
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

ShyLU: A Collection of Node-Scalable Sparse
Linear Solvers

Siva Rajamanickam

Joint Work: Kyungjoo Kim, Mehmet Deveci,

Andrew Bradley, Erik Boman

SIAM CSE 2017, Atlanta

SAND2017-2516C

▪ ShyLU Domain decomposition Solvers

▪ Hybrid-Schur:

▪ MPI+X hybrid programming model

▪ Direct+Iterative Hybrid Schur Complement Solver

▪ BDDC: Balancing Domain Decomposition

▪ Experimental mode now

▪ 2-level domain-decomposition method

▪ Can be extended to multilevel

▪ GDSW: Generalized Drija Smith Widlund (planned)

Trilinos Subdomain solvers: Overview

ShyLUShyLU

TachoTacho BaskerBasker

FAST-ILU
Hybrid

Schur (MPI)
Hybrid

Schur (MPI)

Amesos2Amesos2 Ifpack2Ifpack2

KokkosKernels –

SGS, Coloring, SpGEMM, Batched BLAS

KokkosKernels –

SGS, Coloring, SpGEMM, Batched BLAS

HTSHTS
BDDC
(MPI)

▪ ShyLU on Node Solvers

▪ Multiple Kokkos-based options for on-node parallelism

▪ Basker : LU or ILU (t) factorization

▪ Tacho: (In)complete Cholesky - IC (k)

▪ Fast-ILU: Fast-ILU factorization for GPUs

▪ HTS: Multithreaded Triangular solves

▪ Under active development. Jointly funded by ASC, ATDM, FASTMath, LDRD.

Trilinos Subdomain solvers: Overview

ShyLUShyLU

TachoTacho BaskerBasker

FAST-ILU
Hybrid

Schur (MPI)
Hybrid

Schur (MPI)

Amesos2Amesos2 Ifpack2Ifpack2

KokkosKernels –

SGS, Coloring, SpGEMM, Batched BLAS

KokkosKernels –

SGS, Coloring, SpGEMM, Batched BLAS

HTSHTS
BDDC
(MPI)

KokkosKernels : Overview

• Layer of performance portable kernels on top of Kokkos
• Sparse linear algebra kernels
• Dense linear algebra kernels (Batched BLAS as well as

traditional BLAS)
• Graph kernels
• Tensor Contraction kernels (upcoming)

▪ Specialized memory layouts

▪ Architecture aware data layouts

▪ Coalesced memory access

▪ Padding

▪ Array of Structures vs Structure of Arrays

▪ Kokkos based abstractions (H. C. Edwards and C. Trott)

▪ Two dimensional layouts for matrices

▪ Allows using 2D algorithms for solvers and kernels

▪ Bonus: Fewer synchronizations with 2D algorithms

▪ Cons : Much more harder to design correctly

▪ Better utilization of hierarchical memory like High Bandwidth Memory
(HBM) in Intel Xeon Phi or NVRAM

▪ Hybrid layouts

▪ Better for very heterogeneous problems

Themes for Architecture Aware Solvers and
Kernels : Data layouts

▪ Synchronizations are expensive

▪ 1D algorithms for factorizations and solvers, such as ND based solvers
have a huge synchronization bottleneck for the final separator

▪ Impossible to do efficiently in certain architectures designed for massive
data parallelism (GPUs)

▪ This is true only for global synchronizations, fork/join style model.

▪ Fine grained synchronizations

▪ Between handful of threads (teams of threads)

▪ Point to Point Synchronizations instead of global synchronizations

▪ Park et al (ISC14) showed this for triangular solve

▪ Thread parallel reductions wherever possible

▪ Atomics are cheap

– Only when used judiciously

Themes for Architecture Aware Solvers and
Kernels : Fine-grained Synchronization

▪ Statically Scheduled Tasks

▪ Determine the static scheduling of tasks based on a task graph

▪ Eliminate unnecessary synchronizations

▪ Tasks scheduled in the same thread do not need to synchronize

▪ Find transitive relationships to reduce synchronization even further

– Jongsoo Park et al

▪ Dynamically scheduled tasks

▪ Use a tasking model that allows fine grained synchronizations

▪ Requires support for futures

▪ Not the fork-join model where the parent forks a set of tasks and
blocks till they finish

