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Abstract

Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM)
verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the
test are checked versus the correct analytical result. For each of the tests presented in this document, the test
setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic
solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This
document can be used to confirm that a given code capability is verified or referenced as a compilation of
example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual.
Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this
manual.
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Chapter 1

Introduction

This document presents example verification results for Sierra/SolidMechanics (Sierra/SM)!.
These are only ‘example results’ in the sense that the verification manual contains a small sub-
set of the total Sierra/SM verification test suite.

1.1 Objectives

The audience for this document is rather diverse and as such we seek to both provide strong evi-
dence of the code’s ‘correctness’ (tending to have a more mathematical nature), and evidence that
has more of a practical bent and can thus have potential utility for the analyst in defining a model
(e.g., by seeing how the mesh density affects the accuracy of a contact calculation). Complete ver-
ification of Sierra/SM would be a very long-term undertaking, especially since the code is under
continuous development. Oberkamf and Roy [4] note that, ‘“V&V are ongoing activities that do
not have a clearly defined completion point, unless additional specifications are given in terms of
intended uses of the model and adequacy.” As such, the current verification manual represents a
snapshot of the verification tests that have been more formally documented, but it is under ongoing
development to address current applications of the code.

1.2 Scope

To make this document more useful to some analysts, Section 1.3 contains some introductory
material on verification; that section focuses more upon tests that examine convergence (which
address two of the test types to be explained) than upon the other (five) test types that do not
address convergence. This emphasis is not because these are the only tests that are important,
but rather because they are more complex tests and thus their correct interpretation requires more
explanation of issues like *what is the effect of using a linear elastic "exact solution" when it is
not an exact solution to the underlying mathematical model that the code approximates?” The
intent is to provide discussions of these different issues that can be referenced by the individual
test write-ups for more details. The interested reader can consult more complete treatments of the
topics from textbooks such as those that influenced our work [4,5]. A much less comprehensive
discussion than the textbooks is presented in a report on the initial efforts to use Sierra tools to

ISignificant verification evidence exists in other SAND reports, some problems of which are also included in the
test suite.
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perform verification of Sierra/SM using field responses [2], some text of which is incorporated in
this introduction.

1.3 Background®

Verification seeks to prove that a code is "solving the equations right," not "solving the right equa-
tions" [4,3,1]. The latter endeavor is the subject of validation. As such, verification seeks to ‘prove’
that a code will obtain the correct solution of the underlying mathematical model — partial differen-
tial equations with corresponding initial and boundary values that define a boundary-initial-value
problem (BIVP), or equivalently the weak or variational statements of the BIVP. Of course, the
code solutions are based upon approximation theories that ‘reduce’ the solution of our BIVP to the
solution of algebraic equations amenable to computation.

1.3.1 Convergence

Two categories of tests that will be discussed below incorporate some measure of a code’s ability
to converge to a solution — for the best category, to the exact solution. That is, we seek to show that
successive approximations with finer discretizations (mesh and/or time steps) will be increasingly
closer to the exact solution?, i.e., that we have convergence. The concept of convergence has a
rich mathematical foundation, but in this document we merely touch on a few basic definitions to
facilitate interpretation of the verification results.

As noted above, we describe convergence as occurring when a sequence of refined numerical solu-
tions becomes increasingly closer to the exact solution. This implies we have a way of measuring
the distance between two solutions (a metric, denoted by d(e,e)). For our verification of Sierra/SM,
we know that our exact solutions live in a function space with additional topological measures for
size (a norm, denoted by || e ||) and for angle (an inner product, denoted by < e, ® >). Our distance
measure is then just defined in terms of the norm; that is, we measure the distance as the size of
the difference between two solutions (i.e., the size of the error):

d(uappmx» uexact) = ”uapprox - uexact” (11)

where u,),,,,x ~ an approximate solution, and u,.,; ~ the exact solution. Note that the variable u
in this context represents an arbitrary field, not necessarily displacement. These are just general-
izations of concepts we are familiar with in three-dimensional Euclidean space.* If we have two
vectors, one representing the exact solution and one representing the approximate solution, their
difference is the error vector, and the magnitude of that vector indicates the size of the error.

The norm used for many of the verification problems is the L, norm of the error:

%For the reader familiar with verification, the only section that may be of interest is Section 1.3.2 which describes
the classification of verification problems for Sierra/SM.

3The weaker category of "convergence tests" generally deviates from using an exact solution. The issue of using
an inexact "reference solution" will be discussed further in sections below.

4A very brief mathematical description that provides additional context for the concepts of function spaces and
convergence is presented in [2]; details were omitted but commonly used terminology was introduced. For more
mathematical details on these concepts in the context of boundary value problems see, e.g., [6].
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1/2

”uapprux - MexuctHZ = |i/ [uapprux(x) - Mexuct(x)]zdg (12)
Q

Currently, the norm calculations are done with Encore [7] using Gaussian quadrature. For a vector-
or tensor-valued quantity, the difference in each component is squared in the integrand. All results
given in this document for L, norms of symmetric (second order) tensors are based upon ‘vector’
storage of the tensor components - consistent with Voigt notation and the Exodus file storage
scheme. As such, the L, norm applied to the vector of components reduces the contribution of
the off diagonal terms by a factor of 2, since symmetry is exploited to reduce the number of terms
in the vector. The Encore input can be modified to yield the true L, norm of the tensor, but it
complicates the input and the ‘vector’ form constitutes an equivalent norm.

For some verification tests, we seek to know not only whether the increased resolution of a refined
mesh or time step produces better results, but also the rate at which these improvements are re-
alized. For the description below, assume the refinement is in the mesh (i.e., spatial). Ideally the
error in the approximation will satisfy a theoretically derived relationship of the form

lleall = Nty = teraerll = ch” + OCh"*") (1.3)

for some constant ¢, where p denotes the theoretical rate of convergence, / is a measure of the
element size, u;, denotes the approximate solution for 4, and e;, denotes the error vector associated
with 7. When we apply the above ideas to quantities of interest, like a beam tip displacement,
the tensors become scalars and we use an absolute value for the norm. Note that until # becomes
sufficiently small, the higher order terms on the right-hand side of Equation (1.3) can affect the
observed rate of convergence when evaluating a sequence of approximations. As & decreases,
the right hand side of Equation (1.3) asymptotically approaches the first term, ch”. When £ is
sufficiently small for this first term to dominate, the approximate solutions are described as being
in the asymptotic range, and thus the theoretical rate of convergence, p, is often referred to as the
asymptotic rate of convergence. In the V&V literature, the rate obtained from theoretical analysis
is also referred to as the formal order of accuracy [4]. In the literature for finite element methods,
it is also often referred to as the optimal convergence rate, or just the convergence rate. In a
later section, we will describe how an observed convergence rate is measured from a sequence of
numerical solutions.

1.3.2 Types of Verification Tests

Several types of tests are used in verification, and authors group them differently. For the verifica-
tion of Sierra/SM, we have adopted the following types of tests. The list of test types is nominally
presented in an order ranging from simplest to most complex, with the most complex tests often
being considered to be the most rigorous (with respect to being able to reveal subtle code errors’).

1. Conservation test - checks the conservation of physical quantities such as mass, momentum,
and energy.

Note that in referring to the error as "subtle," we are not implying that its affect in an analysis would necessarily
be insignificant but rather that the source of the error in the coding is not obvious.
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2. Symmetry test - checks the preservation of symmetry (symmetries).

3. Sanity check - determines if a qualitative ‘sanity’ understood for a test is preserved. An
example would be inertial reference frame invariance, i.e., objectivity tests.

4. Code-to-code benchmark test - compares results of one code to another code that was
previously verified.

5. Discretization error test - compares a single numerical analysis to an analytical solution.
The analytical solution may or may not be exact. A common solid mechanics test of this
type is the patch test, where the reference solution is a constant stress/strain result.

6. Convergence test - loosely demonstrates the proper order of convergence at best, or at least
demonstrates a tendency to converge to a solution with mesh and/or time step refinement.

7. Error quantification test - generates empirical evidence that the code can enter the asymp-
totic regime and that the computational error trends toward zero (with mesh or time step
refinement). This category of test requires the exact analytical solution. They are also re-
ferred to as order-of-accuracy tests.

A balanced verification suite would contain tests from each category. The first four categories
are rather straightforward and will not be discussed further in this document (see [4] or [5] for
additional discussion). As a generic term to address tests that examine the rate of convergence, we
will call these tests convergence-rate tests. Category (6) tests may be convergence-rate tests, and
category (7) tests are always convergence-rate tests.

1.3.2.1 Reference Solutions

Before discussing the next three categories, we will clarify what we mean by the ‘exact analytical
solution’ versus simply ‘an analytical solution’. Generically, we will refer to any solution used to
measure the correctness of numerical solutions as the reference solution. To evaluate the correct-
ness of the code rigorously, we need to have a reference solution that is the exact analytical solution
to the mathematical model that the code approximates (in our case, usually the weak statement of
the underlying BIVP). This consistency is a key point, because if the analytical solution is for a
mathematical model to a "near by problem"( i.e., a surrogate solution) the verification is weaker.

The common case of adopting a surrogate solution, for solid mechanics, is the use of analytical
solutions for linear elasticity problems. Obviously this is the class of solid mechanics problems for
which many closed form solutions exist. In the case of Sierra/SM, an analytical solution for linear
elasticity problems is not an exact solution to the underlying mathematical model, because the code
inherently addresses finite deformations, yielding a nonlinear strain-displacement relationship and
enforcement of equilibrium in the deformed configuration; linear elastic response can only be
obtained in the limit (of infinitesimal displacements). Even when the goal is to examine how
well the code performs for a problem governed by linear elasticity, the underlying nonlinearities
can complicate the comparison, because there is the potential for these nonlinearities to affect the
perceived "error"® As such, this issue is most evident for a highly accurate solution where the first

6Technically, any difference between an inexact reference solution and a numerical solution is not an error, but
herein this reference is occasionally made, and it should be interpreted as a difference.
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significant digit of the error corresponds to many digits into the floating-point word representing
the response quantity. For convergence tests, the issue is more important (usually for finer the
meshes) and will be discussed further below.

Of course, a challenge is that there are far fewer analytical solutions that are consistent with the
underlying mathematical model of Sierra/SM, i.e., for problems with finite deformations. If we
consider problems that have other sources of nonlinearities (like contact and nonlinear constitu-
tive behavior) and complexity (like integral operators, e.g., to characterize path dependence), the
chance of obtaining an exact analytical solution is reduced further. While we have started to apply
the manufacturing of solutions for problems with finite deformations, extension to problems with
contact and material models defined in an incremental manner needs further development.

1.3.2.2 Discretization Error Tests

Note that our current verification test suite is dominated by discretization error tests. This is a
rather natural state, since these tests can offer a good balance between verifying the code correct-
ness (or quality) and the investment required to develop the test. These tests are also easy for an
analyst to relate to since the comparison of two solutions is often limited to a tabular or graphical
representation of quantities of interest or their "errors" (e.g., a patch test stress state or a load-
deflection curve), and the problems are physically meaningful. The reference solution in this case,
while analytical, may not be the exact solution. Unfortunately these tests address accuracy alone,
and it is often difficult to assess if a level of accuracy is acceptable for a given discretization. As
such, these tests can reveal major code errors but are less useful at revealing subtle code errors that
error quantification tests can reveal.

1.3.2.3 Convergence Tests

These tests are the weaker of the tests that yield information on convergence. The source of their
weakness is typically either that they: (1) adopt an inexact reference solution; or, (2) demonstrate
a tendency to converge without reference to another solution. One type of convergence test that
the verification test suite adopts is an asymptotic analysis to estimate the rate of convergence. This
will be discussed more below, but it can be thought of as adopting an inexact reference solution,
since the analysis follows the asymptotic approach of Richardson’s extrapolation and obtains an
estimate of the exact solution that is one order higher than the numerical analysis. While a test in
this category may indicate a tendency to converge, and may even loosely demonstrate convergence
at the proper order of convergence, it does not show that the convergence is to the exact solution; we
can only say the approximation appears to be converging to a solution. Detail on the characteristics
of convergence tests adopting a surrogate reference solution or using asymptotic analysis will be
discussed more in separate sections that follow.

1.3.2.4 Error Quantification Tests

This category of tests contains the strongest tests for convergence. They adopt an exact analytical
reference solution, consistent with the underlying mathematical model of the code and clearly
demonstrate the ability of the code to exhibit the asymptotic rate of convergence (with mesh or
time step refinement). While mathematical proofs of convergence generally address measures of
errors in fields, we include both field and quantity of interest measures of convergence in this
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category.

1.3.3 Observed Convergence Rate

Verification has been referred to as being an inherently empirical process [4] in the sense that we
seek, via numerical experiments, to determine if the code is "behaving correctly." In the context of
order-of-accuracy tests, we seek to show that in the asymptotic range, the observed rate of conver-
gence matches that theoretically predicted. If so, confidence is increased that the code is correctly
approximating the underlying mathematical model. In the V&V literature, the rate inferred from
multiple numerical analyses with different levels of discretization is referred to as the observed
order of accuracy [4]. In this document, we will tend to use the more common FEM phrases,
observed convergence rate or just convergence rate (in the latter case, the distinction between the
theoretical rate and observed rate is determined by the context).

To estimate the convergence rate from multiple finite element analyses, we assume that Equation
(1.3) is valid, and that the O(h”*!) terms are not significant, i.e., that we are obtaining the asymp-
totic rates. Taking the log of both sides of the asymptotic part of Equation (1.3) gives

log(llexll) = log(c) + plog(h). (1.4)

Thus on a log-log plot of error versus element size, the slope of the line gives the observed rate
of convergence. Often the results for the coarser meshes are not in the asymptotic range, and
then the slopes obtained by sequences of results from two meshes changes, giving more accurate
convergence rates with finer meshes. For two results from a FEA where the exact solution is
known, we can estimate this convergence rate by comparing the errors from these two meshes, and
solving for p. For the problems that follow, most refinements involve halving the element size, A,
which leads to the following relation for estimating the convergence rate:

p = log(lleall/llexl)/ log(1/2) (1.5)

where ey, is the corresponding error for uniform (half-size) mesh refinement. When we have
multiple levels of refinement, we could apply linear regression to all of the results on a log-log
plot obtaining the rate of convergence over a larger range of meshes; however, obtaining rates of
convergence from sequences of two results provides an indication of the extent to which the results
are in the asymptotic range.

The above discussion of observed rate of convergence is based upon the assumption that we have
the exact solution and is thus applicable to error quantification tests. For tests that fall in the
convergence test category, we usually do not have the exact solution, but we may still seek to
estimate the rate of convergence. If so, we attempt to obtain the rate of convergence either by
using a surrogate solution or by using asymptotic analysis. Both approaches can provide more
confidence in the code correctness for some problems, but they also have limitations that will be
discussed below.
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1.3.4 Convergence Tests using a Surrogate Solution

As previously noted, a surrogate solution is not an exact solution to the underlying mathematical
model that the code approximates, but rather is the solution of a "nearby problem". As such, the
surrogate solution has mathematical modeling errors due to the differences in the problem it solves.
The surrogate solution may be useful for estimating the rate of convergence when the numerical
modeling errors are greater than the mathematical modeling errors, that is, for sufficiently coarse
meshes it provides an accurate surrogate for the exact solution. When the converse is true (i.e., the
mesh is relatively fine), strictly speaking we are faced with the uncertainly of whether the difference
in solutions is due entirely to the inexactness of surrogate solution, or due to a subtle error in the
implementation that verification is designed to reveal. Unfortunately for coarser meshes where
the surrogate solution is sufficiently close to the exact solution, the numerical solution may not be
in the asymptotic range. As such, for a surrogate solution to be useful in estimating the rate of
convergence, we need a range where the surrogate is sufficiently accurate and the numerical results
are in the asymptotic range. For some sequences of solutions, this range will not even exist.

For the case of an exact reference solution, one expects the code to yield the asymptotic rate with
increasing accuracy upon mesh refinement. For the case of a surrogate reference solution, if the
FEM solution is approaching the exact solution, one would expect the difference to approach a
constant value that quantifies the mathematical modeling error. That is, in the limit, the difference
is an indicator of the error in the surrogate solution, not the FEM solution. Generally however, we
do not know that the FEM solution is approaching the exact solution, so the constant difference
that the FEM solution approaches could be a combination of code error and mathematical modeling
error.

Another characteristic of using a surrogate reference solution is that the convergence to the constant
difference is not necessarily monotonic. This is true for field quantities and quantities of interest,
and can be illustrated in terms of a solution in a function space or on the real line, respectively. For
simplicity, consider a description for a quantity of interest, the values of which are on the real line.
Assume for example that our quantity of interest is a force response, and that the exact solution for
the response is 1000. Also assume that the surrogate solution gives a force response of 1001. If the
sequence of results from the FEM starts at 1400 (a 40 percent error) and monotonically decreases
toward the exact solution, apparent non-monotonic convergence can be obtained relative to the
surrogate solution. Note that at a load level of 1400, the surrogate solution provides a reasonable
measure of the error (~39.8%). For example, consider a sequence of FEM force predictions having
linear convergence given by {..., 1006, 1003, 1001.5, 1000.75, 1000.375,...} and that are converg-
ing to the exact solution. The actual sequence of errors are simply {..., 6, 3, 1.5, 0.75, 0.375,...}
which exhibits monotonic convergence. However, the perceived ‘errors’ (actually differences) ob-
tained relative to the surrogate solution are {..., 5, 2, 0.5, 0.25, 0.625,...} — not monotonic; these
differences approach a difference value of 1 — the mathematical modeling error. Note that if the
surrogate solution gave a value of 999, the convergence would be monotonic, so the relative values
of the exact and surrogate solutions can determine the nature of the convergence.

1.3.5 Convergence Tests using Asymptotic Analysis

Asymptotic analysis is used in convergence tests when we are seeking an estimate of the rate of
convergence, sometimes when we have a surrogate solution and other times when we do not. We
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tend to use them when we have a surrogate solution, for cases where we do not have an obvious
range for estimating the rate of convergence. As such, it can strengthen the convergence argument,
though it is still weaker than having an error quantification test. When we do not have any surrogate
solution, it provides an estimate of the rate of convergence when otherwise we could only observe
a tendency of the results to converge to some value (hopefully the exact solution); in this later case,
it is being applied identically as one does for solution verification.

The asymptotic analysis can be considered as consisting of two steps. First, the results from se-
quences of analyses based upon three mesh refinements, where each refinement halves the charac-
teristic length of the element (e.g., each hex is approximately subdivided, into eight hex elements),
are used to estimate the rate of convergence. Second, the convergence rate obtained from the finest
sequence of meshes may be assumed to be accurate, and then is used with Richardson extrapola-
tion to obtain a higher-order estimate of the exact solution. The Richardson’s extrapolated estimate
is then often adopted as the reference solution to analyze the results, sometimes with log-log plots
of a "difference measure" versus an element size measure as would be done with an analytical
reference solution. For problems like contact, where we cannot define the expected rate of conver-
gence exactly, we have chosen to use the rate obtained in the first step as the rate applied in the
second step - essentially solving three equations for three unknowns (as we will outline below),
but the rate is not an integer. The alternative is to use the rate obtained in the first step to provide
an estimate of the rate and round it to the next integer. If the formal rate of convergence is known
for the numerical method, that rate should be used in the Richardson extrapolation.

Consider an outline of the asymptotic analysis as two steps. For more detail, see references [4] or
[5]. First consider a sequence of three scalar results for a quantity of interest or norm of a field
that will be denoted as {S;,S:1,S5,:2}, where S; denotes the scalar value for the coarsest mesh,
and S ;;; and S ;;, denote the scalar values for one and two uniform mesh refinements, respectively;
consistently, these results correspond to meshes such that h;,; = h;/r where r = 2.7 As with Equation
(1.3), we assume that error can be expressed in a power series in A, as

Si =S8 exaet + ch? + O™ (1.6)

for a p™-order method. Combining the higher order error terms with the exact solution gives

SrE =S exacr + O(H™) (1.7)

where S zr denotes an approximation of the exact solution that, if the A7 *! term exists, is one order
higher in accuracy than the original p”-order method would give. The notation of the RE subscript
denotes the Richardson Extrapolated value for S, which will be solved for in the second step of the
analysis. Combining Equations 1.6 and 1.7 gives

Si:SRE'FCh?. (18)

"Uniform mesh refinement as specified here is not a requirement of the methodology, but it is the approach that has
been adopted for all problems in the manual to date.
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If we write this relationship for meshes i, i + 1, and i + 2, we have three equations and three
unknowns. Eliminating S gg and ¢ from the three equations and solving for p gives

ln(S2 s;)

In(r) (1.9)

p =
Note that the above analysis can be used for successive sequences of three meshes, as is done for
many verification problems, and consistency in the results for p then gives an indication if the
results are in the asymptotic range. If the results are not consistent, the asymptotic analysis is not
conclusive, though the result from the finest set of meshes may suggest a tendency in the rate of
convergence.

The second step of the analysis corresponds to the generalized Richardson extrapolation, where
the extrapolated value is given by

Spp = Sa4 22752, (1.10)
rP—1

As previously noted, this value can now be used as a reference solution. We have done that in many
of the tests to give a graphical representation of the results from the asymptotic analysis. These
types of graphical results must be interpreted carefully, because in most cases S gg is considered to
be more useful as an indicator of the uncertainly in the solution than as a proper surrogate solution.
Use of this solution, when p is obtained directly from Equation (1.10), also tends to instill false
confidence in the results; this is due to the fact that by definition the convergence plot will show
the results for the finest three meshes as lying perfectly on a straight line. When this occurs with
an exact solution, we infer that we are in the asymptotic range; when it occurs in this case it is
simply a result of solving the corresponding three equations to make it occur. In this case, we
need four values to lie along a line, which corresponds to getting consistent p estimates from two
overlapping sequences (as previously mentioned). Another caveat in plotting the results for these
tests is that when multiple tests are plotted on the same plot we have to keep in mind that they
each have their own reference solution, so comparisons of relative accuracies can be questionable
- though potentially meaningful if we know the extrapolated results are based upon data from the
asymptotic range.

1.4 Manual Organization

The remainder of the Sierra/SM Verification Tests Manual is divided into chapters that represent
related capabilities. Each section of a chapter represents a distinct verification "test group." In
some cases, the test group contains a single test, and in other cases it contains a group of related
tests (e.g., a patch test applied all of the hex elements). The verification test groups listed in each
chapter verify some aspect of that suite of capabilities. Some of these verification tests are run
nightly by the development team to continually verify code solution quality. Other tests that are
too computationally demanding to be run nightly are tested before each code release. The graphics
and charts in this document are automatically generated by the test runs. The test files for these
problems may be found in the Sierra regression test repository, in the sub-directory

adagio_rtest/VerificationTestManual
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On many Sierra-supported platforms, the latest versions of these tests can be accessed at

/sierra/Dev/nightly/Sierra.tests.master/adagio_rtest/VerificationTestManual
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Chapter 2

Contact Verification Tests

The following are tests that verify aspects of our contact capabilities. These tests cover contact
contact input definition, constraint creation, contact equation solution, and friction model behavior.
These tests span the full Sierra/SM solution spaces of explicit transient dynamics, implicit transient
dynamics, and implicit quasi-statics.
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2.1 Contact Force Balance

Analysis Type Quasi-statics (Adagio)
Element Type Hex8

Strain Incrementation | Strongly Objective
Material Model Elastic

Verification Category

Discretization Error

Verification Quantities

Contact Force

Number of Tests |
Keywords Force Balance

2.1.1 Problem Description

This test checks that the computed nodal forces are balanced (in equilibrium). It is composed of a
unit cube sitting on top of a larger block. The unit cube block has an applied pressure on the top
surface while the bottom block is held fixed.

2.1.1.1 Boundary Conditions

The applied pressure on the top surface of the unit cube is ramped in a sinusoidial manner to 1000
psi (a force of 1000 Ibs) while the bottom block is held fixed in all directions.

2.1.1.2 Material Model

Each block uses an elastic material model. The parameters are shown in table 2.1.1.2. The param-
eters were simply chosen for convenience.

Young’s Modulus | E | 30e6 Psi
Poisson’s Ratio v |03
Density o | 100.0 Ibf sec?/in*

2.1.1.3 Feature Tested
The balance of nodal contact forces.
2.1.2 Assumptions and notes

This problem assumes that the deformation does not significantly affect the loaded area and thus
magnitude of the load.

2.1.3 Verification of Solution

The prescribed pressure force serves as the analytic value. The summed y nodal contact force on
the top block should be equal and opposite in sign to the pressure force. The sum of the nodal
contact forces in the y direction on the bottom block should be equal to the pressure force. Finally,
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the summed y reaction force on the bottom block should be equal and opposite in sign to the
pressure force. These collected forces can be seen in the figure.

All values are balanced in the final time steps to 0.05% error.

Prescribed / Contact / and Reaction Force Balance
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Figure 2.1: Force Balance

For input deck see Appendix B.1.
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2.2 Hertz Sphere-Sphere Contact

Analysis Type | Quasi-statics (Adagio)
Element Type | Hex8

Material Model | Elastic

Keywords Contact

2.2.1 Problem Description

This problem presses an elastic sphere into a rigid plate and compares the resulting contact radius
and the maximum sphere deformation to analytic predictions from Hertzian contact theory.

2.2.1.1 Boundary Conditions

The boundary conditions are illustrated in the Figure 2.2.

Figure 2.2: Elastic Sphere on Rigid Plate Problem Setup

2.2.1.2 Material

The sphere’s elastic material parameters can be found in Table 2.1.

Young’s Modulus | E | 68.9¢ +9
Poisson’s Ratio v | 0.33
Density p | 1.024e -6

Table 2.1: Elastic Material Properties

2.2.1.3 Feature Tested

The augmented Lagrange node-Face contact algorithm for fricitionless contact is tested and com-
pared to an analytic solution.
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2.2.2 Assumptions and notes

The assumptions for this problem match those of Hertzian contact problems. The strains are as-
sumed small and within the elastic limit. The radius of contact is much smaller than the character-
istic radius of the body. The surfaces are frictionless, continuous, and non-conforming.

2.2.3 Verification of Solution

The analytic solution based on Hertzian contact for the contact radius (a) and the resulting deflec-
tion (0) as illustrated in the Figure 2.2 are given by Equations 2.1 and 2.2.

This problem ran has a sphere of radius R = 1.0, an applied load of P = 5.0¢7 and an elastic
modulus of E = 68.9¢ + 9.

3PR) 3
0= (E) @.1)
2
5= % 2.2)

The percent error is computed by Equation 2.3 for the contact radius and the deflection.

|Analytic — Computed)|

Y%Error =

100.0 2.3
|Analytic]| i 2.3)

The contact radius is within 0.5% of 4.5% error and the deflection is within 1% of 9.75% error.

Figure 2.3 shows the contact pressure in the compressed region of the sphere where the contact
radius is computed.

For input deck see Appendix B.2.
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Figure 2.3: Contact Pressure on Compressed Region of Sphere
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2.3 Deriesiewicz Sphere-Sphere Contact

Analysis Type Quasi-statics (Adagio)
Element Type Hex8
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Torque

Number of Tests 4

Keywords Contact

2.3.1 Problem Description

This problem presses two elastic spheres together, and then applies a rotational motion to them; see
Figure 2.4 and references [1, 2]. Since the spheres are in frictional contact, the rotation requires the
application of a twisting moment. Due to symmetry considerations, only one-half of one sphere
need be simulated; see Figure 2.5.

2.3.2 Exact Solution

Denote by M the twisting moment applied, N the contact normal force, a the contact radius, u the
coeflicient of friction, G the shear modulus, and  the angle of twist. Define the non-dimensional
angle

2
0:=L20 2.4)
7,
and the non-dimensional torque
T := % . (2.5)
uNa

There exists an exact solution, in terms of elliptic integrals, relating the dimensionless parameters
T and 6 [1, 2]. In reference [3] the authors approximate the exact solution with the rational function

4 4 -1
T(9) = [Z aka] [Z bkek] . (2.6)
k=0 k=0

The parameters are given in Table 2.2. Equation (2.6) is convenient for numerical evaluation and
can be used for verification purposes.

Table 2.2: Padé approximation data
ap 0 b() 1
a 16/3 || by | 5.1193
a, | 6.0327 || by | 15.6833
az | 19.6951 || b5 | 30.8099
ay | 42.5359 || by | 72.2111
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Figure 2.4: Two spheres pressed together and subjected to a torsional couple. N is the normal
force, M is the applied moment, and « is the radius of contact.

2.3.3 Numerical Solution

This problem can be simulated using Adagio. The code can output the applied twisting moment M
and normal force N as a function of time. The twisting angle S and contact radius a as a function
of time can also be computed with user defined functions.
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Figure 2.5: One-half sphere used for computational simulation.

2.3.4 Verification

The results of non-dimensional torque versus time can be compared for the exact (2.6) and nu-
merical solutions. One can compute an L! integrated in time error, if desired. Typical results are
shown, for example, in Figures 2.6 and 2.7.
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Figure 2.6: Non-dimensional torque versus time.
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Figure 2.7: Non-dimensional torque error versus time.
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For input deck see Appendix B.3.
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2.4 Hertz Cylinder-Cylinder Contact — Convergence Test

iz£

Analysis Type Quasi-statics (Adagio)

Element Types Hex8

Element Formulations | Mean Quadrature, Fully Integrated

Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Boundary Displacement (6), Contact Force (P)
Number of Tests 4

Keywords Hertz, Contact, Convergence

2.4.1 Brief Description

This series of analyses demonstrates the convergence of contact for a classical Hertz problem.
This problem is a quasistatic version of the (inactive) Sierra/SM heavy test examining the dynamic
impact of two cylinders. Dash contact using both the face/face and node/face formulations is
tested. Two types of 8-noded, hexahedral elements are examined, namely (1) uniform gradient
(mean quadrature) elements, and (2) fully-integrated elements both with a strongly objective strain
incrementation. The first element is the most commonly used element and the second one (loosly
speaking) provides a bound on the element formulations (in terms of integration).

2.4.1.1 Functionality Tested
Primary capabilities:

- Dash contact face-face and node-face formulations
Secondary capabilities:

- The following element formulations:
(1) eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation.
(2) eight-node hexahedron with the mean quadrature formulation and strongly objective

strain incrementation.

- prescribed displacement boundary conditions
2.4.1.2 Mechanics of Test

The in-plane geometry of the cylinder-cylinder contact problem is depicted in Figure 2.8. SI units
are adopted for this problem, and thus the radius of the cylinders is 4 meters. The half-cylinders,
as shown in the figure, have equal radii, but also have equal thicknesses (lengths). The thicknesses
are defined for each mesh such that the elements in the contact region are approximately cubes.
The problem is defined as a quasistatic problem under displacement controlled deformation.
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Figure 2.8: Hertz cylinder-cylinder contact problem.

2.4.1.3 Material Model

The primary material model used for this problem is the elastic model implemented in Lame [1].
The selected properties were given as follows.

Young’s Modulus | E | 1.0 x 10° Pa
Poisson’s Ratio y 0.2

To examine the effect upon the convergence of the temporal integration of the elastic model (a
hypoelastic model), limited analyses using a hyperelastic model were conducted as well, but these
results are "document static", i.e., are not updated automatically.

2.4.1.4 Boundary Conditions

The boundary conditions for this problem, as depicted in Figure 2.8, show the horizontal surfaces
(symmetry cuts) of the two half-cylinders have prescribed vertical displacements, denoted as 6.
The maximum value of ¢, which is the state at which the response is measured, is 2 cm. The half-
cylinders geometrically thus look more like half-disks, but plane strain boundary conditions are
applied to both "z-faces." The horizontal symmetry cuts of the cylinders allow us to define these
surfaces as displacement reference planes; physically this corresponds to a unit cell out of a stack
of cylinders. If the objective were to reduce the problem size, it could be reduced further (in this
case) to a cylinder-plane contact problem.

2.4.1.5 Meshes

Four of the five meshes used in this study are shown in Figure 2.9. Each mesh contains four times
as many elements (in the plane) as the coarser mesh that it is refined from, since h; = h;_; /2, where
h; denotes the characteristic in-plane element size for mesh i. The mesh refinements conform to
the defining geometry, not the coarser mesh, and as such the soluton space for the coarser mesh
is not a proper subspace of the solution space for the finer mesh. Through the thickness, we
examined mesh refinements that (1) maintained a constant thickness with one element through
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the thickness and mesh refinements that (2) varied the thickness with one element through the
thickness. Approach (1) varies the element aspect ratios (at a given point in space) with mesh
refinement, while approach (2) approximately maintained the aspect ratios (at a give point in space)
by varying the element thickness to give approximately cube elements in the contact region. The
apparent rates of convergence differed for the different mesh cases, but the value of "error" they
converged to was essentially the same. Since approach (1) varies the mesh quality with mesh
refinement it is not used here to examine the rates of convergence.

The table below contains the number of elements for each of the meshes.

Mesh name | Number of Elements
Mesh-1 308

Mesh-2 1232
Mesh-3 4928
Mesh-4 19712
Mesh-5 78848

2.4.2 Expected Results

For this problem we have evaluated the results in two ways: (1) using an analytical reference solu-
tion based upon the Hertz approach, and (2) using asymptotic estimates of the rate of convergence
based upon results from sequences of three meshes. The analytical reference solution is briefly dis-
cussed below. The asymptotic analysis leading to the rate of convergence based upon a sequence
of approximate results (like the development of Richardson’s extrapolation) is based upon the as-
sumption that the form of the dominant error term for each mesh is as ch;”. Once the observed
rate of convergence is obtained, it can be used in the generalized Richardson extrapolation to give
a higher order estimate of the exact solution. The motivation for using the analysis to determine
the observed rate of convergence first is two fold: (1) it provides an indicator that the approximate
solutions are in the asymptotic range, and (2) for quantities of interest like the reaction force we
are treating the rate of convergence as an unknown since in general we do not expect the contact
algorithm to maintain the optimal rates of convergence that are observed for simpler continuum
problems. A detailed description of the analysis that provides the estimated rate of convergence is
presented in the text by Oberkampf and Roy [2]. Roach [3] indicates that the analysis leading to
the rate of convergence "is from" G. de Vahl Davis [4].

The analytical reference solution used in this study is taken from the ContactMechanics text of
K.L. Johnson [5]. The relation for the displacement on the flat surface of the cylinder for this
problem can be obtained as

(1 V)P (—1 +21n ( j@)))
=a

En

5=

2.7
where R ~ radius of the cylinder, E ~ Young’s modulus, v ~ Poisson’s ratio, and P ~ contact

force. Note that the form of the equation does not lend itself to the algebraic solution for P. As
such, we apply the equation in its current form in the following manner: (1) the FE model applies
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Figure 2.9: Four of the five meshes used in this study

displacements of magnitude ¢ to the two horizontal cuts of the cylinders, (2) the reaction force
(equivalent in magnitude to the contact force, P) is calculated in the FE analysis, and (3) this value
is used in the analytical expression above to determine the theoretical value for ¢ that should have
caused this level of force. The difference between the values of ¢ applied to the model, and that
obtained from the analytical expression are the quantity of interest type "error measure" used in
this study.

For readers that have additional interest in the source of the above equation, the results from sym-
bolic calculations within Mathematica are included in this test file’s directory for reference. In
particular, the above form reflects the particular data used to specify this problem: identical cylin-
ders with respect to both geometry and material. Note that the Mathematica results also present
the graphical relationships ¢ vs. P and a vs. P, where a ~ contact width.

The analytical solution for this problem is not exact not only because it is based upon linear elas-
ticity, but also because it is based upon the simplifying approximations presented by Hertz. These
approximations include: (1) a representation of the contact surfaces by quadratic surfaces, (2) a
component of the deformation response of each body can be approximated by the solution of a
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loaded half-space, and (3) relative displacement between the center and edge points of contact are
small compared to the contact radius. These approximations require both the geometric dimen-
sions of the body and the radii of curvature in the contact region (one in the same for this problem)
to be much larger than the contact radius. Thus the ideal, in terms of using these approximations,
is to adopt an extremely small contact area, but then that makes it more difficult to define a mesh
that efficiently uses small elements near the contact but transitions to larger elements away from
this region (for the sake of numerical efficiency). In defining this problem, we initially sought to
find a balance between test run times and sufficient accuracy to obtain a measure of convergence,
but admittedly pushed the upper limit of the contact size. Figure 2.10 depicts how localized the
contact response is even with the selected contact area.

elem_stress_yy

9.918e+01
-1.067e+03
-2.233e+03

-3.399e+03
-4.565e+03

Figure 2.10: Concentrated stress response for the cylinder-cylinder contact problem.

Since the reference solution is not exact the difference in the solutions is not really the error, though
it may be close to the actual error for coarser meshes. The "error" value that the solution levels
off to (in the limit) is a measure of the error in the reference solution, assuming that the finite
element solution is actually converging to the exact solution. The convergence to a fixed difference
between the analytical reference solution and the finite element solutions, can occur from above or
below and is not necessarily monotonic in nature. Because of this convergence behavior for finer
meshes, it can be difficult to find a range of discretization for which the approximate reference
solution is sufficiently accurate to serve as a "surrogate" for the exact solution and yet the meshes
are sufficiently fine to be in the asymptotic range. As we will see in this case, we did not obtain a
region where the inexact reference solution allowed us to estimate the rate of convergence, but we
will observe it converging to a fixed difference. To strengthen the argument that it is converging
and to address the question of rate, we will estimate the rate of convergence using the approach
discussed above and apply Richardson Extrapolation to estimate the exact solution.

2.4.3 Verification Results

As noted above, the quantity of interest in this test (for the analytical reference solution) is the
boundary displacement, 6. The slopes of the relative error curves between the data points (corre-
sponding to two meshes, on the log-log plots) yield observed rates of convergence. For an exact
reference solution, the observed rate of convergence approaches the asymptotic rate with mesh
refinement, assuming other sources of numerical error (e.g., solver accuracy) do not corrupt the
results. For this problem we are not using an exact solution, so an improvement in the convergence
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estimate is not guaranteed. As previously noted, typically for problems without an exact solution
there is (or we hope for) a "sweet range" where the approximations are in the asymptotic range but
not refined enough to measure the inexactness of the references solution. Of course the size of this
"sweet range" is problem dependent, e.g., in this problem we have not only the approximations
associated with linear elasticity but also those associated with the Hertz solution.

Initially we will examine the observed rates of convergence based upon the approximate reference
solution.

2.4.3.1 Results based on Hertz reference solution

The following tables give the observed rates of convergence for the two variations of the Dash
contact algorithm and the two Hex8 element formulations between each sequential pair of meshes,
where hy;,. denotes the relative element size of the finer mesh of the pair (i.e., where 1 denotes the
coarsest mesh - mesh 1). The following plots show the corresponding graphical representations of
the error data as a function of the element size.

Table 2.3: Observed convergence rates based upon the Hertz reference solution.

Face/face
Mean quadrature Fully integrated
hfine |6err0r|/|5analyt| hfine |5err0r| / |5analyt|
0.5000 2.6466 0.5000 3.0267
0.2500 0.8739 0.2500 -0.0444
0.1250 -0.8244 0.1250 -0.6604
0.0625 -0.1642 0.0625 -0.1594
Node/face
Mean quadrature Fully integrated
hfine |6error|/|6analyt| hfine Iéerr()rl/léanalytl
0.5000 2.6140 0.5000 3.0102
0.2500 0.8709 0.2500 -0.2830
0.1250 -0.8362 0.1250 -0.6493
0.0625 -0.1670 0.0625 -0.1605
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Figure 2.11: Convergence of the displacement boundary condition versus element size.
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While the results suggest that each test case is converging (just not to the analytical reference
solution), as previously noted, the inexactness of the reference solution makes an estimate of the
rate of convergence intractable for the selected models. To examine the convergence rate we resort
to asymptotic analyses of the numerical results alone (i.e., without assuming a reference solution)
in the following section.

2.4.3.2 Results based on asymptotic analysis

The asymptotic analysis applied in this verification problem can be considered as consisting of
two steps. First, the results from sequences of analyses based upon three mesh refinements, where
each refinement halves the characteristic length of the element (i.e., each hex is approximately
subdivided, into eight hex elements), are used to estimate the rate of convergence. (Note that only
four of the elements are present in the finer mesh since the thickness is halved in the refinement.)
Second, the convergence rate obtained from the finest sequence of meshes is assumed to be accu-
rate, and then is used with Richardson extrapolation to obtain a higher order estimate of the exact
solution. The Richardson extrapolated estimate is then adopted as the reference solution to analyze
the results, as the analytical reference solution was used in the previous section.

Using sequences of three numerical results one can solve for the observed rate of convergence.
Two values are presented in the table, one for the normal force (P), and one for the contact radius
(a) calculated from P . Calculating the contact radius from P, in a sense just makes it a measure
of P, and both quantities yield nearly the same rates of convergence. The rates of convergence are
nearly quadratic for the reaction force with the mean quadrature element formulation. Also note
that the relative consistency of the convergence rates (more so for the mean quadrature results with
the finer two sequences of three meshes) suggests the results are in the asymptotic range.

Table 2.4: Observed convergence rates based upon asymptotic analysis.

Face/face
Mean quadrature Fully integrated
l’lﬁne ‘ P a hfine ‘ P a
0.2500 | 1.80 1.79 0.2500 | 1.84 1.83
0.1250 | 1.89 1.89 0.1250 | 1.77 1.77
0.0625 | 1.85 1.84 0.0625 | 1.66 1.63
Node/face
Mean quadrature Fully integrated
hfine ‘ P a hfine ‘ P a
0.2500 | 1.76 1.75 0.2500 | 1.69 1.69
0.1250 | 1.86 1.86 0.1250 | 1.69 1.68
0.0625 | 1.84 1.82 0.0625 | 1.62 1.62

Since we use a sequence of three numerical results in the asymptotic analysis (giving us three equa-
tions), we can solve for the two remaining unknowns: the constant (¢) and the estimate of the exact
solution (which is one order more accurate than that given by the finite element solution, assuming
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the next term in the error expansion is one order higher); this part of the asymptotic analysis cor-
responds to Richardson extrapolation. We then use the higher order estimate of the exact solution
(labeled by RE) as our reference solution. Admittedly, this higher order solution estimate is better
suited for uncertainty quantification [2,3], but we will still use it here as a reference solution to
show that it yields the desired linear relationship between error and discretization on a log-log plot
(for P). Following the same order as we did above for the analytical solution, first consider the
convergence rates obtained using Pgg and agg as the reference solutions, in tabular form. These
results are obtained from pairs of meshes, and by definition approach the same values obtained
from the asymptotic analyses with mesh refinement.

Table 2.5: Observed convergence rates based upon the Richardson extrapolation references, Pgrg

and aReg.
Face/face
Mean quadrature Fully integrated
hfine P a hfine P a
0.5000 | 1.8201 1.8133 0.5000 | 1.8095 1.8043
0.2500 | 1.8776 1.8775 0.2500 | 1.7342 1.7306
0.1250 | 1.8544 1.8439 0.1250 | 1.6551 1.6335
0.0625 | 1.8544 1.8439 0.0625 | 1.6551 1.6335
Node/face
Mean quadrature Fully integrated
hfine P a hfine P a
0.5000 | 1.7845 1.7771 0.5000 | 1.6847 1.6812
0.2500 | 1.8535 1.8505 0.2500 | 1.6680 1.6625
0.1250 | 1.8446 1.8176 0.1250 | 1.6246 1.6215
0.0625 | 1.8446 1.8176 0.0625 | 1.6246 1.6215
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Figure 2.12: Convergence of the normal force, P, versus element size.
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The above results suggest that reasonable accuracy is obtained (less than 1 percent difference)
for the contact force, except for the coarsest meshes. The asymptotic results also enforce the
interpretation that the convergence to a constant difference when using the analytical reference
solution was an indication of the weaknesses in the analytical solution not the contact algorithm.

While the above results indicate that the algorithm is giving nearly quadratic convergence in the
response, it does beg the questions of whether these results are as close as the algorithm can
come to producing quadratic convergence, whether there is an error in the algorithm producing a
reduced rate of convergence, or whether other aspects of the numerical simulation are polluting the
observed rates of convergence. Frankly, we do not expect the algorithm to maintain the optimal rate
of convergence associated with the elements, but it is still worth considering the other factors that
can reduce the observed rate of convergence; among the other factors are relaxed solver tolerances
that reduce the accuracy of the solution, and a mixture of the order of the algorithms that has not
been accounted for in the convergence study. The solver tolerances were adjusted to be as tight
as possible while still yielding a converged solution. The second issue however was purposefully
not completely addressed in the above results to keep the analysis times smaller; specifically, the
elastic material model is a hypoelastic model and thus is numerically integrated in time. At best
we would expect quadratic convergence in time, and thus for the asymptotic terms associated with
both space and time to be consistently reduced (assuming quadratic convergence in time) we should
have reduced the time step by a factor of one half with each mesh refinement. We assumed this
effect would be relatively small — though not necessarily negligible, but used the elastic model
because it is the underlying elastic model for several commonly used models in Lame [1].

To indirectly examine the effect that the elastic model may have had on the accuracy, let’s consider
some results obtained with the neo-Hookean model (a hyperelastic model which thus does not
require temporal integration). The table below presents the convergence results for the two tests
based upon node/face contact.

Table 2.6: Observed convergence rates based upon asymptotic analysis.
Cases: neo-Hookean material model, and node/face contact.

Mean quadrature Fully integrated
hfine ‘ P a hfine ‘ P a
0.2500 | 1.13 1.12 0.2500 | 1.60 1.60
0.1250 | 1.88 1.87 0.1250 | 1.71 1.70
0.0625 | 1.90 191 0.0625 | 1.64 1.66

For the finest mesh sequence and the mean quadrature element, the convergence rate for P in-
creased from 1.84 to 1.90. This change is not negligible and would be important if we expected to
obtain quadratic convergence in the limit. The improvement for the fully integrated element is less
significant.
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Summary of results: the contact algorithm appears to converge for this classical contact prob-
lem, and the difference between the Hertz reference solution and the FEM solutions for the finer
meshes is less than one percent. The difference results (referencing the Hertz solution) do not lend
themselves to directly evaluating the rate of convergence of the contact algorithm, as there are
not sufficient data that exhibit asymptotic behavior without being tainted by the inaccuracy of the
reference solution. Using the Hertz solution the numerical results approach a constant difference
which we interpret in the limit as representing the error in the analytical solution. To enforce this
interpretation, we estimated the rate of convergence for the reaction force using asymptotic anal-
ysis which "approached quadratic convergence." We interpret these results as positive verification
results; however, these results must be weighted with the facts that the analytical reference solution
is not exact and the use of asymptotic analysis does not provide as strong of verification as having
an exact reference solution [2,3,6].
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2.5 Mindlin Cylinder-Cylinder Contact — Convergence Test

Analysis Type Quasi-statics

Element Types Hex8

Element Formulations | Mean Quadrature, Fully Integrated

Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Boundary Displacement (6), Contact Shear (Q)
Number of Tests 4

Keywords Mindlin, Hertz, Contact, Friction, Convergence

2.5.1 Brief Description

This series of analyses demonstrates the convergence of contact for the classical Mindlin prob-
lem [6]. This problem builds on the Hertz problem (cylinder on cylinder) to develop the normal
preload, and then follows that with a lateral shear applied to the flat surfaces of both half-cylinders.
Dash contact using both the face/face and node/face formulations is tested. Two types of 8-noded,
hexahedral elements are examined, namely (1) uniform gradient (mean quadrature) elements, and
(2) fully-integrated elements both with a strongly objective strain incrementation. The first element
is the most commonly used element and the second one (loosely speaking) provides a bound on
the element formulations (in terms of integration).

2.5.1.1 Functionality Tested

Primary capabilities:

- Dash contact face-face and node-face formulations

Secondary capabilities:

- The following element formulations:

(1) eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation.

(2) eight-node hexahedron with the mean quadrature formulation and strongly objective
strain incrementation.

- Prescribed displacement boundary conditions

2.5.1.2 Mechanics of Test

The geometry consists of two half-cylinders in contact, as depicted in Figure 2.13. SI units are
adopted for this problem, and thus the radius of the cylinder is 4 meters. The half-cylinders,
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as shown in the figure, have equal radii. The problem is defined as a quasistatic problem under
displacement controlled deformation. Note that because we have posed this in terms of displace-
ment boundary conditions, the normal and shear forces will change with mesh refinement, as the
cylinders change in compliance. The problem consists of two loading periods. The first period
corresponds to the Hertz problem with normal displacements applied to the cylinder-halves (flat
surfaces) to establish a normal force. The second period applies lateral displacements to the flat
surfaces of the cylinder halves, developing shear loads on both the reaction faces and the contact
surfaces.

15,

Followed
by

L. I jIe e
Figure 2.13: Mindlin cylinder-cylinder contact problem.

2.5.1.3 Material Model

The primary material model used for this problem is the elastic model implemented in Lame [2].
The selected properties were given as follows.

Table 2.7: Material model properties.
Young’s Modulus | E | 1.0 x 10° Pa
Poisson’s Ratio v |02

2.5.1.4 Boundary Conditions

The boundary conditions for this problem, as depicted in Figure 2.13, show the horizontal surfaces
(symmetry cuts) of the two half-cylinders have prescribed vertical displacements, denoted as 6,
followed by precribed lateral displacements, denoted as 6,. The half-cylinders geometrically thus
look more like half-disks, but plane strain boundary conditions are applied to both "z-faces." In the
second time period, the vertical displacements on the boundaries are held constant, and the hori-
zontal displacements are varied linearly in time. The prescribed displacements end at maximum
magnitudes of 1 cm.

2.5.1.5 Meshes

Four of the five meshes used in this study are shown in Figure 2.14. Each mesh contains four times
as many elements (in the plane) as the coarser mesh that it is refined from, since h; = h;_;/2, where
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h; denotes the characteristic in-plane element size for mesh i. The mesh refinements conform to
the defining geometry, not the coarser mesh, and as such the soluton space for the coarser mesh is
not a proper subspace of the soluton space for the finer mesh. We varied the thickness, with one
element through the thickness, to approximately maintain the element aspect ratios (at a give point
in space); this approximately gave cube elements in the contact region.

Table 2.8: Mesh characteristics.

Mesh label | 4/h; | Number of Elements
Mesh-1 1 308
Mesh-2 1/2 1232
Mesh-3 1/4 4928
Mesh-4 1/8 19712
Mesh-5 1/16 78848

(a) Mesh-1 (b) Mesh-2
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Figure 2.14: Four of the five meshes used in this study
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2.5.2 Expected Results

For this problem we have evaluated the results using an analytical estimation of the rate of con-
vergence based upon results from sequences of three meshes. The analysis leading to the rate of
convergence based upon a sequence of approximate results (like the development of Richardson’s
Extrapolation) is based upon the assumption that the form of the error for each mesh is as ch;”. The
three equations for the shear loads in terms of the higher order estimate of the exact solution and
the error term are solved for the rate of convergence (eliminating the unknowns ¢ and the higher
order estimate of the exact solution). Once the observed rate of convergence is obtained, it can
be used in the generalized Richardson extrapolation to obtain a higher order estimate of the exact
solution. The motivation for using the analysis to determine the observed rate of convergence first
is two fold: (1) it provides an indicator that the approximate solutions are in the asymptotic range,
and (2) for quantities of interest like the reaction force we are treating the rate of convergence as an
unknown since in general we do not expect the contact algorithm to maintain the optimal rates of
convergence that are observed for simpler continuum problems. For the results to indicate that the
sequences of results are in the asymptotic range, we expect the predicted rates of convergence from
sequential sets of three meshes (e.g., meshs 2,3,4 and meshes 3,4,5) to give nearly the same rates of
convergence. A detailed description of the analysis that provides the estimated rate of convergence
is presented in the text by Oberkampf and Roy [3]. Roach [4] indicates that the analysis leading to
the rate of convergence "is from" G. de Vahl Davis [5].

2.5.3 Verification Results

As noted above, the quantity of interest in this test (for the analytical reference solution) is the
shear load, Q. The slopes of the relative error curves between the data points (corresponding to
two meshes, on the log-log plots) yield observed rates of convergence; for the convergence plots
shown here, these slopes correspond to the asymptotic rate of convergence for the two finest sets
of meshes. This result is by definition since the three meshes were used to solve for the rate.
The slopes corrsponding to coarser meshes will match those of the finer meshes if they are in the
asymptotic range.

Because the analyses associated with the finest mesh can be very time consuming, a different
approach is being taken in presenting the results. The nightly analyses only use the finest three
meshes, and as forumated here will obtain a different solution for the Richardson extrapolation
than results based upon finer meshes (extended results). As such nightly and extended results are
presented separately.

