SAND2017-2516C

ShyLU: A Collection of Node-Scalable Sparse
Linear Solvers

Siva Rajamanickam
Joint Work: Kyungjoo Kim, Mehmet Deveci,
Andrew Bradley, Erik Boman

SIAM CSE 2017, Atlanta

U.S. DEPARTMENT OF JiR el -e C C
ENERGY ."‘V :3 ' R Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Nattonet Nucloar Socurtty Adminisiration . -"fc . " . Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
enter for Computing Researa

Sandia
Trilinos Subdomain solvers: Overview i) et

Amesos2 Ifpack2

Tacho BaSker

ity [BDDC] ShyLU sty HTS

KokkosKernels -
SGS, Coloring, SpGEMM, Batched BLAS

= ShyLU Domain decomposition Solvers
= Hybrid-Schur:
= MPI+X hybrid programming model
= Direct+lterative Hybrid Schur Complement Solver
= BDDC: Balancing Domain Decomposition
= Experimental mode now
= 2-level domain-decomposition method
= Can be extended to multilevel
= GDSW: Generalized Drija Smith Widlund (planned)

Sandia
Trilinos Subdomain solvers: Overview i) et

Amesos2 Ifpack2

Tacho BaSker

ity [BDDC] ShyLU sty HTS

KokkosKernels -
SGS, Coloring, SpGEMM, Batched BLAS

= ShyLU on Node Solvers
= Multiple Kokkos-based options for on-node parallelism
= Basker : LU or ILU (t) factorization
= Tacho: (In)complete Cholesky - IC (k)
= Fast-ILU: Fast-ILU factorization for GPUs
= HTS: Multithreaded Triangular solves
= Under active development. Jointly funded by ASC, ATDM, FASTMath, LDRD.

KokkosKernels : Overview i) N

~ ATDM/ECP/ASC App‘lications |

Trilinos
1L

Kokkosﬁernels
Kokkos

.

« Layer of performance portable kernels on top of Kokkos
« Sparse linear algebra kernels
* Dense linear algebra kernels (Batched BLAS as well as
traditional BLAS)
« Graph kernels
« Tensor Contraction kernels (upcoming)

Themes for Architecture Aware Solvers and |
Kernels : Data layouts

= Specialized memory layouts
= Architecture aware data layouts
= Coalesced memory access
= Padding
= Array of Structures vs Structure of Arrays
= Kokkos based abstractions (H. C. Edwards and C. Trott)
= Two dimensional layouts for matrices
= Allows using 2D algorithms for solvers and kernels
= Bonus: Fewer synchronizations with 2D algorithms
= Cons : Much more harder to design correctly

= Better utilization of hierarchical memory like High Bandwidth Memory
(HBM) in Intel Xeon Phi or NVRAM

= Hybrid layouts
= Better for very heterogeneous problems

Themes for Architecture Aware Solvers and i) fedma
Kernels : Fine-grained Synchronization

= Synchronizations are expensive

= 1D algorithms for factorizations and solvers, such as ND based solvers
have a huge synchronization bottleneck for the final separator

= Impossible to do efficiently in certain architectures designed for massive
data parallelism (GPUs)
= This is true only for global synchronizations, fork/join style model.
= Fine grained synchronizations
= Between handful of threads (teams of threads)
= Point to Point Synchronizations instead of global synchronizations
= Park et al (ISC14) showed this for triangular solve
= Thread parallel reductions wherever possible
= Atomics are cheap
— Only when used judiciously

Themes for Architecture Aware Solvers and |
Kernels : Task Parallelism

= Statically Scheduled Tasks
= Determine the static scheduling of tasks based on a task graph
= Eliminate unnecessary synchronizations
= Tasks scheduled in the same thread do not need to synchronize
= Find transitive relationships to reduce synchronization even further
— Jongsoo Park et al
= Dynamically scheduled tasks
= Use a tasking model that allows fine grained synchronizations
= Requires support for futures

= Not the fork-join model where the parent forks a set of tasks and
blocks till they finish