▪ Kokkos Tasking API

– Joint work with Carter Edwards, Stephen Olivier, Kyungjoo Kim,
Jon Berry, George Stelle

Themes for Architecture Aware Solvers and
Kernels : Task Parallelism

Parallel ILU(k) factorization

▪ Parallel ILU(k) factorization

▪ Can we focus on ILU(k) algorithm to reduce synchronizations ?

▪ Starting Point : Hysom and Pothen 01 based on three assumptions

▪ Good edge separators exist for the adjacency graph of the
coefficient matrix

▪ Size of the problem sufficiently large relative to number of
processors

▪ Subdomain intersection graph should have a small chromatic
number

Parallel ILU(k) factorization : Assumption 1 in H&P

▪ Hysom and Pothen numbers all internal and boundary vertices of a
subdomain before it numbers any other subdomain – requires good
edge separators

▪ This can be relaxed to vertex separators if all “leaf” vertices are
numbered before internal or “non-leaf” vertices in the ND tree in a
levelwise fashion

▪ The incomplete fill path theorem can be extended to support this

Parallel ILU(k) factorization : Assumption 3 in H&P

▪ Hysom and Pothen colors the “subdomain” graph with the directed
edges representing the ordering – reduce the path length with
coloring the subdomain graph. Fill is also limited by this graph.

▪ This can be relaxed to an “interface graph” where each “corner”,
“edge” and “face” in 3D for a subdomain is represented by a vertex

▪ Color the interface graph to reduce the path length. Fill is also
limited by this graph.

▪ Currently using Scotch for the ND

▪ Special options provided by Scotch developers (Thank you !)

▪ Graph partitioning tools can provide the finer granularity ND
tree but they don’t

▪ Most expensive portion when graph structure changes

▪ Uses Coarse Nested Dissection intersection graph instead of the fine
graph for the level sets.

▪ Can be improved by adapting the fine ND

▪ Currently uses barriers between coarse level sets

▪ Can be improved by adapting the same techniques used by HTS

Parallel ILU(k) factorization

Parallel ILU(k) factorization speedup

▪ Slightly more expensive in one thread than a sequential algorithm

▪ The assumption on work per subdomain still holds

▪ Reducing the synchronization even further will definitely help. Last
separator (root) is a problem in number of cases.

▪ Solve R * P * T * Q * x = b

▪ Row Scaling (R), Row and Column Permutations (P, Q)

▪ Solve multiple triangular solves with single right hand side with same T or pattern(T)

▪ Symbolic (Find parallelism), Numeric (Refresh data structures), (Actual) Solve Phases

▪ Number of rows in level vary widely

▪ A. Bradley (Developer)

HTS: Hybrid Triangular Solve

▪ Denser (sub) structures in the higher levels that can be exploited.

▪ Recursive Block Decomposition of the dense triangular matrix.

▪ Sequential or parallel spmv and triangular solves within the dense triangular
factors

▪ A hybrid triangular solve does better than either level-sets or recursive block
format by themselves

▪ Using the P2P communication between threads and other tricks related to it
(Park et. Al)

HTS: Hybrid Triangular Solve ybrid%

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Threads, KMP_AFFINITY=balanced

148 16 28 57 114

S
p
e
e
d
u
p
w
.r
.t
.
M
K
L
tr
is
o
lv
e
r

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

Solve phase on Knights Corner
Elastic cube, bilinear hexes, 86490 unknowns, L from LDL, NodeND

Hybrid solver

Level scheduling only

Recursive blocking only

mkl_cspblas_dcsrtrsv

11%

HTS Triangular Solve: Comparison of Different Methods

HTS Triangular Solve – Results on IvyBridge and KNC

Motivation for Batched BLAS with Compact Layouts

m

k

n

k

m x n

• Sandia application characteristics
• One dimension of the mesh more important than the others

when preconditioning
• Multiple degrees of freedom per element gives rise to tiny

blocks

Motivation for Batched BLAS/LAPACK

• Block Jacobi preconditioner where each block is a Tridiagonal matrix
• Every scalar in the tridiagonal matrix is a small block matrix