2.5.3.1 Results based on asymptotic analysis

The asymptotic analysis applied in this verification problem can be considered as consisting of
two steps: one to obtain the rate of convergence, and one to obtain a higher order estimate of the
solution from Richardson’s Extrapolation. This is discussed in more detail in the introduction of
this manual. The tables below present the results from the first step: the estimated convergence
rates from sequences of three meshes.

The shear load (Q) is again treated as the quantity of interest from which that rate of convergence
is estimated. Note that for this problem we do not have sufficient consistency between the results
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(for successive sequences of three meshes) to definitely claim that we are in the asymptotic range

of convergence.

Table 2.9: Observed convergence rates based upon asymptotic analysis — Extended results.

Mean quadrature

hfine ‘ P
0.2500 | 1.74
0.1250 | 1.67
0.0625 | 2.94

Mean quadrature

hfine ‘ P
0.2500 | 1.12
0.1250 | 1.61
0.0625 | 1.84

Face/face

Node/face

Fully integrated
h fine ‘ P

0.2500 | 1.80
0.1250 | 1.61
0.0625 | 1.83

Fully integrated
h fine ‘ P

0.2500 | 1.16
0.1250 | 1.43
0.0625 | 1.14

Table 2.10: Observed convergence rates based upon asymptotic analysis — Nightly results.

Mean quadrature
h fine ‘ P

0.2500 | 1.74

Mean quadrature
h fine ‘ P

0.2500 | 1.18

Face/face

Node/face
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Fully integrated
hfine ‘ P

0.2500 \ 1.80

Fully integrated
h fine ‘ P

0.2500 | 1.16



Given the higher order estimate of the exact solution from Richardson’s extrapolation we now
use this result (labeled by RE) as our reference solution. Admittedly, this higher order solution
estimate is better suited for uncertainty quantification [3,4], but we will still use it here as a ref-
erence solution to show that by design it yields the desired linear relationship between error and
discretization on a log-log plot. First we present the convergence rates obtained using Qgg as the
reference solution, in tabular form. These results are obtained from pairs of meshes, and by defi-
nition approach the same values obtained from the asymptotic analyses with mesh refinement. As
previsouly presented, extended results are followed by nightly results. For this set of results, the
extended and nightly results do not match because the extrapolated reference solution is not based
upon the same sets of meshes.

Table 2.11: Observed convergence rates based upon the Richardson extrapolation references, Qg
— Extended results.

Face/face
Mean quadrature Fully integrated
hfine P hfine P
0.5000 | 1.79 0.5000 | 1.76
0.2500 | 1.91 0.2500 | 1.68
0.1250 | 2.94 0.1250 | 1.83
0.0625 | 2.94 0.0625 | 1.83
Node/face
Mean quadrature Fully integrated
hfine P hfine P
0.5000 | 1.32 0.5000 | 1.22
0.2500 | 1.68 0.2500 | 1.31
0.1250 | 1.84 0.1250 | 1.14
0.0625 | 1.84 0.0625 | 1.14

Table 2.12: Observed convergence rates based upon the Richardson extrapolation references, Qrg
— Nightly results.

Face/face
Mean quadrature Fully integrated
hfine ‘ P hfine ‘ P
0.5000 | 1.7384 0.5000 | 1.7952
0.2500 | 1.7384 0.2500 | 1.7952
Node/face
Mean quadrature Fully integrated
hfine ‘ P hfine ‘ P
0.5000 | 1.1820 0.5000 | 1.1620
0.2500 | 1.1820 0.2500 | 1.1620
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Figure 2.15: Convergence of the shear force, O, versus element size, Richardson extrapolation
reference solution using extended results.
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Figure 2.16: Convergence of the shear force, O, versus element size, Richardson extrapolation
reference solution using nightly results.
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The inconsistency in the convergence rates makes it difficult to definitively assess the rate of con-
vergence, but two test cases (face/face + fully integrated and node/ face + mean quadrature)
gave closer agreement and indicated convergence closer to quadratic than linear. The other two
test cases showed greater variation in the rates of convergence and for the finest meshes gave rates
of convergence that were closer to linear and cubic.

The plot of the asymptotic results graphically depicts the differences in the rates of convergence.
Each test has its own extrapolated reference solution, so using the asymptotic results to compare
the relative accuracies can be misleading without examining the agreement of the extrapolated ref-
erence solutions. If we take the results at face value the face/face + meanquadrature test yields
both the highest rate of convergence and accuracy. Furthermore all the test cases yield better than
one percent difference for all but the coarsest mesh.

All of the asymptotic results indicate convergent behaviors and some give nearly quadratic conver-
gence, but the results beg the questions of whether these results are as close as the algorithm can
come to producing quadratic convergence, whether there is an error in the algorithm producing a
reduced rate of convergence, or whether other aspects of the numerical simulation are polluting the
observed rates of convergence. Frankly, we do not expect the algorithm to maintain the optimal
rate of convergence associated with the elements, but it is still worth considering the other factors
that can reduce the observed rate of convergence; among the other factors are relaxed solver toler-
ances that reduce the accuracy of the solution, and a mixture of the order of the algorithms that has
not not been accounted for in the convergence study. The solver tolerances were adjusted to be as
tight as possible while still yielding a converged solution.

The second issue however was purposefully not addressed in the above results to keep the analysis
times smaller; specifically, the elastic material model is a hypoelastic model and thus is numer-
ically integrated in time. At best we would expect quadratic convergence in time, and thus for
the asymptotic terms associated with both space and time to be consistently reduced (assuming
quadratic convergence in time and space) we should have reduced the time step by a factor of one
half with each mesh refinement. We assumed this effect would be relatively small — though not
necessarily negligible, but used the elastic model because it is the underlying elastic model for
several commonly used models in Lame [2]. To examine the effect of using a model that does not
require temporal integration, in the Hertz cylinder-cylinder contact test we examined how the re-
sults differed when using a hyperelastic model; in summary, the effect was second order relative to
our deviations from second order. In order to investigate the effect of time step size, another series
of tests (3 meshes) with smaller time steps (within the shear part) were ran. The results revealed a
change in the convergence rates. Table 2.13 shows the percentage change in the convergence rates.

Table 2.13: Effect of time step size on convergence rate.

Case Percentage change in convergence rates
Face-Face-Meanq 1.14
Face-Face-Full 1.11
Node-Face-Meanq -5.36
Node-Face-Full -6.90
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Summary of results: the contact algorithm appears to converge for this classical contact problem,
and the differences between the Richarson extrapolation solutions and the FEM solutions for for
all but the coarsest mesh were less than one percent. The asymptotic estimates for the rates of
convergence were not sufficiently consistent to definitively identify the actual convergence rates
of the tests, but two of the results indicated convergence rates closer to quadratic than to linear
convergence. We interpret these results as positive verification results; however, these results must
be weighted with the fact that the use of asymptotic analysis does not provide as strong of verifi-
cation as having an exact reference solution [3,4,7]; it merely indicates that the FEM solution for
the shear load is converging to some value.
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For input deck see Appendix B.5.
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2.6 Hertz Sphere-Sphere Contact — Convergence Test

Analysis Type Quasi Statics

Element Types Hex8

Element Formulations | Mean Quadrature, Fully Integrated
Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Boundary Displacement (9)
Number of Tests 4

Keywords Hertz, Contact, Convergence

2.6.1 Brief Description

This series of analyses demonstrates the convergence of contact for a classical Hertz solution. This
problem is a quasistatic version of the Sierra/SM heavy test examining the quasistatic compression
of two hemispheres. Two types of 8-noded, hexahedral elements are examined, namely (1) fully-
integrated elements, and (2) uniform gradient elements with a strongly objective strain formulation.

2.6.1.1 Functionality Tested

Primary capabilities:
- Dash contact face-face and node-face formulations

Secondary capabilities:

- The following element formulations:

(1) eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation.

(2) eight-node hexahedron with the mean quadrature formulation and strongly objective
strain incrementation.

- Prescribed displacement boundary conditions
2.6.1.2 Mechanics of Test

The side-view geometry of the sphere-sphere contact problem is depicted in Figure 2.17. SI units
are adopted for this problem, and thus the radii of the hemispheres are 4 meters. The problem is
defined as a quasistatic problem under displacement controlled deformation.

2.6.1.3 Material Model

The material model used for this problem is the elastic model implemented in Lame [1].
The selected properties were given as follows.
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Figure 2.17: Hertz sphere-sphere contact problem.

Young’s Modulus | E | 1.0 x 10° Pa
Poisson’s Ratio y 0.2

2.6.1.4 Boundary Conditions

The boundary conditions for this problem, as depicted in Figure 2.17, show the horizontal surfaces
(symmetry cuts) of the hemispheres have prescribed vertical displacements, denoted as 6. The
horizontal symmetry cuts of the hemispheres allow us to define these surfaces as displacement
reference planes. If the objective were to reduce the problem size, it could be reduced further to
a sphere-plane contact problem. Table 2.14 contains the mesh lable, relative element size, and
number of elements for each of the meshes.

Table 2.14: Mesh characteristics.

Mesh label | #/h; | Number of Elements
Mesh-1 1 392
Mesh-2 1/2 3136
Mesh-3 1/4 25088
Mesh-4 1/8 200704

2.6.1.5 Meshes

The meshes used in this study are shown in Figure 2.18. Each mesh contains eight times as many
elements as the coarser mesh that it is refined from, since h; = h;_;/2, where h; denotes the charac-
teristic element size for mesh i. The mesh refinements conform to the defining geometry, not the
coarser mesh, and as such the solution space for the coarser mesh is not a proper subspace of the
solution space for the finer mesh.
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(a) Mesh-1 (b) Mesh-2

L. L.
(¢) Mesh-3 (d) Mesh-4

Figure 2.18: Meshes used in this study

2.6.2 [Expected Results

The analytical reference solution used in this study is taken from the Contact Mechanics text of
K.L. Johnson [5]. The relation for the mutual displacement of the hemispheres is represented by

9(~1 +v?)>P\ "
0= (T (2:8)

where R denotes the radii of the hemispheres, E denotes Young’s modulus, v denotes Poisson’s
ratio, and P denotes contact force. Consistent with the approach used for Hertz cylinder-cylinder
tests, we apply the equation in its current form in the following manner: (1) the FE model applies
displacements of magnitude ¢ to the the two horizontal cuts of the hemispheres, (2) the reaction
force (equivalent in magnitude to the contact force, P) is calculated in the FE analysis, and (3) this
value is used in the analytical expression above to determine the theoretical value for ¢ that should
have caused this level of force. The difference between the values of ¢ applied to the model, and
that obtained from the analytical expression are the quantity of interest type "error measure" used
in this study.

The analytical solution for this problem is not exact (and is thus a surrogate solution) not only
because it is based upon linear elasticity, but also because it is based upon the simplifying approx-
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imations presented by Hertz. These approximations include: (1) a representation of the contact
surfaces by quadratic surfaces, (2) the deformation response of each body can be approximated
by the solution of a loaded half-space, and (3) relative displacement between the center and edge
points of contact are small compared to the contact radius. These approxmations require both the
geometric dimensions of the body and the radii of curvature in the contact region (one in the same
for this problem) to be much larger than the contact radius. Thus the ideal, in terms of using these
approximations, is to adopt an extremely small contact area, but then that requires a mesh that
efficiently uses small elements near the contact but transitions to larger elements away from this
region for the sake of numerical efficiency. In defining this problem, we sought to find a balance
between test run times and sufficient accuracy to obtain a measure of convergence.

Again note that since the reference solution is not exact the difference in the solutions is not really
the error, though it may be close to the actual error for coarser meshes. The difference value that
the solution levels off to, actually is a measure of the error in the reference solution, assuming that
the finite element solution is actually converging to the exact solution.

2.6.3 Verification Results

As noted above, the quantity of interest in this test (for the analytical reference solution) is the
boundary displacement, . The slopes of the relative error curves between the data points (corre-
sponding to two meshes, on the log-log plots) yield observed rates of convergence. For an exact
reference solution, the observed rate of convergence approaches the asymptotic rate with mesh
refinement, assuming other sources of numerical error (e.g., solver accuracy) do not corrupt the
results. For this problem we are not using an exact solution, so an improvement in the convergence
estimate is not guaranteed. As previously noted, typically for problems without an exact solution
there is (or we hope for) a "sweet range" where the approximations are in the asymptotic range but
not refined enough to measure the inexactness of the references solution. Of course the size of this
"sweet range" is problem dependent, e.g., in this problem we have not only the approximations
associated with linear elasticity but also those associated with the Hertz solution.

Initially we will examine the observed rates of convergence based upon the approximate reference
solution.

2.6.3.1 Results based on Hertz reference solution

In this section, we are showing results that are labeled as extended and nightly, the former of which
have longer run times. Extended results have four meshes, and the nightly results have two meshes.
The following tables give the observed rates of convergence (nightly) for the node-face variation
of the Dash contact algorithm and the two Hex8 element formulations between each sequential
pair of meshes, where &, denotes the relative element size of the finer mesh of the pair. The
face-face variation of the Dash contact algorithm is not shown for the nightly results because it
takes longer to run than currently allowed in the nightly testing process. The following plot shows
the corresponding graphical representations of the difference data as a function of the element size.
The results appear to be converging to a difference, that is on the order of two percent.
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Table 2.15: Observed convergence rates based upon the Hertz reference solution—Nightly.

Node/face
Mean quadrature Fully integrated
hfine ‘ ||6err0r”2/”5unalyt”2 hfine ‘ ||6error||2/||6analyl”2
0.5000 4.6057 0.5000 1.3373
0.2500 -2.9254 0.2500 0.9518
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. face-face_hex8-meang-so (extended) ---------
node-face_hex8-meang-so (extended)
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Figure 2.19: Convergence of the displacement boundary condition versus element size.
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2.6.3.2 Results based on asymptotic analysis

The asymptotic analysis applied in this verification problem can be considered as consisting of
two steps: one to obtain the rate of convergence, and one to obtain a higher order estimate of the
solution from Richardson’s Extrapolation. This is discussed in more detail in the introduction of
this manual. The tables below present the results from the first step: the estimated convergence
rates from sequences of three meshes. Two values are presented in the table, one for the normal
force (P), and one for the contact radius (a) calculated from P . Calculating the contact radius
from P, in a sense just makes it a measure of P, and both quantities yield nearly the same rates of
convergence. The rates of convergence are nearly quadratic for the reaction force for all test cases.
The consistency of the convergence rates (for a given quantity of interest but different sets of three
meshes) suggests the results are approaching the asymptotic range, but the ideal is to have rates
that are much closer.

Table 2.16: Observed convergence rates based upon asymptotic analysis.

Face/face
Mean quadrature
hfine ‘ P a
0.2500 | 1.84 1.87
0.1250 | 1.94 1.95

Node/face
Mean quadrature Fully integrated
hfine ‘ P a hfine ‘ P a
0.2500 | 1.85 1.89 0.2500 | 1.86 1.78
0.1250 | 2.06 2.08 0.1250 | 1.90 1.87

Since we use a sequence of three numerical results in the asymptotic analysis (giving us three equa-
tions), we can solve for the two remaining unknowns: the constant (c) and the estimate of the exact
solution (which is one order more accurate than that given by the finite element solution, assuming
the next term in the error expansion is one order higher); this part of the asymptotic analysis cor-
responds to Richardson extrapolation. We then use the higher order estimate of the exact solution
(labeled by RE) as our reference solution. Admittedly, this higher order solution estimate is better
suited for uncertainty quantification [2,3], but we will still use it here as a reference solution to
show that it yields the desired linear relationship between error and discretization on a log-log plot
(for P). Following the same order as we did above for the analytical solution, first consider the
convergence rates obtained using Pgg and agg as the reference solutions, in tabular form. These
results are obtained from pairs of meshes, and by definition approach the same values obtained
from the asymptotic analyses with mesh refinement.
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Table 2.17: Observed convergence rates based upon the Richardson extrapolation references, Pgg

and ARE.

Face/face
Mean quadrature
hfine ‘ P a
0.5000 | 1.87 1.89
0.2500 | 1.94 1.95
0.1250 | 1.94 1.95

Node/face
Mean quadrature Fully integrated
hfine ‘ P a hfine ‘ P a
0.5000 | 1.90 1.94 0.5000 | 1.87 1.80
0.2500 | 2.06 2.08 0.2500 | 1.90 1.87
0.1250 | 2.06 2.08 0.1250 | 1.90 1.87
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The above results suggest that reasonable accuracy is obtained (about 2 percent difference) for
the contact force, using the finest meshes. The asymptotic results also enforce the interpretation
that the convergence to a constant difference when using the analytical reference solution was an
indication of the weaknesses in the analytical solution not the contact algorithm.

While the above results indicate that the algorithm is giving nearly quadratic convergence in the
response, it does beg the questions of whether these results are as close as the algorithm can
come to producing quadratic convergence, whether there is an error in the algorithm producing a
reduced rate of convergence, or whether other aspects of the numerical simulation are polluting the
observed rates of convergence. Frankly, we do not expect the algorithm to maintain the optimal rate
of convergence associated with the elements, but it is still worth considering the other factors that
can reduce the observed rate of convergence; among the other factors are relaxed solver tolerances
that reduce the accuracy of the solution, and a mixture of the order of the algorithms that has not
been accounted for in the convergence study. The solver tolerances were adjusted to be as tight
as possible while still yielding a converged solution. The second issue however was purposefully
not completely addressed in the above results to keep the analysis times smaller; specifically, the
elastic material model is a hypoelastic model and thus is numerically integrated in time. At best
we would expect quadratic convergence in time, and thus for the asymptotic terms associated with
both space and time to be consistently reduced (assuming quadratic convergence in time) we should
have reduced the time step by a factor of one half with each mesh refinement. We assumed this
effect would be relatively small — though not necessarily negligible, but used the elastic model
because it is the underlying elastic model for several commonly used models in Lame [1].

Summary of results: the contact algorithm appears to converge for this classical contact prob-
lem, and the difference between the Hertz reference solution and the FEM solutions for the finest
meshes is about two percent. The difference results (referencing the Hertz solution) do not lend
themselves to directly evaluating the rate of convergence of the contact algorithm, as there are
not sufficient data that exhibit asymptotic behavior without being tainted by the inaccuracy of the
reference solution. Using the Hertz solution the numerical results approach a constant difference
which we interpret in the limit as representing the error in the analytical solution. To enforce this
interpretation, we estimated the rate of convergence for the reaction force using asymptotic anal-
ysis which "approached quadratic convergence." We interpret these results as positive verification
results; however, these results must be weighted with the facts that the analytical reference solution
is not exact and the use of asymptotic analysis does not provide as strong of verification as having
an exact reference solution [2,3,6].
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2.7 Lubkin Sphere-Sphere Contact — Convergence Test

Analysis Type Quasi-statics

Element Types Hex8

Element Formulations | Mean Quadrature, Fully Integrated

Strain Incrementation | Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Non-dimensional Contact Torque (T)

Number of Tests 4

Keywords Lubkin, Hertz, Contact, Friction, Convergence

2.7.1 Brief Description

This series of analyses demonstrates the convergence of contact for the classical Lubkin [1] prob-
lem. This problem builds on the Hertz problem (sphere on sphere) to develop the normal preload,
and then follows that with a torque applied about an axis connecting the center of both hemi-
spheres. Dash contact using both the face/face and node/face formulations is tested. Two types of
8-noded, hexahedral elements are examined, namely (1) uniform gradient (mean quadrature) ele-
ments, and (2) fully-integrated elements both with a strongly objective strain incrementation. The
first element is the most commonly used element and the second one (loosely speaking) provides a
bound on the element formulations (in terms of integration). Note that there are two other closely
related verification problems in the manual: Elastic Spheres in Frictional Torsional Contact (sphere
on plate load-deflection test), and Elastic Spheres in Frictional Torsional Contact (sphere on plate
convergence test).

2.7.1.1 Functionality Tested

Primary capabilities:

- Dash contact face-face and node-face formulations

Secondary capabilities:

- The following element formulations:

(1) eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation.

(2) eight-node hexahedron with the mean quadrature formulation and strongly objective
strain incrementation.

- Prescribed displacement boundary conditions
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2.7.1.2 Mechanics of Test

The geometry consists of two hemispheres in contact, as depicted in Figure 2.21. SI units are
adopted for this problem, and thus the radius of the spheres is 4 meters. The hemispheres, as shown
in the figure, have equal radii. The problem is defined as a quasistatic problem under displacement
controlled deformation. The problem consist of two loading periods. The first, corresponds to the
Hertz problem with normal displacements applied to the hemispheres’ flat surfaces to establish a
normal force. Note that because we have posed this in terms of displacement boundary conditions,
the normal force will change with mesh refinement, as the hemispheres change in compliance.
Though symmetry does not necessitate it for this problem, the contact surfaces are frictionless
during this first period, so that no tangent frictional forces exist at the start of the second time
period. The second period of loading, applies a torque to each of the hemispheres’ flat surfaces.
The torque loading is also applied by a displacement boundary condition. During this period of
loading contact friction is "turned on," with a coefficient of friction of 0.3. (For the current version
of the input, the means used to change the coefficient of friction — or the friction model in this case,
is by applying each friction model in a separate procedure block.)

Ro
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Figure 2.21: Lubkin sphere-sphere contact problem.

2.7.1.3 Material Model

The primary material model used for this problem is the elastic model implemented in Lame [4].
The selected properties were given as follows.

Table 2.18: Material model properties.
Young’s Modulus | E | 1.0 x 10° Pa
Poisson’s Ratio v | 0.2
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2.7.1.4 Boundary Conditions

The boundary conditions for this problem, as depicted in Figure 2.21, show the horizontal surfaces
(symmetry cuts) of the two hemispheres have prescribed vertical displacements, denoted as 6. The
maximum value of ¢, which is the state at which the response is measured, is 2 cm. The horizontal
symmetry cuts of the spheres allow us to define these surfaces as displacement reference planes;
physically this corresponds to a unit cell out of a stack of spheres. If the objective were to reduce
the problem size, it could be reduced further (in this case) to a sphere-plane contact problem; a
sphere-plane version of this test exists too. In the second time period, the vertical displacements on
the boundaries are held constant, and the in-plane displacement components consist of prescribed
displacements in the azimuthal direction. As such the free degrees of freedom correspond to the
radial displacements. The prescribed displacements about the cylindrical axis correspond to a
maximum rotation of 0.1 radians.

2.7.1.5 Meshes

Figure 2.21 depicts two hemispheres in contact. A "contact surface view" of the sequence of
meshes used in this study (of one hemisphere) are shown in Figure 2.22. Each mesh contains
eight times as many elements as the coarser mesh that it is refined from, since h; = h;_1/2, where
h; denotes the characteristic element size for mesh i. The number of elements in each mesh is
presented in the table below. The mesh refinements conform to the defining geometry, not the
coarser mesh, and as such the solution space for the coarser mesh is not a proper subspace of the
solution space for the finer mesh. The table below contains the mesh label, relative element size,
and number of elements for each of the meshes.

Table 2.19: Mesh characteristics.

Mesh label | A/h; | Number of Elements
Mesh-1 1 392
Mesh-2 1/2 3136
Mesh-3 1/4 25088
Mesh-4 1/8 200704

2.7.2 Expected Results

For this problem we have evaluated the results in two ways: (1) using an analytical reference
solution, and (2) using asymptotic estimates of the rate of convergence based upon results from
sequences of three meshes. The analytical reference solution used in this study is taken from
the work of Segalman, Starr, and Heinstein [3] and is briefly discussed below. For additional
discussion of the asymptotic analysis, please refer to the "expected results" section of the Hertz
cylinder-cylinder contact tests.

The analytical reference solution adopted here [3] is a fourth-order Padé rational function approx-
imation to the analytical solution given by Lubkin [1]. Lubkin’s original solution is expressed in
terms of complete elliptic integrals, while the approximate form given in reference [3] is read-
ily amenable to verification and is reported to agree with numerical evaluation of the original
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(a) Mesh-1 (b) Mesh-2

(c) Mesh-3 (d) Mesh-4
Figure 2.22: Meshes used in this study
solution by Lubkin to within 2x10~> over the full range. The Padé approximation expresses a non-

dimensional torque (7") as a function of a non-dimensional twisting angle (), defined respectively
as

2
o= ﬁf};’ , (2.9)
and
T = % (2.10)
HNa

where M ~ the twisting moment applied, N ~ the contact normal force, a ~ the contact radius, y ~
the coefficient of friction, G ~ the shear modulus, and 8 ~ the angle of twist.

1

4 4 -
TO) = | ) at| | bd| . (2.11)
k=0 k=0

where the parameters are given in Table 2.20.
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Table 2.20: Pad¢ approximation data
[ZN) 0 bo 1
a 16/3 || by | 5.1193
a, | 6.0327 || b, | 15.6833
asz | 19.6951 || bs | 30.8099
ay | 42.5359 || by | 72.2111

We apply the this equation in the following manner: (1) the hemispheres are preloaded with a
prescribed normal displacement 6y, (2) the hemispheres are then displaced laterally to a prescribed
displacement d,, (2) the vertical force (equivalent in magnitude to the contact force, N) is cal-
culated in the FE analysis, (3) the contact radius is calculated from the Hertz solution for the
given preload (N), (3) N and ¢, are used in the analytical expression above to determine the non-
dimensional rotation 6, and then (4) equation 2.11 is used to calculate the theoretical value for the
non-dimensional torque. The model value for the torque (M) is obtained from the cross product
of all the contact forces (on a single hemisphere) with their respective in-plane position vectors
from the vertical axis (connecting the sphere centers). The quantity of interest, for which errors
are calculated, is the non-dimensional torque.

The analytical solution for this problem is not exact not only because it is based upon linear elas-
ticity, but also because it is based upon the simplifying approximations presented by Hertz. These
approximations include: (1) a representation of the contact surfaces by quadratic surfaces, (2) a
component of the deformation response of each body can be approximated by the solution of a
loaded half-space, and (3) relative displacement between the center and edge points of contact are
small compared to the contact radius. These approximations require both the geometric dimen-
sions of the body and the radii of curvature in the contact region (one in the same for this problem)
to be much larger than the contact radius. Thus the ideal, in terms of using these approximations,
is to adopt an extremely small contact area, but then that makes it more difficult to define a mesh
that efficiently uses small elements near the contact but transitions to larger elements away from
this region (for the sake of numerical efficiency). In defining this problem, we initially sought to
find a balance between test run times and sufficient accuracy to obtain a measure of convergence,
but admittedly pushed the upper limit of the contact size.

Since the reference solution is not exact the difference in the solutions is not really the error, though
it may be close to the actual error for coarser meshes. The "error" value that the solution levels off
to (in the limit) is a measure of the error in the reference solution, assuming that the finite element
solution is actually converging to the exact solution. The convergence to a fixed difference between
the analytical reference solution and the finite element solutions, is not necessarily monotonic in
nature. Because of this convergence behavior for finer meshes, it can be difficult to find a range
of discretization for which the approximate reference solution is sufficiently accurate to serve as a
"surrogate” for the exact solution and yet the meshes are sufficiently fine to be in the asymptotic
range. As we will see in this case, we did not obtain a region where the inexact reference solu-
tion allowed us to estimate the rate of convergence, but we will observe it converging to a fixed
difference. To strengthen the argument that it is converging and to further examine the question
of rate, we will estimate the rate of convergence using the approach discussed above and apply
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Richardson’s Extrapolation to estimate the exact solution; unfortunately even the asymptotic so-
lutions for this problem, and corresponding models, do not provide a good estimate of the rate of
convergence. Finer meshes would be needed to estabilish that several of the approximate analyses
were in the asymptotic range.

2.7.3 Verification Results

As noted above, the quantity of interest in this test is the non-dimensional torque, 7. The slopes
of the relative error curves between the data points (corresponding to two meshes, on the log-
log plots) yield observed rates of convergence. For an exact reference solution, the observed rate
of convergence approaches the asymptotic rate with mesh refinement, assuming other sources of
numerical error (e.g., solver accuracy) do not corrupt the results. For this problem we are not
using an exact solution, so an improvement in the convergence estimate is not guaranteed. As
previously noted, typically for problems without an exact solution there is (or we hope for) a
"sweet range" where the approximations are in the asymptotic range but not refined enough to
measure the inexactness of the references solution. Of course the size of this "sweet range" is
problem dependent, e.g., in this problem we have not only the approximations associated with
linear elasticity but also those associated with the Hertz solution.

Because the analyses associated with the finest mesh can be very time consuming, a different ap-
proach is being taken in presenting the results. The nightly analyses only use the coarsest three
meshes, but they are plotted (in one case) with the results for finer meshes too for graphical compar-
ison. Likewise, tables are presented based upon nightly results and those obtained from analyses
that include the finest mesh ("extended results"). As such passing of the tests is not based upon
results from the finest mesh, but rather upon change in the convergence rates for the nightly tests.
Note that the tabular results can differ between the extended and nightly analyses; currently the
extended and nightly analyses both use 30 time steps for the compression pre-load (Hertz part) but
use 20 and 30 time steps for the torsional loading, respectively. (The intent is to obtain extended
analyses results that use 30 steps for the torsional loading as well.) Also, due to time constraints
of nightly testing, the nightly results are only for the node-face contact formulation.

Initially we will examine the observed rates of convergence based upon the approximate reference
solution.

2.7.3.1 Results based on Hertz reference solution

The following tables give the observed rates of convergence for the two variations of the Dash
contact algorithm and the two Hex8 element formulations between each sequential pair of meshes,
where hy;,, denotes the relative element size of the finer mesh of the pair. The following plots show
the corresponding graphical representations of the error data as a function of the element size. The
first set of tables present the "extended results," and the second set present the nightly results.
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Table 2.21: Observed convergence rates based upon the Lubkin reference solution — Extended
results.

Face/face
Mean quadrature Fully integrated
h fine \ Torque convergence rate h fine \ Torque convergence rate
0.5000 1.25 0.5000 1.00
0.2500 0.82 0.2500 0.52
0.1250 0.36 0.1250 0.21
Node/face
Mean quadrature Fully integrated
h fine \ Torque convergence rate  fine \ Torque convergence rate
0.5000 1.29 0.5000 0.41
0.2500 1.32 0.2500 1.09
0.1250 0.43 0.1250 0.40

Table 2.22: Observed convergence rates based upon the Lubkin reference solution — Nightly re-
sults.

Node/face
Mean quadrature Fully integrated
R fine \ Torque convergence rate N tine \ Torque convergence rate
0.5000 1.3177 0.5000 0.6165
0.2500 1.3257 0.2500 1.0740
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Figure 2.23: Convergence of the non-dimensional Torque versus element size (analytical reference
solution).

The difference in the solutions (Torqueg;s¢) for the finer two meshes is about 3 percent or less, thus
giving reasonably good agreement with the analytical reference solution. While the results suggest
that each test case is converging (just not to the analytical reference solution), as previously noted,
the inexactness of the reference solution makes an estimate of the rate of convergence intractable
for the selected models. To examine the convergence rate further we resort to asymptotic analyses
of the numerical results alone (i.e., without assuming a reference solution) in the following section.

2.7.3.2 Results based on asymptotic analysis

The asymptotic analysis applied in this verification problem can be considered as consisting of
two steps. First, the results from sequences of analyses based upon three mesh refinements, where
each refinement halves the characteristic length of the element (i.e., each hex is approximately
subdivided, into eight hex elements), are used to estimate the rate of convergence. Second, the
convergence rate obtained from the finest sequence of meshes is assumed to be accurate, and then
is used with Richardson extrapolation to obtain a higher order estimate of the exact solution. The
Richardson’s extrapolated estimate is then adopted as the reference solution to analyze the results,
as the analytical reference solution was used in the previous section.

Using sequences of three numerical results one can solve for the observed rate of convergence.
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The non-dimensional torque (7') is again treated as the quantity of interest from which that rate
of convergence is estimated. Note that for this problem we do not have sufficient consistency
between the results (for successive sequences of three meshes) to definitely claim that we are in the
asymptotic range of convergence. As done previously for with the analytical reference solution, we
again include results using finer meshes (extended results) and results based upon nightly results.

Table 2.23: Observed convergence rates based upon asymptotic analysis — Extended results.

Face/face
Mean quadrature Fully integrated
D fine \ Torque convergence rate  fine \ Torque convergence rate
0.2500 1.68 0.2500 3.16
0.1250 1.84 0.1250 2.02
Node/face
Mean quadrature Fully integrated
fine \ Torque convergence rate R fine \ Torque convergence rate
0.2500 1.37 0.2500 4.80
0.1250 2.36 0.1250 0.27

Table 2.24: Observed convergence rates based upon asymptotic analysis — Nightly results.

Node/face
Mean quadrature Fully integrated
D fine \ T orque convergence rate D fine \ Torque convergence rate
0.2500 | 1.39 0.2500 | 4.33
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Since we use a sequence of three numerical results in the asymptotic analysis (giving us three
equations), we can solve for the two remaining unknowns: the constant (¢) and the estimate of
the exact solution (which is one order more accurate than that given by the finite element solution,
assuming the next term in the error expansion is one order higher); this part of the asymptotic
analysis corresponds to Richardson’s extrapolation. We then use the higher order estimate of the
exact solution (labeled by RE) as our reference solution. Admittedly, this higher order solution
estimate is better suited for uncertainty quantification [5, 6], but we will still use it here as a ref-
erence solution to show that by design it yields the desired linear relationship between error and
discretization on a log-log plot (for the finest meshes). Following the same order as we did above
for the analytical solution, first consider the convergence rates obtained using Tkg as the reference
solution, in tabular form. These results are obtained from pairs of meshes, and by definition yield
the same values obtained from the asymptotic analyses with mesh refinement. As previously pre-
sented, extended results are followed by nightly results. For this set of results, the extended and
nightly results do not match because the extrapolated reference solution is not based upon the same
sets of meshes. In each case the Richardson’s extrapolation for the exact solution is obtained from
the finest meshes (meshes 2, 3, and 4 for most of the extended analyses and meshes 1, 2, and 3 for
the nightly analyses).

Table 2.25: Observed convergence rates based upon the Richardson extrapolation references, Txg
— Extended results.

Face/face
Mean quadrature Fully integrated
D fine \ Torque convergence rate  fine \ Torque convergence rate
0.5000 1.73 0.5000 2.95
0.2500 1.84 0.2500 2.02
0.1250 1.84 0.1250 2.02
Node/face
Mean quadrature Fully integrated
R fine ‘ Torque convergence rate R fine ‘ Torque convergence rate
0.5000 1.62 0.5000 2.50
0.2500 2.36 0.2500 0.27
0.1250 2.36 0.1250 0.27

Table 2.26: Observed convergence rates based upon the Richardson extrapolation references, Txg
— Nightly results.

Node/face
Mean quadrature Fully integrated
D fine \ T orque convergence rate  fine \ T orque convergence rate
0.5000 1.3904 0.5000 4.3264
0.2500 1.3904 0.2500 4.3264
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Figure 2.24: Convergence of the non-dimensional Torque versus element size, Richardson extrap-
olation reference solution using extended results.

For this problem it is difficult to make a strong statement about the rate of convergence even from
the results of the asymptotic analysis. The lack of consistency (for a given test, but different
sequences of 3 meshes) in the convergence rates (Table 2.21) generally does not indicate that
the convergence rate is obtained from results within the asymptotic range. This is reflected in
the scatter of the apparent rates of convergence in Tables 2.21 and 2.25 and Figure 2.24. The
results suggest that the accuracy of the finite element solutions are within about 2 percent for
meshes 3 and 4. The most consistent asymptotic rates fortunately occur for the test case that
corresponds to features commonly used by analyst: the face/face contact algorithm and the mean-
quadrature element forumation. For this test case the asymptotic rates are much closer (Table 2.21)
and indicate that the rate of convergence is much closer to quadratic than linear.
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Figure 2.25: Convergence of the non-dimensional Torque versus element size, Richardson extrap-
olation reference solution using nightly results.

Summary of results: the contact algorithm appears to converge for this classical contact problem,
and the difference between the reference solution and the FEM solutions for the finer meshes is
less than three percent. The difference results, referencing the Lubkin solution and the Richardson
extrapolation approximation of the exact solution, do not lend themselves to directly evaluating
the rate of convergence of the contact algorithm with certainty. Nonetheless it is encouraging to
note that the test case adopting face/face contact and the mean quadrature element formulation
indicate a convergence rate that is closer to quadratic than linear.

We interpret these results as positive verification results, from the view point that all the re-
sults show a convergent behavior and yield reasonable agreement with the analytical solution.
While, these results must be weighted with the facts that neither an inexact analytical reference
solution nor use of asymptotic analysis provide as strong of verification as having an exact
reference solution [5, 6, and 9], for sliding friction it appears to be the best we can do. We
have a manufactured solution approach that can potentially be applied to frictionless contact, but
extension of the approach to frictional contact has yet to be considered and promises at best to
be extremely challenging. Further optimization of the mesh, reduction of the Hertz loading, and
extension of the analyses to five meshes are among the candidates that might help us obtain more
results in the asymptotic range and thus more convincing data on the convergence rates.
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For input deck see Appendix B.7.
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2.8 Sticking-Slipping Block and Spring - Explicit Dynamics

Analysis Type ExplicitDynamics
Element Type Hex8, Spring

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Tangent Reaction Force
Number of Tests 1

Keywords Coulomb Friction, Contact

2.8.1 Problem Description

This test checks the computed frictional force after slipping occurs for a Coulomb friction test.
The test has one block placed on top of a larger block. A known vertical force and an increasing
horizontal force are applied to the top block such that the maximum frictional force is eventually
exceeded. The bottom block is fixed on one side and the top block is held in place by a spring with
one end equivalenced to a node at the center of one of that block’s faces. The frictional force is
measured through the reaction on the fixed end of the spring.

There are three versions of this test that share the bulk of this documentation: quasi-statics, implicit
dynamics, and explicit dynamics. These tests solve essentially the same problem, with minor
differences due to the differing solution techniques (i.e., implicit vs. explicit).

2.8.1.1 Boundary Conditions

The applied vertical force on the top block is a gravity load sinusoidally ramped and then held con-
stant. The horizontal force is sinusoidally ramped after the vertical force has reached its maximum,
and the horizontal force is applied at the interaction surface to avoid creating moments around the
interaction surface. The bottom block is held fixed in all directions on the side away from the
interaction.

2.8.1.2 Material Model

Each block uses an elastic material model where the values were picked for convenience.

Young’s Modulus | E | 1e8 Pa (blocks), 1e7 Pa (spring)
Poisson’s Ratio v 0.0
Density p | 1.0e3 kg/m®

2.8.1.3 Contact Interaction Model

The two blocks interact through a constant coefficient Coulomb friction model. This model pro-
vides no resistance to surface separation (though none is induced here) and a maximum tangential
contact force directly proportional to the normal contact force.
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| Coeflicient of Friction | | 0.5 |

2.8.1.4 Feature Tested

Sliding frictional contact force calculations.
2.8.2 Assumptions and notes

2.8.3 Verification of Solution

There is an analytic solution since we use a standard Coulomb friction model, which says

Ftang < ,UFnorm, (212)

where Fi,,, is the tangential contact force, u is the coeflicient of friction, and Fyom, is the normal
contact force. After the sinusoidal ramp (used to minimize dynamic effects) the applied external
vertical force is held constant, which implies that the normal contact force is held constant. While
the normal contact force is constant, the applied tangential force is ramped up. At time g, = 13.33
(determined from the applied force functions in the input file) this tangential applied force exceeds
the maximum of the tangential frictional force (given by the above equation). At that point the
spring will load and support the applied force that is in excess of the maximum tangential contact
force. Thus, the analytic solution for the spring reaction is

For < Llips Rspring =0;
For > tslip’ Rspring = Fapp_tang - ,UFnorm- (213)

In the following figure the spring reaction is plotted with an analytic curve that is the solution for
the spring reaction for ¢ > t;,. As you can see, the spring reaction is zero for ¢ < tg;, and matches
the analytic solution for r > #y;,. For the quasistatic, implicit dynamics, and explicit dynamics
cases these results are checked to within 1%, 2%, and 5%, respectively, of the maximum tangential
contact force.

For input deck see Appendix B.8.
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Figure 2.26: Spring Reaction Comparison
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2.9 Sticking-Slipping Block and Spring - Implicit Dynamics

Analysis Type ImplicitDynamics
Element Type Hex8, Spring

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Tangent Reaction Force
Number of Tests 1

Keywords Coulomb Friction, Contact

2.9.1 Problem Description

This test checks the computed frictional force after slipping occurs for a Coulomb friction test.
The test has one block placed on top of a larger block. A known vertical force and an increasing
horizontal force are applied to the top block such that the maximum frictional force is eventually
exceeded. The bottom block is fixed on one side and the top block is held in place by a spring with
one end equivalenced to a node at the center of one of that block’s faces. The frictional force is
measured through the reaction on the fixed end of the spring.

There are three versions of this test that share the bulk of this documentation: quasi-statics, implicit
dynamics, and explicit dynamics. These tests solve essentially the same problem, with minor
differences due to the differing solution techniques (i.e., implicit vs. explicit).

2.9.1.1 Boundary Conditions

The applied vertical force on the top block is a gravity load sinusoidally ramped and then held con-
stant. The horizontal force is sinusoidally ramped after the vertical force has reached its maximum,
and the horizontal force is applied at the interaction surface to avoid creating moments around the
interaction surface. The bottom block is held fixed in all directions on the side away from the
interaction.

2.9.1.2 Material Model

Each block uses an elastic material model where the values were picked for convenience.

Young’s Modulus | E | 1e8 Pa (blocks), 1e7 Pa (spring)
Poisson’s Ratio v 0.0
Density p | 1.0e3 kg/m®

2.9.1.3 Contact Interaction Model

The two blocks interact through a constant coefficient Coulomb friction model. This model pro-
vides no resistance to surface separation (though none is induced here) and a maximum tangential
contact force directly proportional to the normal contact force.
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| Coeflicient of Friction | | 0.5 |

2.9.14 Feature Tested

Sliding frictional contact force calculations.
2.9.2 Assumptions and notes

2.9.3 Verification of Solution

There is an analytic solution since we use a standard Coulomb friction model, which says

Ftang < ,UFnorm, (214)

where Fi,,, is the tangential contact force, u is the coeflicient of friction, and Fyom, is the normal
contact force. After the sinusoidal ramp (used to minimize dynamic effects) the applied external
vertical force is held constant, which implies that the normal contact force is held constant. While
the normal contact force is constant, the applied tangential force is ramped up. At time g, = 13.33
(determined from the applied force functions in the input file) this tangential applied force exceeds
the maximum of the tangential frictional force (given by the above equation). At that point the
spring will load and support the applied force that is in excess of the maximum tangential contact
force. Thus, the analytic solution for the spring reaction is

For < Llips Rspring =0;
For > tslip’ Rspring = Fapp_tang - ,UFnorm- (215)

In the following figure the spring reaction is plotted with an analytic curve that is the solution for
the spring reaction for ¢ > t;,. As you can see, the spring reaction is zero for ¢ < tg;, and matches
the analytic solution for r > #y;,. For the quasistatic, implicit dynamics, and explicit dynamics
cases these results are checked to within 1%, 2%, and 5%, respectively, of the maximum tangential
contact force.

For input deck see Appendix B.9.
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Figure 2.27: Spring Reaction Comparison
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2.10 Sticking-Slipping Block and Spring - Implicit Quasi-statics

Analysis Type Quasistatics
Element Type Hex8, Spring

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Tangent Reaction Force
Number of Tests 1

Keywords Coulomb Friction, Contact

2.10.1 Problem Description

This test checks the computed frictional force after slipping occurs for a Coulomb friction test.
The test has one block placed on top of a larger block. A known vertical force and an increasing
horizontal force are applied to the top block such that the maximum frictional force is eventually
exceeded. The bottom block is fixed on one side and the top block is held in place by a spring with
one end equivalenced to a node at the center of one of that block’s faces. The frictional force is
measured through the reaction on the fixed end of the spring.

There are three versions of this test that share the bulk of this documentation: quasi-statics, implicit
dynamics, and explicit dynamics. These tests solve essentially the same problem, with minor
differences due to the differing solution techniques (i.e., implicit vs. explicit).

2.10.1.1 Boundary Conditions

The applied vertical force on the top block is a gravity load sinusoidally ramped and then held con-
stant. The horizontal force is sinusoidally ramped after the vertical force has reached its maximum,
and the horizontal force is applied at the interaction surface to avoid creating moments around the
interaction surface. The bottom block is held fixed in all directions on the side away from the
interaction.

2.10.1.2 Material Model

Each block uses an elastic material model where the values were picked for convenience.

Young’s Modulus | E | 1e8 Pa (blocks), 1e7 Pa (spring)
Poisson’s Ratio v 0.0
Density p | 1.0e3 kg/m®

2.10.1.3 Contact Interaction Model

The two blocks interact through a constant coefficient Coulomb friction model. This model pro-
vides no resistance to surface separation (though none is induced here) and a maximum tangential
contact force directly proportional to the normal contact force.
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| Coeflicient of Friction | | 0.5 |

2.10.1.4 Feature Tested

Sliding frictional contact force calculations.
2.10.2 Assumptions and notes

2.10.3 Verification of Solution

There is an analytic solution since we use a standard Coulomb friction model, which says

Ftang < ,UFnorm, (216)

where Fi,,, is the tangential contact force, u is the coeflicient of friction, and Fyom, is the normal
contact force. After the sinusoidal ramp (used to minimize dynamic effects) the applied external
vertical force is held constant, which implies that the normal contact force is held constant. While
the normal contact force is constant, the applied tangential force is ramped up. At time g, = 13.33
(determined from the applied force functions in the input file) this tangential applied force exceeds
the maximum of the tangential frictional force (given by the above equation). At that point the
spring will load and support the applied force that is in excess of the maximum tangential contact
force. Thus, the analytic solution for the spring reaction is

For < Llips Rspring =0;
For > tslip’ Rspring = Fapp_tang - ,UFnorm- (217)

In the following figure the spring reaction is plotted with an analytic curve that is the solution for
the spring reaction for ¢ > t;,. As you can see, the spring reaction is zero for ¢ < tg;, and matches
the analytic solution for r > #y;,. For the quasistatic, implicit dynamics, and explicit dynamics
cases these results are checked to within 1%, 2%, and 5%, respectively, of the maximum tangential
contact force.

For input deck see Appendix B.10.
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Figure 2.28: Spring Reaction Comparison

100



2.11 Coulomb Friction with Sliding

Analysis Type Explicit/Implicit Dynamics, Quasi-statics
Element Type Hex8, Tet4, Rigid Body
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Contact Force, Displacement
Number of Tests 10

Keywords Force Balance, Contact

2.11.1 Problem Description

This problem puts a scrubbing bubble geometry through a loading history that exercises all the
regimes of the coulomb friction law. Figure 2.29 shows the computational mesh. The green
block is a rigid body to which normal prescribed forces and displacements are applied to drive the
problem. Contact occurs between the yellow tet4 block and the red hex8 block. The four blue
cubes are used in the analytic rigid surface contact test cases to define an analytic rigid plane.

Figure 2.29: Mesh View

2.11.1.1 Boundary Conditions

The loading is accomplished through a combination of prescribed normal forces and kinematically
prescribed sliding. The loading conditions are covered using Figure 2.30 and Table 2.27.

2.11.1.2 Material Model
2.11.1.3 Feature Tested

This test exercises the contact enforcement algorithms in explicit dynamics, implicit dynamics, and
quasi-statics. This includes the different constraint formulations; node-face augmented Lagrange,
node-face kinematic, face-face augmented Lagrange, and analytic rigid surface contact. The test
includes loading histories that test normal gap enforcement, stick/slip transition of coulomb friction
law, constant velocity sliding, and variable direction and velocity sliding with a coulomb friction
law.
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Table 2.27: Loading history

Load Period Loading Time Process

1 0.000 Initial condition, pad is located directly
above surface, no contact forces produced

2 0.000-0.005 Normal loading force is ramped up

3 0.005-0.010 Block slides a small amount, total x
displacement 0.0002

4 0.010-0.015 Block is held

5 0.015-0.020 Normal force released

6 0.020-0.025 Normal force re-applied

7 0.025-0.030 Slide block diagonally a small amount.
Total x displacement -0.0002. Total y
displacement 0.0002.

8 0.030-0.035 Block is held

9 0.035-0.040 Normal force released

10 0.040-0.045 Normal force re-applied

11 0.045-0.050 Slide block diagonally quickly. Total x
displacement 0.05. Total y displacement
0.05.

}— 2cm

Figure 2.30: Loading History

Young’s Modulus | E | 1000
Shear Modulus G | 500
Density p | 40e—-4

Also tested is total iteration counts and solver efficiency to solve contact systems in implicit dy-
namics and quasi statics.
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2.11.2 Assumptions and notes

Analytic solution assumes quasi-statics. Material densities are set low enough so that the dynamic
loading approximates a quasi-static solution. However, in the high slip rate regime dynamics
calculations will see some deviation away from a static result.

2.11.3 Verification of Solution

Figure 2.31 shows results of augmented Lagrange static node-face contact (the dash quasistatic
enforcement method). For this method all results nearly exactly match the analytic static solutions.
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Figure 2.31: Static Node-Face

Figure 2.32 shows results of augmented Lagrange static face-face contact (the dash quasistatic
enforcement method). For this method all results nearly exactly match the analytic static solutions.

Figure 2.33 shows results for analytic rigid surface contact (the ARS quasistatic enforcement
method). For this case the bubble is sliding on an analytic plane, the corners of which are defined
by the four blue cubes. This method gives good agreement to analytic results for loading period 1
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Figure 2.32: Static Face-Face

to 10. However, in loading period 11, rapid and large motion sliding, the rigid surface enforcement
method shows substantial deviations from the correct analytic solution. The reasons for these
deviations is currently unknown. Because of these deviations analytic rigid surface contact has
only been verified to give the correct results in small sliding regimes.

Figure 2.34 shows results for kinematic node-face contact (the ACME quasistatic enforcement
method). For this case the contact forces are computed accurately. However, as seen in plot
(d), Z displacement, the displacements may have errors. Kinematic enforcement is computed via
a velocity constraint. Any inconsistency in the velocity constraint tend accumulate and after a
significant run time may lead to a noticeable error in the displacement. This is an undesirable, but
known and expected, limitation of the kinematic contact algorithm.

Figure 2.35 shows results of augmented Lagrange implicit dynamic node-face contact (the dash
implicit enforcement method). For this method all results nearly exactly match the analytic static
solutions.

Figure 2.36 shows results of augmented lagrange implicit dynamic face-face contact (the dash
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Figure 2.33: Static ARS

implicit enforcement method). For this method all results nearly exactly match the quasistatic
solution for small sliding rates (loading periods 1-10). Period 11 is a high sliding velocity period.
In period 11 some high frequency oscillation is introduced into the sliding block. The analytic
solution assumes quasistatics, for this case the actual problem does include dynamics thus some
deviation from the analytic solution is expected. In the dynamic regime the code results should
and do match the analytic results in the average sense once the high frequency noise is filtered out.

Figure 2.37 shows results of analytic rigid surface implicit contact (the ARS implicit enforcement
method). As with static ARS contact this method shows good agreement to the analytic solu-
tion for small sliding, but large and unexpected deviations from the analytic solution during large
magnitude and large velocity sliding.

Figure 2.38 shows results of augmented lagrange explicit dynamic node-face contact (the dash
explicit enforcement method). This method shows good agreement with the static analytic results
for small sliding. Period 11 is a high sliding velocity period. In period 11 some high frequency
oscillation is introduced into the sliding block. The analytic solution is modeled quasistatics, for
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Figure 2.34: Static Kinematic

this case the actual problem does include dynamics thus some deviation from the analytic solution
is expected. In the dynamic regime the code results should and do match the analytic static results
in the average sense once the high frequency dynamic vibration noise is filtered out.

Figure 2.39 shows results of augmented lagrange explicit dynamic face-face contact (the dash
explicit enforcement method). This method has the same character as the node-face method. Good
agreement to the analytic static results is obtained in the regime where the problem is loaded
statically and some expected high frequency dynamic based noise shows up in the high sliding rate
period 11. Thus in period 11 the code should and do match the analytic static results in the average
sense once the high frequency dynamic vibration noise is filtered out.

Figure 2.40 shows results of analytic rigid surface explicit contact (the ARS explicit enforcement
method). As with static and implicit dynamic ARS contact this method shows good agreement
to the analytic solution for small sliding. In the large sliding rate period 11 there are unexpected
deviations from the analytic solution. The high frequency noise in this loading period is expected
and is seen in other explicit dynamics enforcement methods. However, unlike the node-face and
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Figure 2.35: Implicit Dynamics Node-Face

face-face enforcement method the ARS contact method does not match the analytic solution in
the average sense. Thus as with the quasistatic and implicit dynamics ARS enforcement methods,
explicit ARS enforcement is only verified to give correct answers for small magnitudes and rates

of sliding.