= Kokkos Tasking API

— Joint work with Carter Edwards, Stephen Olivier, Kyungjoo Kim,
Jon Berry, George Stelle

Parallel ILU(k) factorization i) e

= Parallel ILU(k) factorization
= Can we focus on ILU(k) algorithm to reduce synchronizations ?
= Starting Point : Hysom and Pothen 01 based on three assumptions

= Good edge separators exist for the adjacency graph of the
coefficient matrix

= Size of the problem sufficiently large relative to number of
processors

= Subdomain intersection graph should have a small chromatic
number

Parallel ILU(k) factorization : Assumption 1 in H&P

129 130 131 132 133 144 72 57 58 59 60 60

124 125 126 127 128 143/%71 52 53 54 55 56

119 120 121 122 123 14%%70 47 48 49 50 sl ‘ . ‘ ‘ ‘ ‘ .
S 2 S_3

114 115 116 117 118 141/ 9 42 43 44 45 46 . ‘ ‘

109 110 111 112 113 14(\%/68 37 38 39 40 41

134 133 136 137 133 13 62 63 64 65 66 67

N N
AN ® 6 6 o o o o
VN N N N N K
31 32 33 34 35 36\ \A103 104 105 106 107 108 ‘ ‘ .
\

20 22 23 24 25 SO\XIOZ 93 94 95 96 97

16 17 18 19 20 29 101 88 8 90 91 92 I I I I I I I
S0 N S 1

11 12 13 14 15 28\&;00 83 84 85 86 87 . ‘ ‘

6 7 8 9 10 27 Ng 78 79 80 81 82

1 2 3 4 5 26 8 73 74 75 16 T7

= Hysom and Pothen numbers all internal and boundary vertices of a
subdomain before it numbers any other subdomain — requires good
edge separators

= This can be relaxed to vertex separators if all “leaf” vertices are
numbered before internal or “non-leaf” vertices in the ND tree in a
levelwise fashion

= The incomplete fill path theorem can be extended to support this

Parallel ILU(k) factorization : Assumption 3 in H&P

S_0 S_3 S_2
s/ so<>sg
S'1

= Hysom and Pothen colors the “subdomain” graph with the directed
edges representing the ordering — reduce the path length with
coloring the subdomain graph. Fill is also limited by this graph.

= This can be relaxed to an “interface graph” where each “corner”,
“edge” and “face” in 3D for a subdomain is represented by a vertex

= Color the interface graph to reduce the path length. Fill is also
limited by this graph.

Parallel ILU(k) factorization

= Currently using Scotch for the ND
= Special options provided by Scotch developers (Thank you !)

= Graph partitioning tools can provide the finer granularity ND
tree but they don't

= Most expensive portion when graph structure changes

= Uses Coarse Nested Dissection intersection graph instead of the fine
graph for the level sets.

= Can be improved by adapting the fine ND
= Currently uses barriers between coarse level sets
= Can be improved by adapting the same techniques used by HTS

Parallel ILU(k) factorization speedup

[
[

[
0

O R N WMuuoNO®O

= Slightly more expensive in one thread than a sequential algorithm
= The assumption on work per subdomain still holds

= Reducing the synchronization even further will definitely help. Last
separator (root) is a problem in number of cases.

HTS: Hybrid Triangular Solve

0 5 10 15
Level Index ¢

= SolveR*P*T*Q*x=b
= Row Scaling (R), Row and Column Permutations (P, Q)

= Solve multiple triangular solves with single right hand side with same T or pattern(T)
= Symbolic (Find parallelism), Numeric (Refresh data structures), (Actual) Solve Phases
= Number of rows in level vary widely

= A. Bradley (Developer)

HTS: Hybrid Triangu

ar Solve

factors
format by themselves

(Park et. Al)

Solve phase on Knights Corner

Elastic cube, bilinear hexes, 86490 unknowns, L from LDL, NodeND

DA ANNRUAARBAONNREE

5
d
|
!
&

Denser (sub) structures in the higher levels that can be exploited.
Recursive Block Decomposition of the dense triangular matrix.
Sequential or parallel spmv and triangular solves within the dense triangular

