix} \quad (34)$$

with  $|\beta| \leq 1$ .

- Intro
- Decomp Basics
- Model-Based Decompositions
- Chen
- GMBDF
- Lin. Ind.
- Number of Parameters
- Results
- Application
- Conclusion
- References

# Model-Based Decompositions

## Adaptive Two-Component Decomposition

Huang, et al., adapt the Freeman II decomposition with Schuler's X-Bragg surface model and an improved volume model<sup>9</sup>

$$T_{v11} = \frac{\sqrt{\pi}\Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{n}{2} + 1\right)} \quad T_{v12} = -\frac{n\sqrt{\pi}\Gamma\left(\frac{n+1}{2}\right)}{4\Gamma\left(\frac{n}{2} + 2\right)} \quad (35)$$

$$T_{v33} = \frac{\sqrt{\pi}\Gamma\left(\frac{n+3}{2}\right)}{\Gamma\left(\frac{n}{2} + 3\right)} \quad T_{v22} = \frac{(n^2 + 2n + 4)\sqrt{\pi}\Gamma\left(\frac{n+1}{2}\right)}{8\Gamma\left(\frac{n}{2} + 3\right)} \quad (36)$$

$$A = \int_0^{\pi} \sin^n \theta \, d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^n \theta \, d\theta = \frac{\sqrt{\pi}\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2} + 1\right)} \quad (37)$$

$$\Gamma(a) = \int_0^{\infty} e^{-t} t^{a-1} \, dt. \quad (38)$$

<sup>9</sup>Huang X., et al., IEEE Geo. R.S. Mar. 2016.

# Model-Based Decompositions

Chen

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

Chen, et al.<sup>10</sup>, introduce a general decomposition for an observed coherency matrix  $T$  is

$$T = T_s(\theta_{\text{odd}}) + T_d(\theta_{\text{dbl}}) + \langle T_{\text{vol}} \rangle + T_{\text{hel}} + T_{\text{res}} \quad (39)$$

$T_{\text{res}}$  is used to measure how well those models fit the observations. The smaller  $T_{\text{res}}$  is, the better the collection of models fits the data.

<sup>10</sup>Chen S.W., et al., IEEE Geo. R.S., Mar 2014. 

# Model-Based Decompositions

Chen

Using the canonical scattering models described in Chen's decomposition, the measured coherency matrix for a pixel is decomposed as follows:

$$\begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{23} & T_{33} \end{bmatrix} =$$

$$f_s \begin{bmatrix} 1 & \beta^* \cos 2\theta_{\text{odd}} & -\beta^* \sin 2\theta_{\text{odd}} \\ \beta \cos 2\theta_{\text{odd}} & |\beta|^2 \cos^2 2\theta_{\text{odd}} & -\frac{1}{2} |\beta|^2 \sin 4\theta_{\text{odd}} \\ -\beta \sin 2\theta_{\text{odd}} & -\frac{1}{2} |\beta|^2 \sin 4\theta_{\text{odd}} & |\beta|^2 \sin^2 2\theta_{\text{odd}} \end{bmatrix} + \dots$$

$$f_d \begin{bmatrix} |\alpha|^2 & \alpha \cos 2\theta_{\text{dbl}} & -\alpha \sin 2\theta_{\text{dbl}} \\ \alpha^* \cos 2\theta_{\text{dbl}} & \cos^2 2\theta_{\text{dbl}} & -\frac{1}{2} \sin 4\theta_{\text{dbl}} \\ -\alpha^* \sin 2\theta_{\text{dbl}} & -\frac{1}{2} \sin 4\theta_{\text{dbl}} & \sin^2 2\theta_{\text{dbl}} \end{bmatrix} + \dots$$

$$f_v \begin{bmatrix} a & d & e \\ d^* & b & f \\ e^* & f^* & c \end{bmatrix} + f_c \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & \pm j \\ 0 & \mp j & 1 \end{bmatrix} + \begin{bmatrix} T_{\text{res11}} & T_{\text{res12}} & T_{\text{res13}} \\ T_{\text{res21}} & T_{\text{res22}} & T_{\text{res23}} \\ T_{\text{res31}} & T_{\text{res32}} & T_{\text{res33}} \end{bmatrix}$$

# Model-Based Decompositions

Chen

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

Let  $T_r$  represent a vector that contains the real and imaginary elements that define  $T_{\text{res}}$ . For model inversion, the optimization criterion is to minimize the square of the L2 norm of  $T_r$ .