For input deck example see Appendix B.11.
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Figure 2.36: Implicit Dynamics Face-Face
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Figure 2.38: Explicit Dynamics Node-Face
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2.12 Oscillating Block Spring With Friction

Analysis Type Explicit Dynamics
Element Types Hex8, Spring

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error Test
Verification Quantities | Displacement
Keywords Coulomb Friction, Contact

2.12.1 Problem Description

This test checks the contact stick behavior in the context of a dynamic response. The analytical
reference solution is based upon a single degree of freedom, dynamic system subjected to Coulomb
damping. Specifically, consider a point mass m attached to a spring of stiffness &, resting on
a surface with coefficient of friction y, and acted upon vertically by gravity g, as depicted in
Figure 2.41. The dynamic system is excited by prescribing an initial displacement of the mass
toward the spring (compressing the spring). The mass is then released. If the spring force is
greater than the frictional force, motion of the mass will ensue, and if not it will remain at rest with
the spring deformed. If the spring has sufficient energy in the initial deformed state, the mass will
not only move but will oscillate in a damped motion until friction stops it.

*8 fz

Figure 2.41: Analytical model: Single degree of freedom, dynamic system subjected to Coulomb
friction.

The finite element model represents the mass and substrate as blocks of hexahedral elements, as
depicted in Figure 2.42. The moving block of mass m is a cube with an edge dimension of 3 meters.
The spring is depicted by the blue “bar" element attached at the center of the left face (top block)
and has an initial length of 1.5 meters. The test is run as an explicit dynamic problem.

2.12.1.1 Boundary Conditions and Body Forces

A vertical body force exists on the top block due to a gravity load that is sinusoidally ramped
(during the first 10 seconds) and then held constant. During this same initial loading time interval
the block is displaced (via a sinusoidal ramping) to the left by 1 meter. In the second time interval
the spring is released to either stick or move, depending upon the relative magnitudes of the friction
and spring forces. The substrate is fixed at all nodes. The fixed end of the spring is fixed with
respect to x and y translations.
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Figure 2.42: Mesh for block-spring dynamic system subjected to Coulomb friction.

2.12.1.2 Material Models

Each block uses an elastic material model where the values were picked for convenience, i.e., stiff
enough to make the moving block act as a rigid body and compliant enough to not drive the time
step too small for the explicit analysis.

Young’s Modulus | E l.e+5Pa
Poisson’s Ratio | v 0.0
Density o | 0.148148 kg/m’

Note that the density was set to give a mass of 4 kg for the moving block.

The spring stiffness was selected to be 162> N/m, so that the frequency of vibration would be 1
Hz. The linear force versus strain function (spring F vs € ) used as input for the spring element
has force values of magnitude 247% N for strains of magnitude unity (1.5 times the stiffness since
the initial length of the spring is 1.5 meters, and an engineering strain measure is used to define the
strain in the spring).

2.12.1.3 Contact Interaction Model

The two blocks interact through a constant coefficient, Coulomb friction model. This model pro-
vides no resistance to surface separation (though none is induced here) and a maximum tangential
contact force directly proportional to the normal contact force. The coeflicient of friction is set in
this problem to yield two cycles of oscillation for the block before it sticks due to friction.

| Coefficient of Friction | u | 0.4471448 |

2.12.1.4 Feature Tested

This test examined the frictional contact force calculations, in the context of an initially dynamic
response. It examines both sliding and stick conditions, but the emphasis of the test was upon the
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stick response.
2.12.2 Assumptions and notes

The FEM model used in this test is assumed to provide a sufficiently accurate representation of a
single degree of freedom dynamic system. As such, the stiffness of the moving block must be high
enough to not introduce any significant deformation, e.g., where the spring connects to the block
or stress waves traveling through the block. Furthermore, tipping of the block due to the spring
load acting above the plane of the frictional surface is assumed to have an insignificant effect upon
the response.

2.12.3 Verification of Solution

The frictional force obeys the inequality
Ftang < M Fnorma (218)

where Fl,,, 18 the tangential contact force, u is the coefficient of friction, and Fyom 18 the normal
contact force. When Fi,,, is less than pFom, motion is prevented by the frictional force — the
“stick" condition. During motion of the block the above inequality is satisfied as an equality. This
frictional behavior introduces a nonlinearity in the governing equations. Fortunately however, it is
linear for each half-cycle and thus is amenable to analytical solution. Unlike viscous damping the
friction force is not proportional to the velocity, but it does oppose the motion and thus acts in the
opposite direction of the velocity. As such, for a given velocity direction, the equations of motion
are those of an undamped system with a constant force opposing the motion, as given below.
ii+wu= wUp ifu<0
2
n

u+wu——wUD ifi>0 (2.19)

where Up = ug/w,’.

The solution approach is to solve the linear ordinary differential equations for each half-cycle, for
which the velocity direction remains constant. Each half-cycle solution inherits its initial condi-
tions (prescribed displacement and zero velocity) from the end of the previous half-cycle solution.
At the end of each half-cycle the frictional stick condition is evaluated to determine if the spring
has sufficient force to continue the motion (i.e., overcome friction). Thus the final solution is a
sequence of solutions for each half-cycle - initial value problem solutions “stitched" together to
give the response over time.

The solution to the equations of motion for each half-cycle case are given by

u(t) = Uy, cos(w,(t = 1p)) + Up[1 — cos(w,(t = 1p))] if <0

| uy cos(wu(t — 1)) — Up[1 — cos(w,(t — tp))] if >0
Each half-cycle ends when the velocity reduces to zero, which occurs on intervals of 1/2 seconds.
The positions at the start of each half cycle are given by the sequence {-1, 1-2Up, -1+4Up, 1-

6Up, -1+8Up} m. These are the displacement initial conditions for the corresponding half-cycle
solutions. The solution for the i’th half cycle is then given by

A = (1 = (4i —2)Up) cos(w,(t —ty)) + Up[1 — cos(w,(t —tp))] ifa <O
0= (=1 + 4i—4)Up) cos(w,(t — ty)) — Up[1 — cos(w,(t — tp))] ifia >0
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In the following figures the displacement history is presented for both the analytical and FEM
solution. Note that over the three seconds depicted in Figure 2.43 the FEM solution shows good
agreement with the analytical solution, especially during the oscillations. The deviation between
the solutions once the block sticks, though slight, reveals a numerical artifact that is not physical
and is related to the algorithm used for stick enforcement. Figure 2.44 examines, in more detail, the
displacement response near when sticking occurs. The problem was designed to allow the block
to oscillate for two cycles, so that there would be a sufficient number of steps for the solutions to
differ when the stick condition occurred; this effect is apparent at a time of about 12 seconds.

The code solution does not stick at the precisely predicted analytic location. It is unknown at this
time what the exact cause of the discrepancy is, may be related to the computational model have
multiple degrees of freedom to capture rocking and vibration modes that are not relevant to the
single degree of freedom analytic solution. An additional important feature of the response is the
continued “frictional creep” behavior that is not consistent with the exact solution. This frictional
creep is numerical artifact that causes the block to continue to slide at a very small velocity once
the stick condition is reached.

The verification check on this problem requires the relative error in the displacement to be within
the interval [0.009, 0.0101], i.e., approximately 1%. Specifically a one-norm in time is used for
the evaluation.

An additional check is made on the frictional energy at the problem end time. The expected
frictional energy should equal the frictional force times the displacement through which the block
moves. The frictional force is constant at block mass times gravity times friction coefficient. The
expected displacement is found by integral of the analytic displacement history function as shown
in Figure 2.43.
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Figure 2.43: Analytical vs. FEM solution comparison for block displacement history.
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Figure 2.44: Analytical vs. FEM solution comparison for block displacement history — zoomed
to show stick response.
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2.12.4 References

1. Craig RR. Structural Dynamics, An Introduction to Computer Methods. John Wiley &
Sons, 1981, pgs 65-66.

For input deck example see Appendix B.12.
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2.13 Friction Wedge

Analysis Type Explicit Dynamics
Element Types Hex8, Rigid Body
Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error and Convergence
Verification Quantities | Contact Stick/Slip
Keywords Coulomb Friction, Contact slip

2.13.1 Problem Description

This test checks the contact stick behavior in the context of an essentially quasistatic response.
The "analytical reference solution" is simply that no slip is expected to occur in the problem due to
Coulomb friction. The geometry and mesh for the problem are depicted in Figure 2.45. Boundary
conditions for the tests are such that the top and bottom wedges squeeze the middle wedge, like two
fingers squeezing a water melon seed, and consistent with this analogy under the right conditions
the middle wedge can be dynamically expelled.

For the problem specification examined in this test, the middle block will only exhibit "contact
creep" response — not dynamic motion. ("Contact creep,” which may also be referred to as "fric-
tional creep," is a slow slip response that occurs for a body in frictional contact and subjected to
a tangential load; this response is an artifact of the contact algorithm and is not physical in na-
ture.) The slope on the wedge faces is 0.2. A such, a simple examination of the statics for this
problem, shows that in resolving the vertical forces transferred from the top and bottom wedges
to the middle wedge, the ratio of tangential to normal force is 0.2. Thus we expect any coefficient
of friction greater than 0.2 to hold the block in place. Let’s refer to this value of the coefficient of
friction as the "critical coefficient of friction." Other tests using this geometric configuration have
been previously studied with Sierra/SM but with a different emphasis. A performance test having
the same geometry uses a finer mesh than used here. Our focus for this test is upon examining the
"stick enforcement" of the contact algorithm.

In the finite element model, the wedges are modeled with hexahedral elements, but the top and
bottom wedges are prescribed to have rigid body motion, as such only the middle wedge will
deform elastically. The bounding cube on the stack of wedges has edges with a length of 1 inch.
The top and bottom wedges have a thickness that increases from 0.2 inches to 0.4 inches.

2.13.1.1 Boundary Conditions

The top and bottom wedges are prescribed to displace toward the middle wedge via velocity bound-
ary conditions. The magnitude of these velocities (in the -y and +y directions, respectively) is
depicted in Figure 2.46. Note that there are four stages in the wedge loading: (1) positive ac-
celeration (timee(0,0.001)), (2) constant velocity (timee[0.001,0.002]) (3) negative acceleration
(timee(0.002,0.003), and (4) constant position (timee(0.003,00)). The corresponding displacement
for this input is shown in Figure 2.47. The top and bottom wedges are restrained against rigid body
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%x

Figure 2.45: Mesh for the stack of wedges subjected to Coulomb friction.

translation in the xz-plane and against all rigid body rotations. The middle wedge is restrained

against displacement in the z-direction.

10 T T T T T T T T T

y-velocity (in/sec)

0 | 1 1 1 1 ! ! ! 1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
Time (sec)

Figure 2.46: History of top and bottom wedges’ |velocity|.

2.13.1.2 Material Models

0.05

The middle wedge is modeled as elastic with material model parameters as given in the table below.
The stiffness and density of the material should have no effect on the ultimate stick/slip behavior
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Figure 2.47: History of top and bottom wedges’ |displacement|.

of the wedge. However, the wedge must be stiff enough such that the dynamic effects due to the
transient loading are relatively small.

Young’s Modulus | E | le4 psi
Poisson’s Ratio v | 0.0
Density o | 7.4e — 4 1bf sec’/in*

2.13.1.3 Contact Interaction Model

The middle wedge interacts with the top and bottom wedges through a constant coefficient,
Coulomb friction model. This model provides no resistance to surface separation and a maxi-
mum tangential contact force directly proportional to the normal contact force. The coefficient
of friction is set in this problem to be just above the critical coefficient of friction (0.2), though
parameter studies with larger values (e.g., 0.3) yielded qualitatively similar results in terms of the
"contact creep" behavior.

’ Coeflicient of Friction \ J7i \ 0.201 ‘

2.13.1.4 Feature Tested

This test examined the frictional contact force calculations, in the context of quasi-static response.
The emphasis of the test was upon the stick response, and this version of the code exhibited an
erroneous "contact creep" behavior where slip slowly occurs even when the friction law should
require no slip. A parameter study, on the effect of the number of contact momentum balance
iterations, will show "contact creep”" can be significantly reduced by increasing the number of
iterations.
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2.13.2 Assumptions and notes

The loading 1s assumed to be sufficiently slow to not induce significant wave propagation within
the middle wedge; dynamic response of this type could affect the normal tractions and thus the
evaluation of the stick condition. While there is a variation in the normal traction along the wedge,
due to the compliance variation that occurs with the changing height. During the initial loading
small lateral (x) deformation in the wedge should occur until the an equilibrium is reached where
the stick/slip condition is exactly reached everywhere on the contact surface. At this point the
ratio of tangential to normal tractions is governed by the geometry. To verify that qualitatively the
response was not sensitive to this assumption, we examined cases with coefficients of friction as
large as 0.3.

2.13.3 Verification of Solution

The frictional force obeys the inequality

Ftang < ,UFnorm’ (220)

where Fi,,, is the tangential contact force, u is the coefficient of friction, and Fim is the normal
contact force. When Fi,, is less than pFyom, motion is prevented by the frictional force — the
"stick" condition. During motion of the block the above inequality is satisfied as an equality.

For the following results, the effect of the number of contact iterations for momentum balance is
examined, since it is expected to affect the results for problems of this type. Figure 2.48 shows
the history of the slip at the leading edge (bottom left corner of the front face, node 55) of the
wedge. Clearly increasing the number of contact iterations results in a better enforcement of the
"stick condition," but the contact creep may still occur. Note that significant changes (albeit on a
log scale) in the slip can occur in any stage of the loading (depending upon the number of contact
iterations). Even in the last stage where the edge blocks are not moving slip continues to occur a
significant rate if relatively few contact iterations are used.

Figure 2.49 depicts the average slip response over both contact surfaces and thus is inherently
smoother. Examining the slip behavior alone can lead to a false positive interpretation of the
response, because the slip can remain constant when either perfect stick or separation occurs. One
can distinguish between these cases by examining the motion of the middle wedge; Figure 2.50
depicts the magnitude of the average nodal displacement of this wedge, and clearly reflects the
contact creep motion. This displacement response is averaged over the whole body and is less
sensitive to the number of contact iterations.

For any given time, Figure 2.49 indicates that average slip decreases with an increase in the number
of contact iterations. Figure 2.51 plots the average slip, i.e., average error in the stick enforcement,
as a function of the number of contact iterations.

Figure 2.51 shows the average slip that occurs late in time. Included is the accumulated slip half
way through the analysis, at the end of the analysis, and a normalized slip rate between these two
times. It is assumed that any dynamic or load driven displacement have occured by the half way
point of this analysis. Any additional slip past this point is likely a numerical error. The normalized
slip rate plotted is given by Equation 2.21. The slip rate is normalized by the current value of
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Figure 2.48: Slip history for bottom left corner, front face, of the middle wedge.
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Figure 2.49: Average slip history of the middle wedge.

contact normal force on the wedge. If the wedge slips then the compressive forces are lessened.
This reduces the expelling force on the wedge and thus will reduce slip rate, the normalization will
eliminate this effect. When run with a small number of contact iterations the wedge may slip a
significant distance lowering the compressive stress on the wedge by a factor of two or more. For
relatively large number of contact iterations the wedge stays well stuck and the compressive stress
remains constant between the different iteration cases.
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Figure 2.50: Average displacement history of the middle wedge.
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Figure 2.51: Average slip versus number of contact iterations, at two values of time.

rate = ((Slipena — Slipna)/ (timeeng — timengr))/(0.5 * (forceena + forcenar)) (2.21)

It is assumed that this long duration slip rate should ideally be as close to zero as possible. At a
large number of iterations the slip rate starts to approach the numerically obtainable zero value of
1.0e-12. Certainly internal waves within the wedge could reduce the normal force point-wise on
the interface and could contribute to "contact creep.” For the case presented above, the coefficient
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of friction is close to the critical value (within 0.5 percent), which makes the contribution of this
possible effect more suspect.

The nightly verification for this test confirms that the slip rates given by Equation 2.21 match
within 5% of those in Figure 2.51.

For input deck example see Appendix B.13.
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Chapter 3

Element Verification Tests

The following are tests that verify different element types and element formulations. This includes
tests that elements have the correct response singly or as groups of elements.
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3.1 Hex Patch Tests — Quasi-Static, Linear Elastic

Analysis Type

Quasi-statics

Element Types

Hex8, Hex20, Hex27

Element Formulations

Mean Quadrature, Q1PO0, Selective Deviatoric, Fully Integrated

Strain Incrementations

Midpoint Increment and Strongly Objective

Material Models

Elastic, Neo-Hookean

Verification Category

Discretization Error

Verification Quantities

Stress Components

Number of Tests

14

Keywords

Patch Test, Linear Elastic

3.1.1 Brief Description

This problem is a patch test for hexahedral elements. A cubic domain is subjected to prescribed
displacements on each surface. The magnitude of the displacements is defined to be sufficiently
small that linear elasticity provides a reasonable approximation of the expected response. Fourteen
test results are obtained for a combination of seven element formulations using two different elastic

material models (Elastic and neo-Hookean).

3.1.1.1 Functionality Tested

Primary capabilities:

e The following element formulations:

— eight-node hexahedron with the mean quadrature formulation and midpoint strain in-

crementation

— eight-node hexahedron with the mean quadrature formulation and strongly objective

strain incrementation

— eight-node hexahedron with the Q1P0 formulation and strongly objective strain incre-

mentation

— eight-node hexahedron with the selective deviatoric formulation and strongly objective

strain incrementation

— eight-node hexahedron with the fully-integrated formulation and strongly objective

strain incrementation

— twenty-node hexahedron with the fully-integrated formulation and strongly objective

strain incrementation

— twenty-seven-node hexahedron with the fully-integrated formulation and strongly ob-

jective strain incrementation

Secondary capabilities:
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e prescribed displacement direction boundary conditions via analytic expressions
e resolution of kinematic boundary condition

e clastic and neo-Hookean material models in the small strain regime

3.1.1.2 Mechanics of Test

A unit cube domain is positioned such that diagonally-opposite vertices are at the origin and (1,1,1)
with the faces aligned with global coordinate planes. The mesh consists of seven hexahedral el-
ements, each of which is in a separate element block. Six of the elements have one face on the
exterior, and one element has all interior faces. To provide a completely general test, the interior
element has no parallel or perpendicular edges. The interior element (element block 1) is shown in
Figure 3.1. None of the faces of the interior element are perpendicular or parallel to the planes xy,
vz, zx defined by the x-, y-, and z-axes.

SWK Patch Test for Uniform Strain H8

Cre:

Mod:
Drw:BlotI[2
20100615 16:00:10

ELEMENT BLOCKS ACTIVE:
1OF 7

L.

Figure 3.1: Interior element for patch-test cube

Figure 3.2 is drawn including all of the elements except the element defining element block 3,
which has an exterior face with a normal in the positive z-direction. The interior element and four
surrounding elements are visible. The element with an exterior face with a normal in the negative
z-direction is not visible in this hidden-line drawing of the elements.

The element geometries for the hex20 and hex27 meshes are nominally the same. The hex20 mesh
only differs with the hex8 mesh by adding mid-edge nodes. The hex27 mesh further differs with
the hex8 by also adding mid-face nodes and a mid-element node.

The prescribed displacement field on the surface of the cube is given by:

128



Default Sierra Title

Cre: Sierro Solid Mechant
2010/06/15 10:34:48
Mod:

Drw: BlotII2

20100615 16:07:35
MAGNIFIED BY 1.000
ELEMENT BLOCKS RCTIVE:
60F 7

TIME 0.2030E-3

Y

L.

Figure 3.2: Patch-test cube with element block 3 not shown

u=tx(1.0X10" x 2x+y+2) (3.1)
v=1tx(1.0X 10" X (x+2y +2) (3.2)
w=tx(1.0x10™) X (x + y + 22) (3.3)

where ¢ denotes time, u denotes the displacement in the x-direction, v denotes the displacement in
the y-direction, and w denotes the displacement in the z-direction. The units for the displacement
components are inches. The corresponding analytic functions in the input file are also labeled as
u, v and w, respectively.

3.1.1.3 Material Model

The material models are elastic with the properties given below.

Young’s Modulus | E | 1.0 x 10° psi
Poisson’s Ratio v | 0.25

3.1.2 Expected Results

These tests assume that the displacements and strains will be "sufficiently small" for linear elas-
ticity to provide a reasonable reference solution. For infinitesimal strains, the strain-displacement
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relations of linear elasticity give the strains at r=1 as:

€ =6y =€, =2%x107" (3.4)
and

€y =€, =€,=1x107" (3.5)
Note that the size of "sufficiently small" depends upon the particular material model. Both the
elastic model (a hypoelastic model) and the neo-Hookean model (a hyperelastic model) are used
for these patch tests. For infinitesimal strains, responses from both constitutive models reduce to
that of a linear elastic model, where the stress o, is related to the strains €y, €y, and € by:

3 E(1-v) v
Oxx = (1 + (1 —2v) €xx T+ (1 V)(Eyy +€) (3.6)

Similar equations hold for oy, and 0. The shear stress 7., is related to the shear strain €,, by:

- =t G3.)
Ty = (l+v)6xy .
Similar equations hold for 7,, and 7_,.
The stress field produced by the above strain field at =1 is given by:
Oy = Oyy = 0, = 400 psi 3.8)
and
Ty = Ty, = Tz = 80 psi (3.9

For all the hexahedral element patch tests, the "error" in each normal and shear stress component
was examined, where the "error" was defined as the infinite norm (maximum over all elements) of
the differences between the linear elastic reference solution and the calculated results. The errors
are examined for =1 using 2 equal time steps. Based upon results for the hex8 element, using a
few different numbers of time steps, the results did not appear to change with the number of time
steps ranging from 1 to 10.

For both the hypoelastic (elastic) and hyperelastic (neo-Hookean) material models, the solution
verification requirement was that each element have errors in each stress component of less than
0.1 percent — an indistinguishable difference on a plot. The results for the two different elastic
models differed in the fourth digit of the results. All of the elements passed the patch test except
the hex8 with the Q1PO formulation. For all of the other element types, they failed the test at an
error tolerance that was one order of magnitude smaller (0.01 percent). As such, the results only
reproduced the linear elastic solution to three digits. Many authors have noted that the patch test
results should have an accuracy approaching the precision of the floating point numbers on the
particular computer (see, e.g., [2]). For the results presented here, the differences with reference
solution are not a result of inaccurate computations but rather are a result of limited accuracy in the
linear elastic reference solution. A better measure of the accuracy of the computations is provided
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by the finite deformation versions of these tests (in development), where the reference solutions
are based upon the same finite deformation relationships as the code. To test the assertion that
the linear elastic reference solution is the issue, we reduced the displacements by one order of
magnitude. The resulting computational results agreed with the linear elastic reference solution
in one additional digit. We also symbolically solved the finite deformation equations for the neo-
Hookean model and obtained the same results as Sierra to the 6 digits displayed in the Ensight
post-processor (i.e., the finite deformation solution differs with the linear elastic solution in the
fourth digit too).

The Q1P0 element is the exception to the above general conclusions for the elements. The errors
in the normal stress components were about 12 percent, and the errors in the shear stresses were
about 1.4 percent. Note that the displacement-prescribed patch test is usually described as a means
of showing that the element satisfies the polynomial completeness condition. Linear complete-
ness combined with stability has been demonstrated to provide convergent element formulations
(though apparently without a general proof as available for the Lax Equivalence theorem for fi-
nite difference approximations). Researchers have argued that the patch test is in general neither
a necessary nor sufficient condition for convergence, and Hughes [3] mentions some of the ear-
lier mathematical controversy in his text. It is currently unclear if failure of the patch test for the
QIPO element reflects an implementation error, or if it is an example of the patch test not being
a necessary condition for convergence. We do know that for two convergence tests (currently
in adagio_rtest/verification/elements/hex8_Q1PO0) this element formulation showed convergence
properties similar to the other hex8 element formulations, yielding optimal convergence rates, but
in those cases all elements were cubes — not distorted like the patch test. If the implementation
of the element it valid, it does imply at the very least that mesh refinement can be necessary to
represent even a uniform stress field. Additional work is needed to resolve the uncertainty. For
additional information the SM implementation of this element, and its initial application at Sandia
see references 4 and 5.

3.1.3 References
1. Fung, Y.C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1965.

2. Belytschko, T., Liu, W.K., and Moran B. Nonlinear Finite Elements for Continua and Struc-
tures, NY, NY: John Wiley & Sons, LTD, 2000.

3. Hughes, T.J.R. The Finite Element Method, Linear Static and Dynamics Finite Element Anal-
ysis, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

4. Kostka, T.D. "Clustered Void Growth in Ductile Metals: Final LDRD Report," SAND Report
SAND2012-7892, Sandia National Laboratories, September 2012.

5. Kostka, T.D. "Development of a Material Model for Aluminum Alloys at High Tempera-
ture," SAND Report SAND2012-8058, Sandia National Laboratories, September 2012.

For input deck see Appendix B.14.
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3.2 Hex Patch Tests — Quasi-Static, Finite Deformation

Analysis Type Quasi-static (Adagio)

Element Types Hex8, Hex20, and Hex27

Element Formulations | Mean Quadrature, Q1PO0, Selective Deviatoric, Fully-Integrated
Strain Incrementations | Midpoint Increment and Strongly Objective

Material Models Elastic, Neo-Hookean

Verification Category | Discretization Error

Verification Quantities | Spatial (left) stretch tensor and Cauchy stress tensor components
Number of Tests 28

Keywords Patch test, finite deformation

3.2.1 Brief Description

This problem is a finite deformation patch test for hexahedral elements. A linear elastic version
of this test (i.e., infinitesimal deformation version) is also in the test suite and manual. Unlike
those tests, this test group uses an exact reference solution, since the continuum equations for
finite deformations are solved for two "elastic" material cases, each having different kinematic
descriptions. This patch test consists of a cubic domain subjected to prescribed displacements on
each surface. The magnitude of the displacements is defined for two cases, one that has strains that
are O(1%) and the other to give strains that are O(100%). Twenty-eight test results are obtained
for a combination of seven element formulations, at two strain levels, using two different elastic
material models (Elastic and neo-Hookean).

3.2.1.1 Functionality Tested
Primary capabilities:

The following element formulations:

e cight-node hexahedron with the mean quadrature formulation and midpoint strain incremen-
tation

e cight-node hexahedron with the mean quadrature formulation and strongly objective strain
incrementation

e cight-node hexahedron with the Q1P0 formulation and strongly objective strain incrementa-
tion

e cight-node hexahedron with the selective deviatoric formulation and strongly objective strain
incrementation

e cight-node hexahedron with the fully-integrated formulation and strongly objective strain
incrementation

e twenty-node hexahedron with the fully-integrated formulation and strongly objective strain
incrementation
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e twenty-seven-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation

Secondary capabilities:

e prescribed displacement direction boundary conditions via analytic expressions
e resolution of kinematic boundary condition

e clastic and neo-Hookean material models in the finite strain regime

3.2.1.2 Mechanics of Test

A unit cube domain is positioned such that diagonally-opposite vertices are at the origin and (1,1,1)
with the faces aligned with global coordinate planes. The mesh consists of seven hexahedral el-
ements, each of which is in a separate element block. Six of the elements have one face on the
exterior, and one element has all interior faces. To provide a completely general test, the interior
element has no parallel or perpendicular edges. The interior element (element block 1) is shown in
Figure 3.3. None of the faces of the interior element are perpendicular or parallel to the planes xy,
vz, zx defined by the x-, y-, and z-axes.

SWK Patch Tast for Unifarn Strain H8

Cra:
Hod:

Drw: Blot112
20100615 16:00:10

ELEMENT BLOCKS ACTIVE:
TOF 7

L.

Figure 3.3: Interior element for patch-test cube

Figure 3.4 is drawn including all of the elements except the element defining element block 3,
which has an exterior face with a normal in the positive z-direction. The interior element and four
surrounding elements are visible. The element with an exterior face with a normal in the negative
z-direction is not visible in this hidden-line drawing of the elements.

The element geometries for the hex20 and hex27 meshes are nominally the same. The hex20 mesh
only differs with the hex8 mesh by adding mid-edge nodes. The hex27 mesh further differs with
the hex8 by also adding mid-face nodes and a mid-element node.
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Dafault Sierra Title

Cre: Sisrro Selid Machani
2010/06/15 10:34:48
Had:

Drw: Blot112
20100615 16:07:35
MAGNIFIED BY 1.000

ELEMENT BLOCKS ACTIVE:
GUF 7

TIME 0.2030E-3

Y

L.

Figure 3.4: Patch-test cube with element block 3 not shown

The prescribed displacement field on the surface of the cube is given by:

u = cx+y+2t (3.10)
v = c(x+2y+2)t (3.11)
w = c(x+y+2t (3.12)

where ¢ denotes a factor prescribing the displacement magnitude (units 1/time), t denotes time,
u denotes the displacement in the x-direction, v denotes the displacement in the y-direction, and
w denotes the displacement in the z-direction. The units for the displacement components are
inches. The factor ¢ has the values of 0.005 and 1 for the O(1%) and O(100%) strain load cases,
respectively. The normal logarithmic strain components are 1% and 100% to an accuracy of about 2
digits, but the corresponding maximum principal strains are about 2% and 161%. Time is increased
from O to 1. For simplicity, because ¢ and ¢ will often occur as a multiplicative pair we will define
t. = tc — a dimensionless, scaled time. The corresponding analytic functions for the displacement
components in the input file are also labeled as u, v, and w.

The time step sizes for the set of analyses differed over a large range. For most of the element
formulations, which adopt a strongly objective strain incrementation, the time step size is set to
facilitate solution of the nonlinear systems of equations, i.e., the solution for each step provides
a "starting point" to the solution for the next step, thus more time steps make it easier for the
solver. The time step size also in some cases (those with higher order quadrature) was controlled
to avoid element inversion. Note that for this problem, the hypoelastic case is simpler to integrate
since R=I, which led to a stress-rate integrand that was a low order rational function in time.
For the mean quadrature Hex8 using the midpoint strain increment, the accuracy of the results
depends upon the size of the time steps, so the time steps are as much as two orders of magnitude
smaller. This strain incrementation is typically used in explicit analyses, so the lower accuracy
for this case in this context simply reflects its "misapplication" to quasistatic analyses. With time
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step refinement the midpoint strain increment did show linear convergence (though that should be
addressed in another test), but the time steps were not reduced to produce the optimum accuracy.

3.2.1.3 Material Model

Two material model cases are examined, one neo-Hookean (Lame’s neohookean model) and one
hypoelastic (Lame’s elastic model). Aprepro was used to express the Lame elastic constants (4 and
W) in terms of Young’s modulus and Poisson’s ratio, with the later property set given below.

Young’s Modulus | E | 1.0 x 10° psi
Poisson’s Ratio v | 0.25

3.2.2 Expected Results

These patch tests, unlike the linear elastic versions of the tests, make no assumptions on the size
of the displacements and deformations. The reference solutions are exact for finite deformation,
and two deformation levels are considered: one in which the strains are O(1%) and the other for
which the strains are O(100%). Due to the spatial symmetries of the displacement field, it yields a
symmetric deformation gradient tensor (F), which implies that R=I and thus U=V=F. Furthermore
the spatial dependence of the displacement components result in all normal components of the
following deformation and stress tensors to be equal (for a given tensor) and all shear components
of the following deformation and stress tensors to be equal. Symmetry of F is a limitation of this
test, with regard to coverage, that motivates another finite deformation patch test.

For Lame’s [1] neo-Hookean model the deformation used in the constitutive equation is the left
Cauchy-Green tensor (or finger tensor, B). The exact solutions for the normal and shear compo-
nents of B are given by:

Broma = 26+ (1+2t.) (3.13)
Bgrear = £ +2t. (1+21.) (3.14)

For Lame’s [1] elastic model (a hypoelastic model) the deformation tensor used in the constitutive
relationship is the rate of deformation tensor, D. The exact solutions for each normal and shear
component of D are given by:

2c¢(1+2¢)
Dyormar = 3.15
T+ (1+41) G-
Dipear = ° (3.16)

(1+¢)(1+4¢t)

The deformation examined in the test, for both constitutive model cases, is the spatial (or left)
stretch tensor, V. The exact solutions for the normal and shear components of the tensor are given
by:

Viorma = 1+ 2tc (317)
Vihear = 1 (3.18)
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Using the constitutive models, one can obtain the Cauchy stress tensor exactly for each problem.
For the Lame neo-Hookean model, the Cauchy stress is expressed explicitly in terms of the left
Cauchy-Green tensor . The normal stress components for the neo-Hookean material are given by
the expression:

te (12+541,+ 1162 + 1298 + 7264 + 16£) 34 +2p)
6(1+1) (1+41)

(3.19)

T normal =

The shear stress components for the neo-Hookean material are given by the expression:

ooy = 2T A (3.20)

(A +1) (1 +41))

Wl

For the Lame elastic model the Cauchy stress is obtained from a relationship that includes an
integration of the pull-back (using only the rotation tensor) of the Green-McInnis-Naghdi objective
stress rate to obtain the change (from time O to time #) in the rotated Cauchy stress. The normal
stress components for the hypoelastic material are given by the expression:

34+2 2 log(1 +¢,.) + log(1 + 4+,
O normal = ( 2 ( = 3 S )) 3.21)

The shear stress components for the hypoelastic material are given by the expression:

2u (—log(l +t.) + log(1 +4¢,
O shear = s ( g( 3) g( )) (322)

Many authors have noted that the patch test results should have an accuracy approaching the pre-
cision of the floating point numbers on the particular computer (see e.g., ref. 2), with a maximum
variation of a few digits (depending upon the number of digits used in the machine arithmetic). For
a double-precision floating point word, we would thus expect a relative error O(107'%) or less.

3.2.3 Verification Results

For all the hexahedral element patch tests, the "error" in each normal and shear stress component
was examined, where the "error" was defined as the maximum over all elements and applicable
components of the differences between the finite deformation reference solution and the calculated
results, normalized by the exact value. The errors are examined for t=1.

Tables 3.1 through 3.4 show the relative errors and tolerances for the O(1%) strain loading cases,
both for the neo-Hookean and hypoelastic material models. For all of the element formulations
except (1) Hex8 mean quadrature, midpoint strain incrementation, and (2) hex8 Q1PO0, strongly
objective strain incrementation the results are within the expected high accuracy. Issues with the
QI1PO element formulation were previously discussed with the linear elastic version of the patch
test and will not be discussed further here. As discussed above, the midpoint strain incrementation
is expected to be less accurate for comparable time stepping. Note that the error in shear compo-
nents of the stretch and stress tensor were as much as two orders of magnitude larger than those of
the normal components but still within the expected range.
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Table 3.1: Stretch tensor maximum errors and tolerances for each neo-Hookean, O(1%) strain test.

TestID Max Vnormal error Vnormal toler Max Vshear error Vshear toler
hex08_meang_mp 3.713E-09 5.000E-06 6.250E-07 5.000E-04
hex08_meangq_so 2.198E-16 1.000E-13 1.023E-14 5.000E-13
hex08_sdev_so 2.198E-16 2.000E-13 4.528E-14 5.000E-13
hex08_q1p0_so 1.603E-03 4.000E-03 6.308E-02 7.000E-02
hex08_full_so 4.397E-16 2.000E-13 3417E-14 7.000E-13
hex20_full_so 6.595E-16 5.000E-13 7.858E-14 1.000E-12
hex27_full_so 6.595E-16 5.000E-13 1.119E-13 5.000E-13

Table 3.2: Cauchy stress tensor maximum errors and tolerances for each neo-Hookean, O(1%)

strain test.

TestID Max O normal elerror O normal el toler Max O shearelerror O shear el toler
hex08_meang_mp 3.711E-07 2.000E-04 6.118E-07 5.000E-04
hex08_meang_so 2.016E-14 5.000E-13 1.333E-14 9.000E-13
hex08_sdev_so 1.502E-14 5.000E-13 8.614E-15 9.000E-13
hex08_q1p0_so 1.239E-01 2.500E-01 1.908E-02 3.000E-02
hex08_full_so 1.173E-14 5.000E-13 8.024E-15 9.000E-13
hex20_full_so 6.413E-15 5.000E-13 2.690E-14 9.000E-13
hex27_full_so 2.602E-14 5.000E-13 2.454E-14 9.000E-13

Table 3.3: Stretch tensor maximum errors and tolerances for each hypoelastic, O(1%) strain test.

TestID Max Vnormal error Vnormal toler Max Vshear error Vshear toler
hex08_meang_mp 3.714E-09 1.000E-08 6.250E-07 2.000E-06
hex08_meang_so 2.198E-16 1.000E-13 3.417E-14 5.000E-13
hex08_sdev_so 6.595E-16 2.000E-13 5.464E-14 5.000E-13
hex08_q1p0_so 1.574E-03 4.000E-03 6.167E-02 7.000E-02
hex08_full_so 4.397E-16 2.000E-13 4.528E-14 5.000E-13
hex20_full_so 8.794E-16 5.000E-13 8.795E-14 1.000E-12
hex27_full_so 6.595E-16 5.000E-13 6.748E-14 1.000E-12

Table 3.4: Cauchy stress tensor maximum errors and tolerances for each hypoelastic, O(1%) strain

test.

TestID Max O normal elerror O normal el toler Max O shearelerror O shear el toler
hex08_meang_mp 4.380E-14 5.000E-13 1.144E-13 1.000E-12
hex08_meang_so 2.566E-14 5.000E-13 7.263E-14 6.000E-13
hex08_sdev_so 1.155E-14 5.000E-13 4.950E-14 6.000E-13
hex08_q1p0_so 1.217E-01 1.300E-01 1.559E-02 2.000E-02
hex08_full_so 3.610E-14 3.000E-13 4.086E-14 9.000E-13
hex20_full_so 2.272E-14 3.000E-13 4.109E-14 6.000E-13
hex27_full_so 2.272E-14 5.000E-13 5.168E-14 6.000E-13
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Tables 3.5 through 3.8 show the relative errors and tolerances for the O(100%) strain loading cases,
both for the neo-Hookean and hypoelastic material models. Again for all of the element formu-
lations except (1) Hex8 mean quadrature, midpoint strain incrementation, and (2) hex8 QI1PO,
strongly objective strain incrementation the results are within the expected high accuracy. As seen
for the lower stain level, the error in shear components of the stretch and stress tensor were in a
few cases as much as two orders of magnitude larger than those of the normal components but
still within the expected range. For this loading case, this level of difference between the normal
and shear components was limited to Cauchy stresses for three element formulations using the
neo-Hookean model.
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Table 3.5: Stretch tensor maximum errors and tolerances for each neo-Hookean, O(100%) strain

test.

TestID Max Vnormal error Vnormal toler Max Vshear error Vshear toler
hex08_meang_mp 5.000E-05 1.000E-04 1.250E-04 5.000E-04
hex08_meangq_so 6.957E-15 1.000E-12 3.286E-14 1.000E-12
hex08_sdev_so 1.717E-14 5.000E-13 4.263E-14 5.000E-13
hex08_q1p0_so 9.669E-01 2.000E+00 1.440E+00  3.000E+00
hex08_full_so 1.540E-14 5.000E-13 2.198E-14 5.000E-13
hex20_full_so 2.132E-14 5.000E-13 8.304E-14 1.000E-12
hex27_full_so 3.553E-14 5.000E-13 9.237E-14 1.000E-12

Table 3.6: Cauchy stress tensor maximum errors and tolerances for each neo-Hookean, O(100%)

strain test.

TestID Max O normal elerror O normal el toler Max O shearelerror O shear el toler
hex08_meang_mp 1.055E-04 5.000E-04 1.071E-05 5.000E-05
hex08_meang_so 8.123E-15 1.000E-12 1.846E-13 1.000E-12
hex08_sdev_so 3.781E-15 5.000E-13 7.218E-14 6.000E-13
hex08_g1p0_so 2.256E+00 3.000E+00 1.504E+02 2.000E+02
hex08_full_so 9.943E-15 5.000E-13 1.781E-13 1.000E-12
hex20_full_so 1.120E-15 5.000E-13 4.806E-14 9.000E-13
hex27_full_so 2.101E-15 5.000E-13 5.074E-14 9.000E-13

Table 3.7: Stretch tensor maximum errors and tolerances for each hypoelastic, O(100%) strain
test.

TestID Max Vnarmal error Vnormal toler Max Vshear error Vshear toler
hex08_meang_mp 5.000E-05 1.000E-04 1.250E-04 5.000E-04
hex08_meangq_so 1.480E-15 5.000E-13 4.885E-15 1.000E-12
hex08_sdev_so 1.880E-14 5.000E-13 5.285E-14 5.000E-13
hex08_g1p0_so 2.282E-01 5.000E-01 8.709E-02 2.000E-01
hex08_full_so 4.145E-15 5.000E-13 9.104E-15 5.000E-13
hex20_full_so 2.058E-14 5.000E-13 4.230E-14 5.000E-13
hex27_full_so 1.806E-14 5.000E-13 3.453E-14 5.000E-13

Table 3.8: Cauchy stress tensor maximum errors and tolerances for each hypoelastic, O(100%)
strain test.

TestID Max O normal elerror O normal el toler Max O shearelerror O shear el toler
hex08_meang_mp 5.863E-10 1.000E-09 1.661E-09 5.000E-09
hex08_meang_so 1.632E-15 2.000E-13 1.012E-14 9.000E-13
hex08_sdev_so 4.663E-15 5.000E-13 1.644E-14 9.000E-13
hex08_q1p0_so 2.372E-01 5.000E-01 2.544E-01 5.000E-01
hex08_full_so 4.663E-16 2.000E-13 1.191E-15 9.000E-13
hex20_full_so 1.749E-15 2.000E-13 1.429E-15 9.000E-13
hex27_full_so 1.632E-15 5.000E-13 2.501E-15 9.000E-13
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3.2.4 References

1. Scherzinger, W.M. and Hammerand, D.C. Constitutive Models in Lame. Sandia Report
SAND2007-5873, September 2007.

2. Belytschko, T., Liu, W.K., and Moran B. Nonlinear Finite Elements for Continua and Struc-
tures, NY, NY: John Wiley & Sons, LTD, 2000.

3. Hughes, T.J.R. The Finite Element Method, Linear Static and Dynamics Finite Element Anal-
ysis, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

4. Fung, Y.C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1965.

5. Bonet, J., and Wood, D. Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd
edition, NY, NY: Cambridge Univeristy Press, 2008.

For input deck see Appendix B.15.
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3.3 Hex Patch Test — Uniform Gradient, Strongly Objective

Analysis Type Explicit Transient Dynamics
Element Type Hex8

Strain Incrementation | Strongly Objective

Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Displacemnet, Stress Fields
Number of Tests 1

Keywords Patch Test

3.3.1 Brief Description

This problem is a patch test for a uniform-strain, eight-node hexahedral element with a strongly-
objective formulation for the strain.

3.3.1.1 Functionality Tested

Primary capabilities:

e uniform-strain, three-dimensional, eight-node hexahedral element with strongly objective
strain formulation for the strain

Secondary capabilities:

e prescribed displacement direction boundary condition

e resolution of kinematic boundary condition

3.3.1.2 Mechanics of Test

The mesh in this problem is a unit cube with seven elements. Each of the elements represents
a single element block. Six of the elements have one face on the exterior, and one element has
all interior faces. To provide a completely general test, the interior element has no parallel or
perpendicular edges. The interior element (element block 1) is shown in Figure 3.5. None of the
faces of the interior element are perpendicular or parallel to the planes xy, yz, zx defined by the x-,
y-, and z-axes.

Figure 3.6 is drawn from all of the elements except the element defining element block 3, which has
an exterior face with a normal in the positive z-direction. The interior element and four surrounding
elements are visible. The element with an exterior face with a normal in the negative z-direction is
not visible in this hidden-line drawing of the elements.

An applied displacement field is described by the following equations:
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Figure 3.5: Interior element for patch-test cube
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Figure 3.6: Patch-test cube with element block 3 not shown

u=fOX(1.0X10)x 2x+y+2) (3.23)
v=fO)x(1.0x10) X (x+2y +2) (3.24)
w=f)x(1.0x107) X (x + y + 22) (3.25)

The displacement in the x-direction is u, the displacement in the y-direction is v, and the displace-
ment in the z-direction is w. In the above equations, the function f(¢) is defined by:
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F(H) = 0.5 (1 _ cos (20’;—X1’()_3)> (3.26)

from 0 to 2.0 x 1072 sec. For time greater than 2.0 x 10~ sec, f(¢) is defined by:

f(H=1.0 (3.27)

The function f(¢) brings the displacement field to a steady-state condition for time ¢ greater than
2.0x 1073

3.3.1.3 Material Model

The material model is linear elastic with the values:

Young’s Modulus | E | 1.0 x 10° Psi
Poisson’s Ratio v | 0.25
Density o | 2.61x 107 Tom/in®

3.3.2 Expected Results

For the small-strain case, the stress oy, is related to the strains €,,, €, and €, by:

__ Ed-w v
Oxx = A+ -2 €xx T a- (6 + €2) (3.28)

Similar equations hold for o, and o,. The shear stress 7,, is related to the shear strain €,, by:

E
b= €y 3.29
T (3:29)
Similar equations hold for 7, and 7.
For the steady-state conditions,
€x=6y=€,=2%x107" (3.30)
and
€y =€, =€,=1x107" (3.31)

For the small-strain case, the stress field produced by the displacement field in the steady-state
region is given by:

Oy = Oyy = 0, = 4000 psi (3.32)
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and

Ty = Ty, = Tz = 800 psi (3.33)

The following plots are the stresses from element 1, although elements 1 through 7 should have

the exact same stresses.
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Figure 3.7: Stress x-, y-, and z-direction for element 1

3.3.3 References

1. Fung, Y.C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1965.

For input deck see Appendix B.16.
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Figure 3.8: Stress in xy-, yz- and zx-direction for element 1
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3.4 Hex Patch Test — Uniform Gradient, Midpoint Increment

Analysis Type Explicit Transient Dynamics
Element Type Hex8

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Displacement, Stress Fields
Number of Tests 1

Keywords Patch Test

3.4.1 Brief Description

This problem is a patch test for a uniform-strain, eight-node hexahedral element with a midpoint-
increment formulation for the strain.

3.4.1.1 Functionality Tested

Primary capabilities:

e uniform-strain, three-dimensional, eight-node hexahedral element with midpoint

e increment strain formulation for the strain

Secondary capabilities:

e prescribed displacement direction boundary condition

e resolution of kinematic boundary condition

3.4.1.2 Mechanics of Test

The mesh in this problem is a unit cube with seven elements. Each of the elements represents
a single element block. Six of the elements have one face on the exterior, and one element has
all interior faces. To provide a completely general test, the interior element has no parallel or
perpendicular edges. The interior element (element block 1) is shown in Figure 3.9. None of the
faces of the interior element are perpendicular or parallel to the planes xy, yz, zx defined by the x-,
y-, and z-axes.

Figure 3.10 is drawn from all of the elements except the element defining element block 3, which
has an exterior face with a normal in the positive z-direction. The interior element and four sur-
rounding elements are visible. The element with an exterior face with a normal in the negative
z-direction is not visible in this hidden-line drawing of the elements.

An applied displacement field is described by the following equations:
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Figure 3.9: Interior element for patch-test cube
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Figure 3.10: Patch-test cube with element block 3 not shown

u=fOX(1.0X10)x 2x+y+2) (3.34)
v=fO)x(1.0x10) X (x+2y +2) (3.35)
w=f)x(1.0x107) X (x + y + 22) (3.36)

The displacement in the x-direction is u, the displacement in the y-direction is v, and the displace-
ment in the z-direction is w. In the above equations, the function f(¢) is defined by:
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F(H) = 0.5 (1 _ cos (20’;—X1’()_3)> (3.37)

from 0 to 2.0 x 1072 sec. For time greater than 2.0 x 10~ sec, f(¢) is defined by:

f(t)=1.0 (3.38)

The function f(¢) brings the displacement field to a steady-state condition for time ¢ greater than
2.0x 1073

3.4.1.3 Material Model

The material model is linear elastic with the values:

Young’s Modulus | E | 1.0 x 10° Psi
Poisson’s Ratio v | 0.25
Density o | 2.61x 107 Tom/in®

3.4.2 Expected Results

For the small-strain case, the stress oy, is related to the strains €,,, €, and €, by:

3 E(l-v) v
Oyx = m €y T+ —(1 — V) (Eyy + EZZ) (339)

Similar equations hold for o, and o,. The shear stress 7,, is related to the shear strain €,, by:

E
xy — 75 . _~Exy 3.40
T Ten™ (3.40)
Similar equations hold for 7, and 7.
For the steady-state conditions,
Exx = €y = €, =2 X 1073 (3.41)
and
€y =€, =€,=1x107" (3.42)

For the small-strain case, the stress field produced by the displacement field in the steady-state
region is given by:

Oy = Oyy = 0, = 4000 psi (3.43)
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and

Txy =Ty = Tpx = SOOPSl (344)

The following plots are the stresses from element 1, although elements 1 through 7 should have
the exact same stresses.

Stress in x-, y-, and z-direction
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Figure 3.11: Stress x-, y-, and z-direction for element 1

3.4.3 References

1. Fung, Y.C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1965.

For input deck see Appendix B.17.
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Stress (psi)

Shear Stress in xy-, yz-, and xz-direction
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Figure 3.12: Stress in xy-, yz- and zx-direction for element 1
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3.5 Hex Patch Test — Uniform Gradient, Midpoint Increment, Thermal

Analysis Type Explicit Transient Dynamics
Element Type Hex8

Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error

Verification Quantities | Displacement, Stress Field
Number of Tests 1

Keywords Patch Test, Thermal Strains, Elastic

3.5.1 Problem Description
This problem is a version of the hexahedral patch tests, but in this case with free thermal expansion.
3.5.1.1 Functionality Tested

Primary capabilities:
e uniform thermal strains
Secondary capabilities:

¢ uniform-gradient, eight-node, three-dimensional hexahedron with midpoint-increment for-
mulation

e fixed component displacement boundary condition

3.5.1.2 Boundary Conditions

This problem uses the same mesh as that used for the other hex8 patch tests. The mesh is a simple
cube; boundary conditions are applied so that the elements in the mesh undergo a free expansion.

The mesh in this problem is a unit cube with seven elements. Each of the elements represents a
single block. Six of the elements have one face on the exterior, and one element has all interior
faces. To provide a completely general test, the interior element has no parallel or perpendicular
edges. The interior element (element block 1) is shown in Figure 3.13. None of the faces of the
interior element are perpendicular or parallel to the planes xy, yz, and zx defined by the x-, y-, and
Z-axes.

Figure 3.14 is drawn from all of the elements except the element defining element block 3, which
has an exterior face with a normal in the positive z-direction. The interior element and four sur-
rounding elements are visible. The element with an exterior face with a normal in the negative
z-direction is not visible in this hidden-line drawing of the elements.

Boundary and temperature conditions are applied to generate a free thermal expansion of the block.
Zero displacement boundary conditions are placed on the x = 0, y = 0, and z = 0 planes. These
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Figure 3.13: Interior element for patch-test cube.
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Figure 3.14: Patch-test cube with element block 3 not shown.

fixed displacement boundary conditions are symmetry conditions. This test problem represents,
therefore, a cube made of eight unit cubes centered on the origin. The only loading on the model
is a thermal load. The full cube (eight unit cubes centered on the origin) undergoes a free thermal
expansion. The temperature of the unit cube, T, increases by one degree from time ¢ = 0 to time
t = 2.0 x 1073 sec based on the function:

T(1) = 0.5 (1 — cos (201—20_3» (3.45)
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The temperature remains constant at:

TH=10 (3.46)

for t > 2.0 x 1073, The thermal-strain-versus-temperature curve for the material is a line with a
slope of 0.001 inch/degree. Thus a temperature increase of one degree will generate a thermal
strain of 0.001 inch.

3.5.1.3 Material Model

The material properties are linear elastic.

Table 3.9: Material Properties
Youngs Modulus | E | 1.0 x 10° psi
Poissons Ratio v | 0.25
Mass Density p | 261x107* b - s*/in*

3.5.2 Verification of Solution

The block in this problem undergoes thermal expansion with no kinematic boundary conditions.
The stresses in all elements should be zero. The nodal displacement in the x-direction for any node
lying in the plane x = 1.0 should be u, = 0.001 inch, the nodal displacement in the y-direction for
any node lying in the plane y = 1.0 should be u, = 0.001 inch, and the nodal displacement in the
z-direction for any node lying in the plane z = 1.0 should be u, = 0.001 inch.

A discussion of thermal strains can be found in reference 1.