• Block sizes 5x5, 9x9, 15x15 etc
• Typical number of diagonal blocks 512-1024
• Key kernels needed DGEMM, LU, TRSM

T0

T1

Tm �n − 1

Â r B̂ r

Ĉr Â r + 1

Algor ithm 1: Reference impl. TriLU

1 for T in { T0,T1, ··· ,Tm�n− 1} do in parallel
2 for r 0 to k− 2 do

3 Âr := LU (Âr);

4 B̂r := L− 1B̂r ;

5 Ĉr := ĈrU− 1;

6 Âr+ 1 := Ĉr+ 1 − Ĉr B̂r ;

7 end

8 Âk− 1 := { L ·U} ;

9 end

KokkosKernels Compact Layouts for Batched BLAS

• Data Layout for better vector intrinsics
• Pack entries from up to vlen block diagonal matrices, vlen is the vector

length (vector length = 2 shown)
• Use vector intrinsics on the new data vector data with operator

overloading
• Scalar Performance is due to explicit loop unrolling

Â r B̂ r

Ĉ r Â r + 1

Â r B̂ r

Ĉ r Â r + 1

T0

T1

Block A of T0 and T1 is packed and
elements are aligned to its vector lane

···αT0
00 αT1

00 αT0
01 αT1

01

Algorithm 2: Batched impl. TriLU

1 for a pair T(0,1) in
{ { T0,T1} , { T2,T3} , ··· , { Tm�n− 2,Tm�n− 1} } do in parallel

2 for r 0 to k− 2 do

3 Âr(0,1) := LU (Âr(0,1));

4 B̂r(0,1) := L− 1B̂r(0,1) ;

5 Ĉr(0,1) := Ĉr(0,1)U− 1;

6 Âr+ 1(0,1) := Ĉr+ 1(0,1) − Ĉr(0,1) B̂r(0,1) ;

7 end

8 Âk− 1(0,1) := { L ·U} ;

9 end

0

2

4

6

8

10

1 2 4 8 16 34 68

S
p

e
e
d

u
p

 w
.r

.t
.
S

P
A

R
C

of threads

Tridiagonal Factorization
(32x32x128)

BlkSize 5

BlkSize 9

BlkSize 15

BlkSize 20

KokkosKernels Batched BLAS : Usage within
Preconditioner, KNL, 1x68x4, 1.4 Ghz, Intel 17.1.132

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 34 68

S
p

e
e
d

u
p

 w
.r

.t
.
S

P
A

R
C

of threads

Tridiag Solve (32x32x128)

BlkSize 5

BlkSize 9

BlkSize 15

BlkSize 20

• Performance comparisons for Large-Block Jacobi Small-Block
Tridiagonal factorization and Triangular Solve

• One right hand side per solve
• Speedups against a hand-tuned version of the code within the

application

▪ Themes around Thread Scalable Subdomain solvers

▪ Data Layouts

▪ Fine-grained Synchronizations

▪ Task Parallelism

▪ Asynchronous Algorithms

▪ Presented three upcoming methods

▪ A Traditional multithreaded ILU(k)

▪ A Hybrid triangular solve

▪ A compact layout based LU factorization

Conclusions

Questions ?

Backup Slides

Iterative Inexact Triangular Solves

▪ Just Computing the LU factors is only part of the cost. We need to apply the
factors in fine-grained fashion.

▪ Solve the triangular factors with fixed number of sweeps of Jacobi iteration

▪ Use the matrix splitting

▪ Given an initial guess use the update:

▪ Will converge if :

▪ This is always true for triangular matrices (spectral radius of zero)

▪ Note: This is asymptotic convergence

▪ System Level Algorithms

▪ Communication Avoiding Methods (s-step methods)

▪ Not truly asynchronous but can be done asynchronously as well.

