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= ShyLU Domain decomposition Solvers
= Hybrid-Schur:
= MPI+X hybrid programming model
= Direct+lterative Hybrid Schur Complement Solver
=  BDDC: Balancing Domain Decomposition
= Experimental mode now
= 2-level domain-decomposition method
= Can be extended to multilevel
= GDSW: Generalized Drija Smith Widlund (planned)
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KokkosKernels -
SGS, Coloring, SpGEMM, Batched BLAS

=  ShyLU on Node Solvers
=  Multiple Kokkos-based options for on-node parallelism
= Basker : LU or ILU (t) factorization
= Tacho: (In)complete Cholesky - IC (k)
= Fast-ILU: Fast-ILU factorization for GPUs
= HTS: Multithreaded Triangular solves
= Under active development. Jointly funded by ASC, ATDM, FASTMath, LDRD.




KokkosKernels : Overview i) N

~ ATDM/ECP/ASC App‘lications |
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« Layer of performance portable kernels on top of Kokkos
« Sparse linear algebra kernels
* Dense linear algebra kernels (Batched BLAS as well as
traditional BLAS)
« Graph kernels
« Tensor Contraction kernels (upcoming)




Themes for Architecture Aware Solvers and |
Kernels : Data layouts

= Specialized memory layouts
= Architecture aware data layouts
= Coalesced memory access
= Padding
= Array of Structures vs Structure of Arrays
= Kokkos based abstractions (H. C. Edwards and C. Trott)
= Two dimensional layouts for matrices
= Allows using 2D algorithms for solvers and kernels
= Bonus: Fewer synchronizations with 2D algorithms
= Cons : Much more harder to design correctly

= Better utilization of hierarchical memory like High Bandwidth Memory
(HBM) in Intel Xeon Phi or NVRAM

= Hybrid layouts
= Better for very heterogeneous problems




Themes for Architecture Aware Solvers and i) fedma
Kernels : Fine-grained Synchronization

= Synchronizations are expensive

= 1D algorithms for factorizations and solvers, such as ND based solvers
have a huge synchronization bottleneck for the final separator

= Impossible to do efficiently in certain architectures designed for massive
data parallelism (GPUs)
= This is true only for global synchronizations, fork/join style model.
= Fine grained synchronizations
= Between handful of threads (teams of threads)
= Point to Point Synchronizations instead of global synchronizations
= Park et al (ISC14) showed this for triangular solve
= Thread parallel reductions wherever possible
= Atomics are cheap
— Only when used judiciously




Themes for Architecture Aware Solvers and |
Kernels : Task Parallelism

= Statically Scheduled Tasks
= Determine the static scheduling of tasks based on a task graph
= Eliminate unnecessary synchronizations
= Tasks scheduled in the same thread do not need to synchronize
= Find transitive relationships to reduce synchronization even further
— Jongsoo Park et al
= Dynamically scheduled tasks
= Use a tasking model that allows fine grained synchronizations
= Requires support for futures

= Not the fork-join model where the parent forks a set of tasks and
blocks till they finish

= Kokkos Tasking API

— Joint work with Carter Edwards, Stephen Olivier, Kyungjoo Kim,
Jon Berry, George Stelle




Parallel ILU(k) factorization i) e

= Parallel ILU(k) factorization
= Can we focus on ILU(k) algorithm to reduce synchronizations ?
= Starting Point : Hysom and Pothen 01 based on three assumptions

= Good edge separators exist for the adjacency graph of the
coefficient matrix

= Size of the problem sufficiently large relative to number of
processors

= Subdomain intersection graph should have a small chromatic
number




Parallel ILU(k) factorization : Assumption 1 in H&P
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= Hysom and Pothen numbers all internal and boundary vertices of a
subdomain before it numbers any other subdomain — requires good
edge separators

= This can be relaxed to vertex separators if all “leaf” vertices are
numbered before internal or “non-leaf” vertices in the ND tree in a
levelwise fashion

= The incomplete fill path theorem can be extended to support this



Parallel ILU(k) factorization : Assumption 3 in H&P
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= Hysom and Pothen colors the “subdomain” graph with the directed
edges representing the ordering — reduce the path length with
coloring the subdomain graph. Fill is also limited by this graph.