For time ¢ > 2.0 X 1073 sec, the thermal load represents a steady loading case. Since this is a
transient dynamics problem, the solution will oscillate about the steady-state solution for time
t > 2.0 x 1073 sec. Figure 3.15, shows that for r > 2.0 x 1073, the stresses in the model oscillate
about zero with a maximum amplitude between 1 and 2 psi. The stress in the x-direction for the
interior element, element 1, is shown in Figure 3.15. For t > 2.0 x 1073, the displacement in
the x-direction for a node lying in the plane x = 1.0 oscillates about the value 0.001 inch. The
displacement in the x-direction for node 14, which is at x = 1.0 inch, y = 1.0 inch, and z = 1.0
inch is shown in Figure 3.16. The oscillation about the value 0.001 inch in the steady-state portion
of the curve is very small.

3.5.3 References

1. Fung, Y. C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1965.

For input deck see Appendix B.18.
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Figure 3.15: Stress in the x-direction for interior element 1.
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Figure 3.16: Displacement in the x-direction for node 14.
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3.6 Hex Convergence Test — Cantilever Beam

Analysis Type Quasi-statics

Element Types Hex8

Element Formulations | Mean Quadrature, Q1P0, Selective Deviatoric, Fully Integrated
Strain Incrementation | Midpoint Increment, Strongly Objective

Material Models Elastic

Verification Category | Convergence

Verification Quantities | Displacement, Stress Fields

Number of Tests 5

Keywords Linear Elastic, Beam Theory

3.6.1 Brief Description

This set of analyses demonstrates the convergence of displacements and stresses for a relatively
simple mechanical analysis. The system analyzed is a cantilever beam under unit tip loading. The
reference solution is derived from Euler-Bernoulli beam theory. As such, the solution is not exact,
and the finite element solution (if sufficiently refined) will deviate from this reference solution.
Five different formulations of the hex8 are currently tested. Higher order hex elements will be
included in the test once they have the capability to integrate surface tractions consistently with the
underlying shape functions.

3.6.1.1 Functionality Tested

Primary capabilities:

e The following element formulations:
— eight-node hexahedron with the mean quadrature formulation and midpoint strain in-
crementation

— eight-node hexahedron with the mean quadrature formulation and strongly objective
strain incrementation

— eight-node hexahedron with the Q1P0 formulation and strongly objective strain incre-
mentation

— eight-node hexahedron with the selective deviatoric formulation and strongly objective
strain incrementation

— eight-node hexahedron with the fully-integrated formulation and strongly objective
strain incrementation

e subjected to the limitations of linear elasticiy.
Secondary capabilities:

e prescribed displacement boundary conditions
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e resolution of kinematic boundary condition

e user subroutine application of traction boundary conditions

3.6.1.2 Mechanics of Test

The geometry of the general problem is shown in Figure 3.17. The beam is slender, with a length-
to-depth ratio of 10, and it has a square cross-section.! The long direction of the beam is aligned
with the x-axis, and the unit transverse shear loading is applied in the y-direction as shown.

T_\‘ P=1

~
AN\

Y

10

A

Figure 3.17: Beam geometry.

3.6.1.3 Material Model

The material model used for this problem is the elastic model implemented in Lame [1].
The selected properties are given as follows.

Young’s Modulus | E | 1.0 x 10° psi
Poisson’s Ratio v | 0.25
Density p |1

3.6.1.4 Boundary Conditions

The boundary conditions for this problem are depicted in Figure 3.18 below. These are not the
simplest boundary conditions, but they were defined to be consistent with the shear stress distribu-
tion of Euler-Bernoulli beam theory, while still preventing rigid body motions.

3.6.1.5 Meshes

The meshes used in this study are shown in Figure 3.19. These meshes consist of cubical finite
elements, in densities ranging from 2 to 16 elements through the beam depth. Note that each node
in a relatively coarse mesh is present in the subsequent refined mesh. This arrangement implies
that each successive refined finite element approximation subspace contains the last as a proper
subset.

!'Units are consistent with those of length and force depicted in Figure 3.17 but not explicitly defined.
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Figure 3.18: Beam boundary conditions.
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(a) 20x2x2 mesh (d/h=2)

(b) 40x4x4 mesh (d/h=4)

(c) 80x8x8 mesh (d/h=8)

(d) 160x16x16 mesh (d/h=16)

Figure 3.19: Meshes used in this study
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3.6.2 Expected Results

As previously mentioned, the reference solution for this problem is obtained from Euler-Bernoulli
beam theory. As such, it not only is based upon the approximation of linear elasticity but also
has the kinematic constraint that plane sections perpendicular to the neutral reference surface (axis
in the one-dimensional idealization) remain planner and perpendicular to the neutral axis under
deformation. For brevity the expressions for the displacement and stress field are not formally
presented here, but both are presented as string functions in the associated Encore input file. In
brief, solving the fourth order differential equation of beam theory gives a vertical displacement
that is cubic in x. The longitudinal displacement can be obtained from the rotation (combined with
the kinematic assumption) or integrating the longitudinal strain from the fixed-end of the beam,
and the transverse displacement can be obtained from integrating the transverse normal strain (€,,).
Beam theory gives a linear distribution of the normal stress with respect to y, and a quadratic
distribution of shear stress (o ,) with respect to y. Clearly the existence of the shear stress with no
corresponding shear deformation reflects the approximations made in beam theory, approximations
that while sufficiently accurate for engineering calculations of slender members conflict with the
equations of elasticity. The lack of exactness of this reference solution, weakens its usefulness
toward code verification [2], but the convergence tendencies are still apparent. While a higher
order beam theory for linear elasticity that includes rotation of sections would be more appropriate
for this problem, it would still be inexact relative to the underlying mathematical model of the code
(since the code is based upon finite deformations).

3.6.3 Verification Results

In this test we examine the observed rates of convergence using the displacement vector and stress
tensor 2 fields. In both cases we use a relative error measure of the norms of the errors divided by
the norms of the Euler-Bernoulli reference response (versus the element size).

The slopes of the relative error curves between the data points corresponding to two meshes (on the
log-log plots) yield observed rates of convergence. For an exact reference solution, the assessment
of the rate of convergence improves with mesh refinement, assuming other sources of numerical
error (e.g., solver accuracy) do not corrupt the results; this follows from each mesh refinement
producing results that more accurately represent the asymptotic behavior. For this problem we
are not using an exact solution, so an improvement in the convergence estimate is not guaranteed.
In fact typically for problems without an exact solution there is a a "sweet range" where the ap-
proximations are in the asymptotic range but not refined enough to measure the inexactness of the
references solution. The following tables give the observed rates of convergence for each Hex8
element formulation between each sequential pair of meshes, where A ;,, denotes the element size
of the finer mesh of the pair. The following plots show the corresponding graphical representations
of the difference data as a function of the element size. Because of the higher accuracy of the dis-
placement response [2], the effect of the inexact reference solution is apparent for the finest mesh
(d/h=16); generally the more accurate the element formulation was for this problem, the greater
its deviation from the "expected" convergence rate for the finest mesh.

2L,-norms are used for all the norm calculations. The integration of the norm calculations are approximated by
Gauss quadrature over each element domain [2,3]. For the stress tensor, the norm is a vector norm of the Voigt notation
representation of the stress tensor.
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Table 3.10: Convergence rates for Hex8, fully integrated, strongly objective

hfine ||Udiff||2/||Uanalyt||2 ||O_m)daldiff”2/llo—analyt||2 |Io—elementdiffl|2/”O—analyt||2
0.2500 1.97 1.63 1.13
0.1250 2.47 1.74 1.06
0.0625 2.18 1.65 1.02
Table 3.11: Convergence rates for Hex8,mean quadrature,midpoint increment
hfine ||Udiff||2/||Uanalyt”2 ||O-n0daldiff||2/Ho-analyIHZ ||0-elementdiff||2/||O-analyt”2
0.2500 2.67 1.60 1.02
0.1250 2.30 1.58 1.00
0.0625 -1.18 1.47 1.00
Table 3.12: Convergence rates for Hex8, mean quadrature, strongly objective
hfine ||Udiff||2/”Uanalyt”2 ||O-nodaldiff”2/Ha-analyt”2 |Io-elementdiff”Z/”O-analyt”Z
0.2500 2.67 1.60 1.02
0.1250 2.30 1.58 1.00
0.0625 -1.18 1.47 1.00
Table 3.13: Convergence rates for Hex08, Q1PO0, strongly objective
hfine ||Udiff||2/||Uanalyt”2 ||0-n0daldiff||2/”O-analyt”Z ||O-elementdiff||2/||0-analyt”2
0.2500 2.08 1.64 1.08
0.1250 2.74 1.69 1.03
0.0625 0.92 1.58 1.01
Table 3.14: Convergence rates for Hex8,selective deviatoric, strongly objective
hfine ||Udiff||2/||Uanalyt”2 ||O-nodaldiff||2/”a-analyt”2 ||0-elementdiff||2/||O-analyt||2
0.2500 2.41 1.62 1.03
0.1250 3.83 1.61 1.01
0.0625 -1.81 1.50 1.00

Default parameters are used for the elements, and the selective deviatoric element uses a deviatoric
parameter of one-half.

Figure 3.20 shows the convergence results for the displacement field for the Hex8 element for-
mulations. For reference note that the Q1P0 element exhibits an observed rate of convergence of
approximately 2. The fully-integrated element exhibits a slightly higher rate of convergence but
with lower accuracy than the other elements until the finest mesh.

Figures 3.21 and 3.22 depict the convergence results for the element and nodal representations of
the stress field, respectively, for all five hex8 element formulations. The results for the element
stress fields are in reasonably close agreement with the optimal rates of convergence (linear). The
results for the nodal stress field show an improvement in the observed rates of convergence within
the approximate range 1.5 to 1.7. These results give a measure of verification for the elements for
a linear elastic BVP but are less rigorous than an error quantification test (based upon an exact
solution).
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Figure 3.20: Convergence of the displacement vector in the L, norm — solution difference versus
element size.

Summary of results: the Hex8 elements approximately exhibited the expected rates of conver-
gence for displacements (quadratic) and for element stresses (linear), the exception being when
the meshes became sufficiently fine for the displacements to reveal the inexactness of the reference
solution; i.e., solutions based upon the finest finite element meshes are converging toward the exact
solution and deviating from the beam theory solution. The nodal extrapolation of the stress field
improves its rate of convergence to about 1.5. Since the reference solution is not exact, even for
linear elasticity, this is a weaker convergence test, as discussed in the manual’s introduction.

3.6.4 References

1. Scherzinger, W.M. and Hammerand, D.C. Constitutive Models in Lame. Sandia Report
SAND2007-5873, September 2007.

2. Cox, J.V. and Mish, K.D. Sierra solid mechanics example verification problems to highlight
the use of Sierra verification tools, October 2012 (in publication).

3. Copps, K.D. and Carnes, B.R. Encore User Guide, Sandia Report, October 2009.

For input deck see Appendix B.19.
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Figure 3.21: Convergence of the nodal representation of the Cauchy stress tensor in the "L, norm"
— solution difference versus element size.
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Figure 3.22: Convergence of the element representation of the Cauchy stress tensor in the "L,"
norm — solution difference versus element size.
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3.7 Tet Patch Tests — Quasi-Static, Linear Elastic

Analysis Type

Quasi-statics

Element Types

Tet4, Tet10

Element Formulations

Mean Quadrature, Fully Integrated, Composite Tet

Strain Incrementation

Strongly Objective, Node Based

Material Models

Elastic, Neo-hookean

Verification Category

Discretization Error

Verification Quantities

Stress Components

Number of Tests

10

Keywords

Patch Test, Linear Elastic

3.7.1 Brief Description

This problem is a linear elastic patch test for tetrahedral elements with a strongly objective strain
incrementation. The magnitude of the displacements is defined to be sufficiently small that lin-
ear elasticity provides a reasonable approximation of the expected response. A cubic domain is
subjected to prescribed displacements on each surface. Ten test results are obtained for a combi-
nation of four element formulations (regular tet4, nodal-based tet4, complete quadratic tet10, and

composite tet10) using two different elastic material models (Elastic and neo-Hookean).

3.7.1.1 Functionality Tested

Primary capabilities:

e The following element formulations with strongly objective strain incrementation:

Secondary capabilities:

regular, four-node tetrahedron
node-based, four-node tetrahedron
complete quadratic, ten-node tetrahedron

composite, ten-node tetrahedron

e prescribed displacement direction boundary conditions via analytic expressions

e resolution of kinematic boundary condition

e clastic and neo-Hookean material models in the small strain regime
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3.7.1.2 Mechanics of Test

A unit cube domain is positioned such that diagonally-opposite vertices are at the origin and (1,1,1)
with the faces aligned with global coordinate planes. The mesh consists of thirty tetrahedral ele-
ments that are arranged to give arbitrary alignment and shapes. For simplicity, Figure 3.23 shows
the surface of the mesh (i.e., excluding interior nodes and edges). Figure 3.24 depicts the mesh
without hidden lines — a rather tangled web of tets. The mesh depicted is for tet4 elements and has
5 internal nodes. The element geometry for the tet10 meshes is the same. The tet10 mesh differs
by adding mid-edge nodes.

Figure 3.24: Patch-test cube showing all element edges.

The prescribed displacement field on the surface of the cube is given by:
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u=1tx(1.0x10*) X 2x+y+2) (3.47)
v=1x(1.0x10*) X (x + 2y + 2) (3.48)
w=1tx(1.0x 107 X (x + y + 22) (3.49)

where ¢ denotes time, u denotes the displacement in the x-direction, v denotes the displacement in
the y-direction, and w denotes the displacement in the z-direction. The units for the displacement
components are inches. The corresponding analytic functions in the input file are also labeled as
u, v and w, respectively.

3.7.1.3 Material Model

The material models are elastic with the properties given below.

Young’s Modulus | E | 1.0 x 10° psi
Poisson’s Ratio v | 0.25

3.7.2 Expected Results

These tests assume that the displacements and strains will be "sufficiently small" for linear elas-
ticity to provide a reasonable reference solution. For infinitesimal strains, the strain-displacement
relations of linear elasticity give the strains at r=1 as:

€x=6y =€, =2%x107" (3.50)

and
€y = €; = €, = 1X 1074 (3.51)

Note that the size of "sufficiently small" depends upon the particular material model. Both the
elastic model (a hypoelastic model) and the neo-Hookean model (a hyperelastic model) are used
for these patch tests. For infinitesimal strains, responses from both constitutive models reduce to
that of a linear elastic model, where the stress o, is related to the strains €y, €y, and €, by:

E(l1-v)

4
Tyy = m €y T+ m(fyy + EZZ) (352)

Similar equations hold for o, and 0. The shear stress 7,y is related to the shear strain €,, by:

E

xy — o7 < Exy 353
T (5:53)

Similar equations hold for 7,, and 7_,.

The stress field produced by the above strain field at =1 is given by:
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Oy = Oyy = 0, =400 psi (3.54)

and
Ty = Ty, = Tz = 80 psi (3.55)

For all the tetrahedral element patch tests, the "error" in each normal and shear stress component
was examined, where the "error" was defined as the infinite norm (maximum over all elements) of
the differences between the linear elastic reference solution and the calculated results. The errors
are examined for =1 using 2 equal time steps. Based upon results for the tet4 element, and a few
different numbers of time steps, the results did not appear to change with the number of time steps
ranging from 1 to 10.

For the hypoelastic (elastic) and hyperelastic (neo-Hookean) material models the solution verifi-
cation requirement was that each element have errors in each stress component of less than 0.1
percent — an indistinguishable difference on a plot. The results for the two different elastic models
differed in the fourth digit of the results. All the element types failed the test at an error tolerance
of 0.01 percent. As such, the results only reproduced the linear elastic solution to three digits. The
differences with reference solution are not a result of inaccurate computations but rather are a re-
sult of limited accuracy in the linear elastic reference solution. A better measure of the accuracy of
the computations is provided by the finite deformation versions of these tests, where the reference
solutions are based upon the same finite deformation relationships as the code. To test the assertion
that the linear elastic reference solution is the issue, we reduced the displacements by one order of
magnitude. The resulting computational results agreed with the linear elastic reference solution in
one additional digit. To further verify this assertion we symbolically solved the finite deformation
equations for the neo-Hookean model (reference the finite deformation version of the test) and
found that the finite deformation solution differs with the linear elastic solution in the fourth digit
too.

3.7.3 References

1. Fung, Y.C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1965.

For input deck see Appendix B.20.
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3.8 Tet Convergence Test — Cantilever Beam

Analysis Type Quasi-statics

Element Types Tet4

Element Formulations | Mean Quadrature

Strain Incrementations | Strongly Objective, Node-based
Material Models Elastic

Verification Category | Convergence

Verification Quantities | Displacement, Stress Fields
Number of Tests 2

Keywords Linear Elastic, Beam Theory

3.8.1 Brief Description

This set of analyses demonstrates the convergence of displacements and stresses for a relatively
simple mechanical analysis. The system analyzed is a cantilever beam under unit tip loading. The
reference solution is derived from Euler-Bernoulli beam theory. As such, the solution is not exact,
and the finite element solution (if sufficiently refined) will deviate from this reference solution.
Two different formulations of the Tet4 are currently tested. Higher order Tet elements will be
included in the test once they have the capability to integrate surface tractions consistently with the
underlying shape functions.

3.8.1.1 Functionality Tested
Primary capabilities:
e The following element formulations:

— Four-node tetrahedron with the Mean Quadrature formulation and Strongly Objective
strain incrementation

— Four-node tetrahedron with the Mean Quadrature formulation and Node Based strain
incrementation

e subjected to the limitations of linear elasticity.
Secondary capabilities:
e prescribed displacement boundary conditions
e resolution of kinematic boundary condition
e user subroutine application of traction boundary conditions

3.8.1.2 Mechanics of Test

The geometry of the general problem is shown in Figure 3.25. The beam is slender, with a length-
to-depth ratio of 10, and it has a square cross-section.’ The long direction of the beam is aligned

3Units are consistent with those of length and force depicted in Figure 3.25 but not explicitly defined.
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with the x-axis, and the unit transverse shear loading is applied in the y-direction as shown.

T)‘ P=1

~
AN\

A
Y

10

Figure 3.25: Beam geometry.

3.8.1.3 Material Model

The material model used for this problem is the elastic model implemented in Lame [1]. The
selected properties are given as follows.

Young’s Modulus | E | 1.0 X 10° psi
Poisson’s Ratio vy | 0.25
Density p |1

3.8.1.4 Boundary Conditions

The boundary conditions for this problem are depicted in Figure 3.26 below. These are not the
simplest boundary conditions, but they were defined to be consistent with the shear stress distribu-
tion of Euler-Bernoulli beam theory, while still preventing rigid body motions.

“Fixed End”

uX=O

uy:O aty=z=0

Downward parabolic traction

u,=0atz=0 Loaded end

Parabolic traction
| p‘ P=1
N/,
7 -
1| 7

< 10 >

Figure 3.26: Beam boundary conditions.
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3.8.1.5 Meshes

The meshes used in this study are shown in the Figures 3.27-3.29 below. These meshes consist of
tetrahedral finite elements, in densities ranging from 2 to 8 elements through the beam depth. These
meshes were created using a mesh generation feature that subdivides hexahedral (hex) elements
into tetrahedral (tet) elements; the "unstructured approach" used here subdivides each hex into 6 tet
elements and retains the same number of nodes. Retaining the same number of nodes is important
for comparison with results from hex elements, though for Sierra/SM those types of comparisons
are not valid for other reasons (to be discussed below).

M
x

Figure 3.27: 20x2x2 mesh (d/h=2).

AN AAAAAAAAAANAAAAAAAAAAAAAAAAAAAA NN

[
>

Figure 3.28: 40x4x4 mesh (d/h=4).

Figure 3.29: 80x8x8 mesh (d/h=8).
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3.8.2 Expected Results

As previously mentioned, the reference solution for this problem is obtained from Euler-Bernoulli
beam theory. As such, it not only is based upon the approximation of linear elasticity but also
has the kinematic constraint that plane sections perpendicular to the neutral reference surface (axis
in the one-dimensional idealization) remain planner and perpendicular to the neutral axis under
deformation. For brevity the expressions for the displacement and stress field are not formally
presented here, but both are presented as string functions in the associated Encore input file. In
brief, solving the fourth order differential equation of beam theory gives a vertical displacement
that is cubic in x. The longitudinal displacement can be obtained from the rotation (combined with
the kinematic assumption) or integrating the longitudinal strain from the fixed-end of the beam,
and the transverse displacement can be obtained from integrating the transverse normal strain (€,,).
Beam theory gives a linear distribution of the normal stress with respect to y, and a quadratic
distribution of shear stress (o ,) with respect to y. Clearly the existence of the shear stress with no
corresponding shear deformation reflects the approximations made in beam theory, approximations
that while sufficiently accurate for engineering calculations of slender members conflict with the
equations of elasticity. The lack of exactness of this reference solution, weakens its usefulness
toward code verification [2], but the convergence tendencies are still apparent. While a higher
order beam theory for linear elasticity that includes rotation of sections would be more appropriate
for this problem, it would still be inexact relative to the underlying mathematical model of the code
(since the code is based upon finite deformations).

3.8.3 Verification Results

In this test we examine the observed rates of convergence using the displacement vector and stress
tensor * fields. In both cases we use a relative error measure of the norms of the errors divided by
the norms of the Euler-Bernoulli reference response (versus the element size).

The slopes of the relative error curves between the data points corresponding to two meshes (on the
log-log plots) yield observed rates of convergence. For an exact reference solution, the assessment
of the rate of convergence improves with mesh refinement, assuming other sources of numerical
error (e.g., solver accuracy) do not corrupt the results; this follows from each mesh refinement
producing results that more accurately represent the asymptotic behavior. For this problem we
are not using an exact solution, so an improvement in the convergence estimate is not guaranteed.
In fact typically for problems without an exact solution there is a a "sweet range" where the ap-
proximations are in the asymptotic range but not refined enough to measure the inexactness of the
references solution. The following tables give the observed rates of convergence for each Tet4
element formulation between each sequential pair of meshes, where /;,. denotes the element size
of the finer mesh of the pair. The following plots show the corresponding graphical representations
of the solution differences as a function of the element size.

Figure 3.30 shows the convergence results for the displacement field for the Tet4 element formu-
lations. The asymptotic rates are not clearly obtained for this problem. The regular Tet4 element

4L,-norms are used for all the norm calculations. The integration of the norm calculations are approximated by
Gauss quadrature over each element domain [2,3]. For the stress tensor, the norm is a vector norm of the Voigt notation
representation of the stress tensor.
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appears to be approaching quadratic convergence for the two mesh pairs, while the rate of conver-
gence appears to be higher than quadratic for the nodal based tet. Since the reference solution is
not exact, we can’t make a strong statement about the convergence, but for this level of test the
results appear to be reasonable.

Figures 3.31 and 3.32 depict the convergence results for the element and nodal representations
of the stress field, respectively, for both Tet4 element formulations. The results for the element
stress fields for the regular Tet4 element appear to be approaching the optimal rates of convergence
(linear), and as expected the element fields for the nodal based tet are useless. For the regular Tet4,
the results for the nodal stress field show improvements in the observed rates of convergence, and
for the finest mesh pair yield results very close to those of the nodal based Tet4. These results give
a measure of verification for the elements for a linear elastic BVP but are less rigorous than an
error quantification test (based upon an exact solution).

Table 3.15: Convergence rates for Tet4: Mean Quadrature - Strongly Objective

hfine ‘ ||Udiff||2/||Uanalyt”2 ||O-n0daldiff||2/Ho-analyIHZ ||O-elementdiff||2/||O-analyt”2
0.2500 1.3265 1.2516 0.5752
0.1250 1.9524 1.7158 0.8747
Table 3.16: Convergence rates for Tet4: Mean Quadrature - Node Based
hfine ‘ ||Udiff||2/||Uanalyt”2 ||O-nodaldiff||2/”O-analyt”Z ||0-elementdiff||2/||O-analyt”2
0.2500 2.5441 1.6728 0.0973
0.1250 2.9242 1.7283 0.0253
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Figure 3.30: Convergence of the displacement vector in the L, norm — solution difference versus
element size.
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Figure 3.31: Convergence of the nodal representation of the Cauchy stress tensor in the "L, norm"
— solution difference versus element size.

Summary of results: The regular Tet4 element showed trends toward exhibiting the expected rates
of convergence for displacements (quadratic), but the inexactness of the reference solution (as with
the hex elements) appears to affect the quality of the convergence results. For the nodal based tet,
the displacement convergence rate is even less clear, but in this case appears to be closer to cubic
convergence than quadratic. The element stresses for the regular Tet4 element and finest mesh
pairs exhibited a rate of convergence approaching the expected asymptotic rate, with an observed
rate of 0.87. The nodal results (one by formulation and one by stress recovery) yield improved
rates of convergence of approximately 1.72. Since the reference solution is not exact, even for
linear elasticity, this is a weaker convergence test, as discussed in the manual’s introduction.

3.8.4 References

1. Scherzinger, W.M. and Hammerand, D.C. Constitutive Models in Lame. Sandia Report
SAND2007-5873, September 2007.

2. Cox, J.V. and Mish, K.D. Sierra solid mechanics example verification problems to highlight
the use of Sierra verification tools, October 2012 (in publication).

3. Copps, K.D. and Carnes, B.R. Encore User Guide, Sandia Report, October 2009.

For input deck see Appendix B.21.
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Figure 3.32: Convergence of the element representation of the Cauchy stress tensor in the "L,"
norm — solution difference versus element size.
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3.9 Quad Membrane Patch Test — Selective Deviatoric, Midpoint Increment

Analysis Type Explicit Dynamics
Element Type Quad4 Membrane
Strain Incrementation | Midpoint Increment
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Displacement, Stress
Number of Tests 1

Keywords Patch Test

3.9.1 Brief Description

This problem is a patch test for a selective deviatoric, four-node membrane element with a
midpoint-increment formulation for the strain. This test is described in Reference 1.

3.9.1.1 Functionality Tested

Primary functionality tested:

e selective deviatoric, four-node membrane element with midpoint-increment strain formula-
tion

Secondary capabilities:

e prescribed displacement direction boundary condition

e linear elastic material model

3.9.1.2 Mechanics of Test

The test consists of five midpoint-increment membrane elements arranged in a 0.12 inch x 0.24
inch planar rectangle. Four of the elements have edges along the outside edges of the rectangle,
and one element has edges completely internal to the rectangle. The fifth element has skewed
edges inside the plane such that no two edges of an element are parallel. The mesh for this problem
is shown in Figure 3.33.

The bottom left corner of the rectangular domain is fixed. The other three corners of the rectangle
have prescribed displacements. Their values at time 2.0 x 1073 sec are

U=10x103(x+ %) (3.56)
V=10x 10—3% +y) (3.57)
W=0 (3.58)
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Figure 3.33: Mesh for patch test.

where U is the displacement in the x-direction, V is displacement in the y-direction, and W is
displacement in the z-direction. Displacements are constrained to the xy-plane. Also, the x and y
variables within the U and V equations correspond to the location of each node.

The loading is ramped up from 0 to 2.0 X 1073 sec and then held constant for time greater than
2.0x 1073 sec. Fort < 2.0 x 1073:

t
u(t) = U x0.5(1 — cos(zon—

53 (3.59)

Fort > 2.0x 1073:

ult)=U (3.60)

3.9.1.3 Material Model

The material model is linear elastic with the values:

178



Young’s Modulus | E | 1.0 X 10° psi
Poisson’s Ratio v | 0.25
Density p | 2.61 x 107* Ibm/in’

3.9.2 Verification of Solution

This loading applies a spatially constant strain field to the elements, assuming a quasi-static rate
of loading (i.e.,without significant inertia effects). For the small strain case the "exact" stress field
produced by the displacement field is:

Oy = Oy = 1333 psi (3.61)
o, =0psi (3.62)
T = 400 psi (3.63)

The following plots are the stresses from element 1, although elements 1 through 5 should have the
exact same stresses. Figure 3.34 depicts the time history of the in-plane normal stress components,
and Figure 3.35 depicts the time history of the in-plane shear stress component. The normal and
shear stress components agree with the exact solution to 4 digits. Note that lowering the loading
level could increase the accuracy of this result, since it may be due to the code’s formulation for
finite deformations.
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Figure 3.34: Stress xx- and yy-components for element 1.
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Figure 3.35: Stress xy-component for element 1.

3.9.3 References

1. MacNeal, R. H., and R. L. Harder. A Proposed Standard Set of Problems to Test Finite
Element Accuracy. Finite Elements in Analysis and Design 1 (1985): 3-20.

For input deck see Appendix B.22.
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3.10 Elastic Beam in Axial Tension

Analysis Type Quasi-statics
Element Type Beam
Material Model Elastic-Plastic

Verification Category | Discretization Error
Verification Quantities | Axial Reaction Force
Number of Tests 13

Keywords Beam Section, Elastic, Axial

3.10.1 Problem Description

This problem puts several beam sections through strain paths that exercise elastic section response
under pure axial extension. The elements used in this analysis are 2D beams. Note the actual
computational elements are two-noded, single elements.

All beams consistent of a single element and are of a total length of five (5) meters along the
r-direction.

3.10.1.1 Boundary Conditions

The beam end conditions are prescribed. Axial extension is accomplished by fixing one end of the
beam and extending the far end in the r- direction. This produces a constant axial strain state in
the beam.

Deformation magnitudes are kept low to enable the code results to match the linear elastic solution
for a one-dimensional axial member. The applied displacement magnitude is selected so that the
section remains elastic throughout the loading history.

Loading Condition | Boundary Condition
Axial Extension d-dz/dL = 4.0e-6

3.10.1.2 Material Model

Material is elastic perfectly plastic. Yield stress of the material is set to a relatively low value,
similar to general aluminum. This a small deformation to remain in the elastic region to best
match small strain beam theory.

Young’s Modulus E | 3.0e+3

Shear Modulus G | 1.15384615¢ + 3
Yield Stress y0 | 290

Hardening Modulus | 2 | 0.0

3.10.1.3 Feature Tested

Behavior of beam sections in elastic regime under axial tension loading.
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3.10.2 Verification of Solution

Analytical values were used to determine the cross sectional area and the reactive force developed
during a linear loading process to a prescribed displacement value. The "free ends" of the beams
are linearly displaced to the prescribed value over 20 load steps and then held constant for the
remainder of the test.

The actual results verified against analytic results in the input file are the response quantities
throughout the loading history (presumably fully elastic regime).

Table 3.17 provides the upper bound for the errors between the computed and analytic solutions
for all beam sections in the elastic regime. Full load history results can be found in Figures 3.36,
3.37, and 3.38.

Table 3.17: Percent difference between computed and analytic solution.

Loading For All Beams
Axial Elastic | <0.002

3.10.3 Conclusions

Result for axial extension of all sections is nearly exact. This is due to axial resistance being a
function of section area, which is explicitly computed from section properties.

For input deck see Appendix B.23.
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Figure 3.36: Bar, box, rod, and tube section results: Axial load vs time.
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Figure 3.37: C, I, and T section results: Axial load vs time.
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Figure 3.38: Hat, Z, and L section results: Axial load vs time.
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3.11 Elastic Beam in Bending

Analysis Type Explicit Transient Dynamics
Element Type Beam
Material Model Elastic

Verification Category | Discretization Error
Verification Quantities | Bending, Torsional Stiffnesses
Number of Tests 1

Keywords Beam Section, Elastic, Bending

3.11.1 Problem Description

This problem puts several beam sections through strain paths that exercise the elastic response of
the beams under pure bending and pure torsion. The elements used in this analysis are 2D beams.
The lofted geometry of the beam sections is shown in Figures 3.40 and 3.41.

Note the actual computational elements are two noded line elements. The geometry shown in
Figures 3.40 and 3.41 was produced by plotting supplemental lofted surface geometry on top of
the line elements.

The top row of beams is subjected to uniform bending about the Y (t) axis. The second row of
beams is subjected to uniform bending about the Z (s) axis . The third row of beams is subjected
to uniform torsion about the X (r) axis.

3.11.1.1 Boundary Conditions

The beam end conditions are prescribed. For bending one end of the beam is fixed and other end
is subjected to a prescribed S or T force. For torsion one end of the beam is fixed and the other end
subjected to a prescribed R moment.

Deformation magnitudes are kept low to enable matching code results to small strain beam theory.
The applied force and moment magnitudes are selected so that the section remains elastic.

Loading Condition | Boundary Condition

S Bending F=1.0

T Bending F=1.0

R Torsion F1 = (1/64)*(1-cos(x*pi/3.2e-2)), F2 = 3.125e-2

3.11.1.2 Material Model

The material is specified as elastic

Young’s Modulus | E | 10.0e + 6
Poisson’s Rato v 0.3
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Figure 3.40: Section Representation 1-7

3.11.1.3 Feature Tested

Behavior of beam sections in elastic regime.

3.11.2 Verification of Solution

The analytic result for Ix, Iy and Ip is calculated using aprepro and is included in the input file.

Table 3.18 and 3.19 lists the error between computed analytic solution for each beam section in the
elastic regime.

| Loading | Bar | Box |Rod [Tube |[C1 |C2 |I |
T Bend Elastic [ 0.56 [ 7.2 [ 068 [1.7 [057] 1.5 ]0.008
S Bend Elastic | 056 | 7.2 [ 068 [ 17 |15 [0.57]0.73
R Twist Elastic | 16.0 | 10.5 | 0.014 | 21.0 | 33.0 | 33.0 | 33.0

Table 3.18: Percent Difference Between Computed and Analytic Solution
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Figure 3.41: Section Representation 8-14

| Loading (12 |T |TlI |HAT|Z |L | Ellipse |
T Bend Elastic [ 0.56 [ 1.1 [3.1 [2.0 [0.74[14 ]0.68
SBend Elastic [ 32 |3.1 [1.1 [0.18 [0.92 12 |0.68
R Twist Elastic | 30.0 | 78.0 [ 78.0 | 67.0 | 78.5 [ 70.0 | 3.2

Table 3.19: Percent Difference Between Computed and Analytic Solution

3.11.3 Conclusions

Bending results for all sections tends to be decent. Due to a finite number of integration points
code results do not precisely track analytic results. Some sections (such as the rod and bar) have
integration point locations and weights optimized to provide accurate elastic responses. The Z
beam and the L beam tend to produce inaccurate bending results. All beam sections excluding the
Z and L beam produce an error less than 10 percent of the analytical solution.

Torsion results tend to show the highest deviations from analytic response. The torsional response
of the circular rod is good. Torsional response of the solid bar and closed box sections is OK.
Compact or closed rectangular sections will undergo a small amount of warping during torsion.
Torsional response of the HAT, T, L, Z and I sections are vastly different than the engineering
solution.
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For input deck see Appendix B.24.
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3.12 Elastic and Plastic Beam

Analysis Type Quasi-statics
Element Type Beam
Material Model Elastic-Plastic

Verification Category | Discretization Error
Verification Quantities | Reaction Forces, Moments
Number of Tests 40

Keywords Beam Sections, Elastic, Plastic

3.12.1 Problem Description

This problem puts several beam sections through strain paths that exercise both the elastic and
plastic section response under pure bending, pure torsion, and pure axial extension. The elements
used in this analysis are 2D beams. The lofted geometry of the beam sections is shown in Fig-
ure 3.42. Note the actual computational elements are two noded line elements. The geometry
shown in Figure 3.42 was produced by plotting supplemental lofted surface geometry on top of the
line elements.

The top row of beams is subjected to axial extension. The second row of beams is subjected to
uniform bending about the X (t) axis. The third row of beams is subjected to uniform bending
about the Y (s) axis. The fourth row of beams is subjected to uniform torsion about the Z (r) axis.

All beams consistent of twenty length 0.1 meter elements to make a total beam length of 2 meters.
3.12.1.1 Boundary Conditions

The beam end conditions are prescribed. Axial extension is accomplished by fixing one end of the
beam and extending the far end in the r direction. This produces a constant change in length per
length of beam. For bending one end of the beam is fixed and other end subjected to a prescribed
S or T rotation. This produces a constant bend per length of the beam. For torsion one end of
the beam is fixed and the other end subjected to a prescribed R rotation this produces a constant
rotation per length of the beam.

Deformation magnitudes are kept low to enable matching code results to small strain beam theory.
The applied displacement and rotation magnitudes are selected so that the section remains elastic
for roughly the first third of the loading history, transitions from elastic to plastic in the second
third of the loading history, and attains nearly the maximum plastic load by the end of the loading
history.

Loading Condition | Boundary Condition
Axial Extension d-dz/dL = 5.0e-6

S Bending d-thetay/dL = 5.0e-5
T Bending d-thetax/dL = 5.0e-5
R Torsion d-thetaz/dL = 5.0e-5
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Figure 3.42: Section Representation

3.12.1.2 Material Model

Material is elastic perfectly plastic. Yield stress of the material is set to a very low value. The low
yield stress enables yield of the beam at low total strain to best match small strain beam theory.

Young’s Modulus E | 1.0e+6
Shear Modulus G | 5.0e+5
Yield Stress y0 | 1.0
Hardening Modulus | 4 | 0.0

3.12.1.3 Feature Tested
Behavior of beam sections in both elastic and plastic regimes.
3.12.2 Verification of Solution

Mathematica code is included in the input file to compute analytic result for the Mrr, Mss, Mtt,
and Frr moments and forces for the different loading cases. The Mathematica code is based on
integration of an elastic plastic material model on a beam section using the standard plane sections
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remain plane assumptions. For the computation of the torsional resistance two analytic results are
provided. One analytic result is for torsional resistance is computed assuming no out of plane
warping of the beam section. A second analytic result is provided based on common engineering
assumptions for the torsional resistance of different beam shapes.

For non-circular sections, particularly unrestrained open sections, there will be substantial out of
plane warping during torsion. Out of plane warping of beam sections tends to substantially reduce
the beam’s capacity to resist torsion. The common engineering assumption applies commonly used
correction factors to account for section warping. Description of the torsion correction factors is
given in the Mathematica code in the input deck.

The end displacements are applied by a linear ramp over 25 load steps. The actual results verified
against analytic results in the input file are the response quantities at the first load step (presumably
fully elastic regime) and the response quantities at the last load step (presumably fully plastic
regime.)

Table 3.20 lists the error between computed an analytic solution for each beam section in the
elastic regime and in the fully plastic regime. Full load history results can be found in Figures 3.43
through 3.47.

Loading Rod Bar Box Hat I

Axial Elastic 0.002 | 0.002 | 0.002 | 0.002 | 0.002
Axial Plastic 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005
S Bend Elastic | 0.02 0.12 5.0 1.00 0.20

S Bend Plastic | 0.16 14.0 16.0 0.10 1.0

T Bend Elastic | 0.02 0.05 24.0 1.36 0.20

T Bend Plastic | 0.16 9.0 9.0 0.36 7.5

R Twist Elastic | 0.0015 | 25.0 91.0 2500.0 | 9700
R Twist Plastic | 10.0 34.0 50.0 1000.0 | 2400

Table 3.20: Percent Difference Between Computed and Analytic Solution

3.12.3 Conclusions

Result for axial extension of all sections is nearly exact. This is due to axial resistance being a
function of section area, which is explicitly computed from section properties.

Bending results for all sections tends to be decent. Due to a finite number of integration points
code results do not precisely track analytic results. Some sections (such as the rod and bar) have
integration point locations and weights optimized to provide accurate elastic responses those same
weights will be less optimal in the plastic regime. Sections that have the most integration points
through the thickness, such as the hat, tend to provide the most accurate bending response in
plasticity.

Torsion results tend to show the highest deviations from analytic response. The torsional response
of the circular rod is good. A torqued circular rod will have no section warping, this matches
both the no warping analytic and engineering solution. Torsional response of the solid bar and
closed box sections is OK. Compact or closed rectangular sections will undergo a small amount of
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Figure 3.43: Rod Section
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warping during torsion. Torsional response of the open hat and I sections is vastly different than
the engineering solution. The hat section will warp substantially under torsion, the effect of this
warping is not fully accounted for in the solution given by the code.

For input deck see Appendix B.25.
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Figure 3.44: Bar Section
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Figure 3.45: Box Section
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Figure 3.46: Hat Section
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3.13 Pressure Loaded Layered Cantilever Beam

Analysis Type Explicit/Implicit Dynamics
Element Type Shell
Material Model Elastic

Verification Category | Discretization Error

Verification Quantities | Reaction Moment, Tip Displacement
Number of Tests 4

Keywords Shell, Layered Shell

3.13.1 Problem Description

This test is a cantilevered beam made of shell elements under uniform pressure loading on the shell
surfaces. The load magnitude keeps the problem in small strain, the load is smoothly ramped over
time and then held constant to minimize dynamic effects, and the results are compared with Euler-
Bernoulli beam theory. The physical problem is a beam of width 1, length 10, thickness 0.125, and
applied pressure (at the maximum) of 0.2.

The numerical solution relies on two capabilities: layered shell elements and lofted shells. In the
first case a single shell element with two layers is used to model the beam thickness (with two
elements across the width and 20 along the length), while in the second case two lofted beam
elements, sharing the same nodes, are used to model the beam through the thickness. In each case
the elements are layered/lofted to reproduce a shell beam with the thickness given above that is
homogeneous through the thickness. The test is whether the two methods give the same result and
match classical beam theory.

Note that the individual input files for each specific version run (implicit or explicit, layered or
lofted), are included in this manual, but the documentation in this section applies to every version
of this test.

3.13.1.1 Boundary Conditions

The problem is of a cantilevered beam, fully built-in at one end with zero displacment and zero
rotation boundary conditions. The loading is a uniform pressure applied to one side of the shells.

3.13.1.2 Material

The materials used are all linear elastic with the properties in the accompanying table.

Young’s Modulus | E | 30.0e6
Poisson’s Ratio v | 0.3
Density p | 1.0e -1

Table 3.21: Elastic Material Properties
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3.13.1.3 Feature Tested
The primary features tested are the layered shell section and the shell lofting capabilities.
3.13.2 Assumptions and notes

The major assumption in this test is that the strain is small enough to remain within small strain
theory. For the loading and geometry given, the max strain is on the order of le-4. This puts the
problem well within small strain theory.

Another assumption made is that the loading rate is small enough so that dynamic effects are not
significant after the loading reaches its maximum value (and is held constant thereafter). By in-
spection this appears to be the case, but dynamic effects probably account for most of the observed
(small) difference between numerical and analytic solutions.

3.13.3 Verification of Solution

Euler-Bernoulli beam theory provides the analytic solution. Here we have a simple cantilevered
beam with a uniform distributed loading along its length. From Euler-Bernoulli beam theory the
tip displacement wuyp, is

l4
iy = % (3.64)
while the moment at the built-in end M, is
12
M, = %, (3.65)

where ¢ is the distributed load along the length /, E is Youngs Modulus, and [ is the bending
moment of inertia perpendicular to the shell plane. For our shell beam with pressure loading p,
width w, and thickness ¢

q=pw (3.66)
and X
wt-

I=—. 3.67

B (3.67)

Using the loading and geometry given here, at maximum load [ug,| = 0.0512 and [M| = 10. As
of December, 2011 the numerical results match these to within 0.1% for the implicit calculations
and 0.135% for explicit calculations. The results are checked with these tolerances when this test
is run using the solution verification capability.

For input deck see Appendix B.26.
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Chapter 4

Energy Verification Tests

The following tests verify the computation of various model global energy quantities. Tests are
included to verify the energy computation is corrector for a given model setups and that errors in
those energy quantities converge in the expected ways.
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4.1 Contact Frictional Energy

Analysis Type Explicit/Implicit Dynamics
Element Type Hex8

Strain Incrementation | Strongly Objective
Material Model Elastic

Keywords Contact Energy, Friction

4.1.1 Problem Description

This test checks the computation of the contact energy. The test is composed of a unit cube sitting
on top of a larger block. The top block has an applied displacement on the top surface while the
bottom block has a prescribed displacement in the x-direction.

4.1.1.1 Boundary Conditions

The unit cube has a prescribed displacement of 4e-6 inches on the top surface. It also has a fixed
displacement in the x-direction to prevent it from moving along with the block below it. The
bottom block is fully prescribed where it has a fixed displacement in the y and z direction and has
a final displacement of 0.1 inch in the x-direction.

4.1.1.2 Material Model

Each block uses an elastic material model.

Young’s Modulus | E | 30e6 Psi
Poisson’s Ratio v | 0.0
Density o | 7.4e — 4 slug/in®

4.1.1.3 Feature Tested
The computation of contact energy is tested in explicit dynamics and implicit dynamics.
4.1.2 Assumptions and notes

Poisson’s ratio is set to O to prevent expansion of the unit cube during compression. The analytic
solution does not take into account a change in contact area.

4.1.3 Verification of Solution

Contact energy should be equal to the amount of work done to the system. Work equals the fric-
tional force multiplied by distance. The frictional force is computed by multiplying the coefficient
of friction and normal force. A plot showing the theoretical work versus numerical solution is also
shown below.
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The maximum percent error computed for the simulation is less than 2%, where maximum percent

error is computed by Equation 4.7.

%Error =

For input deck see Appendix B.27.

|Analytic — Computed|

|Analytic|
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4.2 Contact Energy without Friction

Analysis Type Explicit/Implicit Dynamics
Element Type Hex8

Strain Incrementation | Strongly Objective

Material Model Elastic

Keywords Contact Energy, Frictionless

4.2.1 Problem Description

This test checks the computation of the contact energy. The test is composed of a unit cube sitting
on top of a larger block. The top block has an applied displacement on the top surface while the

bottom block has a prescribed displacement in the x-direction.

4.2.1.1 Boundary Conditions

The unit cube has a prescribed displacement of 4e-6 inches on the top surface. It also has a fixed
displacement in the x-direction to prevent it from moving along with the block below it. The
bottom block is fully prescribed where it has a fixed displacement in the y and z direction and has

a final displacement of 0.1 inch in the x-direction.

4.2.1.2 Material Model

Each block uses an elastic material model. .

Young’s Modulus

E | 30e6 Psi

Poisson’s Ratio

v | 0.0

Density

o | 7.4e — 4 slug/in’

4.2.1.3 Feature Tested

The computation of contact energy is tested in explicit dynamics and implicit dynamics.

4.2.2 Assumptions and notes

Poisson’s ratio is set to O to prevent expansion of the unit cube during compression. The analytic

solution does not take into account a change in contact area.

4.2.3 Verification of Solution

Since there is no friction between the two blocks, the contact energy should be 0.

The maximum value of contact energy computed for the simulation is less than (1.0e-2).

For input deck see Appendix B.28.
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4.3 External Energy due to Applied Force

Analysis Type Explicit/Implicit Dynamics
Element Type Mean Quadrature

Strain Incrementation | Strongly Objective
Material Model Elastic

Keywords External Energy, Force

4.3.1 Problem Description

A force is applied to a nodeset on a single element block.The applied energy due to the force should
be equal to outputted external energy.

Element side length | L | 1 m
Time 0.1 sec
Force F | 9810 N

~

4.3.1.1 Boundary Conditions

The one element block is not constrained in any way. A nodeset is added to the top of the block
and a force is applied to this nodeset. The direction of the applied force is in y-direction (+ or -
force will only change the sign of the outputted acceleration and displacement).

4.3.1.2 Material Model

The one element block uses an elastic material model. The density is set to 1000 kg/m? for ease of
calculations.

Young’s Modulus | E | 200e+9 Pa
Poisson’s Ratio v 103
Density o | 1000 kg/m’

4.3.1.3 Feature Tested
Computation of external energy is tested.
4.3.2 Verification of Solution

External energy should be equal to the amount of work done to the system. Work equals force
multiplied by distance. The derivations for acceleration, distance due to acceleration (from the
applied force), and work are shown below. A plot showing the theoretical work versus numerical
solution is also shown below.
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F=ma (4.8)

F
a=— (4.9)
m
9810
= 4.1
1000 (4.10)
a=9812 (4.11)
S
a=a, 4.12)
v=yv,+at 4.13)
1
X=X, + Vot + Eaﬁ (4.14)
1 2
x:0+0+§><9.81><(0.1) 4.15)
x = 0.04905m (4.16)
W= Fx 4.17)
W = 9810 x 0.04905 (4.18)
W = 481.1805J (4.19)

The maximum percent error computed for the explicit and implicit dynamics simulation is less
than 0.5%, where maximum percent error is computed by Equation 4.20.

_ |Analytic — Computed|

%E = 100.0 4.20
oRITor |Analytic| * ( )

For input deck see Appendix B.29.
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4.4 External Energy due to Gravity

Analysis Type Explicit/Implicit Dynamics
Element Type Mean Quadrature

Strain Incrementation | Strongly Objective
Material Model Elastic

Keywords External Energy, Gravity

4.4.1 Problem Description

Gravity is applied to a single element block.The applied energy due to gravity should be equal to
outputted external energy.

Element side length | L | 1 m
Time 0.1 sec
Gravity g | 9.81 m/s?

~

4.4.1.1 Boundary Conditions
The one element block is not constrained in any way. Only gravity effects the block.
4.4.1.2 Material Model

The one element block uses an elastic material model. The density is set to 1000 kg/m? for ease of
calculations.

Young’s Modulus | E | 200e+9 Pa
Poisson’s Ratio v |03
Density p | 1000 kg/m’

4.4.1.3 Feature Tested
Computation of external energy is tested.
4.4.2 Verification of Solution

External energy should be equal to the amount of work done to the system. Work equals force
multiplied by distance. The derivations for distance due to acceleration (gravity), force, and work
are shown below. A plot showing the theoretical work versus numerical solution is also shown
below.

a=a, 4.21)
v =v,+at (4.22)
1
X=X, + vt + Eat2 (4.23)
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Figure 4.4: Energy-time curve
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The maximum percent error computed for the explicit and implicit dynamics simulations are less
than 0.5%, where maximum percent error is computed by Equation 4.32.

|Analytic — Computed|

YoError = * 100.0 (4.32)

|Analytic|
For input deck see Appendix B.30.
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4.5 Hourglass Energy for Uniform Gradient Hex Element with Midpoint
Increment Formulation

Analysis Type | Explicit/Implicit Dynamics

Element Type | Hex8

Material Model | Elastic

Keywords Hourglass Energy, UG Hex8, Midpoint Increment

4.5.1 Problem Description

This test checks the computation of the hourglass energy. The test is composed of a unit cube
subjected to hourglass deformation. The same model is run with three levels of mesh refinement;
the hourglass energy should converge to zero as the mesh is refined.

4.5.1.1 Boundary Conditions

The cube is fully prescribed with kinematic boundary conditions. Displacement boundary condi-
tions are applied such that the one-element version of the test is in pure hourglass deformation.

4.5.1.2 Material

The only material in the problem is elastic. The elastic values are given below.

Young’s Modulus | E | 200.0e3 MPa
Poisson’s Ratio v |03
Density o | 7900.0 kg/m’

Table 4.1: Elastic Material Properties

4.5.1.3 Feature Tested

The computation of hourglass energy is tested.

4.5.2 Assumptions and notes

This test assumes accuracy in the material model and applied boundary conditions.
4.5.3 Verification of Solution

This problem is exercised in explicit dynamics and implicit dynamics; hourglass energy should
exhibit convergence to zero as the mesh is refined. The rate at which the hourglass energy drops is
expected to be 4 but a value between 3 and 4 is accepted in this test.

Figure 4.5 shows the explicit simulation total hourglass energy as the number of elements in the
mesh is increased along with upper and lower bounds of expectation.

Figure 4.6 shows the implicit dynamics simulation total hourglass energy as the number of ele-
ments in the mesh is increased along with upper and lower bounds of expectation.
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Figure 4.5: Hourglass energy for various levels of mesh refinement: Explicit Dynamics

Results from the one-element version of the test are expected to change less than 5%.

For input deck see Appendix B.31.
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Figure 4.6: Hourglass energy for various levels of mesh refinement: Implicit Dynamics
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4.6 Hourglass Energy for Uniform Gradient Hex Element with Strongly
Objective Formulation

Analysis Type | Explicit Dynamics

Element Type | Hex8

Material Model | Elastic

Keywords Hourglass Energy, UG Hex8, Strongly Objective

4.6.1 Problem Description

This test checks the computation of the hourglass energy. The test is composed of a unit cube
subjected to hourglass deformation. The same model is run with three levels of mesh refinement;
the hourglass energy should converge to zero as the mesh is refined.

4.6.1.1 Boundary Conditions

The cube is fully prescribed with kinematic boundary conditions. Displacement boundary condi-
tions are applied such that the one-element version of the test is in pure hourglass deformation.

4.6.1.2 Material

The only material in the problem is elastic. The elastic values are given below.

Young’s Modulus | E | 200.0e3 MPa
Poisson’s Ratio v | 0.3
Density e | 7900.0 kg/m?