A hybrid triangular solve does better than either level-sets or recursive block

Using the P2P communication between threads and other tricks related to it

Comparison of Different Methods

HTS Triangular Solve

compact

UMFPACK LU, Knights Corner, 240 threads
KMP_AFFINITY

=% Recursive blocking

—6— Hybrid

=—3¢— Level scheduling

PLACES=cores

spread OMP

UMFPACK LU, Ivy Bridge, 20 threads

OMP_PROC_BIND

—%— Recursive blocking

—6— Hybrid

—>¢— Level scheduling

65 rSolve phgse speedup w.r.t. MKL trisolver

™

0

~

Hnoaoy
9liefes
2opAYy

ges-o

Lphoq

0z Loefgeuef
LUOISIO}
auojom}
Zlgueuy
20s10}
gqde
euabplb
Muby 6Lovs @z
6G-0
0GIBYUBA
guosmep
1dbgxaou
Apoquen
H1sozio

2S00 | oelgeW
0z Loeleyew
250y | oefzb
0910el6
Luousx
1oasdiys

(WA

guousx
260LpAe

€ Mau-xuew
losuas” seb
2ledoo

> - 1IN2J10Y
9liefel

¢ | zopay

- agz-o
» LpAoq

% 0zloeleeuel

4 juoisio]

- euojom;

- Zlgueuy

- zosio)

4 eqde

- eusabpub

4 Mubly elovS @z

-~ 6G-2

4 0G1EjuaA

- guosmep

- 1dbgxaou

- Apoquea

- J1s0ocio

- 92spooeleyew

- Oz loeleyew

-| osoy1oe(zb

- 0910el2b

- juouax

- 1oesdiys

4 1.0

- guouax

- 260LvAe

4 & mau-xuew

-| losuas seb

4 zie1doo

17
16
15

14 1Solve phase speedup w.r.t. MKL trisolver

13

12 F g
s
10 ¥
gl
sl
7L
6
51
4k
sl
oL
1k
0

HTS Triangular Solve — Results on IvyBridge and KNC

UMFPACK LU

, vy

Brid

ge, OMP
T T T

 PROC_BIND=spread OMP_PLA

CES

=cores

UMFPACK LU,
T T T T T

th

Knights Corner, KMP_AFFINITY=compact

G

—)— G0 threads

=== 120 threads
=240 threads

9

8

7

6

5 - -

g : m—P=— 10 threads :

| . === 20 threads _

f 'Solve phase speedup w.r.t. MKL trisolver | —e—u0threads | |

O 1 O 1
14 14 F T T T T T _
12 12 | -
10 10 -
8 sl -
6 6 | h -
4 4 F < . ?fﬁ\f’~ -
2 2 H(Numeric phase time) / (parallel solve time)

0 O 1
10 10 F 7 =
8 sk -
6 6 | -
4 4 i = = -
2 i i i I - - @ - 4 - ¥ s -

(Symbolic phase time) / (serial solve time) 2 I(Symbolic phase time) / (serial solve time)
0 1 O 1

copter2
gas_sensor
matrix-new_3

av41092

xenon2

c-71

shipsect

xenoni
g7jac160
g7jac140sc
mark3jac120
mark3jac100sc

ct20stif

ncvxbgp1

dawson5
venkat50

c-59

x &

5 @

2o

= o
| =
o D
=24

o

<

pi(

[a]