$$T_r = \begin{bmatrix} T_{\text{res}11} \\ T_{\text{res}22} \\ T_{\text{res}33} \\ \text{Re}\{T_{\text{res}12}\} \\ \text{Re}\{T_{\text{res}13}\} \\ \text{Re}\{T_{\text{res}23}\} \\ \text{Im}\{T_{\text{res}12}\} \\ \text{Im}\{T_{\text{res}13}\} \\ \text{Im}\{T_{\text{res}23}\} \end{bmatrix} \quad \|T_r\|_2^2 = \sum_{i=1}^9 |T_{r(i)}|^2 \quad (40)$$

# Model-Based Decompositions

Chen

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

The nine generic equations for  $T_{r(i)}$  are

$$\begin{aligned} T_{r(1)} &= T_{11} - f_d |\alpha|^2 - f_s - af_v \\ T_{r(2)} &= T_{22} - f_d \cos^2 2\theta_{dbl} - f_s |\beta|^2 \cos^2 2\theta_{odd} - bf_v - \frac{f_c}{2} \\ T_{r(3)} &= T_{33} - f_d \sin^2 2\theta_{dbl} - f_s |\beta|^2 \sin^2 2\theta_{odd} - cf_v - \frac{f_c}{2} \\ T_{r(4)} &= \operatorname{Re}\{T_{12}\} - f_v \operatorname{Re}\{d\} - f_d \operatorname{Re}\{\alpha\} \cos 2\theta_{dbl} - f_s \operatorname{Re}\{\beta\} \cos 2\theta_{odd} \\ T_{r(5)} &= \operatorname{Re}\{T_{13}\} - f_v \operatorname{Re}\{e\} + f_d \operatorname{Re}\{\alpha\} \sin 2\theta_{dbl} + f_s \operatorname{Re}\{\beta\} \sin 2\theta_{odd} \\ T_{r(6)} &= \operatorname{Re}\{T_{23}\} - f_v \operatorname{Re}\{f\} + \frac{f_d}{2} \sin 4\theta_{dbl} + \frac{f_s}{2} |\beta|^2 \sin 4\theta_{odd} \\ T_{r(7)} &= \operatorname{Im}\{T_{12}\} - f_v \operatorname{Im}\{d\} - f_d \operatorname{Im}\{\alpha\} \cos 2\theta_{dbl} + f_s \operatorname{Im}\{\beta\} \cos 2\theta_{odd} \\ T_{r(8)} &= \operatorname{Im}\{T_{13}\} - f_v \operatorname{Im}\{e\} + f_d \operatorname{Im}\{\alpha\} \sin 2\theta_{dbl} - f_s \operatorname{Im}\{\beta\} \sin 2\theta_{odd} \\ T_{r(9)} &= \operatorname{Im}\{T_{23}\} - f_v \operatorname{Im}\{f\} - \frac{f_c}{2} \end{aligned} \tag{41}$$

# Model-Based Decompositions

Chen

$$\text{Let } F = \sum_{i=1}^9 |T_{r(i)}|^2$$

$$\begin{aligned} F = & (T_{11} - f_d|\alpha|^2 - f_s - af_v)^2 \\ & + \left( T_{22} - f_d \cos^2 2\theta_{dbl} - f_s |\beta|^2 \cos^2 2\theta_{odd} - bf_v - \frac{f_c}{2} \right)^2 \\ & + \left( T_{33} - f_d \sin^2 2\theta_{dbl} - f_s |\beta|^2 \sin^2 2\theta_{odd} - cf_v - \frac{f_c}{2} \right)^2 \\ & + (\text{Re}\{T_{12}\} - f_v \text{Re}\{d\} - f_d \text{Re}\{\alpha\} \cos 2\theta_{dbl} - f_s \text{Re}\{\beta\} \cos 2\theta_{odd})^2 \\ & + (\text{Re}\{T_{13}\} - f_v \text{Re}\{e\} + f_d \text{Re}\{\alpha\} \sin 2\theta_{dbl} + f_s \text{Re}\{\beta\} \sin 2\theta_{odd})^2 \\ & + \left( \text{Re}\{T_{23}\} - f_v \text{Re}\{f\} + \frac{f_d}{2} \sin 4\theta_{dbl} + \frac{f_s}{2} |\beta|^2 \sin 4\theta_{odd} \right)^2 \\ & + (\text{Im}\{T_{12}\} - f_v \text{Im}\{d\} - f_d \text{Im}\{\alpha\} \cos 2\theta_{dbl} + f_s \text{Im}\{\beta\} \cos 2\theta_{odd})^2 \\ & + (\text{Im}\{T_{13}\} - f_v \text{Im}\{e\} + f_d \text{Im}\{\alpha\} \sin 2\theta_{dbl} - f_s \text{Im}\{\beta\} \sin 2\theta_{odd})^2 \\ & + \left( \text{Im}\{T_{23}\} - f_v \text{Im}\{f\} - \frac{f_c}{2} \right)^2 \end{aligned} \quad (42)$$

# Model-Based Decompositions

Chen

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

The objective function (27) is minimized with the following constraints:

$$0 \leq f_v, f_d, f_s \leq \text{Tr} \{ T \} \quad 0 \leq f_c \leq 2|\text{Im} (T_{23})| \quad (43)$$

$$-\frac{\pi}{4} \leq \theta_{\text{dbl}}, \theta_{\text{odd}} \leq \frac{\pi}{4} \quad |\beta|, |\alpha| < 1 \quad (44)$$

where  $\text{Tr} \{ T \} = T_{11} + T_{22} + T_{33}$  is the trace of the measured coherency matrix.