Table 4.2: Elastic Material Properties

4.6.1.3 Feature Tested

The computation of hourglass energy is tested.

4.6.2 Assumptions and notes

This test assumes accuracy in the material model and applied boundary conditions.
4.6.3 Verification of Solution

This problem is exercised in explicit dynamics; hourglass energy should exhibit convergence to
zero as the mesh is refined.
Figure 4.7 shows the total hourglass energy as the number of elements in the mesh is increased.

To determine if the test passes or fails, results from the one-element version of the test are compared
to a gold solution file.

For input deck see Appendix B.32.
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Figure 4.7: Hourglass energy for various levels of mesh refinement
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4.7 Hourglass Energy with Viscosity Control for Uniform Gradient Hex El-
ement with Strongly Objective Formulation

Analysis Type | Explicit Dynamics

Element Type | Hex8

Material Model | Elastic

Keywords Hourglass Energy, UG Hex8, Strongly Objective, Viscous

4.7.1 Problem Description

This test checks the computation of the hourglass energy for viscous hourglass control. The test is
composed of a unit cube subjected to hourglass deformation (pure hourglass deformation for the
one-element model). The same model is run with three levels of mesh refinement; the hourglass
energy should converge to zero as the mesh is refined. In addition, the magnitude of the hourglass
energy is checked for the case where the hourglass viscosity coefficient is doubled and for the case
where the strain rate is doubled. In both cases, the hourglass energy should double as well.

4.7.1.1 Boundary Conditions

The cube is deformed using prescribed kinematic boundary conditions. Displacement boundary
conditions are applied such that the one-element version of the test is in pure hourglass deforma-
tion.

4.7.1.2 Material

The only material in the problem is elastic. The elastic values are given below.

Young’s Modulus | E | 200.0e3 MPa
Poisson’s Ratio v |03
Density o | 7900.0 kg/m’

Table 4.3: Elastic Material Properties

4.7.1.3 Feature Tested

Viscous hourglass control is tested.

4.7.2 Assumptions and notes

This test assumes accuracy in the material model and applied boundary conditions.
4.7.3 Verification of Solution

This problem is exercised in explicit dynamics; hourglass energy should exhibit convergence to
zero as the mesh is refined. Additionally, the hourglass energy should increase by a factor of two
if the viscous hourglass coefficient is doubled or if the strain rate is doubled.

216



Hourglass Energy Mesh Convergence
1le+06 T T T T T

900000
800000
700000
600000"
500000
400000

300000

Hourglass Energy (Megajoules)

200000

100000

0

0 0.002 0.004 0.006 0.008 0.01 0.012
Time (secconds)

Figure 4.8: Hourglass energy for various levels of mesh refinement

Figure 4.8 shows the total hourglass energy as the number of elements in the mesh is increased.
Figure 4.9 shows the total hourglass energy when the viscous hourglass coefficient is doubled.
Figure 4.10 shows the total hourglass energy for two levels of strain rate.

To determine if this test passes or fails, results from the 64-element version of the test are compared
to a gold solution file.

For input deck see Appendix B.33.
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Figure 4.9: Hourglass energy for two levels of viscous hourglass coefficient
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Figure 4.10: Hourglass energy for two levels of strain rate

219



4.8 Internal Energy — Explicit and Implicit Dynamics

Analysis Type | Explicit/Implicit Dynamics
Element Type | Hex8

Material Model | Elastic

Keywords Internal Energy

4.8.1 Problem Description
This test checks the computation of the internal energy. The test is composed of a unit cube.
4.8.1.1 Boundary Conditions

The cube is fully prescribed with kinematic boundary conditions. All directions are fixed except
for the z direction where compressive displacement boundary conditions are applied. The displace-
ment is linear up to 1% strain.

4.8.1.2 Material

The only material in the problem is elastic. The elastic values are given below.

Young’s Modulus | E | 200.0e3 MPa
Poisson’s Ratio v | 0.3
Density o | 7900.0 kg/m?

Table 4.4: Elastic Material Properties

4.8.1.3 Feature Tested
The computation of internal energy is tested.
4.8.2 Assumptions and notes

This test assumes accuracy in the material model and applied boundary conditions. Also, the
loading is assumed to approximate quasistatic conditions.

4.8.3 Verification of Solution

This problem is exercised in explicit dynamics and implicit dynamics. They should match the
analytic values of internal energy computed from Equation (4.33). This equation gives the work
done during compression, which is equal to the increase in internal energy in this problem.

Internal Energy = 0.5 * area * Young’s modulus * strain?_. (4.33)

Figure 4.11 shows the code computed values for internal energy in the test.
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Figure 4.11: Analytic and Computed Values of Internal Energy

The maximum percent error computed for the simulations are less than 0.5% where maximum
percent error is computed by Equation 4.34.

% Error = |Analytic — Computed|

100.0 4.34
|Analytic| i ( )

For input deck see Appendix B.34.
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4.9 Internal (Strain) Energy — Quasistatics

Analysis Type | Quasi-statics
Element Type | Hex8

Material Model | Elastic
Keywords Internal Energy

4.9.1 Problem Description
This test checks the computation of the strain energy. The test is composed of a unit cube.
4.9.1.1 Boundary Conditions

The cube is fully prescribed with kinematic boundary conditions. All faces are fixed except for
one, where compressive displacement boundary conditions are applied initially, followed by shear
displacement boundary conditions. The maximum displacement compressive strain is 1% and the
maximum shear strain is 0.1%.

4.9.1.2 Material

The only material in the problem is elastic. The elastic values are given below.

Young’s Modulus | E | 200.0e3 MPa
Poisson’s Ratio v |03
Density p | 7900.0 kg/m’

Table 4.5: Elastic Material Properties

4.9.1.3 Feature Tested
The computation of strain energy is tested.
4.9.2 Assumptions and notes

This test assumes accuracy in the material model and applied boundary conditions. Also, the
loading is assumed to approximate quasistatic conditions.

4.9.3 Verification of Solution

This problem is exercised in quasistatics. It should match the analytic values of compressive strain
energy computed from Equation (4.35) for the first 100.0 seconds and the values of shear strain
energy from Equation (4.36) for the second 100.0 seconds. These equations give the work done
during compression and shear, respectively, which are equal to the strain energy in this problem.

Strain Energy = 0.5 * area = Young’s modulus * strainix. (4.35)
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Figures 4.12 and 4.13 show the analytic and code-computed values of strain energy for this test.
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Figure 4.12: Analytic and computed values of strain energy for compressive loading

The maximum percent errors computed for the simulations are less than 0.14% for the compressive
strain energy and less than 0.05% for the shear strain energy, where maximum percent error is

computed by Equation 4.37.

|Analytic — Computed|
|Analytic|

* 100.0 (4.37)

%Error =

For input deck see Appendix B.35.
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Figure 4.13: Analytic and computed values of strain energy for shear loading
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4.10 Kinetic Energy

Analysis Type Explicit/Implicit Dynamics
Element Type Hex8

Strain Incrementation | Mid-Point Incrementation
Material Model Elastic

Verification Category | Analytic Solution
Verification Quantities | Kinetic Energy
Keywords Kinetic Energy

4.10.1 Problem Description

This test verifies the computation of the kinetic energy on a unit cube subjected to a prescribed
sinusoidal velocity boundary condition.

4.10.1.1 Boundary Conditions

The cube is fully prescribed with kinematic boundary conditions. All directions are fixed except
for the one direction where a sinusoidal velocity is prescribed according to Equation 4.38.

Velocity = 2.0 * sin(2.0 * m * t) (4.38)
4.10.1.2 Material

The only material in the problem is elastic. The elastic values were selected for convenience of
calculation.

Young’s Modulus | E | 30.0e6
Poisson’s Ratio v |03
Density p | 100.0

Table 4.6: Elastic Material Properties

4.10.1.3 Feature Tested

The computation of kinetic energy is tested for explicit and implicit dynamics.
4.10.2 Assumptions and notes

This test assumes the prescribed velocity is correctly enforced.

4.10.3 Verification of Solution

This problem is exercised in explicit and implicit dynamics and should match the analytic values
of kinetic energy computed from the Equation 4.39.
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Kinetic Energy = 0.5  mass * velocity* (4.39)

Figure 4.14 shows the analytic and computed values for kinetic energy in the test.
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Figure 4.14: Analytic and Computed Values of Kinetic Energy

The maximum percent error computed for the simulations is less than 0.5% (skipping where energy
crosses zero) where maximum percent error is computed by Equation 4.40.

|Analytic — Computed| 100.0 (4.40)

Y%oError = -
|Analytic]|

For input deck see Appendix B.36.
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Appendix A

Other Sierra/SM Verification Tests not in this Docu-
ment

The following tables list verification tests that exist in the nightly Sierra/SM test suite, but have
not yet been formally added to this document. Each of these tests is run nightly and compares the
results of a Sierra/SM code run to an analytic result. Over time, more of these tests will be included
in this document with full documentation of code results and analytic solutions.

In addition to the verification tests, several thousand additional regression tests are run nightly
with the Sierra/SM code suite. These regression tests ensure that: different capabilities remain
functional when used together; the performance of the code does not degrade; all supported input
commands are handled correctly; and, code results of analyses that are too complex to have an
analytic solution still compare closely with known acceptable results.
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Table A.1: Additional Contact Verification Tests

Test Location

adagio_rtest/adagio/contactSimpleFrictionless/

adagio_rtest/adagio/contactTiedWithKinBc/

adagio_rtest/adagio/contact_fixed/

adagio_rtest/adagio/contact_simple/

adagio_rtest/high_velocity_contact/hex_v_hex/

adagio_rtest/high_velocity_contact/sphere_v_hex/

adagio_rtest/presto/chatter_contact/

adagio_rtest/presto/contact_kinbc_slice/

adagio_rtest/presto/ContactGeometryCheck/

adagio_rtest/presto/initial_overlap4/

adagio_rtest/presto/vtest/contact_2block_init_velocity_nogap/

adagio_rtest/presto/vtest/contact_2block_init_velocity_withgap/

adagio_rtest/presto/vtest/contact_3slide_blocks/

adagio_rtest/presto/vtest/contact_fixed/

adagio_rtest/presto/vtest/contact_patch_test_1/

adagio_rtest/presto/vtest/contact_patch_test_2/

adagio_rtest/presto/vtest/contact_patch_test_3/

adagio_rtest/presto/vtest/remove_initial_overlap/

adagio_rtest/verification/contact_tests/shell_edge_test/

adagio_rtest/verification/elastic_bar_impact/
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Table A.2: Additional Material Verification Tests

Test Location

adagio_rtest/materials/abaqus_umat_vumat/

adagio_rtest/materials/elastic/

adagio_rtest/materials/ep_power_law/

adagio_rtest/materials/johnson_cook/

adagio_rtest/materials/ml_ep_fail/

adagio_rtest/materials/ml_ep_fail_biaxial/

adagio_rtest/materials/plane_stress_rate_plasticity_vtest/

adagio_rtest/materials/thermoelastic/

adagio_rtest/presto/vtest/ductile_death_disp/

adagio_rtest/presto/vtest/elastic_death_disp/

adagio_rtest/presto/vtest/elastic_death_load/

adagio_rtest/presto/vtest/material_ep_one_elem_disp/

adagio_rtest/presto/vtest/material_ep_one_elem_press/

adagio_rtest/presto/vtest/B61_MLEP_dynamic_compress/

adagio_rtest/presto/vtest/B61_MLEP_quasi_compress/

adagio_rtest/presto/vtest/B61_MLEP_thermal_strain/

adagio_rtest/presto/vtest/B61_MLEP_vpf_quasi_compress/

adagio_rtest/presto/vtest/B61_ORTHO_dynamic_compress/

adagio_rtest/presto/vtest/B61_ORTHO_quasi_compress/

adagio_rtest/presto/vtest/B61_vpf_dynamic_compress/

adagio_rtest/presto/vtest/B61_vpf_thermal_strain/

adagio_rtest/presto/vtest/B61_vpf_quasi_compress/
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Table A.3: Additional Solid Element Verification Tests

Test Location

adagio_rtest/adagio/ug3dh8_patch_test_velbc/

adagio_rtest/adagio/ug3dh8_patch_test/

adagio_rtest/adagio/tet10_uni_disp_cube/

adagio_rtest/adagio/tet4_uni_disp_cube/

adagio_rtest/presto/tet_conv(/

adagio_rtest/presto/vtest/tet10_one_elem/

adagio_rtest/presto/vtest/tet4_one_elem/

adagio_rtest/presto/vtest/tet_so_patch_tests/

adagio_rtest/presto/vtest/ug3dh8_mi_conv0/

adagio_rtest/presto/vtest/rotating_ring_off_axis_hex/

adagio_rtest/presto/vtest/rotating_ring_off_axis_hexso/

adagio_rtest/presto/vtest/rotating_ring_on_axis_hex/

adagio_rtest/presto/vtest/rotating_ring_on_axis_hexso/

adagio_rtest/verification/nodal_stress/cantilever_beam_convergence/fully_integrated_hex8/

adagio_rtest/verification/nodal_stress/cantilever_beam_convergence/hex27/

adagio_rtest/verification/nodal_stress/cantilever_beam_convergence/uniform_gradient_hex8/
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Table A.4: Additional Shell Element Verification Tests

Test Location

adagio_rtest/presto/vtest/sp3dq4_memb_patch_test_elastobad/

adagio_rtest/presto/vtest/ur3dq4_mi_memb_patch_test/

adagio_rtest/presto/vtest/kinbc_fixedrotationcomp_ur3dq4_so_twisted_beam/

adagio_rtest/presto/vtest/pressurized_ep_cyl_rfnd/

adagio_rtest/presto/vtest/pressurized_ep_cylinder/

adagio_rtest/shell_verification/vp18_pipe-on-pipe-impact/key_hoft_shell/

adagio_rtest/shell_verification/vp18_pipe-on-pipe-impact/mean_quadrature/

adagio_rtest/verification/vp01_beam-straight/enhanced_strain/

adagio_rtest/verification/vp01_beam-straight/key_hoff_shell/

adagio_rtest/verification/vp01_beam-straight/mean_quadrature/

adagio_rtest/verification/vp02_beam-twisted/enhanced_strain/

adagio_rtest/verification/vp02_beam-twisted/key_hoff_shell/

adagio_rtest/verification/vp02_beam-twisted/mean_quadrature/

adagio_rtest/verification/vp02_beam-twisted/seven_parameter/

adagio_rtest/verification/vp03_two-element-bending/mean_quadrature/

adagio_rtest/verification/vp04_hemisphere-diameter-loads/key_hoft_shell/

adagio_rtest/verification/vp05_raasch-hook/key_hoff_shell/

adagio_rtest/verification/vp05_raasch-hook/mean_quadrature/

adagio_rtest/verification/vp06_beam-to-ring/enhanced_strain/

adagio_rtest/verification/vp06_beam-to-ring/key_hoff_shell/

adagio_rtest/verification/vp06_beam-to-ring/mean_quadrature/

adagio_rtest/verification/vp09_ptest-sphere-inflation/enhanced_strain/

adagio_rtest/verification/vp09_ptest-sphere-inflation/key_hoff_shell/

adagio_rtest/verification/vp09_ptest-sphere-inflation/mean_quadrature/

adagio_rtest/verification/vp10_simply-supported-plate/key_hoft_shell/

adagio_rtest/verification/vp13_cylinder-pinched_diaphram/key_hoft_shell/

adagio_rtest/verification/vp15_hogg-plate/key_hoft_shell/

adagio_rtest/verification/vp19_layered-cantilever/

Table A.5: Additional Membrane Element Verification Tests

Test Location
adagio_rtest/adagio/ur3dm4_patch_test/
adagio_rtest/presto/vtest/ur3dm4_so_patch_test/
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Table A.6: Additional Line Element Verification Tests

Test Location
adagio_rtest/adagio/truss_cosine_load/
adagio_rtest/presto/beam_timestep_baseline/
adagio_rtest/presto/damper_spring_critdamped/
adagio_rtest/presto/damper_spring_underdamped/
adagio_rtest/presto/truss_cosine_load/
adagio_rtest/presto/vtest/spring_on_axis_0lel/
adagio_rtest/presto/vtest/spring_on_axis_05el/

Table A.7: Additional Specialty Element Verification Tests

Test Location
adagio_rtest/presto/spot_weld_test/
adagio_rtest/presto/spotweld_multiple/
adagio_rtest/presto/rbar/
adagio_rtest/presto/rigid_body_ellipsoid/
adagio_rtest/presto/rigid_body_from_attribute/
adagio_rtest/presto/rigid_body_general/
adagio_rtest/presto/rigid_body_kinbc/
adagio_rtest/presto/rigid_body_pmass_rotate/
adagio_rtest/presto/rigid_body_pmass_translate/
adagio_rtest/presto/rigid_body_principal/
adagio_rtest/presto/rigid_body_wedge/
adagio_rtest/presto/vtest/embedded_sph/
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Table A.8: Additional Boundary Condition Verification Tests

Test Location

adagio_rtest/adagio/beam_bc_on_off/

adagio_rtest/presto/periodbc_block_offsethole/

adagio_rtest/presto/vtest/kinbc_presaccelcomp_baronaxis_sset/

adagio_rtest/presto/vtest/kinbc_presdisplcomp_baronaxis_sset/

adagio_rtest/presto/vtest/kinbc_presrotation_singleshell_mi/

adagio_rtest/presto/vtest/kinbc_presvelcomp_baronaxis/

adagio_rtest/presto/vtest/kinbc_presveldir_baroffaxis/

adagio_rtest/presto/vtest/kinbc_presvelrad_ringsect/

adagio_rtest/presto/vtest/fext_gravity_bar/

adagio_rtest/presto/vtest/fext_presforcecomp_beam/

adagio_rtest/presto/vtest/fext_presforcedir_beam/

adagio_rtest/presto/vtest/fext_presforcesub_beam/

adagio_rtest/presto/vtest/fext_presmomentcomp_singleshell_mi/

adagio_rtest/presto/vtest/fext_presmomentdir_singleshell_mi/

adagio_rtest/presto/vtest/fext_unifpress_baroffaxis_impulse/

adagio_rtest/presto/vtest/fext_unifpress_baronaxis_impulse/

Table A.9: Additional Miscellaneous Verification Tests

Test Location

adagio_rtest/abnormal_usage/distorted_elem/

adagio_rtest/abnormal_usage/distorted_elem_post_overlap_rem/

adagio_rtest/presto/vtest/mass_property_testl/

adagio_rtest/presto/vtest/mass_property_test2/

adagio_rtest/presto/vtest/vme5/

adagio_rtest/user_sub_lib/cavity Volume/

adagio_rtest/verification/V005/

adagio_rtest/verification/V063/

adagio_rtest/verification/VM18/

adagio_rtest/verification/VM27/

adagio_rtest/verification/VM7/

adagio_rtest/verification/VMC1/

adagio_rtest/verification/VMEG6/

adagio_rtest/verification/strain_cycle/imp_dynamics/
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Appendix B

Input Decks For Verification Problems
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B.1 Contact Force Balance 2.1

begin sierra contact_force_balance

begin function ramp

type is analytic

evaluate expression is "x <= 1.0 ? sin((pi/2.0)*x) : 1.0;"
end

begin material flubber
density = 100.0
begin parameters for model elastic
youngs modulus = 30.0e6
poissons ratio = 0.3
end parameters for model elastic
end material flubber

begin finite element model contact_force_balancel
database name = contact_force_balance.g

database type = exodusII

begin parameters for block block_1

material = flubber
model = elastic
end

begin parameters for block block_2

material = flubber
model = elastic
end

end finite element model contact_force_balancel
begin adagio procedure fred

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for adagio region adagio

time increment = 0.1
end
end
termination time = 1.0
end

begin adagio region adagio
use finite element model contact_force_balancel

begin results output fred

database name = contact_force_balance.e
database type = exodusII

at step 0, increment = 10

nodal variables = displacement
nodal variables = velocity

nodal variables = acceleration
nodal variables = force_contact
nodal variables = force_external
nodal variables = force_internal
nodal variables = reaction

element variables = von_mises
global variables = timestep

global variables = external_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = momentum

global variables = cont_press
global variables = cont_fixed
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global variables = press_force
global variables = fixreact
end

BEGIN HISTORY OUTPUT OUTPUT_adagio_HIS
DATABASE NAME = contact_force_balance.h
DATABASE TYPE = EXODUSII
AT STEP 0, INCREMENT = 1
VARIABLE = GLOBAL cont_press
VARIABLE = GLOBAL cont_fixed
VARIABLE = GLOBAL press_force
VARIABLE = GLOBAL fixreact
VARIABLE = GLOBAL errl
VARIABLE = GLOBAL err2
VARIABLE = GLOBAL err3

END HISTORY OUTPUT OUTPUT_adagio_HIS

begin fixed displacement
block = block_1
components = xyz

end

begin pressure

surface = surface_l1

function = ramp

scale factor = 1000.0
end

begin user output
block = block_2
compute global press_force as sum of nodal force_external
compute at every step

end

begin user output
block = block_1
compute global cont_fixed as sum of nodal force_contact
compute at every step

end

begin user output
block = block_2
compute global cont_press as sum of nodal force_contact
compute at every step

end

begin user output
block = block_1
compute global fixreact as sum of nodal reaction
compute at every step

end

begin user output

compute global errl from expression "abs (press_force[l] + cont_press[l]) + abs(press_force[2] + cont_pres
compute global err2 from expression "abs (cont_press [1] + cont_fixed[1l]) + abs(cont_press [2] + cont_fixe
compute global err3 from expression "abs(cont_fixed [1] + fixreact [1]) + abs(cont_fixed [2] + fixreact

end

begin solution verification

completion file = VerifErr

verify global errl = 0.0

verify global err2 = 0.0

verify global err3 = 0.0

tolerance = 0.5 ## 0.05 % of Balanced
end

begin contact definition frictionless
search = dash
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enforcement = al
contact surface surf_1 contains block_1
contact surface surf_2 contains block_2
begin interaction inter_1
surfaces = surf_1 surf_2
friction model = fric
end interaction inter_1
begin constant friction model fric
friction coefficient = 0.1
end
end contact definition frictionless

Begin solver
level 1 predictor = none
begin control contact

target relative residual = 1.0e-3
Maximum Iterations = 100
Minimum Iterations =2
end
Begin cg
acceptable relative residual = 1.0el0
target relative residual = 1.0e-5
maximum iterations = 500
iteration print = 50
begin full tangent preconditioner
minimum smoothing iterations = 25
iteration update = 100
end
end
end
end
end

end
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B.2 Hertz Sphere-Sphere Contact 2.2

$ Algebraic Preprocessor (Aprepro) version 5.03 (2017/11/14)
## Parameters

# P = 50000000 # Prescribed Force

# E = 6.89e+10 # Young’s Modulus

# nu = 0.33 # Poisson’s Ratio

# density = 1.024e-06 # Density

# Rstar = 1 # Radius of Sphere

# numThetaCollections = 8 # Number of Collection Points Around Circumference of Contact Patch
# numRadialCollections = 8 # Number of Collection Points Along Radius of Contact Patch

## Variables

# degreelnterval = 45

# degreeTolerance = 22.5

# Rmax = 0.08164645795 # Analytic

# radiusInterval = 0.01020580724 # Computed from Rmax

# radiusTolerance = 0.005102903622 # Computed from Rmax (but not used below)
# radiusErrorMax = 4.5 # Command line input (percentage)
# radiusErrorMaxTol = 0.5 # Command line input

# numRadialCollections = 9 # Add 1 for zero radius collection
# deflectErrorMax = 9.75 # Command line input (percentage)
# deflectErrorMaxTol = 1 # Command line input

# numSteps =4

# constraint = face_face

# contactAlgorithm = augmented Lagrange node-Face

begin sierra Analysis of Hertz-Mindlin-Lubkin contact model
title Analysis of Hertz-Mindlin-Lubkin contact model

define direction y with vector 0.0 1.
define direction x with vector 1.0 0.
define direction z with vector 0.0 0.
define point origin with coordinates

o P O O
o O O o

- Functions —---—------

begin definition for function load

type is analytic

evaluate expression = " 50000000 % x "
end definition for function load

begin definition for function analytic_radius
type is analytic

#expression variable: P = global load
evaluate expression = " pow((0.75x50000000xx%x1/6.89e+10), (1.0/3.0))"
end

begin definition for function analytic_compression
type = analytic
expression variable: a = global analytic_radius
evaluate expression = "(axa)/1"

end

begin definition for function ErrorCM
type = analytic
expression variable: ac = global analytic_compression
expression variable: ¢ = global compression
"

evaluate expression = (ac > 0.0) ? (abs( abs(c) - ac )/ac) = 100.0 : 0.0
end

begin definition for function XYradius
type = analytic
expression variable: x
expression variable: y

nodal model_coordinates (x)
nodal model_coordinates (y)
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expression variable: dx = nodal displacement (x)

expression variable: dy = nodal displacement (y)

evaluate expression = "sqgrt ((x+dx) "2+ (y+dy)"2)"
end

begin definition for function angle
type = analytic
expression variable: x = nodal model_coordinates (x)
expression variable: y = nodal model_coordinates (y)
expression variable: dx = nodal displacement (x)
expression variable: dy = nodal displacement (y)

evaluate expression = " ( atan2((y+dy), (x+dx)) < 0.0 ) ? atan2 ((y+dy), (x+dx))* (180.0/p1i)

end

begin definition for function contact_radius
type = analytic

expression variable: cs = nodal contact_status

expression variable: cnt = nodal contact_normal_traction_magnitude

expression variable: radius = nodal XYradius

evaluate expression = " ( cs > 0.9 && abs(cnt) > 0.0 && radius < 0.5 ) ? radius : 0.0"
end

begin definition for function analytic_pressure
type is analytic
expression variable: a = global analytic_radius
expression variable: r = nodal XYradius

expression variable: P = global load
evaluate expression = "(r <= a) ? 1.5%P/(pi*ax*a)*sqrt(l-(r/a)x(r/a)) : 0.0"
end

begin definition for function contact_pressure
type is analytic
expression variable: fx = nodal force_contact (x)
expression variable: fy = nodal force_contact (y)

expression variable: fz = nodal force_contact (z)

expression variable: ca = nodal contact_area

evaluate expression = " (ca > 0.0) ? (sqrt(fx"2+fy”2+fz~2)/ca) : 0.0"
end
#0
#0

begin definition for function contactRadiusl
type = analytic
expression variable: angle = nodal angle
expression variable: crad = nodal contact_radius
evaluate expression = " ( angle >= -22.5 && angle < 22.5 ) ? crad : 0.0
end
begin definition for function ErrorCR1
type = analytic
expression variable: acrad = global analytic_radius
expression variable: crad = global MaxContactRadiusl
evaluate expression = " acrad > 0.0 ? ( abs(crad - acrad) / acrad ) * 100.0 : 0.0 "
end
# 45
begin definition for function contactRadius2
type = analytic
expression variable: angle = nodal angle
expression variable: crad = nodal contact_radius
evaluate expression = " ( angle >= 22.5 && angle < 67.5 ) ? crad : 0.0 "
end
begin definition for function ErrorCR2
type = analytic
expression variable: acrad = global analytic_radius
expression variable: crad = global MaxContactRadius2
evaluate expression = " acrad > 0.0 ? ( abs(crad - acrad) / acrad ) % 100.0 : 0.0 "
end
# 90
begin definition for function contactRadius3
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type = analytic
expression variable: angle = nodal angle
expression variable: crad = nodal contact_radius

evaluate expression = " ( angle >= 67.5 && angle < 112.5 )

end
begin definition for function ErrorCR3
type = analytic
expression variable: acrad = global analytic_radius

expression variable: crad = global MaxContactRadius3
evaluate expression = " acrad > 0.0 ? ( abs(crad - acrad)
end
# 135

begin definition for function contactRadius4
type = analytic
expression variable: angle = nodal angle
expression variable: crad = nodal contact_radius

evaluate expression = " ( angle >= 112.5 && angle < 157.

end
begin definition for function ErrorCR4
type = analytic
expression variable: acrad = global analytic_radius
expression variable: crad = global MaxContactRadius4
evaluate expression = " acrad > 0.0 ? ( abs(crad - acrad)
end
# 180
begin definition for function contactRadius5
type = analytic
expression variable: angle = nodal angle
expression variable: crad = nodal contact_radius

evaluate expression = ( angle >= 157.5 && angle < 202.

end
begin definition for function ErrorCR5
type = analytic
expression variable: acrad = global analytic_radius
expression variable: crad = global MaxContactRadiusb5
evaluate expression = " acrad > 0.0 ? ( abs(crad - acrad)
end
# 225
begin definition for function contactRadius6
type = analytic
expression variable: angle = nodal angle
expression variable: crad = nodal contact_radius

evaluate expression = " ( angle >= 202.5 && angle < 247.

end
begin definition for function ErrorCR6
type = analytic
expression variable: acrad = global analytic_radius

expression variable: crad = global MaxContactRadius6
evaluate expression = " acrad > 0.0 ? ( abs(crad - acrad)
end
# 270

begin definition for function contactRadius?
type = analytic
expression variable: angle = nodal angle
expression variable: crad = nodal contact_radius

evaluate expression = " ( angle >= 247.5 && angle < 292.

end
begin definition for function ErrorCR7
type = analytic
expression variable: acrad = global analytic_radius
expression variable: crad = global MaxContactRadius7
evaluate expression = " acrad > 0.0 ? ( abs(crad - acrad)
end
# 315
begin definition for function contactRadius8
type = analytic
expression variable: angle = nodal angle
expression variable: crad = nodal contact_radius
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evaluate expression = " ( angle >= 292.5 && angle < 337.5 ) ? crad : 0.0 "
end
begin definition for function ErrorCRS8
type = analytic
expression variable: acrad = global analytic_radius
expression variable: crad = global MaxContactRadius8
evaluate expression = " acrad > 0.0 ? ( abs(crad - acrad) / acrad ) * 100.0 : 0.0 "
end
# 360

begin definition for function ErrorCP

type = analytic

expression variable: acp = nodal analytic_pressure

expression variable: cp = nodal contact_pressure

expression variable: crad = nodal contact_radius

expression variable: acrad = global analytic_radius

evaluate expression = " (crad <= 0.75xacrad && cp > 0.0 ) ? ( abs( cp —acp ) ) : 0.0
end

begin property specification for material mat_1
density = 1.024e-06
begin parameters for model elastic
youngs modulus = 6.89e+10
poissons ratio = 0.33
end parameters for model elastic
end property specification for material mat_1

—————————— Finite Element Model —---——————--

begin finite element model hertz
Database name = p03_Hertz_contact.g
Database type = exodusII

begin parameters for block block_1 block 10 block_ 1000
material mat_1
solid mechanics use model elastic

end parameters for block block_1 block_10 block_1000

end finite element model hertz
begin adagio procedure procedure_1
- Time Step Control —--—-—-—-—————-

begin time control
begin time stepping block p0
start time = 0.0
begin parameters for adagio region region_1
number of time steps = 4
end parameters for adagio region region_1
end time stepping block pO
termination time = 1.0
end time control

begin adagio region region_1

use finite element model hertz

begin contact definition contl
search = dash
contact surface skin_10 contains block 10
contact surface skin_1 contains block_1
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contact
enforcem
begin in
fricti
master
slave
constr
end inte
begin in
master
slave
fricti
constr
end inte
compute
end contac

begin fixe
block =
componen
end fixed

begin fixe
block =
componen
end fixed

begin pres
surface
componen
function
scale fa

end prescr

777777777 Resul

begin user
surface
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
#0
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute

surface skin_1000 contains block_1000
ent = al

teraction int_0

on model = frictionless

= skin_1000

= skin_1

aint formulation = face_face
raction int_0

teraction int_1

= skin_10

= skin_1

on model = tied

aint formulation = face_face
raction int_1

contact variables = on

t definition contl

Boundary Conditions ———-—-———-—-—

d displacement
block_10

ts = xvy z
displacement

d displacement
block_1000

ts = x vy
displacement

cribed force
= surface_2
t =z
= load
ctor = -0.25 ## 4 nodes
ibed force

ts Output —-—————-—-

output

= surface_3

global load as function load

global analytic_radius as function analytic_radius
global analytic_compression as function analytic_compression
global compression as min of nodal displacement (z)
global ErrorCM as function ErrorCM

nodal XYradius as function XYradius

nodal angle as function angle

nodal contact_radius as function contact_radius

nodal analytic_pressure as function analytic_pressure
nodal contact_pressure as function contact_pressure
nodal ErrorCP as function ErrorCP

global L2ErrorCP as l1l2norm of nodal ErrorCP

nodal contactRadiusl as function contactRadiusl

global MaxContactRadiusl as max of nodal contactRadiusl
global ErrorCR1l as function ErrorCR1

nodal contactRadius2 as function contactRadius2

global MaxContactRadius2 as max of nodal contactRadius2
global ErrorCR2 as function ErrorCR2

nodal contactRadius3 as function contactRadius3

global MaxContactRadius3 as max of nodal contactRadius3
global ErrorCR3 as function ErrorCR3

nodal contactRadius4 as function contactRadius4

global MaxContactRadius4 as max of nodal contactRadius4
global ErrorCR4 as function ErrorCR4

nodal contactRadius5 as function contactRadius5

global MaxContactRadius5 as max of nodal contactRadiusb
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compute global ErrorCR5 as function ErrorCR5

compute nodal contactRadius6 as function contactRadiusé

compute global MaxContactRadius6 as max of nodal contactRadius6
compute global ErrorCR6 as function ErrorCR6

compute nodal contactRadius7 as function contactRadius?

compute global MaxContactRadius7 as max of nodal contactRadius7
compute global ErrorCR7 as function ErrorCR7

compute nodal contactRadius8 as function contactRadius8

compute global MaxContactRadius8 as max of nodal contactRadius8
compute global ErrorCR8 as function ErrorCR8

compute at every step

end

begin results output output_1

database name = p03_Hertz_contact.e
at step 0 increment = 1

nodal variables =
nodal variables =
nodal variables =
nodal variables =
nodal variables =
nodal variables =
nodal variables =
nodal variables =
global variables
global variables
global variables
nodal variables =
nodal variables =
nodal variables
nodal variables
nodal variables
nodal variables =
global variables
global variables
global variables
global variables
#0

nodal variables =
global variables
global variables
nodal variables =
global variables
global variables
nodal variables =
global variables
global variables
nodal variables =
global variables
global variables
nodal variables =
global variables
global variables
nodal variables =
global variables
global variables
nodal variables =
global variables
global variables
nodal variables =
global variables
global variables

completion file =

displacement

force_contact
contact_tangential_direction as cdirtan
contact_normal_direction as cdirnor
contact_status as celement
contact_normal_traction_magnitude as cfnor
contact_tangential_traction_magnitude as cftan
contact_area as carea

total_iter as itotal

analytic_radius

load

contact_radius

analytic_pressure

contact_pressure

angle
XYradius

ErrorCP

L2ErrorCP

analytic_compression

compression

ErrorCM

contactRadiusl
MaxContactRadiusl
ErrorCR1
contactRadius2

= MaxContactRadius2

ErrorCR2
contactRadius3
MaxContactRadius3
ErrorCR3
contactRadius4

= MaxContactRadius4

ErrorCR4
contactRadiusb
MaxContactRadiusb5
ErrorCR5
contactRadius6

= MaxContactRadius6

ErrorCR6
contactRadius7
MaxContactRadius7
ErrorCR7
contactRadius8
MaxContactRadius8
ErrorCR8

end results output output_1

begin solution verification

VerifContactRadius

skip times = 0.0 to 0.999

#0
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verify global ErrorCR1l =
verify global ErrorCR2 =
verify global ErrorCR3 =
verify global ErrorCR4 =
verify global ErrorCR5 =
verify global ErrorCR6 =
verify global ErrorCR7 =
verify global ErrorCR8 =
tolerance = 0.5
end

[ S e . T S o
[CENC BNC, B G B RN C B

begin solution verification
completion file = VerifContactCompression
skip times = 0.0 to 0.999
verify global ErrorCM = 9.75
tolerance =1
end

begin solver

begin control contact

target relative residual = 1.0e-3
target relative contact residual = 1.0e-3
maximum iterations = 100

end

begin cg
target relative residual = 1.0e-5
acceptable relative residual = 1.0el0
maximum iterations = 100
iteration print = 10

end cg

end solver
end adagio region region_1
end adagio procedure procedure_1

end sierra Analysis of Hertz-Mindlin-Lubkin contact model
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B.3 Deriesiewicz Sphere-Sphere Contact 2.3

# jas2adagio translation from deresiewicz.i done on Wed Jun 25 12:57:52 2008
# Warning/Error/Information Message Help: —-——————————
# Numbers in parentheses () refer to JAS input file lines.
# Numbers in brackets [] refer to Adagio input file lines.
{include ("materialParameters.i") }
begin sierra Analysis of Hertz-Mindlin-Lubkin contact model
title Analysis of Hertz-Mindlin-Lubkin contact model
define direction y with vector 0.0 1
define direction x with vector 1.0 0.
00
s

define direction z with vector O.
define point origin with coordinate

o P O O
o O O O

{include ("computeTorque.i") }
o Materials —————————-

begin property specification for material mat_1
density = 1.024E-6
begin parameters for model elastic
youngs modulus = 68900000000.0
poissons ratio = 0.33
end parameters for model elastic
end property specification for material mat_1

begin solid section solid_1
strain incrementation = midpoint_increment
hourglass rotation = scaled

end solid section solid_ 1

begin property specification for material mat_10
density = 1.0
begin parameters for model elastic
youngs modulus = 110000.0
poissons ratio = 0.3
end parameters for model elastic
end property specification for material mat_10

begin solid section solid_10
rigid body = 10
end solid section solid_10

begin rigid body 10
end rigid body 10

begin property specification for material mat_1000
density = 1.0
begin parameters for model elastic
youngs modulus = 110000.0
poissons ratio = 0.3
end parameters for model elastic
end property specification for material mat_1000

begin solid section solid_1000
rigid body = 1000

end solid section s0lid_1000

begin rigid body 1000
end rigid body 1000
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begin finite element model deresiewicz
Database name = deresiewicz.g
Database type = exodusII
component separator character = ""

begin parameters for block block_1
material mat_1
solid mechanics use model elastic
section = solid_1

end parameters for block block_1

begin parameters for block block_10
material mat_10
solid mechanics use model elastic
section = solid_10

end parameters for block block_10

begin parameters for block block_1000
material mat_1000
solid mechanics use model elastic
section = s0lid_1000

end parameters for block block_1000

end finite element model deresiewicz
begin adagio procedure procedure_1
- Time Step Control ----—-—-—-—-—-

begin time control
begin time stepping block p0
start time = 0.0
begin parameters for adagio region region_1
number of time steps = 10
end parameters for adagio region region_1
end time stepping block pO
begin time stepping block pl
start time = 0.01
begin parameters for adagio region region_1
number of time steps = 9
end parameters for adagio region region_1
end time stepping block pl
begin time stepping block p2
start time = 0.1
begin parameters for adagio region region_1
number of time steps = 9
end parameters for adagio region region_1
end time stepping block p2
begin time stepping block p3
start time = 1.0
begin parameters for adagio region region_1
number of time steps = 20
end parameters for adagio region region_1
end time stepping block p3
termination time = 2.0
end time control

begin adagio region region_1

use finite element model deresiewicz

begin contact definition frictional
search = acme
enforcement = frictional
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contact surface surf_2 contains
contact surface surf_3 contains

begin interaction int_0

master = surf_2

slave = surf_3

normal tolerance = le-06
tangential tolerance = 1le-08
capture tolerance = le-06
tension release = 0.0
friction coefficient = 0.3

friction coefficient function

end interaction int_0

end contact definition frictional

begin contact definition tied
search = acme
enforcement = tied

contact surface surf_1 contains
contact surface surf_4 contains

begin interaction int_0

master = surf_1
slave = surf_4
normal tolerance = 0.0001

tangential tolerance = 0.0001

capture tolerance = 0.0001
end interaction int_0

end contact definition tied
o Boundary Conditions

begin fixed displacement
block = block_10
components = x y z

end fixed displacement

begin fixed displacement
block = block_1000
components =y

end fixed displacement

begin fixed rotation
block = block_10
components = x y z

end fixed rotation

begin fixed rotation
block = block_1000
components = x

end fixed rotation

begin fixed rotation
block = block_1000
components =y

end fixed rotation

begin prescribed displacement
block = block_1000
component = x
function = function_120
scale factor = 0.003

end prescribed displacement

begin prescribed force
block = block_1000

surface_2
surface_3

= function_1

surface_1
surface_4
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component = z

function = function_110

scale factor = -50000000.0
end prescribed force

begin prescribed rotation
block = block_1000

direction = z
function = function_1100
scale factor = 0.05

end prescribed rotation
- Results Output -————————-
{include ("outputTorque.i") }
begin results output output_1
database name = deresiewicz.e

database type = exodusII
component separator character = ""

at time 0.0 increment = 1.0

at step 28 increment =1

nodal variables = displacement as displ

nodal variables = contact_tangential_direction as cdirtan
nodal variables = contact_normal_direction as cdirnor

nodal variables = contact_slip_direction_current as cdirslp
nodal variables = contact_status as celement

nodal variables = contact_normal_traction_magnitude as cfnor
nodal variables = contact_tangential_traction_magnitude as cftan
nodal variables = contact_slip_increment_current as cdtan
nodal variables = contact_accumulated_slip as cstan

nodal variables = contact_frictional_energy_density as cetan
nodal variables = contact_area as carea

global variables = total_iter as itotal
end results output output_1

{include ("svTorque.i") }

begin solver
begin loadstep predictor

type = scale_factor
scale factor = 1.0
slip scale factor = 0.0

end loadstep predictor

begin control contact

level = 1
target relative residual = 0.00001
maximum iterations = 99

end control contact

begin cg
target relative residual = 0.000005
minimum residual improvement = 0.5
maximum iterations = 9759
reset limits 293 14639 1000 0.5
iteration print = 25
preconditioner = diagonal

end cg

end solver
end adagio region region_1

end adagio procedure procedure_1

end sierra Analysis of Hertz-Mindlin-Lubkin contact model
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B.4 Hertz Cylinder-Cylinder Contact — Convergence Test 2.4

#
#
#

o o S 3 3 3 S S S S S S S S 3 3 3 S S S s S S S 3 3 3 S S

HH H

b

#

#

Aprepro default mesh value to help FCT
{mesh="2"}

Aprepro variable settings that are passed in from the test script
shape: {shape}
mesh: {mesh}
elem_topo: {elem_topo}
formulation: {formulation}
Formulation flags: 0O~off, 1l~on
mean_qguad: {mean_guad}
selective_dev: {selective_dev}
strain_incrementation: {strain_incrementation}
material_model: {material_model}
delta_tolerance: {delta_tolerance}
Solver flag: O~off, 1l~on
tangent_pre: {tangent_pre}
Contact algorithm flags: O~off, 1~on
node_face: {node_face}
face_face: {face_face}

Aprepro variable settings that are common to all analyses

termination_time: {termination_time = 0.02}
Number of steps that works with tangent pre is 10
numpber_steps: {number_steps = 5}

epsilon_time is an offset from the termination_time used to ignore all results
except those associated with the final time step.

epsilon_time: {epsilon_time = termination_time/ (number_steps=2)}

Ey: {Ey = 100000.0}

nu: {nu = 0.2}

R: {R = 4.0}

cylinder_length AKA disk thickness

cylinder_length: {cylinder_length = 0.1/ (2" (mesh-1))}

egin sierra Hertz2Cylinders
FUNCtions ——————

# Linear time function for displacement
begin function delta
type is analytic
expression variable: time = global time
evaluate expression = "time"
end function delta

material data - ———-—-———""——"—"———————— - —————

begin property specification for material Mat_1
density = 1.0

begin parameters for model {material_model}
youngs modulus = {Ey}
poissons ratio = {nu}
end parameters for model {material _model}
end property specification for material Mat_1

begin property specification for material Mat_2
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density = 1.0

begin parameters for model {material _model}
youngs modulus = {Ey}
poissons ratio = {nu}
end parameters for model {material_model}
end property specification for material Mat_2

# section data (required to create non-default hex elements) —-——-—————-

begin solid section solid_section
# strain incrementation = {strain_incrementation}
formulation = {formulation}
{Ifdef (selective_dev)}
deviatoric parameter
{Else}
# Undefined selective_dev
{Endif}

end solid section solid_section

0.5

# FE model —————————m -

begin finite element model Hertz_mesh
Database Name = {shape}_{elem_topo}_{mesh}.g
Database Type = exodusII

begin block defaults
material = Mat_1
model = {material_model}
section = solid_section
{Ifdef (mean_quad) }
linear bulk viscosity = 0.06
quadratic bulk viscosity = 1.20
hourglass stiffness = 0.05
hourglass viscosity = 0.0
{Else}
# Undefined mean_qguad
{Endif}

end block defaults

begin parameters for block block_1
end parameters for block block_1

begin parameters for block block_2
material = Mat_2
end parameters for block block_2

end finite element model Hertz_mesh
# procedure data —————————————————— - -
begin adagio procedure Hertz_Proc

begin time control

begin time stepping block linear_time
start time = 0.0

begin parameters for adagio region Hertz_Region
time increment = {termination_time/number_steps}
end parameters for adagio region Hertz_Region
end time stepping block linear_time
termination time = {termination_time}
end time control

# region data ..........................................................



begin adagio region Hertz_Region
use finite element model Hertz_mesh

0 = 1O e = o

# Prescribed through-plane displacements to give plane-strain conditions
begin fixed displacement

surface = plusZ_surface minusZ_surface

component = z
end

# Prescribed vertical displacement on the bottom surface of bottom 1/2 cylinder
begin prescribed displacement
node set = btm_flat

component = Y

function = delta

scale factor = 1.0
end

# Prescribed vertical displacement on the top surface of top 1/2 cylinder
begin prescribed displacement
node set = top_flat

component =Y

function = delta

scale factor = -1.0
end

# prescribed displacements to prevent remaining rigid body motions
# mid-points on top and bottom surfaces
begin fixed displacement
node set = top_z_line btm_z_line
component = x
end fixed displacement

# CONLACE PArAMEL BT S ittt ittt ettt et ettt et e e teeeneeeeeaeeeeaneseenneens

begin contact definition
search = dash
enforcement = al #augmented lagrange
compute contact variables = on

{Ifdef (face_face)}
skin all blocks = on
begin interaction cyl2cyl
surfaces = btm_block top_block
# this is performing frictionless contact by default.
end interaction cyl2cyl
{Endif}

{Ifdef (node_face)}
contact node set top_node_set contains top_cylinder_nodes
contact surface btm_surface contains btm_cylinder_sides
search = dash
begin interaction cyl2cyl
master = btm_surface
slave = top_node_set
# NORMAL TOLERANCE = 0.001
# TANGENTIAL TOLERANCE = 0.001
end interaction cyl2cyl
{Endif}

end contact definition
# SOLVET PATAMELETS « ottt ettt et et e e et e e et e e ettt taeeae e
begin solver

begin loadstep predictor
type = scale_factor
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scale factor = 0.0
end
begin control contact

target relative residual = 1.0e-9
target residual = 1.0e-10
Maximum Iterations = 1000
end
begin cg
target relative residual = 1.0e-9
acceptable relative residual = le-5
{Ifdef (tangent_pre)}
maximum iterations = 50
begin full tangent preconditioner
linear solver = feti
conditioning = no_check
maximum updates for loadstep = 10
end
{Else}
maximum iterations = 1000
orthogonality measure for reset = 0.1

line search secant
preconditioner = elastic
{Endif}
end cg
end solver

F OULPUL data vttt it e e e e e

begin user output

include all blocks

extrapolate element variable stress to nodal variable nodal_stress
end

#begin user variable P

# type is global real

# global operator = max

#end

#begin user variable delta_analyt
# type is global real

# global operator = max

#end

#begin user variable delta_rel_error
# type is global real

# global operator = max

#end

begin user output
node set = btm_flat
# use reaction force on bottom of bottom cylinder
compute global Pt as sum of nodal reaction(y)
# analytical solution is in terms of force/length (P)
compute global P from expression "Pt/{cylinder_length}"

compute global delta_analyt from expression " (((1.0-{nu}"2)+Px(-1.0 + 2.0%«Log((2.0+Sgrt (P1i)*{R})/Sgrt ((((
compute global delta_rel_error from expression "abs(delta_analyt-time)/delta_analyt"
# analytical solution for the contact radius —-- used mainly initially to judge the adequacy of the mesh
compute global a from expression " (2.0xSgrt ((((1.0-{nu}”"2)*«P%x{R})/{Ey})))/Sqgrt (Pi)"
compute global mesh from expression "{mesh}"

end

# heartbeat output does not currently support user defined variables, or does it
# This file is for quickly examining the results
begin heartbeat output convergence_visual_output

stream name = {shape}_{mesh}_conv.txt

global time

global mesh

global P

global a

global delta_analyt
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global delta_rel_error as delta_rel_error
end heartbeat output convergence_visual_output

# heartbeat file of displacement BC error for convergence analysis and plotting
begin heartbeat output delta_convergence_tabular_output
stream name = {shape}_{mesh}_conv_table.csv
labels = off
legend = off
format = spyhis # a csv file
# start time = 0.0
at step 1 increment = 1
termination time = {termination_time}
# global time -- unnecessary with spyhis format
global mesh
global delta_rel_error as delta_rel_error
end heartbeat output delta_convergence_tabular_output

# heartbeat file of load and calculated radius for asymptotic convergence analysis and plotting
begin heartbeat output load-radius_convergence_tabular_output
stream name = {shape}_{mesh}_PnA_table.csv
labels = off
legend = off
format = spyhis # a csv file
# start time = 0.0
at step 1 increment = 1
termination time = {termination_time}
# global time -- unnecessary with spyhis format
global mesh
global P as P
global a as a
end heartbeat output load-radius_convergence_tabular_output

# Outputting Exodus Information

begin Results Output output_adagio
Database Name = {shape}_{elem_topo}_{mesh}_Adagio.e
Database Type = exodusII
At Time 0.0, Increment = 0.00001

nodal variables = displacement as displ

nodal variables = nodal_stress as nodal_stress
nodal variables = force_contact as fc

nodal variables = reaction as reaction

nodal variables = velocity as vel

element variables = stress as elem_stress

global Variables = timestep
global variables = mesh as mesh
global variables = delta_analyt
global variables = delta_rel_error
global variables = P

end results output output_adagio

# note that we will probably not use the following if we are able to use a convergence criterion
begin solution verification
completion file = delta_verification

skip times = 0.0 to {termination_time-epsilon_time}
verify global delta_rel_error = 0.0
tolerance = {delta_tolerance}

end

end adagio region Hertz_Region
end adagio procedure Hertz_Proc

begin feti equation solver feti

$

$ default = le-6

residual norm tolerance = 0.005
$

$ This will cut the memory in half for feti.
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Sparam-string "precision" value "single"
1Y g 'p

$

$ This feti preconditioning option is less memory than the default.

#preconditioning method = lumped
param-string "preconditioner_solver" value "single_precision_sparse"

corner augmentation = edge
end

end sierra Hertz2Cylinders
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B.S Mindlin Cylinder-Cylinder Contact — Convergence Test 2.5

4=

MindlinContactOf2Cylinders Test

This first version of the test uses a single procedure but two time blocks.
It is sufficient if the friction forces developed during the normal relative
displacment do not have significant tangent components.