= This can be relaxed to an “interface graph” where each “corner”,
“edge” and “face” in 3D for a subdomain is represented by a vertex

= Color the interface graph to reduce the path length. Fill is also
limited by this graph.



Parallel ILU(k) factorization

= Currently using Scotch for the ND
= Special options provided by Scotch developers (Thank you !)

= Graph partitioning tools can provide the finer granularity ND
tree but they don't

= Most expensive portion when graph structure changes

= Uses Coarse Nested Dissection intersection graph instead of the fine
graph for the level sets.

= Can be improved by adapting the fine ND
= Currently uses barriers between coarse level sets
= Can be improved by adapting the same techniques used by HTS




Parallel ILU(k) factorization speedup
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= Slightly more expensive in one thread than a sequential algorithm
= The assumption on work per subdomain still holds

= Reducing the synchronization even further will definitely help. Last
separator (root) is a problem in number of cases.



HTS: Hybrid Triangular Solve

0 5 10 15
Level Index ¢

= SolveR*P*T*Q*x=b
= Row Scaling (R), Row and Column Permutations (P, Q)

= Solve multiple triangular solves with single right hand side with same T or pattern(T)
= Symbolic (Find parallelism), Numeric (Refresh data structures), (Actual) Solve Phases
= Number of rows in level vary widely

= A. Bradley (Developer)



HTS: Hybrid Triangu

ar Solve

factors
format by themselves

(Park et. Al)

Solve phase on Knights Corner

Elastic cube, bilinear hexes, 86490 unknowns, L from LDL, NodeND
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Denser (sub) structures in the higher levels that can be exploited.
Recursive Block Decomposition of the dense triangular matrix.
Sequential or parallel spmv and triangular solves within the dense triangular

A hybrid triangular solve does better than either level-sets or recursive block

Using the P2P communication between threads and other tricks related to it




Comparison of Different Methods

HTS Triangular Solve
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UMFPACK LU, Knights Corner, 240 threads
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HTS Triangular Solve — Results on IvyBridge and KNC
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Motivation for Batched BLAS with Compact Layout@1 ot

mxn i

« Sandia application characteristics

* One dimension of the mesh more important than the others
when preconditioning

« Multiple degrees of freedom per element gives rise to tiny
blocks




Motivation for Batched BLAS/LAPACK

Algorithm 1: Reference impl. TriLU

1 for Tin{Ty, T4, ", T;yp-1} doin paralle
2 for r 0Otok-2 do

3 A= LU(AY);

4 B =L8";

5 Cr=CU";

6 Al .= Cr+1 - CrB:

7 end

s | A= (L-U};

9 end

« Block Jacobi preconditioner where each block is a Tridiagonal matrix
« Every scalar in the tridiagonal matrix is a small block matrix
* Block sizes 5x5, 9x9, 15x15 etc
« Typical number of diagonal blocks 512-1024
* Key kernels needed DGEMM, LU, TRSM
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KokkosKernels Compact Layouts for Batched BL@ ot

Algorithm 2: Batched impl. TriLU

1 for apar T(0,1) in
{{767 7-1}7{7-27 7-3}7 "';{TmDn—Z; TmDn— 1}} doin para”d
for r Otok-2 do

Ar(O‘I) — LU(Ar(O 1))
Br(01) = |- 1Br(0 1)
ér(01 Cr01 U- 1
Ar+1( _Cr+101 Cr01Br01)