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Model-Based Decompositions

## Decomposition Implementation

Minimizing (27) is a little tricky.

- ▶ MATLAB's fmincon function

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics

Model-Based  
Decompositions  
Chen

GMBDF  
Lin. Ind.  
Number of  
Parameters

Results

Application

Conclusion

References

---

<sup>11</sup>Boyd S., Vandenberghe L., **Convex Optimization**,  
Cambridge University Press, 2004.

# Model-Based Decompositions

## Decomposition Implementation

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Minimizing (27) is a little tricky.

- ▶ MATLAB's `fmincon` function
- ▶ Newton's Method

Intro  
Decomp Basics

Model-Based  
Decompositions  
Chen

GMBDF  
Lin. Ind.  
Number of  
Parameters

Results

Application

Conclusion

References

---

<sup>11</sup>Boyd S., Vandenberghe L., **Convex Optimization**,  
Cambridge University Press, 2004.

# Model-Based Decompositions

## Decomposition Implementation

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics

Model-Based  
Decompositions  
Chen

GMBDF  
Lin. Ind.  
Number of  
Parameters

Results

Application

Conclusion

References

Minimizing (27) is a little tricky.

- ▶ MATLAB's `fmincon` function
- ▶ Newton's Method

Bad results are due to the function being nonconvex!

---

<sup>11</sup>Boyd S., Vandenberghe L., **Convex Optimization**,  
Cambridge University Press, 2004.

# Model-Based Decompositions

## Decomposition Implementation

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

Minimizing (27) is a little tricky.

- ▶ MATLAB's `fmincon` function
- ▶ Newton's Method

Bad results are due to the function being nonconvex!

A function is convex<sup>11</sup> if

$$\forall t \in [0, 1], \forall \underline{x}_1, \underline{x}_2 \in D$$

$$F(t\underline{x}_1 + (1 - t)\underline{x}_2) \leq tF(\underline{x}_1) + (1 - t)F(\underline{x}_2) \quad (45)$$

---

<sup>11</sup>Boyd S., Vandenberghe L., **Convex Optimization**,  
Cambridge University Press, 2004.

# Model-Based Decompositions

## Decomposition Implementation

Define  $\underline{x}_1$  and  $\underline{x}_2$  as follows:

$$\underline{x}_1 = \begin{bmatrix} f_s \\ f_d \\ f_v \\ f_c \\ \theta_{\text{odd}} \\ \theta_{\text{dbl}} \\ \mathbf{Re}\{\alpha\} \\ \mathbf{Im}\{\alpha\} \\ \mathbf{Re}\{\beta\} \end{bmatrix} = \begin{bmatrix} 200.9667 \\ 0 \\ 0 \\ 0 \\ 0.5620 \\ 0 \\ 0 \\ 0 \\ -0.2550 \end{bmatrix} \quad \underline{x}_2 = \begin{bmatrix} 211.5955 \\ 0 \\ 0 \\ 0 \\ -0.7021 \\ 0 \\ 0 \\ 0 \\ -0.5247 \end{bmatrix} . \quad (46)$$