HH o H o W

=+

Aprepro default mesh value to help FCT
{mesh="2"}

Aprepro variable settings that are passed in from the test script
shape: {shape}
mesh: {mesh}
elem_topo: {elem_topo}
formulation: {formulation}
Formulation flags: 0O~off, 1l~on
mean_qgquad: {mean_guad}
selective_dev: {selective_dev}
strain_incrementation: {strain_incrementation}
material_model: {material_model}
delta_tolerance: {delta_tolerance}
Solver flag: O~off, 1l~on
tangent_pre: {tangent_pre}
Contact algorithm flags: O~off, 1~on
node_face: {node_face}
face_face: {face_face}
Torque force flags: O~off, 1l~on
reaction_forces: {reaction_forces=0}
contact_forces: {contact_forces=1}

Aprepro variable settings that are common to all analyses

preload_termination_time: {preload_termination_time = 0.02}

shear_time_increment: {shear_time_increment = 0.01}

shear_termination_time: {shear_termination_time = preload_termination_time + shear_time_increment}
preload_number_steps: {preload_number_steps = 20}

shear_number_steps: {shear_number_steps = 20}

epsilon_time is an offset from the termination_time used to ignore all results
except those associated with the final time step.

epsilon_time: {epsilon_time = shear_time_increment/ (shear_number_stepsx2)}
Ey: {Ey = 100000.0}
nu: {nu = 0.2}

R: {R = 4.0}
cylinder_length AKA disk thickness
cylinder_length: {cylinder_length = 0.1/ (2" (mesh-1))}

H= o o o S S S 3 3 3 S S S S S S S S 3 3 3 S S S S S S S 3 3 3 S S S S s S Sk 3 3

e

=+

begin sierra Mindlin2Cylinders
# Functions ————=--------——-——

# Linear time function (during first time period) for normal displacement
begin function delta_preload

type is analytic

expression variable: time = global time

evaluate expression = " (time<{preload_termination_time}) ? time : {preload_termination_time}"
end function delta_preload

# Linear time function (during second time period) for lateral (shear) displacement
begin function delta_shear

255



type is analytic
expression variable: time = global time

evaluate expression = " (time>{preload_termination_time}) ? time-{preload_termination_time} : 0.0"
end function delta_shear

# material data -—————---———————— -

begin property specification for material Mat_1
density = 1.0

begin parameters for model {material_model}
youngs modulus = {Ey}
poissons ratio = {nu}
end parameters for model {material_model}
end property specification for material Mat_1

begin property specification for material Mat_2
density = 1.0

begin parameters for model {material_model}
youngs modulus = {Ey}
poissons ratio = {nu}
end parameters for model {material_model}
end property specification for material Mat_2

# section data (required to create non-default hex elements) --——————-—-

begin solid section solid_section
# strain incrementation = {strain_incrementation}
formulation = {formulation}
{Ifdef (selective_dev) }
deviatoric parameter = 0.5
{Else}
# Undefined selective_dev
{Endif}
end solid section solid_section

# FE model ———————————————————

begin finite element model Mindlin_mesh
Database Name = {shape}_{elem_topo}_{mesh}.g
Database Type = exodusII

begin parameters for block block_1
material Mat_1
solid mechanics use model {material model}
section = solid_section
{Ifdef (mean_qguad) }
linear bulk viscosity = 0.06
quadratic bulk viscosity = 1.20
hourglass stiffness = 0.05
hourglass viscosity 0.0
{Else}
# Undefined mean_guad
{Endif}

end parameters for block block_1

begin parameters for block block_2
material Mat_2
solid mechanics use model {material model}
section = solid_section
{Ifdef (mean_qguad) }
linear bulk viscosity = 0.06
quadratic bulk viscosity = 1.20
hourglass stiffness = 0.05
hourglass viscosity 0.0
{Else}
# Undefined mean_guad
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{Endif}
end parameters for block block_2
end finite element model Mindlin_mesh

# procedure data —————————————————— -
begin adagio procedure Mindlin_Proc

begin time control

begin time stepping block preload_time
start time = 0.0
begin parameters for adagio region Mindlin_Region

time increment = {preload_termination_time/preload_number_steps}

end parameters for adagio region Mindlin_Region

end time stepping block preload_time

begin time stepping block shear_time

start time = {preload_termination_time}
begin parameters for adagio region Mindlin_Region
time increment = { (shear_termination_time-preload_termination_time)/shear_number_steps}

end parameters for adagio region Mindlin_Region
end time stepping block shear_time
termination time = {shear_termination_time}
end time control

# region data :s:sssrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrririiiiiiriiiio

begin adagio region Mindlin_Region
use finite element model Mindlin_mesh

0 = TG = =

# Prescribed through-plane displacements to give plane-strain conditions
begin fixed displacement

surface = plusZ_surface minusZ_surface

component = z
end

# Prescribed vertical displacement on the bottom surface of bottom 1/2 cylinder
begin prescribed displacement
node set = btm_flat

component =Y
function = delta_preload
scale factor = 1.0

end

# Prescribed vertical displacement on the top surface of top 1/2 cylinder
begin prescribed displacement
node set = top_flat

component = Y
function = delta_preload
scale factor = -1.0

end

# prescribed displacements to prevent remaining rigid body motions
# mid-points on top and bottom surfaces
begin fixed displacement
active periods = preload_time
node set = top_z_line btm_z_line
component = x
end fixed displacement

# apply horizontal (shear) displacements to top and bottom surfaces
# Prescribed horizontal displacement on the bottom surface of bottom 1/2 cylinder
begin prescribed displacement

node set = btm_flat

component = x
function = delta_shear
scale factor = -1.0
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end

# Prescribed horizontal displacement on the top
begin prescribed displacement

node set = top_flat

component = x

function = delta_shear

scale factor = 1.0
end

# Contact parameters . ... ...t tin e enneneeennennn

begin contact definition
search = dash
enforcement = al #augmented lagrange
compute contact variables = on

begin constant friction model a_friction
friction coefficient = 0.3
end constant friction model a_friction

{Ifdef (face_face)}

skin all blocks = on

begin interaction cyl2cyl
surfaces = btm_block top_block

surface of top 1/2 cylinder

# this is performing frictionless contact by default.

friction model = a_friction
end interaction cyl2cyl
{Endif}

{Ifdef (node_face)}

contact node set top_node_set contains top_cylinder_nodes
contact surface btm_surface contains btm_cylinder_sides

search = dash
begin interaction cyl2cyl
master = btm_surface
slave = top_node_set
# NORMAL TOLERANCE = 0.001
# TANGENTIAL TOLERANCE = 0.001

friction model = a_friction
end interaction cyl2cyl
{Endif}

end contact definition

# SOLlVEr PaArameltersS . vt v te ettt et

begin solver
begin loadstep predictor

type = scale_factor
scale factor = 0.0
end
begin control contact
target relative residual = 1.0e-9
target residual = 1.0e-10
Maximum Iterations = 100
acceptable relative residual = 1.0e-8
end
begin cg
target relative residual = 1.0e-9
acceptable relative residual = le-5
{Ifdef (tangent_pre)}
maximum iterations = 50
begin full tangent preconditioner
linear solver = feti
conditioning = no_check
end
{Else}
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maximum iterations = 1000
orthogonality measure for reset = 0.1
line search secant
preconditioner = elastic
{Endif}
end cg
end solver

F OULPUL data vt ittt ittt et e e e e e e e e e
begin user output

include all blocks

extrapolate element variable stress to nodal variable nodal_stress
end

#begin user variable P

# type is global real

# global operator = max

#end

#begin user variable delta_analyt
# type is global real

# global operator = max

#end

#begin user variable delta_rel_error
# type is global real

# global operator = max

#end

begin user output
node set = btm_flat
# use reaction force on bottom of bottom cylinder
compute global Qt as sum of nodal reaction (x)
compute global Pt as sum of nodal reaction(y)
# analytical solution is in terms of force/length (q)
compute global P from expression "Pt/{cylinder_length}"
compute global Q from expression "Qt/{cylinder_length}"

fcompute global delta_analyt from expression " (((1.0-{nu}”2)*Px(-1.0 + 2.0xLog((2.0xSqrt (Pi)*{R})/Sqrt (((
#compute global delta_rel_error from expression "abs(delta_analyt-time)/delta_analyt"
# analytical solution for the contact radius -- used mainly initially to judge the adequacy of the mesh
#compute global a from expression " (2.0xSgrt ((((1.0-{nu}"2)*Px{R})/{Ey})))/Sqrt (Pi)"
compute global mesh from expression "{mesh}"

end

# heartbeat output does not currently support user defined variables, or does it
# This file is for quickly examining the results
begin heartbeat output convergence_visual_output
stream name = {shape}_{mesh}_conv.txt
# precision = 9
global time
global mesh
global P
global Q
#global a
#global delta_analyt
#global delta_rel_error as delta_rel_error
end heartbeat output convergence_visual_output

# heartbeat file of displacement BC error for convergence analysis and plotting
#begin heartbeat output delta_convergence_tabular_output

# stream name = {shape}_{mesh}_conv_table.csv
# precision 16
# labels = off
# legend = off
# format = spyhis # a csv file
# start time = {preload_termination_time}
# at step 1 increment = 1
# termination time = {shear_termination_time}
# global time -- unnecessary with spyhis format
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# global mesh
#global delta_rel_error as delta_rel_error
#end heartbeat output delta_convergence_tabular_output

# heartbeat file of load and calculated radius for asymptotic convergence analysis and plotting
begin heartbeat output load-radius_convergence_tabular_output
stream name = {shape}_{mesh}_Q_table.csv
# precision = 8
labels = off
legend = off
format = spyhis # a csv file
start time = {preload_termination_time}
at step 1 increment =1
termination time = {shear_termination_time}
# global time -- unnecessary with spyhis format
global mesh
global Q as Q
#global a as a
end heartbeat output load-radius_convergence_tabular_output

# Outputting Exodus Information

begin Results Output output_adagio
Database Name = {shape}_{elem_topo}_{mesh}_Adagio.e
Database Type = exodusII
At Time 0.0, Increment = 0.00001

nodal variables = displacement as displ

nodal variables = nodal_stress as nodal_stress
nodal variables = force_contact as fc

nodal variables = reaction as reaction

nodal variables = velocity as vel

element variables = stress as elem_stress

global Variables = timestep
global variables = mesh as mesh
global variables = delta_analyt
global variables = delta_rel_error
global variables = P
global variables = Q

end results output output_adagio

# note that we will probably not use the following if we are able to use a convergence criterion
#begin solution verification
# completion file = delta_verification

# skip times = 0.0 to {shear_termination_time-epsilon_time}
# wverify global delta_rel_error = 0.0

# tolerance = {delta_tolerance}

#end

end adagio region Mindlin_Region
end adagio procedure Mindlin_Proc

begin feti equation solver feti

$

$ default = le-6

residual norm tolerance = 0.005
S

$ This will cut the memory in half for feti.
Sparam-string "precision" value "single"
$
$ This feti preconditioning option is less memory than the default.
#preconditioning method = lumped
param-string "preconditioner_solver" value "single_precision_sparse"
corner augmentation = edge
end

end sierra Mindlin2Cylinders
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B.6 Hertz Sphere-Sphere Contact — Convergence Test 2.6
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Aprepro default mesh value to help FCT

Aprepro variable settings that are passed in from the test script
shape: {shape}
mesh: {mesh}
elem_topo: {elem_topo}
formulation: {formulation}
Formulation flags: 0O~off, 1l~on
mean_qguad: {mean_quad}
selective_dev: {selective_dev}
strain_incrementation: {strain_incrementation}
material_model: {material_model}
Solver flag: O~off, 1l~on
tangent_pre: {tangent_pre}
Contact algorithm flags: O~off, 1~on
node_face: {node_face}
face_face: {face_face}
Torque force flags: O~off, 1l~on
reaction_forces: {reaction_forces=0}
contact_forces: {contact_forces=1}

Aprepro variable settings that are common to all analyses

Original load level for preload was 0.0020 -- insufficient to use contact region

For mesh 1: first "circular" mesh ring is in contact at a load level of 0.018 (to 2 digits)
For mesh 2: first "circular" mesh ring is in contact at a load level of 0.022 (to 2 digits)
For mesh 3: first "circular" mesh ring is in contact at a load level of 0.02? (to 2 digits)

Load level of 0.023 could give consistent contact with all three meshes —-- not checked yet.
preload_termination_time: {preload_termination_time = 0.024}

preload_number_steps: {preload_number_steps = 30}

Ey: {Ey = 100000.0}

nu: {nu = 0.2}

R: {R = 4.0}
G: {G = 41666.66667}

o S S 3 3 3 S S S S S S S 3 3 3 3 S S S s S S 3 3 3 3 S S S S s

begin sierra Hertz
# Geometric entities used to define a "rotational displacement field"--

define point origin with coordinates 0.0 0.0 0.0
define direction y_direction with vector 0.0 1.0 0.0

# FUNCLIONS —mm e

# Linear time function (during first time period) for normal displacement
begin function delta_preload

type is analytic

expression variable: time = global time

evaluate expression = " (time<{preload_termination_time}) ? time : {preload_termination_time}"

end function delta_preload
# material data -—————-———————————— -

begin property specification for material Mat_1
density = 1.0
begin parameters for model {material _model}
youngs modulus = {Ey}
poissons ratio = {nu}
end parameters for model {material_model}
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end property specification for material Mat_1

begin property specification for material Mat_2
density = 1.0
begin parameters for model {material_model}
youngs modulus = {Ey}
poissons ratio = {nu}
end parameters for model {material_model}
end property specification for material Mat_2

# section data (required to create non-default hex elements) —-———————-

begin solid section solid_section
# strain incrementation = {strain_incrementation}
formulation = {formulation}
{Ifdef (selective_dev)}
deviatoric parameter = 0.5
{Else}
# Undefined selective_dev
{Endif}
end solid section solid_section

# FE model ————————————

begin finite element model Half-spheres_mesh
Database Name = {shape}_{elem_topo}_{mesh}.g
Database Type = exodusII

begin parameters for block block_1
material Mat_1
solid mechanics use model {material_model}
section = solid_section
{Ifdef (mean_quad) }
linear bulk viscosity = 0.06
quadratic bulk viscosity = 1.20
hourglass stiffness = 0.05
hourglass viscosity 0.0
{Else}
# Undefined mean_guad
{Endif}

end parameters for block block_1

begin parameters for block block_2
material Mat_2
solid mechanics use model {material_model}
section = solid_section
{Ifdef (mean_quad) }
linear bulk viscosity = 0.06
quadratic bulk viscosity = 1.20
hourglass stiffness = 0.05
hourglass viscosity 0.0
{Else}
# Undefined mean_qguad
{Endif}

end parameters for block block_2

end finite element model Half-spheres_mesh
# procedure data for initial (Hertz) compression ——————-————————————————————————————————————
begin adagio procedure Compression_Proc

begin time control
begin time stepping block preload_time
start time = 0.0
begin parameters for adagio region Compression_Region
time increment = {preload_termination_time/preload_number_steps}
end parameters for adagio region Compression_Region
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end time stepping block preload_time
termination time = {preload_termination_time}
end time control

# region eI

begin adagio region Compression_Region
use finite element model Half-spheres_mesh

0 = G e o it

# Fix the x-component of these two points which are along the
# x=0 lines of the flat faces, and at z=-4
# constrains the displacement to be radial
begin fixed displacement
active periods = preload_time
node set = NodeCircumferencet NodeCircumferenceb
component = x
end

# Prescribed vertical displacement on the face of the top hemisphere
begin prescribed displacement

node set = NodeFacet
component =y
function = delta_preload
scale factor = -1.0

end

# Prescribed vertical displacement on the face of the bottom hemisphere
begin prescribed displacement
node set = NodeFaceb

component =y
function = delta_preload
scale factor = 1.0

end

# Fix the x and z components of the center node of each hemisphere to
# constrain the center point to displace normal to the plane
begin fixed displacement
node set = NodeCentert NodeCenterb
components = x z
end fixed displacement

# Additional fixed displacement placed on the inital contact nodes to prevent planar movement
begin fixed displacement

node set = ContactNodet ContactNodeb

components = x z
end fixed displacement

# CONLACT PArAMELEIS .ttt ittt et ettt e et e e e et et e e ettt

begin contact definition

# enforcement = frictional

search = dash

enforcement = al #augmented lagrange
compute contact variables = on

# We originally used time dependent friction model here, but that did not work in Adagio
# thus the need for two procedures in this version of the tests.

begin frictionless model hertz_friction_free
end frictionless model hertz_friction_free

{Ifdef (face_face)}

skin all blocks = on

begin interaction sphere2sphere
surfaces = block_1 block_2
normal tolerance = 1le-06
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capture tolerance = le-06

tension release = 0.0

friction model = hertz_friction_free
end interaction sphere2sphere
{Endif}

{Ifdef (node_face)}
contact node set top_node_set contains NodeContactt
contact surface btm_surface contains SurfContactb
begin interaction sphereZsphere

master = btm_surface

slave = top_node_set
normal tolerance = 1le-06
capture tolerance = le-06
tension release = 0.0

friction model = hertz_friction_free
end interaction sphere2sphere
{Endif}
end contact definition

# SOLVETr PATAMELEIS .« ittt ittt ittt et et ettt et et e e

begin solver
begin control contact

target relative residual = 1.0e-6
target residual = 1.0e-6
acceptable relative residual = 1.0e-3
end
begin cg
target relative residual = 1.0e-8
target residual = 1.0e-8
maximum iterations = 50
acceptable relative residual = 1.0
begin full tangent preconditioner
linear solver = feti
conditioning = no_check
end

end
end solver

F OULPUL data o vv ittt ittt et e e e e e e e e e e e e

{ifdef (extrapolate) }
begin user output
include all blocks
extrapolate element variable stress to nodal variable nodal_stress
end
{endif}

begin user output
node set = NodeFacet
# use reaction force on top of top sphere
compute global P as sum of nodal reaction(y)
# First set of user outputs is for the Hertz part of the solution -- the preload
compute global delta_analyt from expression "37(2/3)* ((=1+{nu}”"2)"2+P"2/ ({Ey}"2x{R}))"(1/3)/(2~(1/3))"
compute global delta_rel_error from expression "abs (delta_analyt-2x+time)/delta_analyt"
# analytical solution for the contact radius -- used mainly initially to judge the adequacy of the mesh
compute global a from expression "37(1/3)* ((-1+{nu}”2)*«P*{R}/{Ey})~(1/3)/(2~(2/3))"
compute global mesh from expression "{mesh}"
end

begin heartbeat output convergence_visual_output
stream name = {shape}_{mesh}_conv.txt
global P
global a
global delta_analyt
global delta_rel_error
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end heartbeat output convergence_visual_output

begin heartbeat output convergence_tabular_output
stream name = {shape}_{mesh}_P_table.csv
labels = off
legend off
format = spyhis # a csv file
At Step 1, increment = 1
termination time = {preload_termination_time}
global mesh
global P
global a

end heartbeat output convergence_tabular_output

# heartbeat file for plotting or convergence calculations
begin heartbeat output convergence_tabular_output
stream name = {shape}_{mesh}_conv_table.csv
labels = off
legend = off
format = spyhis # a csv file
At Step 1, increment = 1
termination time = {preload_termination_time}
global mesh
global delta_rel_error
end heartbeat output convergence_tabular_output

# Outputting Exodus Information

begin Results Output output_adagio
Database Name = {shape}_{elem_topo}_{mesh}_compress.e
Database Type = exodusII
At Step 0, Increment = 1

nodal variables = coordinates

nodal variables = contact_status

nodal variables = contact_incremental_slip_magnitude as contact_magnitude
nodal variables = contact_area

nodal variables = displacement as displ
nodal variables = nodal_stress

nodal variables = force_contact as fc
nodal variables = reaction

nodal variables = force_internal

nodal variables = force_external

element variables = stress as elem_stress

global Variables = timestep
global variables = mesh
global variables = delta_analyt

global variables = delta_rel_error
global variables = P
global variables = a

end results output output_adagio

end adagio region Compression_Region
end adagio procedure Compression_Proc

begin feti equation solver feti
$ default = le-6
residual norm tolerance = 0.01
$
$ This option turns on additional diagnostics
Sparam-string "debugMask" value "solver"
$
$ This will cut the memory in half for feti.
param-string "precision" wvalue "single"
$
$ This feti preconditioning option is less memory than the default.
preconditioning method = lumped
end

end sierra Hertz
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B.7 Lubkin Sphere-Sphere Contact — Convergence Test 2.7

#

Aprepro default mesh value to help FCT

#{mesh="2"}

#

H o o s S S o 3 3 3 S S S S S S S S 3 3 S S S S S S S 3 3 3F S S S o S S S 3 3 3 3 S S S S S R S 3 3 3 Sk S o s

Aprepro variable settings that are passed in from the test script
shape: {shape}
mesh: {mesh}
elem_topo: {elem_topo}
formulation: {formulation}
Formulation flags: 0O~off, 1l~on
mean_qguad: {mean_guad}
selective_dev: {selective_dev}
strain_incrementation: {strain_incrementation}
material_model: {material_model}
torque_tolerance: {torque_tolerance}
Solver flag: O~off, 1l~on
tangent_pre: {tangent_pre}
Contact algorithm flags: O~off, 1~on
node_face: {node_face}
face_face: {face_face}
Torque force flags: O~off, 1l~on
reaction_forces: {reaction_forces=0}
contact_forces: {contact_forces=1}

Aprepro variable settings that are common to all analyses

Original load level for preload was 0.0020 -- insufficient to use contact region

For mesh 1: first "circular" mesh ring is in contact at a load level of 0.018 (to 2 digits)
For mesh 2: first "circular" mesh ring is in contact at a load level of 0.022 (to 2 digits)
For mesh 3: first "circular" mesh ring is in contact at a load level of 0.02? (to 2 digits)

Load level of 0.023 could give consistent contact with all three meshes —-- not checked yet.
preload_termination_time: {preload_termination_time = 0.024}

Use increment of 0.01 to examine transition from stick to slip

twist_time_increment: {twist_time_increment = 0.01}

twist_termination_time: {twist_termination_time = preload_termination_time + twist_time_increment}

For node-face contact (using either a fully integrated or mean-quadrature integrated element)

we could obtain convergence in 20 step per time block. Face-face contact with the fully-integrated
element forced the smaller time stepping. 40 steps worked for face-face mean-quadrature.

With 60 steps for preload, face-full-mesh2 run only made it to step 45.

preload_number_steps: {preload_number_steps = 30}
60 steps are not sufficient for face-face contact with fully-integrated hex
twist_number_steps: {twist_number_steps = 30}

epsilon_time is an offset from the termination_time used to ignore all results
except those associated with the final time step.

epsilon_time: {epsilon_time = twist_time_increment/ (twist_number_stepsx2)}
Ey: {Ey = 100000.0}

nu: {nu = 0.2}

R: {R = 4.0}

G: {G = 41666.66667}

Constants used in Pades Expression

al: {a0 = 0}

al: {al = 5.3333}

a2: {a2 = 6.0327}

a3: {a3 = 19.6951}

ad: {a4 = 42.5359}

b0: {b0 = 1}

bl: {bl = 5.1193}

b2: {b2 = 15.6833}

b3: {b3 = 30.8099}

bd: {b4 = 72.2111}

Absolute rotations of each half sphere, dummy values for now
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at: {at = 0}

ab: {ab = 0}

Frictions coefficient used when contact occurs
mu: {mu = 0.30}

Rigid body option

rigid_body: {rigid_body = 0}

Procedure type —-- initially only applied to twist loading and only
defined in the input file for preliminary parameter studies
proc_type: {proc_type = "adagio"}

Turning on the next variable reveals a code error as of 7/24/13.
Once resolved this variable and corresponding aprepro variables
can be removed.

extrapolate: {extrapolate = 0}

H= o o o S 3 3 3 H S

begin sierra Lubkin
# Geometric entities used to define a "rotational displacement field"--

define point origin with coordinates 0.0 0.0 0.0
define direction y_direction with vector 0.0 1.0 0.0
define axis cylindrical_z_axis with point origin direction y_direction

# FUNCLIONS ———mm e

# Linear time function (during first time period) for normal displacement
begin function delta_preload

type is analytic

expression variable: time = global time

evaluate expression = " (time<{preload_termination_time}) ? time : {preload_termination_time}"
end function delta_preload

# Linear time function (during second time period) for rotational (torsional) displacement
begin function theta_twist

type is analytic

expression variable: time = global time

evaluate expression = " (time>{preload_termination_time}) ? time-{preload_termination_time} : 0.0"
end function theta_twist

# This approach did not work in contact.

# Shifted Heaviside function to turn friction on after the normal preloading

# begin function friction_switch

# type is analytic

# expression variable: time = global time

# evaluate expression = " (time>{preload_termination_time}) ? 1.0 : 0.0"

# end function friction_switch

# y-component of Torque due to one node on the top sphere cut-plane (actually any y-plane)
# y-component of the vector cross product that yields Torque (F cross x).

# Use of coordinates (not model_coordinates) => correctly attaining torque in the deformed configuration.
# This funciton assumes that the center of the cut plane is at x,z=0.

# Aprepro variable torque_force defines which forces are used to calculate the torque.

begin function node_torque
type is analytic
expression variable: x1 = nodal coordinates (x)
expression variable: x3 nodal coordinates (z)
{Ifdef (reaction_forces)}

expression variable: F1 = nodal reaction(x)

expression variable: F3 = nodal reaction(z)

# assumes reaction force on the body not on the "restraining plane"
evaluate expression = " (x3*«F1-x1«F3)"

{Endif}

{Ifdef (contact_forces)}

expression variable: Fl1 = nodal force_contact (x)

expression variable: F3 = nodal force_contact (z)

# using top sphere => sign change but usable with sphere on plane case
evaluate expression = " (x3*«Fl1-x1+F3)"
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{Endif}
end function node_torque

# material data ——————-—————————— -

begin property specification for material Mat_1
density = 1.0
begin parameters for model {material_model}
youngs modulus = {Ey}
poissons ratio = {nu}
end parameters for model {material_model}
end property specification for material Mat_1

begin property specification for material Mat_2
density = 1.0
begin parameters for model {material_model}
youngs modulus = {Ey}
poissons ratio = {nu}
end parameters for model {material_model}
end property specification for material Mat_2

# section data (required to create non-default hex elements) —--———————-

begin solid section solid_section
# strain incrementation = {strain_incrementation}
formulation = {formulation}
{Ifdef (selective_dev) }
deviatoric parameter = 0.5
{Else}
# Undefined selective_dev
{Endif}
end solid section solid_section

{Ifdef (rigid_body) }

begin rigid body rb_1
include nodes in surface_3

end rigid body rb_1

begin rigid body rb_2
include nodes in surface_4

end rigid body rb_2

{Endif}

# FE model ————————— -

begin finite element model Half-spheres_mesh
Database Name = {shape}_{elem_topo}_{mesh}.g
Database Type = exodusII

begin parameters for block block_1
material Mat_1
solid mechanics use model {material_model}
section = solid_section
{Ifdef (mean_quad) }
linear bulk viscosity = 0.06
quadratic bulk viscosity = 1.20
hourglass stiffness = 0.05
hourglass viscosity 0.0
{Else}
# Undefined mean_qguad
{Endif}

end parameters for block block_1

begin parameters for block block_2
material Mat_2
solid mechanics use model {material_model}
section = solid_section
{Ifdef (mean_quad) }
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linear bulk viscosity = 0.06
quadratic bulk viscosity = 1.20
hourglass stiffness = 0.05
hourglass viscosity 0.0
{Else}
# Undefined mean_gquad
{Endif}

end parameters for block block_2

end finite element model Half-spheres_mesh
# procedure data for initial (Hertz) compression ————————————————————————\——————————————————
begin adagio procedure Compression_Proc

begin time control
begin time stepping block preload_time
start time = 0.0
begin parameters for adagio region Compression_Region
time increment = {preload_termination_time/preload_number_steps}
end parameters for adagio region Compression_Region
end time stepping block preload_time
termination time = {preload_termination_time}
end time control

# region el

begin adagio region Compression_Region
use finite element model Half-spheres_mesh

0 =G e = i

# Fix the x-component of these two points which are along the
# x=0 lines of the flat faces, and at z=-4
# constrains the displacement to be radial
begin fixed displacement
active periods = preload_time
node set = NodeCircumferencet NodeCircumferenceb
component = x
end

# Prescribed vertical displacement on the face of the top hemisphere
begin prescribed displacement
node set = NodeFacet

component =y
function = delta_preload
scale factor = -1.0

end

# Prescribed vertical displacement on the face of the bottom hemisphere
begin prescribed displacement
node set = NodeFaceb

component =y
function = delta_preload
scale factor = 1.0

end

# Fix the x and z components of the center node of each hemisphere to
# constrain the center point to displace normal to the plane
begin fixed displacement
node set = NodeCentert NodeCenterb
components = x z
end fixed displacement

# Additional fixed displacement placed on the inital contact nodes to prevent planar movement
begin fixed displacement

node set = ContactNodet ContactNodeb

components = X z
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end fixed displacement
# Contact Parameler s ittt it ettt e e e e et e e

begin contact definition

# enforcement = frictional

search = dash

enforcement = al #augmented lagrange
compute contact variables = on

# We originally used time dependent friction model here, but that did not work in Adagio
# thus the need for two procedures in this version of the tests.

begin frictionless model hertz_friction_free
end frictionless model hertz_friction_free

{Ifdef (face_face)}
skin all blocks = on
begin interaction sphere2sphere
surfaces = block_1 Dblock_2
normal tolerance = 1le-06
# Tangential tolerance not used in dash. It could be turned on
# aprepro if ew later test acme too.
# tangential tolerance = 1le-08
capture tolerance = le-06
tension release = 0.0
friction model = hertz_friction_free
# The following combination does not work and should flag a warning
# friction coefficient = 0.3
# friction coefficient function = friction_func
end interaction sphere2sphere
{Endif}

{Ifdef (node_face)}
contact node set top_node_set contains NodeContactt
contact surface btm_surface contains SurfContactb
begin interaction sphere2sphere
master = btm_surface
slave = top_node_set
normal tolerance = 1le-06
# Tangential tolerance not used in dash. It could be turned on
# with aprepro if we later test acme too.
# tangential tolerance = 1e-08
capture tolerance = le-06
tension release = 0.0
friction model = hertz_friction_free
# The following combination does not work and should flag a warning
# friction coefficient = 0.3
# friction coefficient function = friction_func
end interaction sphere2sphere
{Endif}

end contact definition
F SOLVET PATAMEL TS vt vttt ittt it ettt ettt tete ettt eee ittt

begin solver
begin loadstep predictor

type = scale_factor
scale factor = 0.0 0.0
end

begin control contact
# node-face contact converged with a tolerance of 1.0e-8

target relative residual = 1.0e-5
acceptable relative residual = 5.0e-3
target residual = 1.0e-8
maximum iterations = 100

end
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begin cg

target relative residual = 1.0e-7

target residual = 1.0e-9

maximum iterations = 50

begin full tangent preconditioner
minimum smoothing iterations = 10
tangent diagonal scale = le-6

end

end

end solver
# 0utput data ..t e e e e

{ifdef (extrapolate) }
begin user output
include all blocks
extrapolate element variable stress to nodal
end
{endif}

{ifdef (contact_forces)}
begin user output
node set = nodecontactb
compute nodal torque as function node_torque
compute global Ty_top as sum of nodal torque
end
{endif}

begin user output
node set = NodeFacet
# use reaction force on top of top sphere
compute global P as sum of nodal reaction(y)
# First set of user outputs is for the Hertz

variable nodal_stress

part of the solution —-- the preload

compute global delta_analyt from expression "37(2/3)* ((-1+{nu}"2)"2xP"2/ ({Ey}"2x{R}))"(1/3)/(2~(1/3))"
compute global delta_rel_error from expression "abs (delta_analyt-2xtime)/delta_analyt"

# analytical solution for the contact radius

compute global a from expression "3"(1/3)x((—

compute global mesh from expression "{mesh}"

—— used mainly initially to judge the adequacy of the mesh
1+{nu}"2) «*P+x{R}/{Ey}) " (1/3) /(2" (2/3))"

# Second set of user outputs is for the Lubkin part of the solution -- the twist

{ifdef (reaction_forces)}

# Reaction torque on the top surface. First each nodal contribution is determined.

compute nodal torque as function node_torque
compute global Ty_top as sum of nodal torque
{endif}

# Torque Data obtained from the simulation.

The error is based off the pade solution.

compute global torque_analyt_pade from expression " ({aO}+{al}~*(theta_r)+{a2}x(theta_r"2)+{a3}«(theta_r"
compute global Torque_y_rel_error from expression "abs (torque_analyt_pade-torque_sim) /torque_analyt_pad

# compute global Beta as function theta_twist
# compute global theta_r from expression "abs (Betax{G}* (a”2)/ ({mu}*P))"
# compute global torque_sim from expression "abs (Ty_top/ ({mu}*Pxa))"
#
#
end

# Heartbeat output does not currently support user defined variables, or does it?
# This file is for quickly examining the results.
begin heartbeat output convergence_visual_output

stream name = {shape}_{mesh}_compress_conv.txt

global a
# global theta_r
# global torque_sim
# global torque_analyt_pade
# global Torque_y_rel_error
end heartbeat output convergence_visual_output

# Outputting Exodus Information
begin Results Output output_adagio

Database Name = {shape}_{elem_topo}_{mesh}_compress.e

Database Type = exodusII
At Step 0, Increment = 1
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nodal variables = coordinates

nodal variables = contact_status

nodal variables = contact_incremental_slip_magnitude as contact_magnitude
nodal variables = contact_area

nodal variables = displacement as displ

nodal variables = nodal_stress

nodal variables = force_contact as fc

nodal variables = reaction

nodal variables = force_internal

nodal variables = force_external

element variables = stress as elem_stress

global Variables = timestep
global variables = mesh
global variables = delta_analyt

global variables = delta_rel_error
global variables = P
global variables = a

# Variables used when spheres go into torsion
{ifndef (rigid_body) }

nodal variables = torque as torque_node
global variables = Ty_top

{endif}

# global variables = torque_sim

# global variables = torque_analyt_pade

# global variables = Torque_y_rel_error

{ifdef (rigid_body) }

# global variables = rreacty_rb_1 as torque_reaction

# global variables = rreacty_rb_2 as torque_reaction?2

{Endif}

# Extra variables used to analyze energy dissipation effects

# nodal variables = contact_frictional_energy as node_energy_dissipation

end results output output_adagio

end adagio region Compression_Region
end adagio procedure Compression_Proc

# procedure data for final loading stage twist --————-------"""""""""-———————————————————
begin {proc_type} procedure Twist_Proc
begin procedural transfer preload_to_twist
include all blocks

end procedural transfer preload_to_twist

begin time control
begin time stepping block twist_time

start time = {preload_termination_time}
begin parameters for {proc_type} region Twist_Region
time increment = { (twist_termination_time-preload_termination_time)/twist_number_steps}

end parameters for {proc_type} region Twist_Region
end time stepping block twist_time
termination time = {twist_termination_time}
end time control

# region [N I

begin {proc_type} region Twist_Region
use finite element model Half-spheres_mesh

0 = O e = it

# Alternatively, we could just fix the values for this time period,
# since they do not vary with time.

# Prescribed vertical displacement on the face of the top hemisphere
begin prescribed displacement

node set = NodeFacet

component =y
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function = delta_preload
scale factor = -1.0
end

# Prescribed vertical displacement on the face of the bottom hemisphere
begin prescribed displacement

node set = NodeFaceb
component =y
function = delta_preload
scale factor = 1.0

end

# Fix the x and z components of the center node of each hemisphere to
# constrain the center point to displace normal to the plane
begin fixed displacement
node set = NodeCentert NodeCenterb
components = x z
end fixed displacement

# Prescribed rotation of the face on the top block
begin prescribed displacement

active periods = twist_time

node set = NodeFacet

cylindrical axis = cylindrical_z_axis

function = theta_twist

scale factor = 1.0
end prescribed displacement

# Prescribed rotation of the face on the bottom block
begin prescribed displacement

active periods = twist_time

node set = NodeFaceb

cylindrical axis = cylindrical_z_axis

function = theta_twist

scale factor = -1.0
end prescribed displacement

# Additional fixed displacement placed on the inital contact nodes to prevent planar movement
begin fixed displacement

node set = ContactNodet ContactNodeb

components = x z
end fixed displacement

# Contach PArAmMEL TS v ittt ittt ettt ettt ettt ettt e e e

begin contact definition

# enforcement = frictional

search = dash

enforcement = al #augmented lagrange
compute contact variables = on

begin constant friction model twist_friction
friction coefficient = 0.3
end constant friction model twist_friction

{Ifdef (face_face)}
skin all blocks = on
begin interaction sphere2sphere
surfaces = block_1 Dblock_2
normal tolerance = le-06
# Tangential tolerance not used in dash. It could be turned on
# aprepro if ew later test acme too.
# tangential tolerance = 1e-08
capture tolerance = le-06
tension release = 0.0
friction model = twist_friction
# The following combination does not work and should flag a warning
# friction coefficient = 0.3
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# friction coefficient function = friction_func
end interaction sphere2sphere
{Endif}

{Ifdef (node_face)}

contact node set top_node_set contains NodeContactt
contact surface btm_surface contains SurfContactb
begin interaction sphere2sphere

master = btm_surface
slave = top_node_set
normal tolerance = 1le-06

# Tangential tolerance not used in dash. It could be turned on
# wiht aprepro if we later test acme too.
# tangential tolerance = 1e-08
capture tolerance = le-06
tension release = 0.0
friction model = twist_friction
# The following combination does not work and should flag a warning
# friction coefficient = 0.3
# friction coefficient function = friction_func
end interaction sphere2sphere
{Endif}

end contact definition
#F SOLVET PATAMELETS vttt ittt it ittt ettt et ettt e e ettt e et e e eeenenenn

begin solver
begin loadstep predictor

type = scale_factor
scale factor = 0.0 0.0
end

begin control contact
# node-face contact would work with tolerances of ~le-8

target relative residual = 1.0e-4
acceptable relative residual = 1.0e-3
target residual = 1.0e-8
maximum iterations = 100
end
begin cg
target relative residual = 1.0e-6
target residual = 1.0e-9
maximum iterations = 50
begin full tangent preconditioner
minimum smoothing iterations = 10
#iteration update = 10 # MGV: use this instead of above line to get face-face, fully-integrated to r
tangent diagonal scale = le-6
end
end

end solver
F OULPUL data vt ittt e e e e e e

begin user output

include all blocks

extrapolate element variable stress to nodal variable nodal_stress
end

{ifdef (contact_forces)}
begin user output
node set = nodecontactb
compute nodal torque as function node_torque
compute global Ty_top as sum of nodal torque
end
{endif}

begin user output
node set = NodeFacet
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# use reaction force on top of top sphere

compute global P as sum of nodal reaction(y)

# First set of user outputs is for the Hertz part of the solution -- the preload

compute global delta_analyt from expression "37(2/3)* ((-1+{nu}”"2)"2«P"2/ ({Ey}"2x{R}))"(1/3)/(2~(1/3))"

compute global delta_rel_error from expression "abs (delta_analyt-2xtime)/delta_analyt"

# analytical solution for the contact radius -- used mainly initially to judge the adequacy of the mesh

compute global a from expression "37(1/3)* ((-1+{nu}”"2)+«P+«{R}/{Ey})"(1/3)/(2"~(2/3))"

compute global mesh from expression "{mesh}"

# Second set of user outputs is for the Lubkin part of the solution -- the twist

{ifdef (reaction_forces)}

# Reaction torque on the top surface. First each nodal contribution is determined.

compute nodal torque as function node_torque

compute global Ty_top as sum of nodal torque

{endif}

# Torque Data obtained from the simulation. The error is based off the pade solution.

compute global Beta as function theta_twist

compute global theta_r from expression "abs (Betax{G}* (a”2)/ ({mu}*P))"

compute global torque_sim from expression "abs (Ty_top/ ({mu}*Pxa))"

compute global torque_analyt_pade from expression " ({aO}+{al}*(theta_r)+{a2}+ (theta_r"2)+{a3}* (theta_r"3)

compute global Torque_y_rel_error from expression "abs (torque_analyt_pade-torque_sim) /torque_analyt_pade"
end

# Heartbeat output does not currently support user defined variables, or does it?
# This file is for quickly examining the results.
begin heartbeat output convergence_visual_output
stream name = {shape}_{mesh}_twist_conv.txt
global a
global theta_r
global torque_sim
global torque_analyt_pade
global Torque_y_rel_error
end heartbeat output convergence_visual_output

# heartbeat file for plotting or convergence calculations
begin heartbeat output convergence_tabular_output
stream name = {shape}_{mesh}_twist_conv_table.csv
labels = off
legend = off
format = spyhis # a csv file
start time = {preload_termination_time}
at step 1 increment = 1
termination time = {twist_termination_time}
# global time -- unnecessary with spyhis format
global mesh
global Torque_y_rel_error
end heartbeat output convergence_tabular_output

# heartbeat file of load and calculated radius for asymptotic convergence analysis and plotting
begin heartbeat output load-radius_convergence_tabular_output
stream name = {shape}_{mesh}_T_table.csv
labels = off
legend = off
format = spyhis # a csv file
# start time = 0.0
at step 1 increment = 1
termination time = {twist_termination_time}
# global time -- unnecessary with spyhis format
global mesh
global Ty_top as Torque
end heartbeat output load-radius_convergence_tabular_output

# Outputting Exodus Information
begin Results Output output_adagio
Database Name = {shape}_{elem_topo}_{mesh}_twist.e
Database Type = exodusII
At Step 0, Increment = 1
nodal variables = coordinates
nodal variables = contact_status
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nodal variables = contact_incremental_ slip_magnitude as contact_magnitude

nodal variables = contact_area

nodal variables = displacement as displ
nodal variables = nodal_stress

nodal variables = force_contact as fc
nodal variables = reaction

nodal variables = force_internal

nodal variables = force_external

element variables = stress as elem_stress

global Variables = timestep
global variables = mesh
global variables = delta_analyt

global variables = delta_rel_error
global variables = P
global variables = a

# Variables used when spheres go into torsion
{ifndef (rigid_body) }

nodal variables = torque as torque_node
global variables = Ty_top

{endif}

global variables = torque_sim

global variables = torque_analyt_pade

global variables = Torque_y_rel error

{ifdef (rigid_body) }

global variables = rreacty_rb_1 as torque_reaction

global variables = rreacty_rb_2 as torque_reaction2

{Endif}

# Extra variables used to analyze energy dissipation effects

# nodal variables = contact_frictional_energy as node_energy_dissipation

end results output output_adagio

# note that we will probably not use the following if we are able to use a convergence criterion
begin solution verification
completion file = torque_verification

skip times = 0.0 to {twist_termination_time-epsilon_time}
verify global Torque_y_rel_error = 0.0
tolerance = {torque_tolerance}

end

end {proc_type} region Twist_Region
end {proc_type} procedure Twist_Proc

# Feti solver parameters ——————————————— -

begin feti equation solver feti
end

end sierra Lubkin

277



B.8 Sticking-Slipping Block and Spring - Explicit Dynamics 2.8

$ Algebraic Preprocessor (Aprepro) version 5.03 (2017/11/14)
begin sierra sticking block_spring

begin function one
type is constant
begin values
1.0
end
end function

begin function vert_force

type is analytic

evaluate expression = " (-1.0*xcos (x%*3.14159/10.0)+1.0)/2.0"
end function

begin function horiz_force_2

type is analytic

evaluate expression = "sin((x-10.0)%3.14159/20.0)"
end

begin function spring_react_check

type is analytic

evaluate expression = "-10.0*sin((x-10.0)%3.14159/20.0)+(0.5%10.0)"
end

begin function spring_stiffness
type is piecewise linear
begin values

0.0 0.0
0.001 1.0
end

end

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O

begin material linear_elastic
density = 1.0e3
begin parameters for model elastic
youngs modulus = 1.0e8
poissons ratio = 0.0
end parameters for model elastic
end material linear_elastic

begin material linear_elastic_soft
density = 1.0e3
begin parameters for model elastic
youngs modulus = 1.0e7
poissons ratio = 0.0
end parameters for model elastic
end material linear_elastic_soft

begin solid section blocks
end

begin truss section spring
area = 0.01
end

begin finite element model meshl

Database Name = blocks.g
Database Type = exodusII
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begin parameters for block block_1 block_2

material = linear_elastic
model = elastic
section = blocks

end

begin parameters for block block_3

material = linear_elastic_soft
model = elastic
section = spring

end

end finite element model meshl

begin presto procedure Presto_Procedure

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for presto region presto_region
end
end
begin time stepping block p2
start time = 10.0
begin parameters for presto region presto_region
end
end
termination time = 15.0
end

begin presto region presto_region
use finite element model meshl

### output description ###

begin Results Output output_adagio
Database Name blocks.e
Database Type = exodusII
At time 0, Increment = 0.001

nodal Variables = displacement as displ
nodal Variables = velocity as vel
nodal variables = reaction
nodal variables = force_external
nodal variables = force_contact
nodal variables = contact_tangential_ force_magnitude as ctfm
nodal variables = contact_normal_force_magnitude as cnfm
nodal variables = contact_incremental_slip_direction as cisd
nodal variables = contact_accumulated_slip_vector as casv
global Variables = timestep as timestep
global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum
global variables = spring_react
global variables = spring_react_check
end

begin history output
Database Name = blocks.h
Database Type = exodusII
At step 0, increment = 1
global spring_react
global spring_react_check
end

begin user output
node = 172
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compute global spring_react as max of nodal reaction(y)
compute global spring_react_check as function spring_react_check
compute at every step

end

### definition of BCs ###

begin fixed displacement

node set = nodelist_1
components = x y z
end

begin fixed displacement

surface = surface_1
components = x y z
end

begin fixed displacement
block = block_2
components = x

end

begin gravity
active periods = pl
block = block_2
gravitational constant = 1.0
function = vert_force
scale factor = -0.01
direction = z

end

begin gravity
active periods = p2
block = block_2
gravitational constant = 1.0
function = one
scale factor = -0.01
direction = z

end

begin traction
active periods = p2
surface = surface_3
function = horiz_force_2
scale factor = 10.0
direction =y

end

begin contact definition friction
search = dash
contact surface surf_1 contains block_1
contact surface surf_2 contains block_2
begin interaction inter_1
surfaces = surf_1 surf_2
friction model = fric
end interaction inter_1
begin constant friction model fric
friction coefficient = 0.5
end
end contact definition friction

begin viscous damping
include all blocks
mass damping coefficient = 10.0

end

begin solution verification
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completion file = verif_ react_zero

skip times = 13.0 to 20.0

verify global spring_react = 0.0

tolerance = 0.25 # 5% of max tangential friction force
end

begin solution verification
completion file = verif_ react
skip times = 0 to 13.6

verify global spring_react = function spring_react_check
tolerance = 0.25 # 5% of max tangential friction force
end

end presto region presto_region
end presto procedure Presto_Procedure
end sierra sticking_block_spring
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B.9 Sticking-Slipping Block and Spring - Implicit Dynamics 2.9

$ Algebraic Preprocessor (Aprepro) version 5.03 (2017/11/14)
begin sierra sticking block_spring

begin function one
type is constant
begin values
1.0
end
end function

begin function vert_force

type is analytic

evaluate expression = " (-1.0*xcos (x%*3.14159/10.0)+1.0)/2.0"
end function

begin function horiz_force_2

type is analytic

evaluate expression = "sin((x-10.0)%3.14159/20.0)"
end

begin function spring_react_check

type is analytic

evaluate expression = "-10.0*sin((x-10.0)%3.14159/20.0)+(0.5%10.0)"
end

begin function spring_stiffness
type is piecewise linear
begin values

0.0 0.0
0.001 1.0
end

end

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O

begin material linear_elastic
density = 1.0e3
begin parameters for model elastic
youngs modulus = 1.0e8
poissons ratio = 0.0
end parameters for model elastic
end material linear_elastic

begin material linear_elastic_soft
density = 1.0e3
begin parameters for model elastic
youngs modulus = 1.0e7
poissons ratio = 0.0
end parameters for model elastic
end material linear_elastic_soft

begin solid section blocks
end

begin truss section spring
area = 0.01
end

begin finite element model meshl

Database Name = blocks.g
Database Type = exodusII
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begin parameters for block block_1 block_2

material = linear_elastic
model = elastic
section = blocks

end

begin parameters for block block_3

material = linear_elastic_soft
model = elastic
section = spring

end

end finite element model meshl

begin adagio procedure Adagio_Procedure

begin time control
begin time stepping block pl
start time = 0.0

begin parameters for adagio region adagio_region

numpber of time steps = 5
end
end
begin time stepping block p2
start time = 10.0

begin parameters for adagio region adagio_region

number of time steps = 30
end
end
termination time = 15.0
end

begin adagio region adagio_region
use finite element model meshl

### output description ###

begin Results Output output_adagio
Database Name = blocks.e
Database Type = exodusII
At time 0, Increment = 0.001

nodal Variables = displacement as displ
nodal Variables = velocity as vel

nodal variables = reaction

nodal variables = force_external

nodal variables = force_contact

nodal variables =
nodal variables =
nodal variables =
nodal variables =

global Variables
global variables
global variables
global variables
global variables
global variables
global variables
end

contact_tangential_force_magnitude as ctfm
contact_normal_force_magnitude as cnfm
contact_incremental_slip_direction as cisd
contact_accumulated_slip_vector as casv

= timestep as timestep

= external_energy as ExternalEnergy
= internal_energy as InternalEnergy
= kinetic_energy as KineticEnergy

= momentum as Momentum

= spring_react

= spring_react_check

begin history output
Database Name = blocks.h
Database Type = exodusII
At step 0, increment = 1
global spring_react
global spring_react_check

end

283



begin user output
node = 172
compute global spring_react as max of nodal reaction (y)
compute global spring_react_check as function spring_react_check
compute at every step
end
### definition of BCs ###

begin fixed displacement

node set = nodelist_1
components = x y z
end

begin fixed displacement

surface = surface_1
components = x y z
end

begin fixed displacement
block = block_2
components = x

end

begin gravity
active periods = pl
block = block_2
gravitational constant = 1.0
function = vert_force
scale factor = -0.01
direction = z

end

begin gravity
active periods = p2
block = block_2

gravitational constant = 1.0
function = one
scale factor = -0.01
direction = z

end

begin traction
active periods = p2
surface = surface_3
function = horiz_force_2
scale factor = 10.0
direction =y

end

begin implicit dynamics
end

begin contact definition friction
search = dash
enforcement = al
contact surface surf_1 contains block_1
contact surface surf_2 contains block_2
begin interaction inter_1
surfaces = surf_1 surf_2
friction model = fric
al penalty = 2.0
end interaction inter_1
begin constant friction model fric
friction coefficient = 0.5
end
end contact definition friction
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Begin solver
begin loadstep predictor
type = scale_factor
scale factor = 0.0 0.0

end

begin control contact
target relative residual = 1.0e-5
acceptable relative residual = 1.0e-3
Maximum Iterations = 1000
Minimum Iterations =3
lagrange initialize = none
lagrange adaptive penalty = off

end

Begin cg
target relative residual = 1.0e-6
maximum iterations = 125
iteration print =1

begin full tangent preconditioner
conditioning = no_check

tangent diagonal scale = 1.0e-3
small number of iterations = 25
end
end
end

begin solution verification

completion file = verif_react_zero

skip times = 13.0 to 20.0

verify global spring_react = 0.0

tolerance = 0.1 # 2% of max tangential friction force
end

begin solution verification
completion file = verif_ react
skip times = 0 to 13.6

verify global spring_react = function spring_react_check
tolerance = 0.1 # 2% of max tangential friction force
end

end adagio region adagio_region
end adagio procedure Adagio_Procedure
end sierra sticking_block_spring
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B.10 Sticking-Slipping Block and Spring - Implicit Statics 2.10

$ Algebraic Preprocessor (Aprepro) version 5.03 (2017/11/14)
begin sierra sticking block_spring

begin function one
type is constant
begin values
1.0
end
end function

begin function vert_force

type is analytic

evaluate expression = " (-1.0*xcos (x%*3.14159/10.0)+1.0)/2.0"
end function

begin function horiz_force_2

type is analytic

evaluate expression = "sin((x-10.0)%3.14159/20.0)"
end

begin function spring_react_check

type is analytic

evaluate expression = "-10.0*sin((x-10.0)%3.14159/20.0)+(0.5%10.0)"
end

begin function spring_stiffness
type is piecewise linear
begin values

0.0 0.0
0.001 1.0
end

end

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O

begin material linear_elastic
density = 1.0e3
begin parameters for model elastic
youngs modulus = 1.0e8
poissons ratio = 0.0
end parameters for model elastic
end material linear_elastic

begin material linear_elastic_soft
density = 1.0e3
begin parameters for model elastic
youngs modulus = 1.0e7
poissons ratio = 0.0
end parameters for model elastic
end material linear_elastic_soft

begin solid section blocks
end

begin truss section spring
area = 0.01
end

begin finite element model meshl

Database Name = blocks.g
Database Type = exodusII
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begin parameters for block block_1 block_2

material = linear_elastic
model = elastic
section = blocks

end

begin parameters for block block_3

material = linear_elastic_soft
model = elastic
section = spring

end

end finite element model meshl

begin adagio procedure Adagio_Procedure

begin time control
begin time stepping block pl
start time = 0.0

begin parameters for adagio region adagio_region

numpber of time steps = 5
end
end
begin time stepping block p2
start time = 10.0

begin parameters for adagio region adagio_region

number of time steps = 25
end
end
termination time = 15.0
end

begin adagio region adagio_region
use finite element model meshl

### output description ###

begin Results Output output_adagio
Database Name = blocks.e
Database Type = exodusII
At time 0, Increment = 0.001

nodal Variables = displacement as displ
nodal Variables = velocity as vel

nodal variables = reaction

nodal variables = force_external

nodal variables = force_contact

nodal variables =
nodal variables =
nodal variables =
nodal variables =

global Variables
global variables
global variables
global variables
global variables
global variables
global variables
end

contact_tangential_force_magnitude as ctfm
contact_normal_force_magnitude as cnfm
contact_incremental_slip_direction as cisd
contact_accumulated_slip_vector as casv

= timestep as timestep

= external_energy as ExternalEnergy
= internal_energy as InternalEnergy
= kinetic_energy as KineticEnergy

= momentum as Momentum

= spring_react

= spring_react_check

begin history output
Database Name = blocks.h
Database Type = exodusII
At step 0, increment = 1
global spring_react
global spring_react_check

end
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begin user output
node = 172
compute global spring_react as max of nodal reaction (y)
compute global spring_react_check as function spring_react_check
compute at every step
end
### definition of BCs ###

begin fixed displacement

node set = nodelist_1
components = x y z
end

begin fixed displacement

surface = surface_1
components = x y z
end

begin fixed displacement
block = block_2
components = x

end

begin gravity
active periods = pl
block = block_2
gravitational constant = 1.0
function = vert_force
scale factor = -0.01
direction = z

end

begin gravity
active periods = p2
block = block_2

gravitational constant = 1.0
function = one
scale factor = -0.01
direction = z

end

begin traction
active periods = p2

surface = surface_3
function = horiz_force_2
scale factor = 10.0

direction =y
end

begin contact definition friction
search = dash
enforcement = al
contact surface surf_1 contains block_1
contact surface surf_2 contains block_2
begin interaction inter_1
surfaces = surf_1 surf_ 2
friction model = fric
end interaction inter_1
begin constant friction model fric
friction coefficient = 0.5
end
end contact definition friction

Begin solver

begin loadstep predictor
type = scale_factor
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scale factor = 0.0 0.0

end

begin control contact
target relative residual 1.0e-5
acceptable relative residual 1.0e-3
Maximum Iterations = 1000

end

Begin cg
acceptable relative residual 1.0el0
target relative residual = 1.0e-6
maximum iterations = 100
iteration print =10
begin full tangent preconditioner

tangent diagonal scale = 1.0e-4

end

end

end

begin solution verification

completion file = verif_react_zero

skip times = 13.0 to 20.0

verify global spring_react = 0.0

tolerance = 0.05 # 1% of max tangential friction force
end

begin solution verification
completion file = verif_react
skip times = 0 to 13.6
verify global spring_react = function spring_react_check
tolerance = 0.05 # 1% of max tangential friction force
end

end adagio region adagio_region

end adagio procedure Adagio_Procedure
end sierra sticking_block_spring
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B.11 Coulomb Friction with Sliding [Explicit Dynamics, Face/Face Con-
tact] 2.11

begin sierra coulombSlide
{include ("MaterialsAndFunction.inp") }
begin adagio procedure Adagio_Procedure

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for adagio region region_1
number of time steps = 250

end parameters for adagio region region_1
end time stepping block time_control_1
termination time = 0.05
end time control

begin adagio region region_1
{include ("BCAndOutput.inp") }

begin user output
node = 211
compute global contactStiff as max of nodal scalar_stiffness
compute global dynamicStiff from expression "0.0"
compute global staticStiff from expression "contactStiff"
compute at every step

end

Solution verification
Verify that the solution was computed accuratly. Verification is by total error integral, the integral of t

the analytic curve and the analysis curve divided by the total area under the analytic curve. Note, due to
the solution is somewhat off, thus ensure that the solution maintains the current known properties.