N

[52]

o]
[=%
[}

torso2
finan512

O ~— -
S582
29— 3
o w O Q&
ER-F
S5
(o2}
c
S

rajat16
hcircuit

copter2
gas_sensor
matrix-new 3

av41092

xenon2

c-71

shipsect

xenont
g7jac160
g7jac140sc
mark3jac120
mark3jac100sc

ct20stif
vanbody
ncvxbgpi

dawson5

oD T
D W< c
oY >
T 0D 5
= = o
@ I'gs
> 2
o
<t
O,
(]
Y

epb3
torso2

~— AN ©
N2EQLTBLE
b SSNSZINEE
S8 986w
EE28& =
= >
c
S,

hcircuit

Motivation for Batched BLAS with Compact Layout@1 ot

mxn i

« Sandia application characteristics

* One dimension of the mesh more important than the others
when preconditioning

« Multiple degrees of freedom per element gives rise to tiny
blocks

Motivation for Batched BLAS/LAPACK

Algorithm 1: Reference impl. TriLU

1 for Tin{Ty, T4, ", T;yp-1} doin paralle
2 for r 0Otok-2 do

3 A= LU(AY);

4 B =L8";

5 Cr=CU";

6 Al .= Cr+1 - CrB:

7 end

s | A= (L-U};

9 end

« Block Jacobi preconditioner where each block is a Tridiagonal matrix
« Every scalar in the tridiagonal matrix is a small block matrix
* Block sizes 5x5, 9x9, 15x15 etc
« Typical number of diagonal blocks 512-1024
* Key kernels needed DGEMM, LU, TRSM

Sandia
National

KokkosKernels Compact Layouts for Batched BL@ ot

Algorithm 2: Batched impl. TriLU

1 for apar T(0,1) in
{{767 7-1}7{7-27 7-3}7 "';{TmDn—Z; TmDn— 1}} doin para”d
for r Otok-2 do

Ar(O‘I) — LU(Ar(O 1))
Br(01) = |- 1Br(0 1)
ér(01 Cr01 U- 1
Ar+1(_Cr+101 Cr01Br01)

Block A of TO and T1 is packed and
elements are aligned to its vector lane

© o0 N oo o &~ wWw N

e Data Layout for better vector intrinsics
* Pack entries from up to vlen block diagonal matrices, vlen is the vector
length (vector length = 2 shown)
e Use vector intrinsics on the new data vector data with operator
overloading

e Scalar Performance is due to explicit loop unrolling
I ——————

KokkosKernels Batched BLAS : Usage within (i) i
Preconditioner, KNL, 1x68x4, 1.4 Ghz, Intel 17.1.132

Tridiagonal Factorization Tridiag Solve (32x32x128)
(32x32x128) o 3

o 10 x25
14 o
< 6 BlkSize 5 ; 1.5 . E:::::: g
i 4 m BlkSize 9 g— 1 BIkSize 15
3 2 ‘ ‘ ‘ ‘ BlkSize 15 3 0.5 = BIkSize 20
@ ‘ mBlkSize 20 2
w0 0

1 2 4 8 16 34 68 1 2 4 8 16 34 68

of threads # of threads

 Performance comparisons for Large-Block Jacobi Small-Block
Tridiagonal factorization and Triangular Solve

* One right hand side per solve

 Speedups against a hand-tuned version of the code within the
application

Conclusions

= Themes around Thread Scalable Subdomain solvers
= Data Layouts
= Fine-grained Synchronizations
= Task Parallelism
= Asynchronous Algorithms
= Presented three upcoming methods
= A Traditional multithreaded ILU(K)
= A Hybrid triangular solve
= A compact layout based LU factorization

Sandia
Laboratories

Questions ?

Sandia
Laboratories

Backup Slides

Sandia
Iterative Inexact Triangular Solves) doem

= Just Computing the LU factors is only part of the cost. We need to apply the
factors in fine-grained fashion.

= Solve the triangular factors with fixed number of sweeps of Jacobi iteration
= Use the matrix splitting

A= (A-D)+ D;

= Given an initial guess use the update:

Tpr1 = (I — D tA)x, + Db,
= Will converge if : p(I-D71A) <1
= This is always true for triangular matrices (spectral radius of zero)

= Note: This is asymptotic convergence

Themes for Architecture Aware Solvers and |
Kernels : Asynchronous Algorithms

= System Level Algorithms
= Communication Avoiding Methods (s-step methods)
= Not truly asynchronous but can be done asynchronously as well.
= Multiple authors from early 1980s
= Pipelined Krylov Methods
= Recently Ghysels, W. Vanroose et al. and others
= Node Level Algorithms
= Finegrained Asynchronous iterative ILU factorizations
= An iterative algorithm to compute ILU factorization (Chow et al)
= Asynchronous in the updates
= Finegrained Asynchronous iterative Triangular solves
= Jacobi iterations for the triangular solve.