# Model-Based Decompositions

## Decomposition Implementation

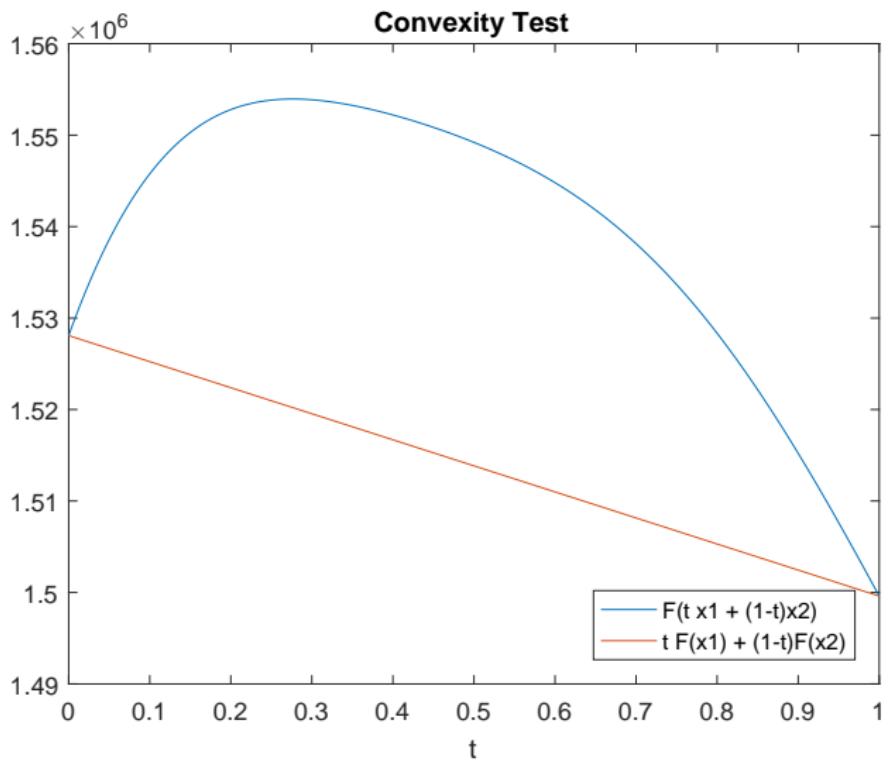
General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

These values for  $\underline{x}_1$  and  $\underline{x}_2$  represent two different points within the bounds from (43). Therefore, their residual can be formed with the same objective function with the measured coherency values

$$\langle \mathbf{T} \rangle = \begin{bmatrix} 690.86 & 734.16 + 97.64i & 120.17 + 83.50i \\ 734.16 - 97.64i & 814.94 & 141.11 + 80.19i \\ 120.17 - 83.50i & 141.11 - 80.19i & 35.11 \end{bmatrix}. \quad (47)$$

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References


# Model-Based Decompositions

## Decomposition Implementation

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References



# Model-Based Decompositions

## Decomposition Implementation

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

The method of steepest descent is applied to parameters,  $x_0$ , that are supplied by the *G4U* decomp.

Set

$$x_1 = -\lambda \nabla F(x_0) + x_0 \quad (48)$$

with  $\lambda = 1$ .

$x_1$  must satisfy the following:

- ▶  $x_1$  satisfies the constraints
- ▶ The residual at  $x_1$  is lower than  $x_0$ ,  $F(x_1) < F(x_0)$

Reduce  $\lambda$  until both conditions are met.

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Model-Based Decompositions

## Decomposition Implementation

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

### Steepest Descent Algorithm:

- ▶ Set  $x_0, F(x_0), \nabla F(x_0)$  at each pixel.
- ▶ Set  $x_1 = -\nabla F(x_0) + x_0$
- ▶ For pixels that do not satisfy both conditions, divide  $\lambda$  by 10 and reset  $x_1$
- ▶ Continue to adjust  $\lambda$  and reset  $x_1$  until a desired tolerance is reached.
- ▶ Set  $x_0 = x_1$  and rerun the previous 4 steps.
- ▶ Continue iterations until a minimum (local) is reached.

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# General Model-Based Decomposition Framework

Chen's decomposition can be *expanded* to be a **framework** for a whole family of model-based decompositions.

Scatter-types can be interchanged depending on the situation and the residual provides a way evaluate how well the scatter-types model the data.

$$\langle T \rangle = \sum_{i=1}^n (f_i T_i) + T_{\text{res}} \quad (49)$$

# General Model-Based Decomposition Framework

## Linear Independence for Scatter-Types

The scatter-types in this framework must be linearly independent.

If not, then

$$f_a T_a = f_b T_b + f_c T_c + \dots \quad (50)$$

which forces  $P_a = 0$  and  $P_a \neq 0$   
... which is bad.

Therefore, care must be taken to ensure that the scatter-types being used are linearly independent.

# General Model-Based Decomposition Framework

## Number of Parameters

Chen, et al., claim that the maximum number of unknown parameters should be limited to nine<sup>12</sup>.

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

<sup>12</sup>Chen S.W., et al., IEEE Geo. R.S., Mar 2014. 

# General Model-Based Decomposition Framework

## Number of Parameters

Chen, et al., claim that the maximum number of unknown parameters should be limited to nine<sup>12</sup>.

**THIS IS FALSE!!**

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

<sup>12</sup>Chen S.W., et al., IEEE Geo. R.S., Mar 2014. 

# General Model-Based Decomposition Framework

## Number of Parameters

Chen, et al., claim that the maximum number of unknown parameters should be limited to nine<sup>12</sup>.

**THIS IS FALSE!!**

As long as the scatter-types are linearly independent, any number of parameters are allowed.