Block A of TO and T1 is packed and
elements are aligned to its vector lane

© o0 N oo o &~ wWw N

e Data Layout for better vector intrinsics
* Pack entries from up to vlen block diagonal matrices, vlen is the vector
length (vector length = 2 shown)
e Use vector intrinsics on the new data vector data with operator
overloading

e Scalar Performance is due to explicit loop unrolling
I ——————



KokkosKernels Batched BLAS : Usage within (i) i
Preconditioner, KNL, 1x68x4, 1.4 Ghz, Intel 17.1.132

Tridiagonal Factorization Tridiag Solve (32x32x128)
(32x32x128) o 3

o 10 x25
14 o
< 6 BlkSize 5 ; 1.5 . E:::::: g
i 4 m BlkSize 9 g— 1 BIkSize 15
3 2 ‘ ‘ ‘ ‘ BlkSize 15 3 0.5 = BIkSize 20
@ ‘ mBlkSize 20 2
w0 0

1 2 4 8 16 34 68 1 2 4 8 16 34 68

# of threads # of threads

 Performance comparisons for Large-Block Jacobi Small-Block
Tridiagonal factorization and Triangular Solve

* One right hand side per solve

 Speedups against a hand-tuned version of the code within the
application




Conclusions

= Themes around Thread Scalable Subdomain solvers
= Data Layouts
= Fine-grained Synchronizations
= Task Parallelism
= Asynchronous Algorithms
= Presented three upcoming methods
= A Traditional multithreaded ILU(K)
= A Hybrid triangular solve
= A compact layout based LU factorization
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Sandia
Iterative Inexact Triangular Solves ) doem

= Just Computing the LU factors is only part of the cost. We need to apply the
factors in fine-grained fashion.

= Solve the triangular factors with fixed number of sweeps of Jacobi iteration
= Use the matrix splitting

A= (A-D)+ D;

= Given an initial guess use the update:

Tpr1 = (I — D tA)x, + Db,
= Will converge if : p(I-D71A) <1
= This is always true for triangular matrices (spectral radius of zero)

= Note: This is asymptotic convergence




Themes for Architecture Aware Solvers and |
Kernels : Asynchronous Algorithms

= System Level Algorithms
= Communication Avoiding Methods (s-step methods)
= Not truly asynchronous but can be done asynchronously as well.
= Multiple authors from early 1980s
=  Pipelined Krylov Methods
= Recently Ghysels, W. Vanroose et al. and others
= Node Level Algorithms
= Finegrained Asynchronous iterative ILU factorizations
= An iterative algorithm to compute ILU factorization (Chow et al)
= Asynchronous in the updates
= Finegrained Asynchronous iterative Triangular solves
= Jacobi iterations for the triangular solve.

= Kacmarcz, Cimmino type methods and their block variants (Boman’s Talk,
Monday)




Asynchronous ILU factorization + Tri Solves vs )
Exact ILU factorization

thermal2 | 1343 924 | 840 815 | 819 811
af_shell3 901 653 | 565 589 | 554 599
ecology2 | 1704 | 1103 | 925 910 | 893 922

I’I:SSSt\II\II_eUe S apache2 | 1043 629 | 432 484 | 427 497
RCM ordper’in g offshore 350 211 184 175 | 172 172
GPUs damping G3_circuit 904 607 512 471 | 431 410
Factor=0.5 Parabolic_fem 356 328 295 288 | 285 286

0 1 2 3 4 5

thermal2 | 1934 | 1225 | 856 637 | 507 440
af_shell3 | 1248 788 | 583 462 | 369 309

Exact ILU ecology? | 1625 988 | 696 576 | 467 | 414
apache2 | 1294 | 619 394 289 | 235| 188
offshore 485 * * * * *