= Kacmarcz, Cimmino type methods and their block variants (Boman’s Talk,
Monday)

Asynchronous ILU factorization + Tri Solves vs)
Exact ILU factorization

thermal2 | 1343 924 | 840 815 | 819 811
af_shell3 901 653 | 565 589 | 554 599
ecology2 | 1704 | 1103 | 925 910 | 893 922

I’I:SSSt\II\II_eUe S apache2 | 1043 629 | 432 484 | 427 497
RCM ordper’in g offshore 350 211 184 175 | 172 172
GPUs damping G3_circuit 904 607 512 471 | 431 410
Factor=0.5 Parabolic_fem 356 328 295 288 | 285 286

0 1 2 3 4 5

thermal2 | 1934 | 1225 | 856 637 | 507 440
af_shell3 | 1248 788 | 583 462 | 369 309

Exact ILU ecology? | 1625 988 | 696 576 | 467 | 414
apache2 | 1294 | 619 394 289 | 235| 188
offshore 485 * * * * *

G3_circuit | 1414 757 | 546 421 | 341 303
Parabolic_fem 313 238 164 129 | 106 91

Asynchronous ILU factorization vs Exact ILU

factorization

FastiLU

S sweeps,
RCM ordering
GPUs

Exact ILU

0 1 2 3 4 5

thermal2 | 1421 1110 | 1086 1145 | 1172 | 1178
af_shell3 * * * * * *
ecology2 | 1807 | 1311 | 1271 1300 | 1344 | 1308
apache2 | 1001 768 815 818 | 827 847
offshore * * * * * *
G3_circuit 868 612 | 586 574 | 568 562
Parabolic_fem 425 467 | 421 474 | 480 527
0 1 2 3 4 5

thermal2 | 1934 | 1225 | 856 637 | 507 440

af shell3 | 1248 788 | 583 462 | 369 309
ecology2 | 1625 988 696 576 | 467 414
apache2 | 1294 619 | 394 289 | 235 188
offshore 485 * * * * *
G3_circuit | 1414 757 | 546 421 | 341 303
Parabolic_fem 313 238 | 164 129 | 106 91

ShyLU/Basker : (I)LU factorization) e

= Basker: Sparse (I)LU factorization

= Block Triangular form (BTF) based LU factorization,
Nested-Dissection on large BTF components

= 2D layout of coarse and fine grained blocks
= Previous work by Sherry Li, Rothberg & Gupta

= Data-Parallel, Kokkos based implementation

= Fine-grained parallel algorithm with P2P
synchronizations

= Parallel version of Gilbert-Peirels’ algorithm (or KLU)

= Left-looking 2D algorithm requires careful
synchronization between the threads

= All reduce operations between threads to avoid
atomic updates

= See “Basker: A Threaded Sparse LU Factorization Utilizing
Hierarchical Parallelism and Data Layouts” (J. Booth, S.
Rajamanickam and H. Thornquist, IPDPSW)