# General Model-Based Decomposition Framework

Example: Complex  $\beta$

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Compare the Chen decomposition with a new decomposition that switches in a surface model that includes a complex  $\beta$ .

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# General Model-Based Decomposition Framework

Example: Complex  $\beta$

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Compare the Chen decomposition with a new decomposition that switches in a surface model that includes a complex  $\beta$ .

- ▶ Run Chen decomposition.

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# General Model-Based Decomposition Framework

Example: Complex  $\beta$

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Compare the Chen decomposition with a new decomposition that switches in a surface model that includes a complex  $\beta$ .

- ▶ Run Chen decomposition.
- ▶ Run new decomposition with complex beta.

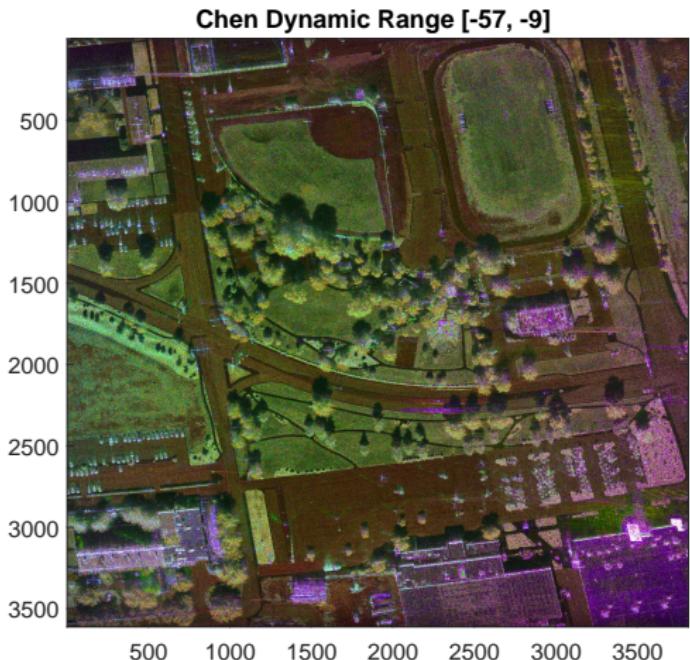
Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# General Model-Based Decomposition Framework

Example: Complex  $\beta$

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin


Compare the Chen decomposition with a new decomposition that switches in a surface model that includes a complex  $\beta$ .

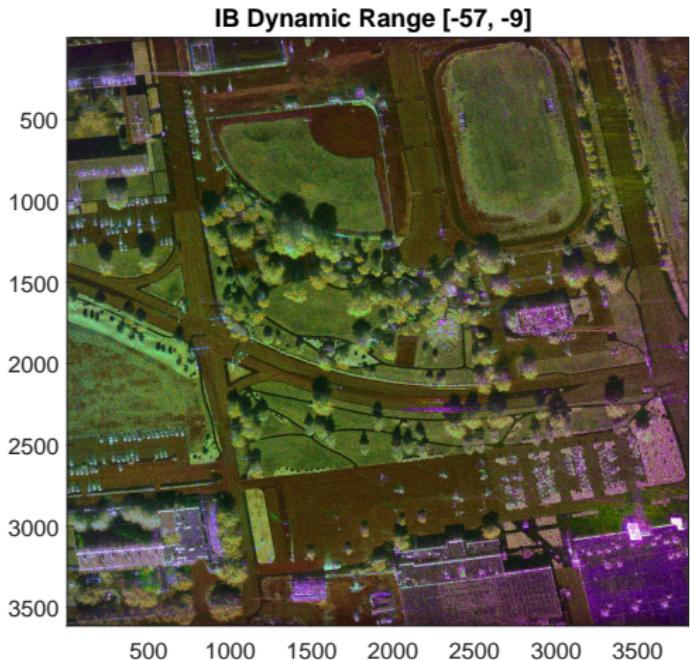
- ▶ Run Chen decomposition.
- ▶ Run new decomposition with complex beta.
- ▶ Compare the residual values.

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Results

Chen image of Gibson Blvd. on KAFB.