▪ Multiple authors from early 1980s

▪ Pipelined Krylov Methods

▪ Recently Ghysels, W. Vanroose et al. and others

▪ Node Level Algorithms

▪ Finegrained Asynchronous iterative ILU factorizations

▪ An iterative algorithm to compute ILU factorization (Chow et al)

▪ Asynchronous in the updates

▪ Finegrained Asynchronous iterative Triangular solves

▪ Jacobi iterations for the triangular solve.

▪ Kacmarcz, Cimmino type methods and their block variants (Boman’s Talk,
Monday)

Themes for Architecture Aware Solvers and
Kernels : Asynchronous Algorithms

Asynchronous ILU factorization + Tri Solves vs
Exact ILU factorization

0 1 2 3 4 5

thermal2 1343 924 840 815 819 811

af_shell3 901 653 565 589 554 599

ecology2 1704 1103 925 910 893 922

apache2 1043 629 432 484 427 497

offshore 350 211 184 175 172 172

G3_circuit 904 607 512 471 431 410

Parabolic_fem 356 328 295 288 285 286

0 1 2 3 4 5

thermal2 1934 1225 856 637 507 440

af_shell3 1248 788 583 462 369 309

ecology2 1625 988 696 576 467 414

apache2 1294 619 394 289 235 188

offshore 485 * * * * *

G3_circuit 1414 757 546 421 341 303

Parabolic_fem 313 238 164 129 106 91

FastILU
10 sweeps,
RCM ordering
GPUs, damping
Factor = 0.5

Exact ILU

Asynchronous ILU factorization vs Exact ILU
factorization

0 1 2 3 4 5

thermal2 1421 1110 1086 1145 1172 1178

af_shell3 * * * * * *

ecology2 1807 1311 1271 1300 1344 1308

apache2 1001 768 815 818 827 847

offshore * * * * * *

G3_circuit 868 612 586 574 568 562

Parabolic_fem 425 467 421 474 480 527

0 1 2 3 4 5

thermal2 1934 1225 856 637 507 440

af_shell3 1248 788 583 462 369 309

ecology2 1625 988 696 576 467 414

apache2 1294 619 394 289 235 188

offshore 485 * * * * *

G3_circuit 1414 757 546 421 341 303

Parabolic_fem 313 238 164 129 106 91

FastILU
5 sweeps,
RCM ordering
GPUs

Exact ILU

▪ Basker: Sparse (I)LU factorization

▪ Block Triangular form (BTF) based LU factorization,
Nested-Dissection on large BTF components

▪ 2D layout of coarse and fine grained blocks

▪ Previous work by Sherry Li, Rothberg & Gupta

▪ Data-Parallel, Kokkos based implementation

▪ Fine-grained parallel algorithm with P2P
synchronizations

▪ Parallel version of Gilbert-Peirels’ algorithm (or KLU)

▪ Left-looking 2D algorithm requires careful
synchronization between the threads

▪ All reduce operations between threads to avoid
atomic updates

▪ See “Basker: A Threaded Sparse LU Factorization Utilizing
Hierarchical Parallelism and Data Layouts” (J. Booth, S.
Rajamanickam and H. Thornquist, IPDPSW)

ShyLU/Basker : (I)LU factorization

ShyLU/Basker : Steps in a Left looking factorization

Bottom level of Dependency
tree

Walking from level 0, slvel is
separator level

Fine grain reduction needed
for level 1

Level 1 factorization
Fine grain reduction needed
for level 2

Level 2

▪ Different Colors show different threads

▪ Grey means not active at any particular step

▪ Every left looking factorization for the final separator shown here involves four
independent triangular solve, a mat-vec and updates (P2P communication), two
independent triangular solves, a mat-vec and updates, and triangular solve.
(Walking up the nested-dissection tree)