G3_circuit | 1414 757 | 546 421 | 341 303
Parabolic_fem 313 238 164 129 | 106 91




Asynchronous ILU factorization vs Exact ILU

factorization

FastiLU

S sweeps,
RCM ordering
GPUs

Exact ILU

0 1 2 3 4 5

thermal2 | 1421 1110 | 1086 1145 | 1172 | 1178
af_shell3 * * * * * *
ecology2 | 1807 | 1311 | 1271 1300 | 1344 | 1308
apache2 | 1001 768 815 818 | 827 847
offshore * * * * * *
G3_circuit 868 612 | 586 574 | 568 562
Parabolic_fem 425 467 | 421 474 | 480 527
0 1 2 3 4 5

thermal2 | 1934 | 1225 | 856 637 | 507 440

af shell3 | 1248 788 | 583 462 | 369 309
ecology2 | 1625 988 696 576 | 467 414
apache2 | 1294 619 | 394 289 | 235 188
offshore 485 * * * * *
G3_circuit | 1414 757 | 546 421 | 341 303
Parabolic_fem 313 238 | 164 129 | 106 91




ShyLU/Basker : (I)LU factorization ) e

= Basker: Sparse (I)LU factorization

= Block Triangular form (BTF) based LU factorization,
Nested-Dissection on large BTF components

= 2D layout of coarse and fine grained blocks
= Previous work by Sherry Li, Rothberg & Gupta

= Data-Parallel, Kokkos based implementation

= Fine-grained parallel algorithm with P2P
synchronizations

= Parallel version of Gilbert-Peirels’ algorithm (or KLU)

= Left-looking 2D algorithm requires careful
synchronization between the threads

= All reduce operations between threads to avoid
atomic updates

= See “Basker: A Threaded Sparse LU Factorization Utilizing
Hierarchical Parallelism and Data Layouts” (J. Booth, S.
Rajamanickam and H. Thornquist, IPDPSW)




ShyLU/Basker : Steps in a Left looking factorization @ o

Traditional Gilbert-Peierls . Upper Trisolve - BTF search SPMIV + Subtraction
GP_FULL (Line 6) h GP_UPPER (Line 16) h REDUCE_COL [Line 21)
. . treelevel
A
1IN - I I . 2
acrce D h h
GPF_LOWER_UFDATE
e [ h h
-’L-I--i: T | T | 1
treelevel = -1, treelevel = 0, slevel =2 treelevel = 1, slevel =2
Bofttom level of Dependency  Walking fromlevel O, slvel is  Fine grain reduction needec
tree sgparator level for level 1
U3, Uy Ups, Uz Uys, Uygy Uss, Us; | Q)
SPMV + Subtraction * A A
Upper Trisolve - BTF search REDUCE_COL [Line 27) Traditional Gilbert-Peierls
L GP_UFPPER (Line 23) GP_FULL_BLK (Line 29) L31,L71 L:‘H’L72 L641L64 L65 L65
‘ LUy LUz, LUy Wy |-1
I
[ 1IN 1N
——1 I N . — ——1
I I B treelevel = 2, slevel = 2 I I
treelevel = 1, slevel=2 treelevel = 2, slevel =2
Level 1 factorization Fine grain reduction needed Level 2
for level 2

= Different Colors show different threads
= Grey means not active at any particular step

= Every left looking factorization for the final separator shown here involves four
independent triangular solve, a mat-vec and updates (P2P communication), two
independent triangular solves, a mat-vec and updates, and triangular solve.
(Walking up the nested-dissection tree)



Kokkos Tasking API

= Kokkos Tasking API

= H. C. Edwards, S. Olivier, J. Berry, S. Rajamanickam et al

= Supports Pthreads, Qthreads, Cuda (really experimental) backends

= Kokkos Tasking API

Funct or <exec_space>()

);

1 | void SinpleTask() {
2 t ypedef Kokkos:: Threads exec_space; // Serial, Threads, hread
3
4 Kokkos: : TaskPol i cy <exec_space> policy;
5 Kokkos:: Future<int> f = policy. create(
6
7 policy.spawmn( f );
8
9 Kokkos::wait( f );
10 |}
11 cl ass Funct or <exec_space> {
12 publ i c:
13 Kokkos: : Vi ew<exec_space > dat a;
:g void apply( int &r_val ) {
16 r_val = doSonet hi ng( data );
17 3
18 Y}