General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

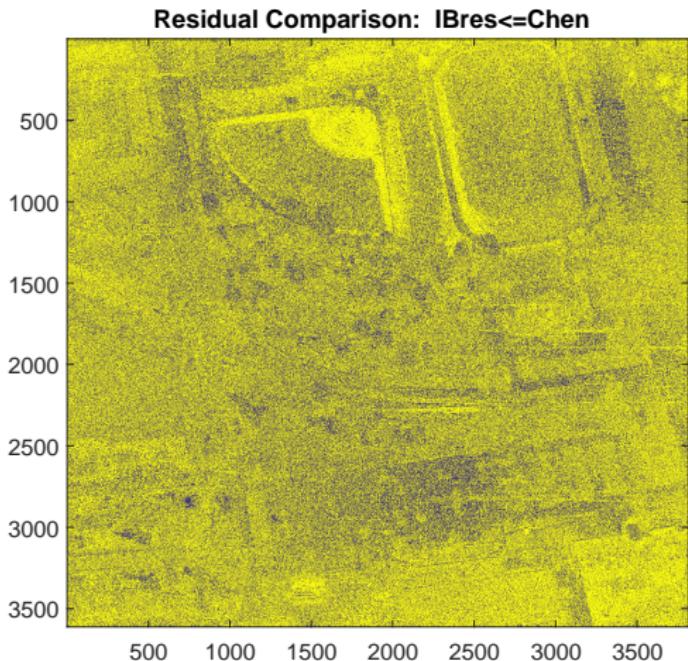
Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Results

ImBeta image of Gibson Blvd. on KAFB.




General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

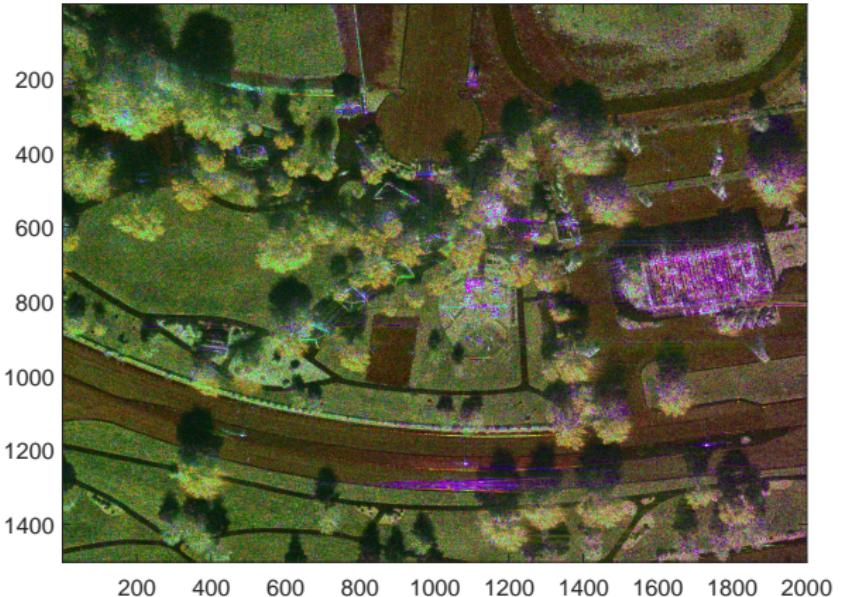
Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Results

## Pixels that improve the Chen with the ImBeta

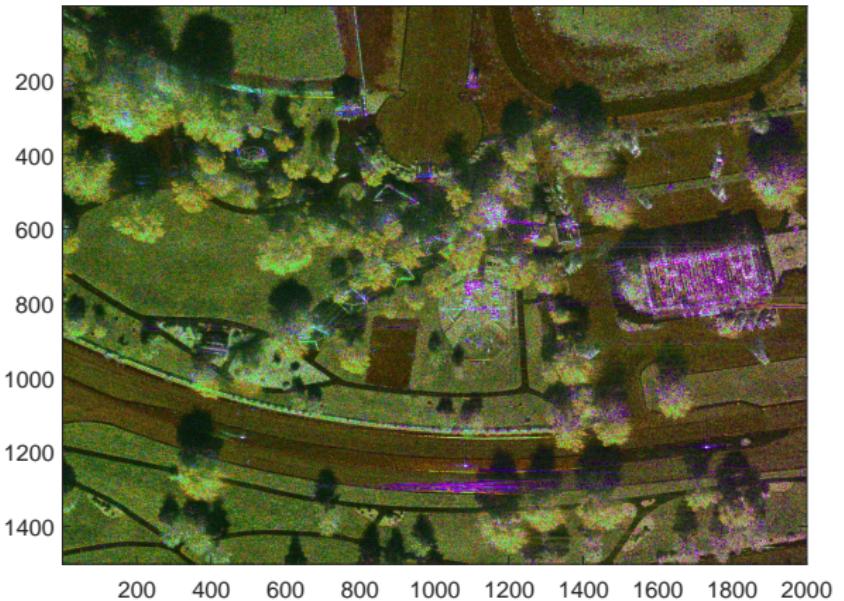



# Results

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References


Chen Dynamic Range [-57, -9]