ShyLU/Basker : Steps in a Left looking factorization @ o

Traditional Gilbert-Peierls . Upper Trisolve - BTF search SPMIV + Subtraction
GP_FULL (Line 6) h GP_UPPER (Line 16) h REDUCE_COL [Line 21)
. . treelevel
A
1IN - I I . 2
acrce D h h
GPF_LOWER_UFDATE
e [h h
-’L-I--i: T | T | 1
treelevel = -1, treelevel = 0, slevel =2 treelevel = 1, slevel =2
Bofttom level of Dependency Walking fromlevel O, slvel is Fine grain reduction needec
tree sgparator level for level 1
U3, Uy Ups, Uz Uys, Uygy Uss, Us; | Q)
SPMV + Subtraction * A A
Upper Trisolve - BTF search REDUCE_COL [Line 27) Traditional Gilbert-Peierls
L GP_UFPPER (Line 23) GP_FULL_BLK (Line 29) L31,L71 L:‘H’L72 L641L64 L65 L65
‘ LUy LUz, LUy Wy |-1
I
[1IN 1N
——1 I N . — ——1
I I B treelevel = 2, slevel = 2 I I
treelevel = 1, slevel=2 treelevel = 2, slevel =2
Level 1 factorization Fine grain reduction needed Level 2
for level 2

= Different Colors show different threads
= Grey means not active at any particular step

= Every left looking factorization for the final separator shown here involves four
independent triangular solve, a mat-vec and updates (P2P communication), two
independent triangular solves, a mat-vec and updates, and triangular solve.
(Walking up the nested-dissection tree)

Kokkos Tasking API

= Kokkos Tasking API

= H. C. Edwards, S. Olivier, J. Berry, S. Rajamanickam et al

= Supports Pthreads, Qthreads, Cuda (really experimental) backends

= Kokkos Tasking API

Funct or <exec_space>()

);

1 | void SinpleTask() {
2 t ypedef Kokkos:: Threads exec_space; // Serial, Threads, hread
3
4 Kokkos: : TaskPol i cy <exec_space> policy;
5 Kokkos:: Future<int> f = policy. create(
6
7 policy.spawmn(f);
8
9 Kokkos::wait(f);
10 |}
11 cl ass Funct or <exec_space> {
12 publ i c:
13 Kokkos: : Vi ew<exec_space > dat a;
:g void apply(int &r_val) {
16 r_val = doSonet hi ng(data);
17 3
18 Y}

ShyLU/Tacho : Task Based Cholesky factorization @ o

= Fine-grained Task-basked, Right Looking Cholesky
Factorization

= 2D layout of blocks based on nested
dissection and fill pattern

. = Task-Parallel, Kokkos based implementation
ixView [] | - | | Wl
> | (Matrixy Fine-grained parallel algorithm with
synchronizations represented as a task DAG
CrsMatrixBase<Matrix View>
Marix of hlonks = Algorithm-by-blocks style algorithm
Algorithm: A := CHOL_BLK(A) ..
partion - (Ao) = Originally used for parallel out-of-core
Apr | Asr
where A7 is 00 factorizations (Quintana et al, Buttari et
while lenfgrh(ATL) < length(A) do
gz;t:'l:'liltril:nbluck size b a |)
Ars VAre Ago [Aor [Am .
(Tt - | Zofmutie = Block based algorithm rather than scalar
A20 21 22
where Auis b xb based algorithm
Ayy := CHOL_UNB(Ay)
312 = mu(ﬁui—'aﬂl = See “Task Parallel Incomplete Cholesky
2 = An —AhLAnR . . . oy
PePrrm— : Factorization using 2D Partitioned-Block Layout”
ontinue with Ao 1401 1402 . . .
LR | ZulAn [An - Kim, S. I 7= y oo W ’
Arc|A m K. Kim, S. Rajamanickam, G. Stelle, H. C. Edwards
Apr | Apr o A . . .
endwhile o S. Olivier) arXiv.

ShyLU/Tacho : Steps in the factorization)

TRIU (Al A
TRIU[Azz) LAz

Ags —ﬂirﬂzl

Agy — Az
A — AT

Az

A Az A
Agr | Aax A A
Azz A Ay
Aag A

A Aga
Ay Ags Apy Ao = CHOL[Am)
Azm A A A = TRIU[Ago)~'Aps
Az A Ay = A — Al
A Ay
(a) lst iteration
A = CHOLGA) l
-'q'l.l.l Am L - .
Al L TRIU[A) PAa
A - jﬁ :u A - 'IF.IUI:A|_|:I"A|.1 @
= ..-l:; .Ai: Aax = Ass Aiﬁﬂu
EETE = Ay —Ajailig
e Aw = Aw- Al Crem > Co O C e
(b) 2nd iteration /
CHOL(Ax] @