H = o 3 S I

begin solution verification
skip times = 0.0 to 0.049
completion file = VerifErr
verify global relErrFX = 0.0085
verify global relErrFY = 0.0146
verify global relErrFzZ = 0.0
verify global relErrDz = 0.002
tolerance = 0.01

end

Iter count too variable on different platforms, test unstable..... ,
removing for now

HH o H

begin solution verification
skip times = 0.0 to 0.049
# verify global total_iter = 86269
# tolerance = 1000
completion file = Veriflter
end

end adagio region region_1
end adagio procedure Adagio_Procedure

end sierra coulombSlide
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B.12 Oscillating Block Spring With Friction 2.12

begin sierra oscillating_block_spring with_friction

mu = -k+Uinitial/ (9%g*m) = 400 Pi"2/8829 ~ 4.47144836216268e-1

{mu -k*Uinitial/ (9xgxm) }

Ud ~ a measure of the decrease in peak displacement that occurs linearly in time: muxg/omegan”2
{Ud = muxg/omegan”2}

# Aprepro macros for problem parameters

# mass in kg

# {m = 4}

# Natural frequency prescribed as 2Pi radians/sec (i.e., 1 hz)

# {omegan = 2%PI}

# spring stiffness in N/m to yield prescribed omegan: mxomegan”2
# {k = mxomegan”2}

# gravitational constant, 9.81 m/sec”2

# {g = 9.81}

# Uinitial ~ offeset of the block, 1 m to the left

# {Uinitial = -1.0}

# Coefficient of friction -- defined to produce stick after two cycles of oscillation
#

#

#

#

{include ("func_matl_femodel.i")}
begin presto procedure Presto_Procedure

begin time control

begin time stepping block preload
start time = 0.0
begin parameters for presto region presto_region

time step scale factor = 0.95

end

end

begin time stepping block free_vibration
start time = 10.0
begin parameters for presto region presto_region

time step scale factor = 0.95
end
end
termination time = 20
end

begin presto region presto_region
{include ("region_shared.i") }

begin contact definition friction
search = dash

contact surface surf_1 contains block_1
contact surface surf_2 contains block_2

begin interaction inter_1
surfaces = surf_1 surf_2
friction model = mod

end interaction inter_1

begin time variant model mod

model = frictionless during periods preload
model = fric during periods free_vibration
end

begin constant friction model fric
# coefficient defined such that stick occurs after 2 cycles of vibration
friction coefficient = {mu}

end
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begin enforcement options

momentum balance iterations = 5
end
compute contact variables = on

end contact definition friction

begin solution verification
completion file = vl
skip times 0.0 to 19.9
verify global relativeError = 0.0123779 plus or minus 0.002

verify global fric_energy_sum =
end

{fricEnergyEnd} plus or minus {abs(fricEnergyEnd)/100}

end presto region presto_region
end presto procedure Presto_Procedure
end sierra oscillating_block_spring with_friction
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B.13 Friction Wedge 2.13

FHEFE AR A R R R R R R R R R R R
BEGIN SIERRA friction_wedge
TITLE frictional wedge with rigid body contact

# Pedigree: This test is related to two other verification/performance tests.

# (1) rigid_body_wedge (path: adagio_rtest/presto/rigid_body_wedge) .

# This test was used as the initial template for friction_wedge. It shares

# the same mesh and much of the same input, but the emphasis of friction_wedge
# is upon examining the stick-slip behavior. This one uses rigid body edge

# wedges.

# (2) p0l5_wedge_friction (path: adagio_rtest/performance/p015_wedge_friction)

# This test shares the same geometry as this test, but the mesh is much finer.
# Both had been used to study the frictional contact algorithms in the past.

# This one uses elastic edge wedges.

FH A A R R R R R R R R R

Number of momentum balance iterations

# Aprepro macros

# Offset from the critical coefficient of friction of 0.2.

# Original offset was 0.001 but up to 0.1 was also examined.

# {fric_offset = 0.001}

# time to transition to a constant velocity. Used as the interval for deacceleration too.
# {time_Vconst = 0.001}

# time to start transition to zero velocity, i.e., where constant velocity ends

# {time_Deaccel = 0.002}

# time to end analysis, end of constant position time interval, std value is 0.004
# {time_end = 0.05}

# maximum velocity magnitude. standard value = 25 in/sec

# {velocity_max = 5}

#

#

momentum_bal_iter now passed in via the command line

###4## INITIALIZE DIRECTIONS
DEFINE DIRECTION X WITH VECTOR 1.0 0.0
DEFINE DIRECTION Y WITH VECTOR 0.0 1.0
DEFINE DIRECTION Z WITH VECTOR 0.0 0.0

= O O
o O O

# The following function is used to displace the top wedge downward and the bottom block upward
# with a velocity boundary condition. It consists of a cosine transtion from zero
# to unity, an interval of unity, a cosine transition back down to zero
# velocity (fixed position), and then a fixed position for the remainder of time.
begin function cosine2unity2zero
type is piecewise analytic
begin expressions

0.0 "(1.0-cos (t*PI/{time_Vconst}))/2.0"

{time_Vconst} "1.o"

{time_Deaccel} "(cos ((t—{time_Deaccel})*PI/{time_Vconst})+1.0)/2.0"
{time_Deaccel+time_Vconst} "0.0"

end
end function

FHAF AR AR A AR A AR R AR A A F SRR A AR A AR A A SRS HH
###4## DEFINE MATERIALS

BEGIN PROPERTY SPECIFICATION FOR MATERIAL edge_wedge_mat
DENSITY = 7.4e-5
BEGIN PARAMETERS FOR MODEL ELASTIC
YOUNGS MODULUS = 1.0e4
POISSONS RATIO = 0.00
END PARAMETERS FOR MODEL ELASTIC
END PROPERTY SPECIFICATION FOR MATERIAL edge_wedge_mat
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BEGIN PROPERTY SPECIFICATION FOR MATERIAL center_wedge_mat

DENSITY

= 7.

4e-5

BEGIN PARAMETERS FOR MODEL ELASTIC
YOUNGS MODULUS = 1.0E4
POISSONS RATIO = 0.00
END PARAMETERS FOR MODEL ELASTIC
END PROPERTY SPECIFICATION FOR MATERIAL center_wedge_mat

# Dbegin rigid body 1
# end rigid body 1

# begin solid section rigid_1
# rigid body

# end

=1

# begin solid section solid_2
# formulation = fully_integrated
# end solid section solid_2

# Dbegin rigid body 3
# end rigid body 3

# begin solid section rigid_3
# rigid body

# end

=3

idssassisassisssasiisasiiisasiisaaiiiasaiiaasiiisasiissasiisiassiiisasiissssisi

###4## DEFINE FEM MODEL
BEGIN FINITE ELEMENT MODEL BLOCKS

##### FILE NAMES & TYPES
{if (surface_blocks=="on") }
DATABASE NAME = friction_wedge.g

{Endif}

{if (surface_sidesets=="on") }
# Load the one with side sets for this permutation of the problem.
DATABASE NAME = friction_wedge_ss.g

{endif}

DATABASE TYPE = EXODUSII

Blocks

1 ~ bottom wedge
2 ~ middle wedge

3 ~

top

Node sets

21 ~
22 ~
101 ~
102 ~

wedge

bottom surface nodes of bottom wedge

top
all
all

Side sets

20 ~

top

surface nodes of top wedge
nodes for 3 wedges on +z surfaces
nodes for 3 wedges on -z surfaces

#
#
#
#
#
# 10 ~ all x-surface nodes (+/-) of top & bottom wedges
#
#
#
#
#
#

surface of top wedge and bottom surface of bottom wedge

####4# DEFINE BLOCK 1
BEGIN PARAMETERS FOR BLOCK block_1
MATERIAL edge_wedge_mat
SOLID MECHANICS USE MODEL ELASTIC
# section
END PARAMETERS FOR BLOCK block_1

rigid_1

##### DEFINE BLOCK 2
BEGIN PARAMETERS FOR BLOCK block_2
HOURGLASS VISCOSITY = 1.0E-3
MATERIAL center_wedge_mat
SOLID MECHANICS USE MODEL ELASTIC
# section
END PARAMETERS FOR BLOCK block_2

= solid_2
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##### DEFINE BLOCK 3
BEGIN PARAMETERS FOR BLOCK block_3
MATERIAL edge_wedge_mat
SOLID MECHANICS USE MODEL ELASTIC
# section = rigid_3
END PARAMETERS FOR BLOCK block_3

END FINITE ELEMENT MODEL BLOCKS
FHAH A A R R R R R R
BEGIN PRESTO PROCEDURE PRESTO_CALCULATIONS

##### DEFINE PROBLEM TIME AND TIME STEP PARAMETERS
BEGIN TIME CONTROL
TERMINATION TIME = {time_end}
BEGIN TIME STEPPING BLOCK TIMESTEPING
START TIME = 0.0
BEGIN PARAMETERS FOR PRESTO REGION PROBLEM
STEP INTERVAL = 100
time step scale factor = 1.0
END PARAMETERS FOR PRESTO REGION PROBLEM
END TIME STEPPING BLOCK TIMESTEPING
END TIME CONTROL

##### DEFINE PROBLEM
BEGIN PRESTO REGION PROBLEM
USE FINITE ELEMENT MODEL BLOCKS

##### DEFINE OUTPUT

BEGIN RESULTS OUTPUT OUTPUT_PRESTO
DATABASE NAME = friction_wedge_iter{momentum_bal_iter}.e
DATABASE TYPE = EXODUSII
AT TIME 0, INCREMENT = 1.0E-3
NODAL VARIABLES = ACCELERATION AS ACCL
NODAL VARIABLES = VELOCITY AS VEL
NODAL VARIABLES = DISPLACEMENT AS DISPL

nodal variables = force_contact

nodal variables = contact_accumulated_slip as slip
ELEMENT VARIABLES = VON_MISES AS VONMISES

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy

global variables = momentum as Momentum
global variables = timestep as TIMESTEP
END RESULTS OUTPUT OUTPUT_PRESTO

begin user output
block = block_2
compute global Uxave as average of nodal displacement (x)
compute global UxBlk2ave from expression "abs (Uxave)"
compute global SlipAveAllNodes as average of nodal contact_accumulated_slip
compute global SlipBlk2Ave from expression "2.0xSlipAveAllNodes"
compute at every step
end

begin user output

surface = mid_blk_top

compute global totConForceYa as sum of nodal force_contact (y)
end

begin user output

surface = mid_blk_btm

compute global totConForceYb as sum of nodal force_contact (y)
end
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# Get slip rate metrics for use in verification

#

begin user variable tO0

type =

global real

global operator = max

end

begin user variable tl

type = global real
global operator = max
end

begin user variable s0

type =

global real

global operator = max

end

begin user variable sl

type =

global real

global operator = max

end

begin user variable fO0

type =

global real

global operator = max

end

begin user variable fl

type =

global real

global operator = max

end

begin user output

compute global totConForceY from expression "abs (totConForceYb - totConForceYa)"
compute global t0 from expression " (time < 0.025) ? time HERGO
compute global s0 from expression " (time < 0.025) ? SlipBlk2Ave : sO "
compute global f0 from expression " (time < 0.025) ? totConForceY : f0 "
compute global tl from expression " (time < 0.050) ? time HER
compute global sl from expression " (time < 0.050) ? SlipBlk2Ave : sl "
compute global fl from expression " (time < 0.050) ? totConForceY : f1 "
compute global finErr from expression " ((sl-s0)/(tl-t0))/(0.5x(£1+£0))™"
end
# {expectedError}
{Ifdef (expectedError)}
begin solution verification
skip times = 0.0 to 0.0499
completion file = v{momentum_bal_iter}
verify global finErr = {expectedError} plus or minus {expectedError x 0.05}
end
{Endif}

begin history output
Database Name = friction_wedge_iter{momentum_bal_iter}.h
Database Type = exodusII

At step

0, increment = 1

# node 55 ~ bottom left node on z-face of middle wedge
nodal contact_accumulated_slip at node 55 as slip_55
# node 91 ~ bottom left node on z-face of middle wedge
nodal contact_accumulated_slip at node 91 as slip_91

# node

~ bottom left node on z-face of bottom wedge

# used to monitor the boundary condition
node displacement (y) at node 1 as disp_y_1
node velocity(y) at node 1 as velo_y_1

# nodal

displacement at node 55

node displacement (x) at node 55 as disp_x_55
# user variables
global UxBlk2ave
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global SlipBlk2Ave
global totConForceY

global tO
global tl1
global sO
global sl
global fO0
global f1
global finErr
end history output

##### DEFINE BOUNDARY CONDITIONS

begin fixed displacement
block = block_1
components = x z

end fixed displacement

begin fixed rotation
block = block_1
components = x y 2z

end fixed rotation

BEGIN PRESCRIBED VELOCITY
block = block_1
DIRECTION = Y
FUNCTION = cosine2unity2zero
SCALE FACTOR = {velocity_max}
END PRESCRIBED VELOCITY

begin fixed displacement
block = block_2
components = z

end fixed displacement

begin fixed displacement
block = block_3
components = x z

end fixed displacement

begin fixed rotation
block = block_3
components = x y z

end fixed rotation

BEGIN PRESCRIBED VELOCITY
block = block_3
DIRECTION = Y
FUNCTION = cosine2unity2zero
SCALE FACTOR = {-velocity_max}
END PRESCRIBED VELOCITY

##### DEFINE CONTACT
BEGIN CONTACT DEFINITION frictional

search = {search_method}

{if (surface_blocks=="on")}

CONTACT SURFACE SS1 CONTAINS block_1
CONTACT SURFACE SS2 CONTAINS block_2
CONTACT SURFACE SS3 CONTAINS block_3
{endif}

{if (surface_sidesets=="on") }

297



CONTACT SURFACE SS1 CONTAINS sideset_2
CONTACT SURFACE SS2a CONTAINS sideset_3
CONTACT SURFACE SS2b CONTAINS sideset_6
CONTACT SURFACE SS3 CONTAINS sideset_9
{endif}

{if (surface_nodesets=="on") }

CONTACT SURFACE SS1 CONTAINS block_1
CONTACT NODE SET NS2 CONTAINS block_2
CONTACT SURFACE SS3 CONTAINS block_3
{endif}

compute contact variables = on

begin enforcement options

momentum balance iterations = {momentum_bal_iter}
num geometry update iterations = 1
end

BEGIN CONSTANT FRICTION MODEL F1
FRICTION COEFFICIENT = {0.20+fric_offset}
END CONSTANT FRICTION MODEL F1

{if (surface_blocks=="on")}
BEGIN INTERACTION S1
SURFACES = SS1 SS2
KINEMATIC PARTITION = 0.0
NORMAL TOLERANCE = 0.001
TANGENTIAL TOLERANCE = 0.001
FRICTION MODEL = F1
END INTERACTION S1

BEGIN INTERACTION S2
SURFACES = SS3 SS2
KINEMATIC PARTITION = 0.0
NORMAL TOLERANCE = 0.001
TANGENTIAL TOLERANCE = 0.001
FRICTION MODEL = F1

END INTERACTION S2

{endif}

{if (surface_sidesets=="on") }

BEGIN INTERACTION S1
SURFACES = SS1 SS2a
KINEMATIC PARTITION = 0.0
NORMAL TOLERANCE = 0.001
TANGENTIAL TOLERANCE = 0.001
FRICTION MODEL = F1

END INTERACTION S1

BEGIN INTERACTION S2
SURFACES = SS3 SS2b
KINEMATIC PARTITION = 0.0
NORMAL TOLERANCE = 0.001
TANGENTIAL TOLERANCE = 0.001
FRICTION MODEL = F1

END INTERACTION S2

{endif}

{if (surface_nodesets=="on") }
BEGIN INTERACTION S1
master = SS1
slave = NS2
NORMAL TOLERANCE = 0.001
TANGENTIAL TOLERANCE = 0.001
FRICTION MODEL = F1
END INTERACTION S1

BEGIN INTERACTION S2
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master = SS3
slave = NS2
NORMAL TOLERANCE = 0.001
TANGENTIAL TOLERANCE = 0.001
FRICTION MODEL = F1

END INTERACTION S2

{endif}

END CONTACT DEFINITION frictional
END PRESTO REGION PROBLEM

END PRESTO PROCEDURE PRESTO_CALCULATIONS
END SIERRA friction_wedge

FHEAA AR R R R R R A R R R R R R R R R R R R R
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B.14 Hex Patch Tests — Quasi-Static, Linear Elastic 3.1

begin sierra Hex_patch

Units

length: inches

force: lbs

stress: psi

time: seconds (pseudo-time for these quasistatic runs)

.

APreproO MACTOS e e eweeeneenns

{u_factor = 1.0E-4}

{final_time = 1.0}

{number_steps = 2}

Expected normal and shear stresses expected from the patch test -- a linear elastic approximation
Note that these could be obtained more symbolically to generalize the test.
{sigNormal = 400.0}

{sigShear = 80.0}

epsilon_time is an off set from the final_time used to ignore all results
except those associated with the final time step.

{ epsilon_time = final_time/ (number_steps=*2)}

H % S S 9k HE 9 9

Required externally provided macros with string values:
normal_stress_tolerance
shear_stress_tolerance
strain_incrementation
formulation
meshFile
material model
Required externally provided macros "on" or "off":
mean_qguad
selective_dev

O .

# Ux displacement component as a function of space and time
begin definition for function u
type = analytic
expression variable: = nodal model_coordinates (1)
expression variable: = nodal model_coordinates (2)
expression variable: = nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor}x(2.0xx+y+z)"
end definition for function u

N =X
I

# Uy displacement component as a function of space and time
begin definition for function v
type = analytic
expression variable: = nodal model_coordinates (1)
expression variable: nodal model_coordinates (2)
expression variable: = nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor}x (x+2.0*xy+z)"
end definition for function v

N <X
I

# Uz displacement component as a function of space and time
begin definition for function w
type = analytic
expression variable: = nodal model_coordinates (1)
expression variable: nodal model_coordinates (2)
expression variable: = nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor}x (x+y+2.0xz)"
end definition for function w

N =X
Il

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O
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begin material block_mat

density = 2.6le-4

begin parameters for model {material _model}
youngs modulus = 1.0e6
poissons ratio = 0.25

end parameters for model {material_model}
end material block_mat

begin solid section solid_1

strain incrementation = {strain_incrementation}
formulation = {formulation}
{Ifdef (selective_dev)}
deviatoric parameter = 0.5
{Else}
# selective_dev undefined
{Endif}
end

begin finite element model meshl
Database Name = {meshFile}
Database Type = exodusII

begin parameters for block block_1
material = block_mat
model = {material_model}
section = solid_1
{Ifdef (mean_quad) }
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0
hourglass viscosity = 0
{Endif}

end parameters for block block_1

.0
.0

begin parameters for block block_2
material = block_mat
model = {material_model}
section = solid_1
{Ifdef (mean_qguad) }
linear bulk viscosity = 0.0

quadratic bulk viscosity = 0.0
hourglass stiffness = 0.0
hourglass viscosity = 0.0
{Endif}

end parameters for block block_2

begin parameters for block block_3
material = block_mat
model {material_model}
section = solid_1
{Ifdef (mean_qguad) }
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0
hourglass viscosity = 0
{Endif}

end parameters for block block_3

.0
.0

begin parameters for block block_4
material = block_mat
model {material_model}
section = solid_1
{Ifdef (mean_quad) }
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0
hourglass viscosity = 0
{Endif}

0
0
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end parameters for block block_4

begin parameters for block block_ 5
material = block_mat
model = {material_model}
section = solid_1
{Ifdef (mean_qguad) }
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0.0
hourglass viscosity = 0.0
{Endif}

end parameters for block block_5

begin parameters for block block_6
material = block_mat
model = {material_model}
section = solid_1
{Ifdef (mean_qguad) }
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0
hourglass viscosity = 0
{Endif}

end parameters for block block_6

.0
.0

begin parameters for block block_ 7
material = block_mat
model = {material_model}
section = solid_1
{Ifdef (mean_quad) }
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0.0
hourglass viscosity = 0.0
{Endif}

end parameters for block block_7

end finite element model meshl
begin adagio procedure adagio_patch_procedure

begin time control
begin time stepping block ramp_segment
start time = 0.0
begin parameters for adagio region adagio_patch_region
time increment = {final_time/number_steps}
end parameters for adagio region adagio_patch_region
end time stepping block ramp_segment
termination time = {final_time}
end time control

begin adagio region adagio_patch_region
use finite element model meshl

### output description ###

begin Results Output output_adagio
Database Name = hex_patch.e
Database Type = exodusII
At Time 0.0, Increment = {final_time}
nodal Variables = force_external as f_ext
nodal Variables = force_internal as f_int
nodal Variables = displacement
element Variables = stress as stress_el
element Variables = cauchy_stress
element Variables = log_strain as strain_el
element variables = timestep as elem_time_step
global Variables = timestep as timestep
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global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
end results output output_adagio

### definition of BCs ###

# For Hex8 mesh the union of the following nodesets gives all the boundary nodes:

# nodelist_1 ... nodelist_8

# For the Hex27 mesh the union of the following nodesets gives all the boundary nodes::
# nodelist_1 ... nodelist_26

#

To simplify the BC spectification for now use the 6 surfaces of the block.
# X displacements

begin prescribed displacement
# node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6 nodelist_7 nodelist_8

surface = surface_100 surface_200 surface_300 surface_400 surface_500 surface_600
# block = block_1 -- for debugging
component = X
function = u
scale factor = 1.0
end

# Y displacements

begin prescribed displacement
# node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6 nodelist_7 nodelist_8

surface = surface_100 surface_200 surface_300 surface_400 surface_500 surface_600
# block = block_1 -- for debugging
component =Y
function = v
scale factor = 1.0
end

# Z displacements

begin prescribed displacement
# node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6 nodelist_7 nodelist_8

surface = surface_100 surface_200 surface_300 surface_400 surface_500 surface_600
# block = block_1 -- for debugging
component = Z
function = w
scale factor = 1.0
end

# Solver parameters

begin solver

begin cg
target relative residual = 1.0e-11
maximum iterations = 1000
begin full tangent preconditioner
end

end cg

end solver

# Solution verification
# Examine the bounds of the "expected stresses". Note that these stresses are base on
# linear elastic bodies, and thus are not exact for the finite strain formulation.

begin user output
block = block_1
compute global sigllmax as max of element stress(xx)
compute global sigllmin as min of element stress (xx)
compute global sig22max as max of element stress(yy)
compute global sig22min as min of element stress(yy)
compute global sig33max as max of element stress(zz)
compute global sig33min as min of element stress(zz)
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of
of
of
of
of
of

compute
compute
compute
compute
compute
compute

global
global
global
global
global
global

siglZ2max
sigl2min
sigl3max
sigl3min
sig23max
sig23min

as
as
as
as
as
as

max
min
max
min
max
min

of
of
of
of
of
of
of
of
of
of
of
of

compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute

global
global
global
global
global
global
global
global
global
global
global
global

usigllmax
usigllmin
usig22max
usig22min
usig33max
usig33min
usigl2max
usigl2min
usigl3max
usigl3min
usig23max
usig23min

as
as
as
as
as
as
as
as
as
as
as
as

max
min
max
min
max
min
max
min
max
min eleme
eleme
eleme

max
min

# Relative percent error in each stress
compute global sigllerr from expression
compute global sig22err from expression
compute global sig33err from expression
compute global sigl2err from expression
compute global sigl3err from expression
compute global sig23err from expression

from
from
from
from
from
from

usigllerr
usig22err
usig33err
usigl2err
usigl3err
usig23err

expression
expression
expression
expression
expression
expression

compute

compute

compute

compute

compute

compute
end

global
global
global
global
global
global

begin solution verification
skip times
completion file

VerifNormal

verify global sigllerr = 0.0
verify global sig22err = 0.0
verify global sig33err = 0.0

tolerance {normal_stress_tolerance}

end

begin solution verification
skip times

completion file = VerifShear
verify global sigl2err = 0.0
verify global sigl3err = 0.0
verify global sig23err = 0.0

tolerance {shear_stress_tolerance}

end

{if (formulation=="qglp0") }
{Else}
begin solution verification

skip times
completion file

VerifNormalU

verify global usigllerr = 0.0
verify global usig22err = 0.0
verify global usig33err = 0.0

tolerance {normal_stress_tolerance}

end

element
element
element
element
element
element

element
element
element
element
element
element
element
element
element

0.0 to {final_time-epsilon_:

0.0 to {final_time-epsilon_

0.0 to {final_time-epsilon_:

stress (xy)
stress (xy)
stress (xz)
stress (xz)
stress(yz)
stress(yz)

cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (

nt
nt

x)
x)
Y)
y)
z)
z)
y)
Y)
z)
z)
z)
nt z)

X
X
y
Yy
Z
Z
X
b4
X
X
Yy
Yy

component

"max (abs (sigllmax—{sigNormal}),abs(sigllmin-{sigNormal}))*100/{si
"max (abs (sig22max—-{sigNormal}),abs (sig22min-{sigNormal}))*100/{si

"max (abs (sig33max-{sigNormal}), abs

(
(
"max (abs (sigl2max-{sigShear}
"max (abs (sigl3max-{sigShear}
"max (abs (sig23max-{sigShear}
"max (abs (usigllmax—{sigNormal}
"max (abs (usig22max—{sigNormal}
"max (abs (usig33max—{sigNormal}
"max (abs (usigl2max—{sigShear}
"max (abs (usigl3max—-{sigShear}
"max (abs (usig23max—-{sigShear}

time}

time}

time}
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) ,abs (sigl2min-{sigShear}
) ,abs (sigl3min-{sigShear}
) ,abs (sig23min-{sigShear}

(

(

(sig33min-{sigNormal}))+100/{si
( ))*100/{si
( ))*100/{si
( ))*«100/{si
*100/
*100/
*100/
*100/
*100/
*100/

) ,abs (usigllmin-{sigNormal}
) ,abs (usig22min-{sigNormal}
) ,abs (usig33min-{sigNormal}
) ,abs (usigl2min-{sigShear}
) ,abs (usigl3min-{sigShear}

))
))
))
))
))
) ,abs (usig23min-{sigShear} ))



begin solution verification
skip times = 0.0 to {final_time-epsilon_time}
completion file = VerifShearU

verify global usigl2err = 0.0
verify global usigl3err = 0.0
verify global usig23err = 0.0
tolerance = {shear_stress_tolerance}
end
{Endif}

end adagio region adagio_patch_region
end adagio procedure adagio_patch_procedure

end sierra Hex_patch
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B.15 Hex Patch Tests — Quasi-Static, Finite Deformation 3.2

4=

HexPatchQsFdlUa-c Tests —-- 1lUa,b,c ~ 0(1%,10%,100%) strain versions of the FD test
The 10% case was not used in the verification problem.

HH H H

4=

Aprepro variable settings that are passed in from the test script....

meshFile: {meshFile}

formulation: {formulation}

strain_incrementation: {strain_incrementation}

material_model: {material_model}

normal_stress_tolerance: {normal_stress_tolerance}

shear_stress_tolerance: {shear_stress_tolerance}

normal_stretch_tolerance: {normal_stretch_tolerance}

shear_stretch_tolerance: {shear_stretch_tolerance}

Note that u_factor_temp is used so u_factor can be defined here to over-ride the test file values.
u_factor = 1.0e-1 # —-- possible over-ride assigned here -- just add brackets here & remove below.
u_factor: {u_factor = u_factor_temp}

H o o o S 3 3 H o

Aprepro macros set within this file for all analyses..............

Format for double precision: {_FORMAT = "%$.1l6g"}

youngs modulus: {E_young = 1.0e6}

poissons ratio: {poissons_ratio = 0.25}

Lame constants

lambda: {lambda = E_young*poissons_ratio/ ((l.0+poissons_ratio)*(1.0-2.0xpoissons_ratio))}
mu: {mu = E_young/ (2.0*(1.0+poissons_ratio))}

prescribed displacement debug: {prescribed_displacement_debug = 'off’}

H H H o 3 I

final_time: {final_time = 1.0}
hourglass stiffness parameter, originally 0, now set to default (0.05)
hourglass_stiffness: {hourglass_stiffness = 0.05}
Expected stretch values
stretchNormal: {stretchNormal = 1.0 + 2.0xfinal_time*u_factor}
stretchShear: {stretchShear = final_time=*u_factor}
Expected normal and shear stresses expected from the patch test
These forms could be simplified, but in this "pass" we are pasting them from Matematica and minor changes
(with the hope of not introducing editing errors).
if (material_model=="elastic")}
# Hypoelastic model: Elastic —-- path dependent => steps affect solution and integration accuracy
# sigNormal: {sigNormal = (3.0xlambda + 2.0*mu)* (2.0x1ln(1l.0+final_timexu_factor) + 1n(l.0+4.0xfinal_timexu_fact
# sigShear: {sigShear = (2.0xmu*(-1n(l.0+final_time*u_factor) + 1ln(l1.0+4.0+«final_timexu_factor)))/3.0}
{if (u_factor==1.0E-2)}
{if (strain_incrementation=="strongly_objective") }
# number_steps: {number_steps = 10}
{else}
# number_steps: {number_steps = 200}
{endif}
{else} # 0(100%) strain case
{if (strain_incrementation=="strongly_objective") }
# number_steps: {number_steps = 100}
{else}
# number_steps: {number_steps = 20000}
{endif}
{endif}
{elseif (material_model=="neo_hookean") }
# Hyperelastic model: Neo_Hookean —-- path independent => using steps to aid solver
# sigNormal: {sigNormal = (final_timex (3.0+lambda + 2.0xmu)+u_factorx(12.0 + 54.0+«final_time*u_factor + 116.0«f
129xfinal_timexx3.0xu_factor*x3.0 + 72.0xfinal_ timexx4xu_factor %4 +
16+«final_time**5+u_factor*x5))/(6.x(1 + final_time*u_factor)*2* (1 + 4xfinal_timexu_factor))}
# sigShear: {sigShear = (final_time*muxu_factorx (2 + 5xfinal_time*u_factor))/((1 + final_timex*u_factor) xx2x (1
{if (u_factor==1.0E-2) }
{if (strain_incrementation=="strongly_objective") }
# number_steps: {number_steps = 2}
{else}

~ = 3 I I o FH o H

306



# number_steps: {number_steps = 200}

{endif}
{else} # 0(100%) strain case
{if (strain_incrementation=="strongly_objective") }
# number_steps: {number_steps = 100}
{else}
# number_steps: {number_steps = 20000}
{endif}
{endif}
{else}

# Test group is not implemented for material model {material_model}.
{Endif}
# epsilon_time is an off set from the final_ time used to ignore all results
# except those associated with the final time step.
# epsilon_time: {epsilon_time = final_time/ (number_steps*2)}

begin sierra Hex_patch

Units

length: inches

force: lbs

stress: psi

time: seconds (pseudo-time for these quasistatic runs)

o

# Ux displacement component as a function of space and time
begin definition for function u
type = analytic
expression variable:

nodal model_coordinates (1)
expression variable: nodal model_coordinates (2)
expression variable: nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor} (2.0xx+y+z)"

end definition for function u

N <X
Il

# Uy displacement component as a function of space and time
begin definition for function v
type = analytic
expression variable: = nodal model_coordinates (1)
expression variable: nodal model_coordinates (2)
expression variable: = nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor}x (x+2.0xy+z)"
end definition for function v

N =X
Il

# Uz displacement component as a function of space and time
begin definition for function w
type = analytic
expression variable: = nodal model_coordinates (1)
expression variable: nodal model_coordinates (2)
expression variable: = nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor}x (x+y+2.0%z)"
end definition for function w

N <X
I

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material block_mat

density = 1.0e-4

begin parameters for model {material_model}
youngs modulus = {E_young}
poissons ratio = {poissons_ratio}

end parameters for model {material_model}
end material block_mat
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begin solid section solid_1
strain incrementation =

= {strain_incrementation}

formulation {formulation}
{if (formulation=="selective_deviatoric") }
deviatoric parameter = 0.5
{Else}
# not a selective_deviatoric formulation
{Endif}
end

begin finite element model meshl
Database Name = {meshFile}

Database Type = exodusII

begin parameters for block block_1
material = block_mat

model {material_model}
section = solid_1
{if (formulation=="mean_quadrature") }

linear bulk viscosity = 0.0

quadratic bulk viscosity = 0.0

hourglass stiffness = {hourglass_stiffness}
hourglass viscosity = 0.0
{Endif}

end parameters for block block_1

begin parameters for block block_2
material = block_mat

model = {material_model}

section = solid_1

{if (formulation=="mean_quadrature") }
linear bulk viscosity = 0.0

quadratic bulk viscosity = 0.0

hourglass stiffness = {hourglass_stiffness}
hourglass viscosity = 0.0

{Endif}

end parameters for block block_2

begin parameters for block block_3
material = block_mat
model =

{material_model}
section

solid_1

{if (formulation=="mean_quadrature") }
linear bulk viscosity = 0.0
quadratic bulk viscosity =
hourglass stiffness =
hourglass viscosity

{Endif}

end parameters for block block_3

0.0

{hourglass_stiffness}
0.0

begin parameters for block block_4
material = block_mat

model = {material_model}
section = solid_1
{if (formulation=="mean_quadrature") }

linear bulk viscosity 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = {hourglass_stiffness}

hourglass viscosity = 0.0
{Endif}

end parameters for block block_4

begin parameters for block block_5
material = block_mat
model {material_model}
section = solid_1

{if (formulation=="mean_quadrature") }
linear bulk viscosity = 0.0
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quadratic bulk viscosity = 0.0

hourglass stiffness = {hourglass_stiffness}
hourglass viscosity = 0.0
{Endif}

end parameters for block block_5

begin parameters for block block_6
material = block_mat

model = {material_model}
section = solid_1
{if (formulation=="mean_quadrature") }
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = {hourglass_stiffness}
hourglass viscosity = 0.0
{Endif}

end parameters for block block_6

begin parameters for block block_7
material = block_mat

model = {material_model}
section = solid_1
{if (formulation=="mean_quadrature") }
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = {hourglass_stiffness}
hourglass viscosity = 0.0
{Endif}

end parameters for block block_7
end finite element model meshl

begin trilinos equation solver superlu
solution method = amesos-superlu
end

begin trilinos equation solver klu
solution method = amesos-klu
end

begin adagio procedure adagio_patch_procedure

begin time control
begin time stepping block ramp_segment
start time = 0.0
begin parameters for adagio region adagio_patch_region
time increment = {final_time/number_steps}
end parameters for adagio region adagio_patch_region
end time stepping block ramp_segment
termination time = {final_time}
end time control

begin adagio region adagio_patch_region
use finite element model meshl

### output description ###

begin Results Output output_adagio
Database Name = hex_patch.e
Database Type = exodusII
At Time 0.0, Increment = {final_time}
nodal Variables = force_external as f_ext
nodal Variables = force_internal as f_int
nodal Variables = displacement

element Variables = stress as stress_el

element Variables = log_strain as log_strain_el

element variables = min_principal_log_strain as principal_log_strain_min

element variables = intermediate_principal_log_strain as principal_log_strain_int
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element variables = max_principal_log_strain as principal_log_strain_max
element variables = unrotated_stress

element variables = cauchy_stress

element variables = rotation

element variables = left_stretch as V_stretch
element variables = timestep as elem_time_step
global Variables = timestep as timestep

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy

end results output output_adagio

### definition of BCs ###

# For Hex8 mesh the union of the following nodesets gives all the boundary nodes:

# nodelist_1 ... nodelist_8

# For the Hex27 mesh the union of the following nodesets gives all the boundary nodes::
# nodelist_1 ... nodelist_26

#

To simplify the BC spectification for now use the 6 surfaces of the block.
# X displacements

begin prescribed displacement
# node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6 nodelist_7 nodelist_8

{if (prescribed_displacement_debug == "on’)}
block = block_1 # -- for debugging
{else}
surface = surface_100 surface_200 surface_300 surface_400 surface_500 surface_600
{endif}
component = X
function = u
scale factor = 1.0
end

# Y displacements

begin prescribed displacement
# node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6 nodelist_7 nodelist_8

{if (prescribed_displacement_debug == ’on’)}
block = block_1 # -- for debugging
{else}
surface = surface_100 surface_200 surface_300 surface_400 surface_500 surface_600
{endif}
component =Y
function = v
scale factor = 1.0
end

# Z displacements

begin prescribed displacement
# node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6 nodelist_7 nodelist_8

{if (prescribed_displacement_debug == ’on’)}
block = block_1 # —-- for debugging
{else}
surface = surface_100 surface_200 surface_300 surface_400 surface_500 surface_600
{endif}
component = Z
function = w
scale factor = 1.0
end

# Solver parameters

begin solver
{if (formulation=="qglpO")}
begin loadstep predictor
type = scale_factor
scale factor = 0.0
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end
{else}

begin loadstep predictor

type
scale factor
end
{endif}
begin cg

# value of usable tolerance depends on the number of steps used
# The value of le-14 was controled by the hyperelastic model using 10 step

scale_factor
1.0 0.0

{if (formulation=="qglp0") }

# don’t push this one,

target relative residual

acceptable relative residual
maximum iterations

{else}

25

target relative residual

# initially used for debugging with all displacements constrained, but retained for all runs
# Let the verification statements determine if this was too loose for the hypo cases.

acceptable relative residual
maximum iterations

20

line search secant le-6
begin full tangent preconditioner
# take more drastic action and update tangent more

# It’s a small problem anyway,

since

{if (formulation=="qglpO0") }

iteration update

{else}

iteration update

{endif}
linear so
end

{endif}
end cg

end solver

# Solution verifi

# Examine the bounds of the

begin user output
block block_1

lver

cation

superlu

5

100

it doe
1.0e
1.0e

1.0e-14

1.0e

SO

s not
-9
1

-1

tangents are not costly from an absolute perspective.

"expected stresses".

# maximum and minimum of stress components
sigllmax
sigllmin
sig22max
sig22min
sig33max
sig33min
sigl2max
sigl2min
sigl3max
sigl3min
sig23max
sig23min

compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute

global
global
global
global
global
global
global
global
global
global
global
global

# maximum and minimum

compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute

global
global
global
global
global
global
global
global
global
global
global

Vllmax
Vllmin
V22max
V22min
V33max
V33min
V12max
V12min
V13max
V13min
V23max

of
as
as
as
as
as
as
as
as
as
as
as

as
as
as
as
as
as
as
as
as
as
as
as

max
min
max
min
max
min
max
min
max
min
max
min

of
of
of
of
of
of
of
of
of
of
of
of

element
element
element
element
element
element
element
element
element
element
element
element

stress (xx)
stress (xXx)
stress (yy)
stress (yy)
stress(zz)
stress(zz)
stress (xy)
stress (xy)
stress (xz)
stress (xz)
stress(yz)
stress(yz)

left_stretch components

max
min
max
min
max
min
max
min
max
min
max

of
of
of
of
of
of
of
of
of
of
of

element
element
element
element
element
element
element
element
element
element
element

left_stretch (xx)
left_stretch (xx)
left_stretch(yy)
left_stretch(yy)
left_stretch(zz)
left_stretch(zz)
left_stretch(xy)
left_stretch(xy)
left_stretch (xz)
left_stretch(xz)
left_stretch(yz)
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compute global V23min as min of
max of
min of
max of
min of
max of
min of
max of
min of
max of
min of
max of
min of

compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute

global
global
global
global
global
global
global
global
global
global
global
global

usigllmax as
usigllmin as
usig22max as
usig22min as
usig33max as
usig33min as
usigl2max as
usigl2min as
usigl3max as
usigl3min as
usig23max as
usig23min as

# Relative factional error in each
# Changed from

element
element
element
element
element
element
element
element
element
element
element
element

percent to fractional to

element left_stretch(yz)

cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (
cauchy_stress (

(

x)
x)
v)
y)
z)
z)
y)
Y)
z)
z)
z)
cauchy_stress (yz)

X
X
y
Yy
b4
Z
X
X
X
X
Yy
y

stress component
more easily judge the number of accurate digits

compute global sigllerr from expression "max (abs(sigllmax-{sigNormal}),abs(sigllmin-{sigNormal}))/{sigNor
compute global sig22err from expression "max (abs (sig22max—{sigNormal}),abs (sig22min—-{sigNormal}))/{sigNor
compute global sig33err from expression "max (abs(sig33max-{sigNormal}),abs(sig33min-{sigNormal}))/{sigNor
compute global sigiierr from expression "max(sigllerr,sig22err,sig33err)"
compute global sigl2err from expression "max (abs (sigl2max-{sigShear} ),abs(sigl2min-{sigShear} ))/{sigShe
compute global sigl3err from expression "max (abs(sigl3max-{sigShear} ),abs(sigl3min-{sigShear} ))/{sigShe
compute global sig23err from expression "max (abs (sig23max—-{sigShear} ),abs(sig23min-{sigShear} ))/{sigShe
compute global sigijerr from expression "max(sigl2err,sigl3err,sig23err)"
compute global usigllerr from expression "max (abs(usigllmax-{sigNormal}),abs (usigllmin-{sigNormal}))/{sig
compute global usig22err from expression "max (abs (usig22max-{sigNormal}),abs (usig22min—-{sigNormal}))/{sig
compute global usig33err from expression "max (abs (usig33max-{sigNormal}), abs (usig33min-{sigNormal}))/{sig
compute global usigiierr from expression "max (usigllerr,usig22err,usig33err)"
compute global usigllerr from expression "max (abs (usiglZ2max-{sigShear} ),abs(usigl2min-{sigShear} ))/{sig
compute global usigl3err from expression "max (abs(usigl3max-{sigShear} ),abs(usigl3min-{sigShear} ))/{sig
compute global usig23err from expression "max (abs(usig23max-{sigShear} ),abs(usig23min-{sigShear} ))/{sig
compute global usigijerr from expression "max (usigl2err,usigl3err,usig23err)"
# Relative factional error in each left_stretch component
compute global Vllerr from expression "max (abs (Vllmax-{stretchNormal}),abs (Vllmin-{stretchNormal}))/{stre
compute global V22err from expression "max (abs (V22max-{stretchNormal}),babs (V22min-{stretchNormal}))/{stre
compute global V33err from expression "max (abs (V33max-{stretchNormal}),abs (V33min-{stretchNormal}))/{stre
compute global Viierr from expression "max(Vllerr,V22err,V33err)"
compute global V12err from expression "max (abs (V12max-{stretchShear} ),abs(Vl12min-{stretchShear} ))/{stre
compute global V13err from expression "max (abs (Vl13max-{stretchShear} ),abs(Vl3min-{stretchShear} ))/{stre
compute global V23err from expression "max (abs (V23max—{stretchShear} ),abs (V23min-{stretchShear} ))/{stre
compute global Vijerr from expression "max (Vl12err,V13err,V23err)"
# Put tolerances in global variables so they can be output to the heartbeat file
compute global normal_stretch_tolerance from expression "{normal_stretch_tolerance}"
compute global shear_stretch_tolerance from expression "{shear_stretch_tolerance}"
compute global normal_stress_tolerance from expression "{normal_stress_tolerance}"
compute global shear_stress_tolerance from expression "{shear_stress_tolerance}"

end

# heartbeat files

begin heartbeat o
stream name =
labels = off
legend = off
format = spyhis
start time = {f
at step 1 incre

termination time =

# global time

# commented-out
#global Vllmin
#global Vllmax
#global Vllerr
#global V22err

for creating documentation LaTex tables
utput deformation_tabular_output

hex_patch_deformation_error_table.csv

# a csv file
inal_time-epsilon_time}
ment = 1
{final_time}
—— unnecessary with spyhis format
data for debugging
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#global V33err

global Viierr

global normal_stretch_tolerance
#global Vl2err

#global Vl13err

#global V23err

global Vijerr

global shear_stretch_tolerance

end heartbeat output deformation_tabular_output

begin heartbeat output stress_tabular_output
stream name = hex_patch_stress_error_table.csv
labels = off
legend = off
format = spyhis # a csv file
start time = {final_time-epsilon_time}
at step 1 increment =1
termination time = {final_time}
# global time -- unnecessary with spyhis format
global sigiierr
global normal_stress_tolerance
global sigijerr
global shear_stress_tolerance
end heartbeat output stress_tabular_output

begin solution verification
skip times = 0.0 to {final_time-epsilon_time}
completion file = VerifSigNormal
verify global sigllerr = 0.0

verify global sig22err = 0.0
verify global sig33err = 0.0
tolerance = {normal_stress_tolerance}

end

begin solution verification
skip times = 0.0 to {final_time-epsilon_time}
completion file = VerifSigShear
verify global sigl2err 0.0
verify global sigl3err 0.0
verify global sig23err = 0.0
tolerance = {shear_stress_tolerance}

end
{if (formulation=="qglp0") }
{Else}

begin solution verification
skip times = 0.0 to {final_time-epsilon_time}
completion file = VerifUSigNormal
verify global usigllerr 0.0
verify global usig22err = 0.0
verify global usig33err = 0.0
tolerance = {normal_stress_tolerance}
end

begin solution verification
skip times = 0.0 to {final time-epsilon_time}
completion file = VerifUSigShear
verify global usigl2err = 0.0

verify global usigl3err = 0.0
verify global usig23err = 0.0
tolerance = {shear_stress_tolerance}
end
{Endif}

begin solution verification
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skip times = 0.0 to {final_time-epsilon_time}
completion file = VerifVNormal

verify global Vllerr 0.0

verify global V22err 0.0

verify global V33err = 0.0

tolerance = {normal_stretch_tolerance}

end

begin solution verification
skip times = 0.0 to {final_time-epsilon_time}
completion file = VerifVShear

verify global Vl2err = 0.0
verify global V13err = 0.0
verify global V23err = 0.0
tolerance = {shear_stretch_tolerance}

end

end adagio region adagio_patch_region
end adagio procedure adagio_patch_procedure

end sierra Hex_patch
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B.16 Hex Patch Test — Uniform Gradient, Strongly Objective 3.3

begin sierra

begin function unit
type is piecewise linear
ordinate is time
abscissa is unit
begin values

0.0 0.0

0.0001 6.15581932461301e-06
0.0002 2.44717008522228e-05
0.0003 5.44966475530096e-05
0.0004 9.54913468384886e-05
0.0005 0.000146446374860387
0.0006 0.000206107051833971
0.0007 0.000273004336366306
0.0008 0.00034549099806984
0.0009 0.000421782177773008
0.001 0.000499999336602552
0.0011 0.000578216511767115
0.0012 0.000654507740073118
0.0013 0.000726994481450545
0.0014 0.000793891874765996
0.0015 0.000853552686953322
0.0016 0.000904507873290184
0.0017 0.000945502750093614
0.0018 0.000975527889144267
0.0019 0.000993843973117372
0.002 0.00099999999999824
0.0025 0.001

end values
end function unit

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 O.

o O O
= o O
o O O

begin material linear_elastic
density = 2.6le-4

begin parameters for model elastic
youngs modulus = 1l.e6
poissons ratio = 0.25

end parameters for model elastic

begin parameters for model elastic_plastic

youngs modulus = 1l.eb6
poissons ratio = 0.25
yield stress = 1.0e6
hardening modulus = 10.0

beta is 0.999999
end parameters for model elastic_plastic
end material linear_elastic

begin solid section solid_1
strain incrementation = strongly_objective
end solid section solid_1

begin finite element model meshl
Database Name = ug3dh8_so_patch_test.g
Database Type = exodusII

begin parameters for block block_ 1

material = linear_elastic
model = elastic
linear bulk viscosity = 0.0
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quadratic bulk viscosit
hourglass stiffness = 0
hourglass viscosity = 0
section = solid_1

end parameters for block block_1

y = 0.0
0
0

begin parameters for block block_2
material = linear_elastic
model = elastic
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness 0.0
hourglass viscosity = 0.0
section = solid_1

end parameters for block block_2

begin parameters for block block_3

material = linear_elastic
model = elastic

linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0.0
hourglass viscosity = 0.0
section = solid_ 1

end parameters for block block_3

begin parameters for block block_4
material = linear_elastic
model = elastic
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0.0
hourglass viscosity = 0.0
section = solid_1

end parameters for block block_4

begin parameters for block block_5

material = linear_elastic
model = elastic

linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0.0
hourglass viscosity = 0.0
section = solid_1

end parameters for block block_5

begin parameters for block block_6

material = linear_elastic
model = elastic
linear bulk viscosity = 0.0

quadratic bulk viscosity = 0.0
hourglass stiffness 0.0
hourglass viscosity 0.0
section = solid_1

end parameters for block block_6

begin parameters for block block_7

material = linear_elastic
model = elastic

linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0.0
hourglass viscosity = 0.0
section = solid_1

end parameters for block block_7

end finite element model meshl
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begin presto procedure Apst_Procedure