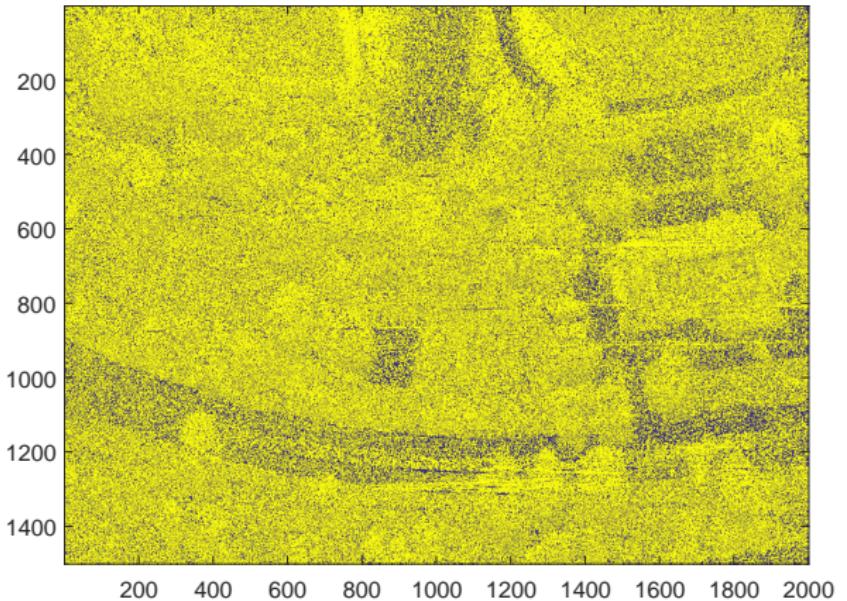


## Results

ImBeta chip of Gibson Blvd. on KAFB.

### IB Dynamic Range [-57, -9]




## Results

# General Model-Based Decomposition Framework for Polarimetric SAR Images

## Stephen Dauphin

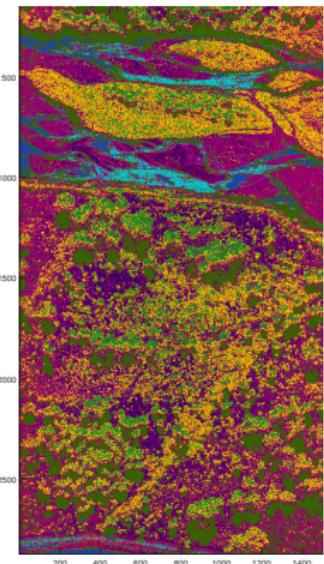
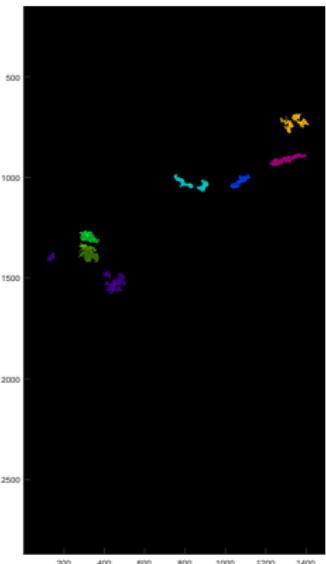
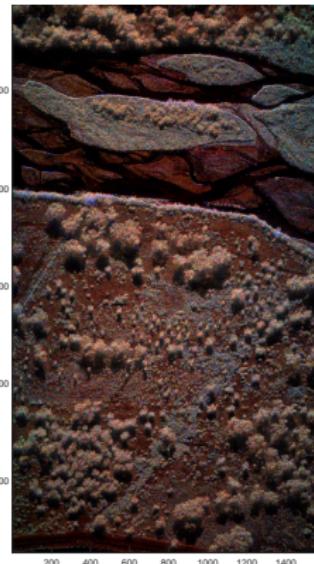
## Pixels that improve the Chen with the ImBeta

### Residual Comparison: IBres<=Chen



# Results

The sum of the residuals across the image are




| Decomp         | Total Residual |
|----------------|----------------|
| Freeman-Durden | 5728273        |
| G4U            | 2802118        |
| Chen           | 1176796        |
| ImBeta         | 1150272        |

# Application

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

## Terrain Classification<sup>13</sup>.



Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

# Conclusion

With this research effort, I have

- ▶ developed a general framework that encompasses all the scatter-types of existing decompositions.

# Conclusion

With this research effort, I have

- ▶ developed a general framework that encompasses all the scatter-types of existing decompositions.
- ▶ provided a method for evaluating how good a collection of scatter-types is by comparing residuals.

# Conclusion

With this research effort, I have

- ▶ developed a general framework that encompasses all the scatter-types of existing decompositions.
- ▶ provided a method for evaluating how good a collection of scatter-types is by comparing residuals.
- ▶ developed a notion of linear independence of scatter-types.