.r1.|:|;| .41]4] :i

fe) 3rd iteration

)
W5

i~

Am Aga
Agi A Aps Aqy o ':H.DILI:Aﬂ:I
Azz | Aaa | A Ay = TRIU[Ax) Ay
Anr | Aas Ag = A —ALAy
Ay
() 4th iteration
Am -‘L‘H
Ani Az Aja
Aaz Az Azg Ay = CHOLLA)
A Axa
A Task DAG

(e Sth iteration

= Degree of Concurrency still depends on nested dissection ordering

= Parallelism is not tied to nested dissection ordering

ShyLU/Tacho : More realistic task DAG WE=S
=

= Complete Task DAG never formed. Shown here for demonstration of the degree of
concurrency.

= The concurrency is from fine-grained tasking and a 2D right looking algorithm

ShyLU/Tacho : Experimental Results

ecol ogy2: tacho

100

28

Speed-up

12

16

Speed-up

T T
—m— Level 0 —c— Leve 1
—<— Level 2 —+— Levd 4

of threads

ecol ogy2

T T T
—m— Levd 0 —— Leve 1
——Levd 2 —+— Level 4

14 12 28
of threads

ecol ogy?2

T T T
—— Level 0 —o— Level 1

—6— Levdl2 ¢ Level 4

#of threads

Speed-up

Speed-up

euclid

ecol ogy2:

56

16

—m— Levd 0 —c— Leve 1
—<%— Level 2 —¢— Level 4
Il Il

2 4 8 16
of mpi ranks

pwt k

T T T
—m— Levd 0 —— Leve 1
——Levd 2 —+— Level 4

14 12 28 56

#of threads
pwt k

T T T
—M— Level 0 —©— Level 1
—6— Levdl2 ¢ Level 4

#of threads

th

Results shown for two matrices
with different levels of fill

Euclid results shown for reference
= |tis an MPI code, using RCM
ordering (best for Euclid)
= Not many parallel IC(k) codes

Speedup numbers are in
comparison with single threaded
Cholesky

= Small overhead for single
threaded Cholesky over
serial Cholesky

Results are shown for both CPU
and Xeon Phi architectures

The two matrices are chosen for
very different nnz/n.

ShyLU/Tacho and ShyLU/Basker: Experimental Results i1 ?ﬁm

10'r 10'¢
—©—G3 Circuit L0 : —©-G3 Circuit L0
—8-G3 Circuit L2 —8-G3 Circuit L2
=@ - Thermal2 L0 : =G~ Thermalz L0
. & Thermalz L2 : & - Thermalz L2
*‘*ss\ 0" Ecology2 LO D‘-~__ : "0 Ecologyz L0
. \"13._\ 0" Ecologyz L2 Tl : 0" Ecology2 L2
() S n S~
_g @) - Pwtk LO _g o 0 ‘E._‘_.‘ : Pwtk LO
swm 10 Pwtk L2 ow 101 S Puwik L2
Q9 o Q
@ @ H @
£ e % e
ES ge
= =
K 1
10 10 ¢
| L L Il L
1 2 4 8 16
2
10 . ‘ — — ,
—-G3 Circuit L0 | 10 ¢ ; —6—G3 Circuit L0
=8~ G3 Circuit L2 | [—8-G3 Circuit L2
=@ Thermalz L0 || P : =@ - Thermalz L0
&~ Thermalz L2 || r ~# - Thermal2 L2
0" Ecology2 L0 r a‘*-, 5 0 Ecalogy2 L0
B Ecologyz L2 || \"-..:s ~O" Ecology2 L2
PwtkLO . Putk LO
1 o1 + Pwtk L2 Pwtk L2

Time (seconds)
Iog10 scale

10

i I L L L |
1 2 4 8 16 32 64
Number of threads

1 2 4 8 16 32 64
Number of Threads