Kokkos Tasking API

▪ Kokkos Tasking API

▪ H. C. Edwards, S. Olivier, J. Berry, S. Rajamanickam et al

▪ Supports Pthreads, Qthreads, Cuda (really experimental) backends

▪ Kokkos Tasking API

1 voi d Si mpl eTask () {
2 t ypedef Kokkos : : Thr eads exec_space; / / Ser i al , Thr eads , Qt hr ead
3

4 Kokkos : : TaskPol i cy <exec_space > pol i cy ;
5 Kokkos : : Fut ur e <i nt > f = pol i cy . cr eat e(Funct or <exec_space >()) ;
6

7 pol i cy . spawn(f) ;
8

9 Kokkos : : wai t (f) ;
10 }

11 cl ass Funct or <exec_space > {
12 publ i c :
13 Kokkos : : Vi ew<exec_space > dat a;
14

15 voi d appl y (i nt &r _val) {
16 r _val = doSomet hi ng(dat a) ;
17 }
18 } ;

ShyLU/Tacho : Task Based Cholesky factorization

▪ Fine-grained Task-basked, Right Looking Cholesky
Factorization

▪ 2D layout of blocks based on nested
dissection and fill pattern

▪ Task-Parallel, Kokkos based implementation

▪ Fine-grained parallel algorithm with
synchronizations represented as a task DAG

▪ Algorithm-by-blocks style algorithm

▪ Originally used for parallel out-of-core
factorizations (Quintana et al, Buttari et
al)

▪ Block based algorithm rather than scalar
based algorithm

▪ See “Task Parallel Incomplete Cholesky
Factorization using 2D Partitioned-Block Layout”
(K. Kim, S. Rajamanickam, G. Stelle, H. C. Edwards,
S. Olivier) arXiv.

X X

11

10

9

8

6 X

7

X4

5

X

XXX

X

X

X

X X

X

X

3

2

X

X

1

0

0

1

2

3

4

0 1 2 3 4

MatrixView

CrsMatrixBase<MatrixView>

Matrix of blocks

ShyLU/Tacho : Steps in the factorization

Chol

Trsm

Herk

Chol

Herk

HerkGemmHerk

Herk Gemm

Herk

Trsm

Trsm Trsm

Chol

Chol

Chol

Trsm

Trsm

Task DAG

▪ Degree of Concurrency still depends on nested dissection ordering

▪ Parallelism is not tied to nested dissection ordering

ShyLU/Tacho : More realistic task DAG

▪ Complete Task DAG never formed. Shown here for demonstration of the degree of
concurrency.

▪ The concurrency is from fine-grained tasking and a 2D right looking algorithm

ShyLU/Tacho : Experimental Results

1 2 4 8 16
1
2

4

8

16

of threads

S
p

ee
d

-u
p

ecol ogy2

Level 0 Level 1

Level 2 Level 4

1 2 4 8 16
1
2

4

8

16

of threads

S
p

ee
d

-u
p

pwt k

Level 0 Level 1

Level 2 Level 4

1 4 12 28 56
1
4

12

28

56

of threads

S
p

ee
d

-u
p

ecol ogy2

Level 0 Level 1

Level 2 Level 4

1 4 12 28 56
1
4

12

28

56

of threads

S
p

ee
d

-u
p

pwt k

Level 0 Level 1

Level 2 Level 4

1 2 4 8 16
10− 2

10− 1

100

of threads

T
im

e
[s

ec
]

ecol ogy2: tacho

Level 0 Level 1

Level 2 Level 4

1 2 4 8 16
10− 2

10− 1

100

of mpi ranks

T
im

e
[s
ec

]

ecol ogy2: euclid

Level 0 Level 1

Level 2 Level 4

▪ Results shown for two matrices
with different levels of fill

▪ Euclid results shown for reference

▪ It is an MPI code, using RCM
ordering (best for Euclid)

▪ Not many parallel IC(k) codes

▪ Speedup numbers are in
comparison with single threaded
Cholesky

▪ Small overhead for single
threaded Cholesky over
serial Cholesky

▪ Results are shown for both CPU
and Xeon Phi architectures

▪ The two matrices are chosen for
very different nnz/n.

ShyLU/Tacho and ShyLU/Basker: Experimental Results