# Conclusion

With this research effort, I have

- ▶ developed a general framework that encompasses all the scatter-types of existing decompositions.
- ▶ provided a method for evaluating how good a collection of scatter-types is by comparing residuals.
- ▶ developed a notion of linear independence of scatter-types.
- ▶ shown that the existing belief that decompositions are limited to 9 parameters is false, which enables new combinations of scatter-types to create new decompositions.

# Conclusion

With this research effort, I have

- ▶ developed a general framework that encompasses all the scatter-types of existing decompositions.
- ▶ provided a method for evaluating how good a collection of scatter-types is by comparing residuals.
- ▶ developed a notion of linear independence of scatter-types.
- ▶ shown that the existing belief that decompositions are limited to 9 parameters is false, which enables new combinations of scatter-types to create new decompositions.
- ▶ given an example of a new decomposition (ImBeta) that has a lower residual than the other existing decompositions.

# Conclusion

With this research effort, I have

- ▶ developed a general framework that encompasses all the scatter-types of existing decompositions.
- ▶ provided a method for evaluating how good a collection of scatter-types is by comparing residuals.
- ▶ developed a notion of linear independence of scatter-types.
- ▶ shown that the existing belief that decompositions are limited to 9 parameters is false, which enables new combinations of scatter-types to create new decompositions.
- ▶ given an example of a new decomposition (ImBeta) that has a lower residual than the other existing decompositions.
- ▶ given an example of the utility of model-based decompositions to classify terrain.

# References I

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen

GMBDF  
Lin. Ind.  
Number of  
Parameters

Results  
Application  
Conclusion  
References

-  C. V. Jakowatz Jr., D. E. Wahl, P. E. Eichel, D. C. Ghiglia, and P. A. Thompson, *Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach*. Springer, 1996.
-  J. Lee and E. Pottier, *Polarimetric Radar Imaging: From Basics to Applications*. CRC Press, 2002.
-  A. Freeman and S. Durden, "A three-component scattering model for polarimetric SAR data," *Geoscience and Remote Sensing, IEEE Transactions on*, vol. 36, no. 3, pp. 963–973, 1998, ISSN: 0196-2892. DOI: 10.1109/36.673687.

# References II

-  Y. Yamaguchi, T. Moriyama, M. Ishido, and H. Yamada, “Four-component scattering model for polarimetric SAR image decomposition,” *Geoscience and Remote Sensing, IEEE Transactions on*, vol. 43, no. 8, pp. 1699–1706, 2005.
-  J.-S. Lee and T. Ainsworth, “The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions,” *Geoscience and Remote Sensing, IEEE Transactions on*, vol. 49, no. 1, pp. 53–64, 2011, ISSN: 0196-2892. DOI: 10.1109/TGRS.2010.2048333.

# References III

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

-  G. Singh, Y. Yamaguchi, and S.-E. Park, "General four-component scattering power decomposition with unitary transformation of coherency matrix," *Geoscience and Remote Sensing, IEEE Transactions on*, vol. 51, no. 5, pp. 3014–3022, 2013, ISSN: 0196-2892. DOI: 10.1109/TGRS.2012.2212446.
-  D. L. Schuler, J.-S. Lee, D. Kasilingam, and G. Nesti, "Surface roughness and slope measurements using polarimetric sar data," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 40, no. 3, pp. 687–698, 2002, ISSN: 0196-2892. DOI: 10.1109/TGRS.2002.1000328.

# References IV

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References

-  X. Huang, J. Wang, and J. Shang, "An adaptive two-component model-based decomposition on soil moisture estimation for c-band radarsat-2 imagery over wheat fields at early growing stages," *IEEE Geoscience and Remote Sensing Letters*, vol. 13, no. 3, pp. 414–418, 2016, ISSN: 1545-598X. DOI: 10.1109/LGRS.2016.2517082.
-  S.-W. Chen, X. song Wang, S.-P. Xiao, and M. Sato, "General polarimetric model-based decomposition for coherency matrix," *IEEE Transactions on Geoscience and Remote Sensing*, vol. 52, no. 3, pp. 1843–1855, 2014, ISSN: 0196-2892. DOI: 10.1109/TGRS.2013.2255615.
-  S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2004.

# References V

General  
Model-Based  
Decomposition  
Framework for  
Polarimetric SAR  
Images

Stephen Dauphin



S. Dauphin, R. Derek West, R. Riley, and K. M. Simonson, “Semi-supervised classification of terrain features in polarimetric sar images using  $h/a/\alpha$ ; and the general four-component scattering power decompositions,” in *Signals, Systems and Computers, 2014 48th Asilomar Conference on*, 2014, pp. 167–171. DOI: 10.1109/ACSSC.2014.7094420.

Intro  
Decomp Basics  
Model-Based  
Decompositions  
Chen  
GMBDF  
Lin. Ind.  
Number of  
Parameters  
Results  
Application  
Conclusion  
References