ShyLU/Tacho : Task Based Cholesky factorization @ o

= Fine-grained Task-basked, Right Looking Cholesky
Factorization

= 2D layout of blocks based on nested
dissection and fill pattern

. = Task-Parallel, Kokkos based implementation
ixView [ ] | - | | Wl
> | (Matrixy Fine-grained parallel algorithm with
synchronizations represented as a task DAG
CrsMatrixBase<Matrix View>
Marix of hlonks = Algorithm-by-blocks style algorithm
Algorithm: A := CHOL_BLK(A) ..
partion - (Ao ) = Originally used for parallel out-of-core
Apr | Asr . . . .
where A7 is 00 factorizations (Quintana et al, Buttari et
while lenfgrh(ATL) < length(A) do
gz;t:'l:'liltril:nbluck size b a | )
Ars VAre Ago [ Aor [Am .
(Tt - | Zofmutie = Block based algorithm rather than scalar
A20 21 22
where Auis b xb based algorithm
Ayy := CHOL_UNB(Ay)
312 = mu(ﬁui—'aﬂl = See “Task Parallel Incomplete Cholesky
2 = An —AhLAnR . . . oy
PePrrm— : Factorization using 2D Partitioned-Block Layout”
ontinue with Ao 1401 1402 . . .
LR | ZulAn [An - Kim, S. I 7= y oo W ’
Arc|A m K. Kim, S. Rajamanickam, G. Stelle, H. C. Edwards
Apr | Apr o A . . .
endwhile o S. Olivier) arXiv.




ShyLU/Tacho : Steps in the factorization )

TRIU (Al A
TRIU[Azz ) LAz

Ags —ﬂirﬂzl

Agy — Az
A — AT

Az

A Az A
Agr | Aax A A
Azz A Ay
Aag A

A Aga
Ay Ags Apy Ao = CHOL[Am)
Azm A A A = TRIU[Ago)~'Aps
Az A Ay = A — Al
A Ay
(a) lst iteration
A = CHOLGA ) l
-'q'l.l.l Am L - .
Al L TRIU[A ) PAa
A - jﬁ :u A - 'IF.IUI:A|_|:I"A|.1 @
= ..-l:; .Ai: Aax = Ass Aiﬁﬂu
EETE = Ay —Ajailig
e Aw = Aw- Al Crem > Co O C e
(b) 2nd iteration /
CHOL(Ax] @

.r1.|:|;| .41]4 ] :i

fe) 3rd iteration

)
W5

i~

Am Aga
Agi A Aps Aqy o ':H.DILI:Aﬂ:I
Azz | Aaa | A Ay = TRIU[Ax) Ay
Anr | Aas Ag = A —ALAy
Ay
() 4th iteration
Am -‘L‘H
Ani Az Aja
Aaz Az Azg Ay = CHOLLA )
A Axa
A Task DAG

(e Sth iteration

= Degree of Concurrency still depends on nested dissection ordering

= Parallelism is not tied to nested dissection ordering




ShyLU/Tacho : More realistic task DAG WE=S
=

=  Complete Task DAG never formed. Shown here for demonstration of the degree of
concurrency.

= The concurrency is from fine-grained tasking and a 2D right looking algorithm



ShyLU/Tacho : Experimental Results

ecol ogy2: tacho
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#of threads
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#of threads

th

Results shown for two matrices
with different levels of fill

Euclid results shown for reference
= |tis an MPI code, using RCM
ordering (best for Euclid)
= Not many parallel IC(k) codes

Speedup numbers are in
comparison with single threaded
Cholesky

= Small overhead for single
threaded Cholesky over
serial Cholesky

Results are shown for both CPU
and Xeon Phi architectures

The two matrices are chosen for
very different nnz/n.



ShyLU/Tacho and ShyLU/Basker: Experimental Results i1 ?ﬁm
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