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for presto region presto
time step scale factor = 1.0
time step increase factor = 2.0
step interval = 100
end parameters for presto region presto
end time stepping block pl

termination time = 0.0025
end time control

begin presto region presto
use finite element model meshl

begin node based time step parameters
step interval = 100
end

begin mass scaling

block = block_5

allowable mass increase ratio = 1.2
end mass scaling

### output description ###

begin Results Output output_adagio
Database Name = ug3dh8_so_patch_test.e
Database Type = exodusII
At Time 0.0, Increment = 1.0E-4

nodal Variables = force_external as f_ext

nodal Variables = force_internal as f_int

nodal Variables = velocity as vel

nodal Variables = acceleration as acc

nodal Variables = displacement as displ

element Variables = stress as stress

global Variables = timestep as timestep

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy

global variables = momentum as Momentum
end results output output_adagio

### definition of BCs ###
begin fixed displacement

node set = nodelist_1
components = X Y Z
end

# X displacements

begin prescribed displacement

node set = nodelist_4 nodelist_5
component = X
function = unit
scale factor = 1.0
end

begin prescribed displacement

node set = nodelist_2 nodelist_8
component = X
function = unit
scale factor = 2.0
end
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begin prescribed displacement

node set = nodelist_3 nodelist_6
component = X
function = unit
scale factor = 3.0
end

begin prescribed displacement

node set = nodelist_7

component = X

function = unit

scale factor = 4.0
end

# Y displacements

begin prescribed displacement

node set = nodelist_2 nodelist_5
component =Y
function = unit
scale factor = 1.0
end

begin prescribed displacement

node set = nodelist_4 nodelist_6
component = Y
function = unit
scale factor = 2.0
end

begin prescribed displacement

node set = nodelist_3 nodelist_8
component = Y
function = unit
scale factor = 3.0
end

begin prescribed displacement

node set = nodelist_7

component = Y

function = unit

scale factor = 4.0
end

# Z displacements

begin prescribed displacement

node set = nodelist_2 nodelist_4
component = 7
function = unit
scale factor = 1.0
end

begin prescribed displacement

node set = nodelist_3 nodelist_5
component = Z
function = unit
scale factor = 2.0
end

begin prescribed displacement

node set = nodelist_6 nodelist_8
component = 7
function = unit
scale factor = 3.0
end

begin prescribed displacement
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node set

nodelist_7

component = Z

function unit

scale factor = 4.0
end

end presto region presto
end presto procedure Apst_Procedure

end sierra
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B.17 Hex Patch Test — Uniform Gradient, Midpoint Increment 3.4

begin sierra

begin function unit
type is piecewise linear
ordinate is time
abscissa is unit
begin values

0.0 0.0

0.0001 6.15581932461301e-06
0.0002 2.44717008522228e-05
0.0003 5.44966475530096e-05
0.0004 9.54913468384886e-05
0.0005 0.000146446374860387
0.0006 0.000206107051833971
0.0007 0.000273004336366306
0.0008 0.00034549099806984
0.0009 0.000421782177773008
0.001 0.000499999336602552
0.0011 0.000578216511767115
0.0012 0.000654507740073118
0.0013 0.000726994481450545
0.0014 0.000793891874765996
0.0015 0.000853552686953322
0.0016 0.000904507873290184
0.0017 0.000945502750093614
0.0018 0.000975527889144267
0.0019 0.000993843973117372
0.002 0.00099999999999824
0.0025 0.001

end values
end function unit

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 O.

o O O
= o O
o O O

begin material linear_elastic
density = 2.6le-4

begin parameters for model elastic
youngs modulus = 1l.e6
poissons ratio = 0.25

end parameters for model elastic

begin parameters for model elastic_plastic

youngs modulus = 1l.eb6
poissons ratio = 0.25
yield stress = 1.0e6
hardening modulus = 10.0

beta is 0.999999
end parameters for model elastic_plastic
end material linear_elastic

begin finite element model meshl
Database Name = ug3dh8_mi_patch_test.g
Database Type = exodusII

begin parameters for block
include all blocks
remove block = block_1 block_2 block_3
material = linear_elastic
model = elastic
linear bulk viscosity = 0.0
quadratic bulk viscosity = 0.0
hourglass stiffness = 0.0
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hourglass viscosity = 0.0
end

begin parameters for block
include all blocks

remove block = block_4 block_5 block_6 block_7

material = linear_elastic
model = elastic
linear bulk viscosity = 0.0

quadratic bulk viscosity = 0.0

hourglass stiffness = 0
hourglass viscosity = 0

end

.0

.0

end finite element model meshl

begin presto procedure Apst_Procedure
begin time control

begin time stepping block pl
start time = 0.0

begin parameters for presto region presto

time step scale factor = 1.0
time step increase factor = 2.0
step interval = 100
end parameters for presto region presto
end time stepping block pl

termination time = 0.0025
end time control

begin presto region presto
use finite element model meshl

begin node based time step parameters
step interval = 100
end

### output description ###

begin Results Output output_adagio
Database Name = ug3dh8_mi_patch_test.e
Database Type = exodusII
At Time 0.0, Increment = 1.0E-4

nodal Variables = force_external as f_ext
nodal Variables = force_internal as f_int
nodal Variables = velocity as vel

nodal Variables = acceleration as acc

nodal Variables = displacement as displ

nodal variables = mass_scaling_added_mass
element Variables = stress as stress

element variables = timestep as elem_time_step

global Variables
global variables
global variables
global variables
global variables
end results output

ou

timestep as timestep
external_energy as ExternalEnergy
internal_energy as InternalEnergy
kinetic_energy as KineticEnergy
momentum as Momentum

tput_adagio

### definition of BCs ###
begin fixed displacement

node set = nodelist_1
components = X Y Z
end

#

# Test mass scaling capability

#
begin mass scaling
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include all blocks
target time step = 3.5e-06
end

# X displacements

begin prescribed displacement

node set = nodelist_4 nodelist_5
component = X
function = unit
scale factor = 1.0
end

begin prescribed displacement
node set = nodelist_2 nodelist_8

component = X

function = unit

scale factor = 2.0
end

begin prescribed displacement
node set = nodelist_3 nodelist_6

component = X

function = unit

scale factor = 3.0
end

begin prescribed displacement

node set = nodelist_7

component = X

function = unit

scale factor = 4.0
end

# Y displacements

begin prescribed displacement
node set = nodelist_2 nodelist_5

component = Y

function = unit

scale factor = 1.0
end

begin prescribed displacement
node set = nodelist_4 nodelist_6

component = Y

function = unit

scale factor = 2.0
end

begin prescribed displacement
node set = nodelist_3 nodelist_8

component = Y

function = unit

scale factor = 3.0
end

begin prescribed displacement

node set = nodelist_7

component = Y

function = unit

scale factor = 4.0
end

# Z displacements

begin prescribed displacement
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node set = nodelist_2 nodelist_4

component = Z

function = unit

scale factor = 1.0
end

begin prescribed displacement

node set = nodelist_3 nodelist_5
component = Z
function = unit
scale factor = 2.0
end

begin prescribed displacement

node set = nodelist_6 nodelist_8
component = Z
function = unit
scale factor = 3.0
end

begin prescribed displacement

node set = nodelist_7

component = Z

function = unit

scale factor = 4.0
end

end presto region presto
end presto procedure Apst_Procedure

end sierra
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B.18 Hex Patch Test — Uniform Gradient, Midpoint Increment Thermal 3.5

begin sierra thermal_strains_w_dispload

begin function unit
type is piecewise linear
ordinate is time
abscissa is unit
begin values

0.0 0.0

0.0001 0.00615581932461301
0.0002 0.0244717008522228
0.0003 0.0544966475530096
0.0004 0.0954913468384886
0.0005 0.146446374860387
0.0006 0.206107051833971
0.0007 0.273004336366306
0.0008 0.34549099806984
0.0009 0.421782177773008
0.001 0.499999336602552
0.0011 0.578216511767115
0.0012 0.654507740073119
0.0013 0.726994481450545
0.0014 0.793891874765996
0.0015 0.853552686953322
0.0016 0.904507873290184
0.0017 0.945502750093614
0.0018 0.975527889144267
0.0019 0.993843973117372
0.002 0.99999999999824
0.0025 1

end values
end function unit

begin function THERMAL_STRAIN
type is piecewise linear
ordinate is strain
abscissa is temperature
begin values
0.0 0.0
10.0 0.01
end values
end function THERMAL_STRAIN

begin material linear_elastic
density = 2.6le-4
thermal strain function = THERMAL_STRAIN

begin parameters for model elastic
youngs modulus = 1.e6
poissons ratio = 0.25

end parameters for model elastic

begin parameters for model elastic_plastic

youngs modulus = 1l.eb6
poissons ratio = 0.25
yield stress = 1.0e6
hardening modulus = 10.0

beta is 0.999999
end parameters for model elastic_plastic
end material linear_elastic

begin finite element model meshl
Database Name = thermal_strains_nobc.g

Database Type = exodusII

begin block defaults
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material = linear_elastic
model = elastic
end block defaults

begin parameters for block block_1 block_2 block_3 block_4 block_5 block_6 block_7
end

end finite element model meshl
begin presto procedure Apst_Procedure

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for presto region presto
time step scale factor = 1.0
time step increase factor = 2.0
step interval = 100
end parameters for presto region presto
end time stepping block pl

termination time = 0.003
end time control

begin presto region presto
use finite element model meshl

begin prescribed temperature
function = unit

scale factor = 1.0
include all blocks
end

### output description ###

begin Results Output output_adagio
Database Name = thermal_ strains_nobc.e
Database Type = exodusII
At Time 0.0, Increment = 1.0E-4

nodal Variables = force_external as f_ext

nodal Variables = force_internal as f_int

nodal Variables = velocity as vel

nodal Variables = acceleration as acc

nodal Variables = displacement as displ

element Variables = stress as stress

global Variables = timestep as timestep

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy

global variables = momentum as Momentum
end results output output_adagio

### definition of BCs ###
begin fixed displacement
node set = nodelist_1
components = X Y Z
end fixed displacement

begin fixed displacement
node set = nodelist_2
components =Y Z

end fixed displacement

begin fixed displacement
node set = nodelist_3
components = Z

end fixed displacement
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begin fixed displacement
node set = nodelist_4
components = X Z

end fixed displacement

begin fixed displacement
node set = nodelist_5
components = X Y

end fixed displacement

begin fixed displacement
node set = nodelist_6
components =y

end fixed displacement

begin fixed displacement
node set = nodelist_S8
components = X

end fixed displacement

end presto region presto
end presto procedure Apst_Procedure

end sierra thermal_strains_w_dispload
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B.19 Hex Convergence Test — Cantilever Beam 3.6

# Set default for the mesh to help FCT

#{mesh="2"}

H o o o 3 S 3 o S

HH

begin Sierra slender_beam_example

#
#
#
#
#

#

#

#

Aprepro Variable Settings
mesh: {mesh}

formulation: {formulation}
Formulation flags: 0O~off, 1l~on
mean_qguad: {mean_guad}
selective_dev: {selective_dev}

strain_incrementation: {strain_incrementation}

material_model: {material_model
elem_topo: {elem_topo}

slender beam example —-- constant shear load

Cantilever support at negative-x end with
transverse shear load at positive-x end

use length-to-depth ratio of 10

define direction x with vector
define direction y with vector
define direction z with vector

}

o O

o = O

o O O

= O O

o O O

Loading function ————-=------------———

begin definition for function load

type = piecewise linear
ordinate = shear
abscissa = time
begin values
0.0 0.0
1.0 1.0

end values

end definition for function load

material data ————-----———————————————— -

begin property specification for material beam_stuff

density = 1.0E-2

begin parameters for model {material_model}

youngs modulus = 1.0E6
poissons ratio = 0.3

end parameters for model {material_model}
end property specification for material beam_stuff

section data (required to create non-default hex elements)

begin solid section solid_section

strain incrementation = {strain_incrementation}

formulation = {formulation}
{Ifdef (selective_dev) }
deviatoric parameter = 0.5
{Else}

# Undefined selective_dev
{Endif}

end solid section solid_section

FE model ———————— e

begin finite element model slender_beam
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database name = beam{mesh}_{elem_topo}.g
database type = exodusII

begin parameters for block block_1
material beam_stuff
solid mechanics use model {material_model}
section = solid_section
{Ifdef (mean_quad) }
linear bulk viscosity = 0.06
quadratic bulk viscosity 1.20
hourglass stiffness = 0.05
hourglass viscosity = 0.0
{Else}
# Undefined mean_qguad
{Endif}

end parameters for block block_1

end finite element model slender_beam
# procedure data ——————m— e
begin adagio procedure beam_procedure
begin time control

begin time stepping block

start time = 0.0
begin parameters for adagio region beam_region
time increment = 0.2

end parameters for adagio region beam_region
end time stepping block

termination time = 1.0
end time control
begin adagio region beam_region
use finite element model slender_beam
# BC data ——————————

# traction load on right end

begin traction
surface = right_ss
Node Set Subroutine = parabolic_Yshear
Scale factor = 1.0

end traction

# traction reaction on left end

begin traction
surface = left_ss
Node Set Subroutine = parabolic_Yshear
scale factor = -1.0

end traction

# displacement bcs on left end to prevent rigid body motions
# and prescribe fixity with respect to x
begin fixed displacement
surface = left_ss
Component = X
end fixed displacement
begin fixed displacement
node set = left_y_line
Component =Y
end fixed displacement
begin fixed displacement
node set = left_z_line
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Component = Z
end fixed displacement

# Output data —————————————————— -

begin user output

include all blocks

extrapolate element variable stress to nodal variable nodal_stress
end

begin results output beam_output
database name = beam{mesh}_Adagio.e
database type = exodusII
at step 0 increment = 1
nodal variables = displacement as displ
nodal variables = nodal_stress as nodal_stress
element variables = stress as elem_stress
nodal variables = force_external as fext
end results output beam_output

# solver data ——————————————— -

begin solver
begin cg
target relative residual = le-8
acceptable relative residual = le-12
{Ifdef (mean_quad) }
target relative residual = 0.06
{Else}
target relative residual = le-9
{Endif}
maximum iterations = 1000
begin full tangent preconditioner
small number of iterations = 15
conditioning = no_check
end
end
end solver

H H o S

end adagio region beam_region
end adagio procedure beam_procedure

end sierra slender_beam_ example
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B.20 Tet Patch Tests — Quasi-Static, Linear Elastic 3.7

begin sierra Tet_patch

Units

length: inches

force: lbs

stress: psi

time: seconds (pseudo-time for these quasistatic runs)

.

APreproO MACTOS e e eweeeneenns

{u_factor = 1.0E-4}

{final_time = 1.0}

{number_steps = 2}

Expected normal and shear stresses expected from the patch test -- a linear elastic approximation
Note that these could be obtained more symbolically to generalize the test.
{sigNormal = 400.0}

{sigShear = 80.0}

epsilon_time is an off set from the final_time used to ignore all results
except those associated with the final time step.

{ epsilon_time = final_time/ (number_steps=*2)}

H % S S 9k HE 9 9

Required externally provided macros with string values:
normal_stress_tolerance
shear_stress_tolerance
strain_incrementation
formulation
meshFile
material model
Required externally provided macros "on" or "off":
nodal_tet
composite_tet

O .

# Ux displacement component as a function of space and time
begin definition for function u
type = analytic
expression variable: = nodal model_coordinates (1)
expression variable: = nodal model_coordinates (2)
expression variable: = nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor}x(2.0xx+y+z)"
end definition for function u

N =X
I

# Uy displacement component as a function of space and time
begin definition for function v
type = analytic
expression variable: = nodal model_coordinates (1)
expression variable: nodal model_coordinates (2)
expression variable: = nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor}x (x+2.0*xy+z)"
end definition for function v

N <X
I

# Uz displacement component as a function of space and time
begin definition for function w
type = analytic
expression variable: = nodal model_coordinates (1)
expression variable: nodal model_coordinates (2)
expression variable: = nodal model_coordinates (3)
expression variable: t = global time
evaluate expression is "tx{u_factor}x (x+y+2.0xz)"
end definition for function w

N =X
Il

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O

330



begin material block_mat

density = 2.6le-4

begin parameters for model {material _model}
youngs modulus = 1.0e6
poissons ratio = 0.25

end parameters for model {material_model}
end material block_mat

{Ifdef (composite_tet) }

begin total lagrange section solid_1
formulation = composite_tet

end

{Else}

begin solid section solid_1
strain incrementation = {strain_incrementation}
formulation {formulation}

end

{Endif}

begin finite element model meshl
Database Name = {meshFile}
Database Type = exodusII

begin parameters for block block_1
material = block_mat
model = {material_model}
section = solid_1

end parameters for block block_1

end finite element model meshl
begin adagio procedure adagio_patch_procedure

begin time control
begin time stepping block ramp_segment
start time = 0.0
begin parameters for adagio region adagio_patch_region
time increment = {final_time/number_steps}
end parameters for adagio region adagio_patch_region
end time stepping block ramp_segment
termination time = {final_time}
end time control

begin adagio region adagio_patch_region
use finite element model meshl

### output description ###

begin Results Output output_adagio
Database Name = tet_patch.e
Database Type = exodusII

At Time 0.0, Increment = {final_time}

nodal Variables = force_external as f_ext

nodal Variables = force_internal as f_int

nodal Variables = displacement

element Variables = stress as stress_el

element Variables = log_strain as strain_el

{Ifdef (nodal_tet)}

nodal Variables = stress_1 as stress_node

{Endif}

element variables = timestep as elem_time_step
global Variables = timestep as timestep

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy

end results output output_adagio
### definition of BCs ###

# X displacements
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begin prescribed displacement
node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6

# block = block_1

component = X

function = u

scale factor = 1.0
end

# Y displacements

begin prescribed displacement
node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6

# block = block_1

component = Y

function = v

scale factor = 1.0
end

# Z displacements

begin prescribed displacement
node set = nodelist_1 nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6

# block = block_1

component = Z

function = w

scale factor = 1.0
end

# Solver parameters

begin solver
begin loadstep predictor

type = scale_factor
scale factor = 0.0
end
begin cg

target relative residu
{Ifndef (nodal_tet)}
maximum iterations = 2

linear solver = feti
end
{Else}

al

0

= 1.0e-11

# Reasonable for tangent preconditioner
begin full tangent preconditioner
# explicitly putting this line for feature coverage tool.

# Parameters for the nodal-based tet
# These parameters from adagio/tetdn_uni_disp_cube_thermal

maximum iterations = 2

0

orthogonality measure for reset

line search secant
preconditioner = elast
{Endif}

end cg
end solver

# Solution verification
# Examine the bounds of th

begin user output
block = block_1
{Ifndef (nodal_tet)}
compute global sigllmax
compute global sigllmin
compute global sig22max
compute global sig22min
compute global sig33max
compute global sig33min

ic

e

as
as
as
as
as
as

= 0.1

"expected stresses". Note that these stresses are based on
# linear elastic bodies, and thus are not exact for the finite strain formulation.

max
min
max
min
max
min

of
of
of
of
of
of

element
element
element
element
element
element

stress (xx)
stress (xXx)
stress (yy)
stress (yy)
stress(zz)
stress(zz)
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compute
compute
compute
compute
compute
compute

{Else}

compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
{Endif}

global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global
global

sigl2max as max of element stress(xy)
sigl2min as min of element stress(xy)
sigl3max as max of element stress(xz)
sigl3min as min of element stress(xz)
sig23max as max of element stress(yz)
sig23min as min of element stress(yz)

sigllmax as max of nodal
sigllmin as min of nodal
sig22max as max of nodal
sig22min as min of nodal
sig33max as max of nodal
sig33min as min of nodal
sigl2max as max of nodal
sigl2min as min of nodal
sigl3max as max of nodal
sigl3min as min of nodal
sig23max as max of nodal
sig23min as min of nodal

# Relative percent error in each stress

compute

compute

compute

compute

compute

compute
end

global
global
global
global
global
global

sigllerr from
sig22err from
sig33err from
sigl2err from
sigl3err from
sig23err from

begin solution verification
skip times = 0.0 to {final_time-epsilon_time}

completion file

= VerifNormal

verify global sigllerr = 0.0
verify global sig22err = 0.0
verify global sig33err = 0.0
tolerance = {normal_stress_tolerance}

end

begin solution verification
skip times = 0.0 to {final_time-epsilon_time}

completion file

= VerifShear

verify global sigl2err = 0.0

verify global sigl3err
verify global sig23err

0.0
0.0

expression
expression
expression
expression
expression
expression

tolerance = {shear_stress_tolerance}

end

end adagio region adagio_patch_region
end adagio procedure adagio_patch_procedure

begin feti equation solver feti

end

end sierra Tet_patch

stress_1 (xXx)
stress_1 (xx)
stress_1(yy)
stress_1(yy)
stress_1(zz)
stress_1(zz)
stress_1 (xy)
stress_1 (xy)
stress_1(xz)
stress_1(xz)
stress_1(yz)
stress_1(yz)

component

"max (abs (sigllmax—{sigNormal}),abs(sigllmin-{sigNormal}))*100/{si
"max (abs (sig22max—-{sigNormal}),abs (sig22min-{sigNormal}))*100/{si

"max (abs (sigl3max-{sigShear}

(
(
"max (abs (sig33max—{sigNormal}),abs (sig33min-{sigNormal}))*100/{si
(
(
"max (abs (sig23max-{sigShear} (

(
(
"max (abs (sigl2max-{sigShear}
(
(

333

) ,abs (sigl2min-{sigShear}
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B.21 Tet Convergence Test — Cantilever Beam 3.8
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B.22 Quad Membrane Patch Test — Selective Deviatoric, Midpoint Incre-
ment 3.9

begin sierra sd3dm4_patch_test

begin function zero
type is constant
ordinate is unit
abscissa is time
begin values

0.0

end values

end function zero

begin function nodeset_2_u
type is piecewise linear
ordinate is displacement
abscissa is time
begin values

0.0 0.0
.0001 3.69349159476781e-07
.0002 1.46830205113337e-06
.0003 3.26979885318058e-06
.0004 5.72948081030932e-06
.0005 8.78678249162321e-06
.0006 1.23664231100382e-05
.0007 1.63802601819784e-05
.0008 2.07294598841904e-05
.0009 2.53069306663805e-05

.001 2.99999601961531e-05

.0011 3.46929907060269e-05
.0012 3.92704644043871e-05
.0013 4.36196688870327e-05
.0014 4.76335124859597e-05
.0015 5.12131612171993e-05
.0016 5.4270472397411e-05
.0017 5.67301650056169e-05
.0018 5.8531673348656e-05
.0019 5.96306383870423e-05

.002 5.99999999998944e-05
.0025 6e-05

end values
end function nodeset_2_u

O O O O OO OO0 OO0OOO0OO0OO0O0OOoOoOoOOoOo

begin function nodeset_2_v
type is piecewise linear
ordinate is displacement
abscissa is time
begin values

0.0 0.0

0.0001 7.38698318953561e-07
0.0002 2.93660410226674e-06
0.0003 6.53959770636115e-06
0.0004 1.14589616206186e-05
0.0005 1.75735649832464e-05
0.0006 2.47328462200765e-05
0.0007 3.27605203639567e-05
0.0008 4.14589197683809e-05
0.0009 5.06138613327609e-05
0.001 5.99999203923062e-05
0.0011 6.93859814120538e-05
0.0012 7.85409288087742e-05
0.0013 8.72393377740654e-05
0.0014 9.52670249719195e-05
0.0015 0.000102426322434399
0.0016 0.000108540944794822
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o O O O

end

.0017 0.000113460330011234
.0018 0.000117063346697312
.0019 0.000119261276774085
.002 0.000119999999999789
0.

0025 0.00012
values

end function nodeset_2_v

begin

function nodeset_4_u

type is piecewise linear
ordinate is displacement

abscissa is time
begin values

0.0 0.0

0.0001 1.47739663790712e-06
0.0002 5.87320820453348e-06
0.0003 1.30791954127223e-05
0.0004 2.29179232412373e-05
0.0005 3.51471299664929e-05
0.0006 4.9465692440153e-05
0.0007 6.55210407279135e-05
0.0008 8.29178395367617e-05
0.0009 0.000101227722665522
0.001 0.000119999840784612
0.0011 0.000138771962824108
0.0012 0.000157081857617548
0.0013 0.000174478675548131
0.0014 0.000190534049943839
0.0015 0.000204852644868797
0.0016 0.000217081889589644
0.0017 0.000226920660022467
0.0018 0.000234126693394624
0.0019 0.000238522553548169
0.002 0.000239999999999578
0.0025 0.00024

end

values

end function nodeset_4_u

begin

function nodeset_4_v

type is piecewise linear
ordinate is displacement

abscissa is time
begin values

0.0 0.0

0.0001 7.38698318953561e-07
0.0002 2.93660410226674e-06
0.0003 6.53959770636115e-06
0.0004 1.14589616206186e-05
0.0005 1.75735649832464e-05
0.0006 2.47328462200765e-05
0.0007 3.27605203639567e-05
0.0008 4.14589197683809e-05
0.0009 5.06138613327609e-05
0.001 5.99999203923062e-05

0.0011 6.93859814120538e-05
0.0012 7.85409288087742e-05
0.0013 8.72393377740654e-05
0.0014 9.52670249719195e-05
0.0015 0.000102426322434399
0.0016 0.000108540944794822
0.0017 0.000113460330011234
0.0018 0.000117063346697312
0.0019 0.000119261276774085
0.002 0.000119999999999789

0.0025 0.00012

end

values

end function nodeset_4_v
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begin function nodeset_5_u
type is piecewise linear
ordinate is displacement
abscissa is time
begin values

0.

O O O O O OO OO OO0OO0OO0OO0OO0O0OOoOooOOoOo

end

0 0.0

.0001 1.8467457973839%e-06

.0002 7.34151025566685e-06
.0003 1.63489942659029e-05
.0004 2.86474040515466e-05
.0005 4.39339124581161e-05
.0006 6.18321155501912e-05
.0007 8.19013009098919e-05
.0008 0.000103647299420952
.0009 0.000126534653331902
.001 0.000149999800980765

.0011 0.000173464953530134
.0012 0.000196352322021936
.0013 0.000218098344435163
.0014 0.000238167562429799
.0015 0.000256065806085997
.0016 0.000271352361987055
.0017 0.000283650825028084
.0018 0.00029265836674328

.0019 0.000298153191935212
.002 0.000299999999999472

.0025 0.0003

values

end function nodeset_5_u

begin function nodeset_5_v
type is piecewise linear
ordinate is displacement
abscissa is time
begin values

0.

O O O O OO OO0 OO0OO0OO0OO0OO0OOOoOoOoO oo

end

0 0.0

.0001 1.47739663790712e-06
.0002 5.87320820453348e-06
.0003 1.30791954127223e-05
.0004 2.29179232412373e-05
.0005 3.51471299664929e-05
.0006 4.9465692440153e-05
.0007 6.55210407279135e-05
.0008 8.29178395367617e-05
.0009 0.000101227722665522
.001 0.000119999840784612
.0011 0.000138771962824108
.0012 0.000157081857617548
.0013 0.000174478675548131
.0014 0.000190534049943839
.0015 0.000204852644868797
.0016 0.000217081889589644
.0017 0.000226920660022467
.0018 0.000234126693394624
.0019 0.000238522553548169
.002 0.000239999999999578
.0025 0.00024

values

end function nodeset_5_v

define direction x with vector
define direction y with vector
define direction z with vector

begin material linear_elastic
density

= 2.6le-4

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

begin parameters for model elastic
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youngs modulus = 1l.eb6
poissons ratio = 0.25
end parameters for model elastic

end material linear_elastic

begin membrane section membrane_1
thickness = 0.001
formulation = selective_deviatoric
deviatoric parameter = 0.2

end membrane section membrane_1

begin finite element model meshl
Database Name = sd3dm4_patch_test.g
Database Type = exodusII

begin parameters for block block_1
material = linear_elastic
model = elastic
section = membrane_1

end parameters for block block_1

end finite element model meshl
begin presto procedure Apst_Procedure

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for presto region presto
time step scale factor = 1.0
time step increase factor = 2.0
step interval = 100
end parameters for presto region presto
end time stepping block pl

termination time = 0.0025
end time control

begin presto region presto
use finite element model meshl

### output description ###

begin Results Output output_presto
Database Name = sd3dm4_patch_test.e
Database Type = exodusII
At Time 0.0, Increment = 1.0e-4

nodal Variables = force_external as f_ext
nodal Variables = force_internal as f_int
nodal Variables = displacement as displ
nodal Variables = velocity as vel

nodal Variables = acceleration as acc

element Variables = memb_stress as memb_stress
global Variables = timestep as timestep

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy

global variables = momentum as Momentum
end results output output_presto

### definition of BCs ###

begin prescribed displacement

node set = nodelist_1
direction = z
function = zero

end prescribed displacement
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begin prescribed displacement
node set = nodelist_2
direction = x
function = nodeset_2_u

end prescribed displacement

begin prescribed displacement
node set = nodelist_2
direction =y
function = nodeset_2_v

end prescribed displacement

begin prescribed displacement

node set = nodelist_3
direction = x
function = zero

end prescribed displacement

begin prescribed displacement

node set = nodelist_3
direction =y
function = zero

end prescribed displacement

begin prescribed displacement
node set = nodelist_4
direction = x
function = nodeset_4_u

end prescribed displacement

begin prescribed displacement
node set = nodelist_4
direction =y
function = nodeset_4_v

end prescribed displacement

begin prescribed displacement
node set = nodelist_5
direction = x
function = nodeset_5_u

end prescribed displacement

begin prescribed displacement
node set = nodelist_5
direction =y
function = nodeset_5_v

end prescribed displacement

end presto region presto
end presto procedure Apst_Procedure
end sierra sd3dm4_patch_test
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B.23 Elastic Beam Section Property Verification in Axial Tension 3.10

begin sierra All_Beams_Axial_Quasi

HH = H

HH = H

H = H o I

begin function ramp
type is piecewise linear
begin values
0.0 0.0
1.0 1.0
end values
end function ramp

define direction x with vector
define direction y with vector
define direction z with vector

E = {E = 30.0e3}
L = {L =5.0}

1 = {1 =5.0001}
dl = {dl =1 - L}

begin material aluminum
density = 2.5880e-4

1.0 0.
0.0 1.
0.0 0.

o O O

= O O

o O O

begin parameters for model elastic_plastic

youngs modulus = {E}
poissons ratio = 0.3
yield stress = 29.0el
hardening modulus = 0.0

end parameters for model elastic_plastic

end material aluminum

Area for Bar
D1_bar = {Dl_bar = 0.1}
D2_bar = {D2_bar = 0.1}

Bar_Area = {Bar_Area = Dl_bar = D2_bar}
* Bar_Area}

Bar_Force = {Bar_Force = E «x

(d1/1)

begin function bar_analytic_force

type is analytic

evaluate expression = {Bar_Force}
end function bar_analytic_force

begin beam section beam_1
section = bar
D1 = {Dl_bar}
D2 = {D2_Dbar}
t axis = 0.0 1.0 0.0
end beam section beam_1

Area for Box

Dl1_box = {Dl_box = 0.1}
D2_box = {D2_box 0.1}
D3_box = {D3_box = 0.0002}

Box_Area = {Box_Area = (Dl_box * D2_box)
Box_Force = {Box_Force = E %

(d1/1)

begin function box_analytic_force

type is analytic

evaluate expression = " {Box_Force}
end function box_analytic_force

begin beam section beam_2

section = box
D1 = {D1_box}
D2 = {D2_box}

D3 = {D3_box}
t axis = 0.0 1.0 0.0

* X

((D1_box -

* Box_Area}

* X
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end beam section beam_2

Area for Rod (or Ellipse)

Dl_rod = {Dl_rod = 0.1}
D2_rod = {D2_rod = 0.1}
Rod_Area = {Rod_Area = (PI * Dl_rod % D2_rod)/4}

Rod_Force = {Rod_Force = E * (dl1/L)
begin function rod_analytic_force
type is analytic
evaluate expression = " {Rod_Force} * x

end function rod_analytic_force

begin beam section beam_3
section = rod
D1 = {Dl_rod}
D2 = {D2_rod}
t axis = 0.0 1.0 0.0
end beam section beam_3

Area for Tube (or Hallow Ellipse)

D1_tube = {Dl_tube = 0.1}
D2_tube = {D2_tube = 0.1}
D3_tube = {D3_tube = 0.0002}

Tube_Area =
Tube_Force =

{Tube_Area =

{Tube_Force = E » (dl/L)
begin function tube_analytic_force

type is analytic

evaluate expression = " {Tube_Force}
end function tube_analytic_force
begin beam section beam_4

section = tube

D1 = {DIl_tube}

D2 = {D2_tube}

D3 = {D3_tube}

t axis = 0.0 1.0 0.0
end beam section beam_4

Area for Cl

Dl_cl = {Dl_cl = 0.1002}

D2_cl = {D2_cl = 0.1004}

D3_cl = {D3_cl = 0.0002}

D4_cl = {D4_cl = 0.0002}

Cl_Area = {Cl_Area = (2 » D1l_cl = D3_cl)

Cl_Force = {Cl_Force = E *x (dl/L)

begin function cl_analytic_force
type is analytic
evaluate expression =

end function cl_Analytic_force

begin beam section beam_5

section = cl

D1 = {Dl_cl1}

D2 = {D2_cl}

D3 {D3_cl}

D4 = {D4_cl}

t axis = 0.0 1.0 0.0
end beam section beam_5

Area for C2

Dl_c2 = {Dl_c2 =
D2_c2 = {D2_c2 =
D3_c2 = {D3_c2 =
D4_c2 = {D4_c2 =
C2_Area = {C2_Area =

.1004}
.1002}
.0002}
.0002}
(2 = D2_c2 = D4_c2)

o O O O

" {Cl_Force} » x "

* x "

+
* Cl_Area}

+

* Rod_Area}

((PI = D1_tube = D2_tube)/4) -
* Tube_Area}

(D4_cl =

(D3_c2 =
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C2_Force = {C2_Force = E * (dl/L) %= C2_Area}

begin function c2_analytic_force

type is analytic

evaluate expression = " {C2_Force} * x
end function c2_analytic_force

begin beam section beam_6

section = c2
D1 = {Dl_c2}
D2 = {D2_c2}
D3 = {D3_c2}

D4 = {D4_c2}
t axis = 0.0 1.0 0.0
end beam section beam_6

Area for I

D1_I = {D1_I = 0.1}
D2_I = {D2_I = 0.1004}
D3_I = {D3_I = 0.0002}

D4_I = {D4_I = 0.0002}
I_Area = {I_Area = (2 = D1_I ~ D4_I) + (D3_I = (D2_I - (2 = D4_1)))}
I_Force = {I_Force = E » (dl/L) = I_Area}

begin function I_analytic_force

type is analytic

evaluate expression = " {I_Force} * x
end function I_analytic_force

begin beam section beam_7

section = i

D1 = {D1_1I}

D2 = {D2_TI}

D3 {D3_1I}

D4 {D4_T1}

t axis = 0.0 1.0 0.0
end beam section beam_7

Area for I2

D1_I2 = {D1_I2 = 0.1}

D2_I2 = {D2_I2 = 0.10045}

D3_I2 = {D3_I2 = 0.0002}

D4_I2 = {D4_I2 = 0.0002}

D5_I2 = {D5_I2 = 0.08}

D6_I2 = {D6_I2 = 0.00025}

I2_Area = {I2_Area = (D1_I2 % D3_I2) + (D5_I2 * D6_I2) + (D4_I2 % (D2_I2 - D3_I2 - D6_1I2))}

I2_Force = {I2_Force = E * (dl/L) % I2_Area}

begin function I2_analytic_force

type is analytic

evaluate expression = " {I2_Force} * x
end function I2_analytic_force

begin beam section beam_8

section = i2

D1 = {D1_1I2}

D2 = {D2_I2}

D3 = {D3_1I2}

D4 = {D4_I2}

D5 = {D5_1I2}

D6 = {D6_I2}

t axis = 0.0 1.0 0.0
end beam section beam_8

Area for T

D1I_T = {(D1_T = 0.1}
D2_T = {D2_T 0.1002}
D3_T = {D3_T = 0.0002}
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D4_T = {D4_T = 0.0002}
T_Area = {T_Area = (D1_T  D3_T) + (D4_T = (D2_T - D3_T))}
T_Force = {T_Force = E * (dl/L) * T_Area}

begin function T_analytic_force

type is analytic

evaluate expression = " {T_Force} * x
end function T_analytic_force

begin beam section beam_9
section = t

D1 = {D1_T}
D2 = {D2_T}
D3 = {D3_T}
D4 = {D4_T}

t axis = 0.0 1.0 0.0
end beam section beam_9

Arlea for T1

DI1_T1 = {D1_T1 = 0.1002}

D2_T1 = {D2_T1 = 0.1}

D3_T1 = {D3_T1 = 0.0002}

D4_T1 = {D4_T1 = 0.0002}

Tl Area = {Tl _Area = (D2_T » D4_T) + (D3_T % (DL_T — D4_T))}
Tl_Force = {Tl_Force = E x (dl/L) % T1l_Area}

begin function Tl_analytic_force

type is analytic

evaluate expression = " {Tl_Force} x x
end function T1l_analytic_force

begin beam section beam_10
section = tl
D1 = {D1_T1}
D2 = {D2_T1}
D3 {D3_T1}
D4 = {D4_T1}
t axis = 0.0 1.0 0.0
end beam section beam_10

Area for Hat

D1_hat = {D1_hat = 0.3004}
D2_hat = {D2_hat = 0.1004}
D3_hat = {D3_hat = 0.1004}
D4_hat = {D4_hat = 0.0002}
Hat_Area = {Hat_Area = (D1l_hat % D4_hat) + (2 » D4_hat x (D2_hat - D4_hat))}

Hat_Force = {Hat_Force = E * (dl/L) * Hat_Area}

begin function hat_analytic_force

type is analytic

evaluate expression = " {Hat_Force} * x
end function hat_analytic_force

begin beam section beam_11

section = hat

D1 = {D1_hat}

D2 {D2_hat}

D3 {D3_hat}

D4 = {D4_hat}

t axis = 0.0 1.0 0.0
end beam section beam_11

Area for Z

D1_7Z = {Dl1_Z = 0.2002}
D2_7Z = {D2_Z = 0.1004}
D3_7Z = {D3_Z = 0.0002}

D4_7 = {D4_7 = 0.0002}
7_Area = {Z_Area = (D1_7Z = D3_7Z) + (D4_7Z » (D2_7Z - D3_7))}
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7_Force = {Z_Force = E % (dl1/L) = Z_Area}

begin function z_analytic_force

type is analytic

evaluate expression = " {Z_Force} x x
end function z_analytic_force

begin beam section beam_12

section = z
D1 = {D1_z}
D2 = {D2_2}
D3 = {D3_7z}

D4 = {D4_7Z7}
t axis = 0.0 1.0 0.0
end beam section beam_12

Area for L

D1_L = {(D1_L = 0.1}
D2_L = {D2_L = 0.1}
D3_L = {D3_L = 0.0002}

D4_L = {D4_L = 0.0002}
I_Area = {L_Area = (D1_L  D3_L) + (D4_L % (D2_L - D3_L))}
I_Force = {L_Force = E * (dl/L) * L_Area}

begin function L_analytic_force

type is analytic

evaluate expression = " {L_Force} * x
end function L_analytic_force

begin beam section beam_13

section = 1
D1 = {D1_L}
D2 = {D2_L}
D3 = {D3_L}
D4 = {D4_L}

t axis = 0.0 1.0 0.0
end beam section beam_13

begin finite element model meshl

Database Name = axial_quasi.g
Database Type = exodusII

begin parameters for block block_1

material = aluminum
model = elastic_plastic
section = beam_1

end parameters for block block_1

begin parameters for block block_2
material = aluminum
model = elastic_plastic
section = beam_2

end parameters for block block_2

begin parameters for block block_3
material = aluminum
model = elastic_plastic
section = beam_3

end parameters for block block_3

begin parameters for block block_4
material = aluminum
model = elastic_plastic
section = beam_4

end parameters for block block_4
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begin parameters for block block_5
material = aluminum
model = elastic_plastic
section = beam_5

end parameters for block block_5

begin parameters for block block_6
material = aluminum
model = elastic_plastic
section = beam_6

end parameters for block block_6

begin parameters for block block_7
material = aluminum
model = elastic_plastic
section = beam_ 7

end parameters for block block_7

begin parameters for block block_8
material = aluminum
model = elastic_plastic
section = beam_38

end parameters for block block_ 8

begin parameters for block block_9
material = aluminum
model = elastic_plastic
section = beam_9

end parameters for block block_9

begin parameters for block block_10
material = aluminum
model = elastic_plastic
section = beam_10

end parameters for block block_10

begin parameters for block block_11
material = aluminum
model = elastic_plastic
section = beam_ 11

end parameters for block block_11

begin parameters for block block_12
material = aluminum
model = elastic_plastic
section = beam_12

end parameters for block block_12

begin parameters for block block_13
material = aluminum
model = elastic_plastic
section = beam_13

end parameters for block block_13

end finite element model meshl

begin adagio procedure adagio_procedure

begin time control
begin time stepping block pl
start time = 0.0

begin parameters for adagio region adagio

time increment = 0.04

end parameters for adagio region adagio

end time stepping block pl

termination time = 1.0

345



end time control
begin adagio region adagio
use finite element model meshl

### output description ###

begin Results Output output_adagio
Database Name = axial_quasi.e
Database Type = exodusII
At Time 0.0, Increment = 0.04

nodal Variables = force_internal as f_int

nodal Variables = displacement as displ

nodal variables = reaction as rxn

element variables = cross_sectional_area as cs_area
element variables = beam_strain_axial

global variables = bar_error

global variables = log_strain_xx

end Results Output output_adagio

begin solver

begin cg

maximum iterations = 5000

target relative residual = 1.0e-5
end

end solver

begin user output
node set = nodelist_2
compute global bar_frc_c as average of nodal reaction(x)
compute global bar_frc_a as function bar_analytic_force
compute global bar_error from expression "bar_frc_c > 0.0 ? (((bar_frc_a) - bar_frc_c) / bar_frc_c) = 100
compute at every step
end user output

begin user output
block = block_1
compute global log_strain_xx as average of element beam_strain_axial
compute at every step

end user output

begin user output
node set = nodelist_3
compute global box_frc_c as average of nodal reaction(x)
compute global box_frc_a as function box_analytic_force
compute global box_error from expression "box_frc_c > 0.0 ? (((box_frc_a) - box_frc_c) / box_frc_c) = 100
compute at every step
end user output

begin user output
node set = nodelist_4
compute global rod_frc_c as average of nodal reaction(x)
compute global rod_frc_a as function rod_analytic_force
compute global rod_error from expression "rod_frc_c > 0.0 ? (((rod_frc_a) - rod_frc_c) / rod_frc_c) * 100
compute at every step
end

begin user output
node set = nodelist_5
compute global tube_frc_c as average of nodal reaction (x)
compute global tube_frc_a as function tube_analytic_force
compute global tube_error from expression "tube_frc_c > 0.0 ? (((tube_frc_a) - tube_frc_c) / tube_frc_c)
compute at every step
end

begin user output

node set = nodelist_6
compute global cl_frc_c as average of nodal reaction(x)
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compute global cl_frc_a as function cl_analytic_force

compute global cl_error from expression "cl_frc_c > 0.0 ? (((cl_frc_a) - cl_frc_c) / cl_frc_c) » 100 : O.
compute at every step
end

begin user output
node set = nodelist_7
compute global c2_frc_c as average of nodal reaction(x)
compute global c2_frc_a as function c2_analytic_force

compute global c2_error from expression "c2_frc_c > 0.0 ? (((c2_frc_a) - c2_frc_c) / c2_frc_c) * 100 : O.
compute at every step
end

begin user output
node set = nodelist_8
compute global I_frc_c as average of nodal reaction (x)
compute global I_frc_a as function I_analytic_force
compute global I_error from expression "I_frc_c > 0.0 ? (((I_frc_a) - I_frc_c) / I_frc_c) * 100 : 0.0 "
compute at every step
end

begin user output
node set = nodelist_9
compute global I2_frc_c as average of nodal reaction(x)
compute global I2_frc_a as function I2_analytic_force

compute global I2_error from expression "I2_frc_c > 0.0 ? (((I2_frc_a) - I2_frc_c) / I2_frc_c) * 100 : O.
compute at every step
end

begin user output
node set = nodelist_10
compute global T_frc_c as average of nodal reaction (x)
compute global T_frc_a as function T_analytic_force
compute global T_error from expression "T_frc_c > 0.0 ? (((T_frc_a) - T_frc_c) / T_frc_c) * 100 : 0.0 "
compute at every step
end

begin user output
node set = nodelist_11
compute global Tl_frc_c as average of nodal reaction(x)
compute global Tl_frc_a as function Tl_analytic_force

compute global Tl_error from expression "T1_frc_c > 0.0 ? (((Tl_frc_a) - Tl_frc_c) / Tl_frc_c) * 100 : O.
compute at every step
end

begin user output
node set = nodelist_12
compute global hat_frc_c as average of nodal reaction(x)
compute global hat_frc_a as function hat_analytic_force
compute global hat_error from expression "hat_frc_c > 0.0 ? (((hat_frc_a) - hat_frc_c) / hat_frc_c) = 100
compute at every step
end

begin user output
node set = nodelist_13
compute global Z_frc_c as average of nodal reaction (x)
compute global Z_frc_a as function Z_analytic_force
compute global Z_error from expression "Z_frc_c > 0.0 ? (((Z_frc_a) - Z_frc_c) / Z_frc_c) * 100 : 0.0 "
compute at every step
end

begin user output
node set = nodelist_14
compute global L_frc_c as average of nodal reaction (x)
compute global L_frc_a as function L_analytic_force
compute global L_error from expression "L_frc_c > 0.0 ? (((L_frc_a) - L_frc_c) / L_frc_c) * 100 : 0.0 "
compute at every step
end
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begin history output
database name = axial_quasi.h
database type = ex
At Time 0.0, Incre

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

variable =

variable
end

global
global

global
global

global
global

global
global

global
global

global
global

global
global

global
global

global
global

global
global

global
global

global
global

global
global

global
global
global
global
global
global
global
global
global
global
global
global
global
global

odusII

ment = 0.04
bar_frc_a
bar_frc_c

box_frc_a
box_frc_c

rod_frc_a
rod_frc_c

tube_frc_a
tube_frc_c

cl_frc_a
cl_frc_c

c2_frc_a
c2_frc_c

I_frc_a
I_frc_c

I2_frc_a
I12_frc_c

T_frc_a
T_frc_c

Tl _frc_a
Tl _frc_c

hat_frc_a
hat_frc_c

Z_frc_a
Z_frc_c

L_frc_a
L_frc_c

log_strain_xx
bar_error
box_error
rod_error
tube_error
cl_error
c2_error

I _error
I2_error

T _error
Tl_error
hat_error
Z_error
L_error

### definition of BCs ###

begin fixed rotation
include all blocks
components
end fixed rotation

=XY Z

begin fixed displacement
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node set = nodelist_1
components = Y Z
end fixed displacement

begin fixed displacement
node set = nodelist_2 nodelist_3 nodelist_4 nodelist_5 nodelist_6 nodelist_7 nodelist_8 nodelist_9 nodeli
components = X Y Z

end fixed displacement

begin prescribed displacement

node set = nodelist_1
component = X
function = ramp

scale factor = -{dl}

end prescribed displacement

begin solution verification
verify global box_error = 0.0 plus or minus 0.03
verify global rod_error = 0.0 plus or minus 0.03
verify global tube_error = 0.0 plus or minus 0.03
verify global cl_error = 0.0 plus or minus 0.03
verify global c2_error = 0.0 plus or minus 0.03

verify global I_error = 0.0 plus or minus 0.03
verify global I2_error = 0.0 plus or minus 0.03
verify global T_error = 0.0 plus or minus 0.03
verify global Tl_error = 0.0 plus or minus 0.03

verify global hat_error = 0.0 plus or minus 0.03
verify global Z_error = 0.0 plus or minus 0.03
verify global L_error = 0.0 plus or minus 0.03

completion file = verifl
end

end adagio region adagio

end adagio procedure adagio_procedure
end sierra All Beams_Axial_Quasi
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B.24 Elastic Beam Bending Verification 3.11

begin sierra Beam_Problems

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

begin function constant
type is constant
begin values
1.0
end values
end function constant

begin function constant_1
type is constant
begin values
3.125e-2
end values
end function constant_1

begin function cos_function

type is analytic

evaluate expression = " (1/64)x(l-cos(xxpi/3.2e-2))
end function cos_function

o O O
= O O
o O O

begin material aluminum

density = 2.5880e-4
= {E = 10.0e6}

begin parameters for model elastic
youngs modulus = {E}
poissons ratio = 0.3

end parameters for model elastic

end material aluminum

begin finite element model beams

Database Name = all_beams.g
Database Type = exodusII

begin parameters for block block_28 block_14 block_42
material = aluminum
model = elastic
section = bar

end parameters for block block_28 block_14 block_42

begin parameters for block block_27 block_13 block_41
material = aluminum
model = elastic
section = box

end parameters for block block_27 block_13 block_41

begin parameters for block block_ 26 block_12 block_40
material = aluminum
model = elastic
section = rod

end parameters for block block_26 block_12 block_40

begin parameters for block block_ 25 block_11 block_39

material = aluminum
model = elastic
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section = tube
end parameters for block block_25 block_11 block_39

begin parameters for block block_24 block_10 block_38

material = aluminum
model = elastic
section = cl

end parameters for block block_24 block_10 block_38

begin parameters for block block_23 block_9 block_37

material = aluminum
model = elastic
section = c2

end parameters for block block_23 block_9 block_37

begin parameters for block block_22 block_8 block_36

material = aluminum
model = elastic
section = I

end parameters for block block_22 block_8 block_36

begin parameters for block block_21 block_7 block_35

material = aluminum
model = elastic
section = I2

end parameters for block block_21 block_7 block_35

begin parameters for block block_20 block_6 block_34
material = aluminum
model = elastic
section = T

end parameters for block block_20 block_6 block_34

begin parameters for block block_19 block_5 block_33
material = aluminum
model = elastic
section = T1

end parameters for block block_ 19 block_5 block_ 33

begin parameters for block block_18 block_4 block_32
material = aluminum
model = elastic
section = HAT

end parameters for block block_18 block_4 block_32

begin parameters for block block_17 block_3 block_31

material = aluminum
model = elastic
section = Z

end parameters for block block_17 block_3 block_31

begin parameters for block block_16 block_2 block_30
material = aluminum
model = elastic
section = L

end parameters for block block_16 block_2 block_30

begin parameters for block block_15 block_1 block_29
material = aluminum
model = elastic
section = ellipse
end parameters for block block_15 block_1 block_29

end
Ix and Iy for BAR

Dl_bar = {Dl_bar = 0.1}
D2_bar = {D2_bar = 0.1}
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# Ix_bar = {Ix_bar =
# Iy_bar = {Iy_bar =
# Ip_bar = {Ip_bar =

begin beam section
section = BAR
D1 = {Dl_bar}
D2 = {D2_Dbar}
t axis = 0.0 1.0
end beam section b

# Ix and Iy for BOX

# D1_box = {Dl_box =
# D2_box = {D2_box =
# D3_box = {D3_box =
# Ix_box = {Ix_box =
# Iy_box = {Iy_box =
# Ip_box = {Ip_box =

(1/12) xD1_barx (D2_bar**(3)) }
(1/12) «D2_bar* (D1_barx*(3)) }
Ix_bar + Iy_bar}

bar

0.0
ar

0.1}
0.1}
0.0002}

(1/12) *D1_box* (D2_box** (3))—-(1/12) » (D1_box-2*D3_box) * ( (D2_box—-2+*D3_box) ** (3))
(1/12) *D2_box* (D1_boxx* (3))—(1/12) * (D2_box-2*D3_box) * ((D1_box-2xD3_box) x* (3))

Ix_box + Iy_box}

begin beam section box

section = BOX
D1 = {Dl_box}
D2 = {D2_box}
D3 = {D3_box}

t axis = 0.0 1.0 0.0
end beam section box

# Ix and Iy for ROD
# DI_ROD = {D1_ROD = 0.1}
# D2_ROD = {D2_ROD = 0.1}
# Ix_ROD = {Ix_ROD = (PIx(D1_RODx*x*(4)))/64}
# Iy_ROD = {Iy_ROD = (PIx(D1_RODxx(4)))/64}
# Ip_ROD = {Ip_ROD = Ix_ROD + Iy_ROD}
begin beam section rod
section = ROD
D1 = {D1_ROD}
D2 = {D2_ROD}
t axis = 0.0 1.0 0.0
end beam section rod
# Ix and Iy for TUBE
# D1_Tube = {D1_Tube = 0.1}
# D2_Tube = {D2_Tube = 0.1}
# D3_Tube = {D3_Tube = 0.0002}
#Ix_TUBE = {Ix_TUBE = PI*(((D1_Tube/2)-(D3_Tube/2))*x(3))*D3_Tube}
#Iy_TUBE = {Iy_TUBE = PIx* (((D1_Tube/2)-(D3_Tube/2))**(3))*D3_Tube}
#Ip_TUBE = {Ip_TUBE = Ix_TUBE + Iy_TUBE}
begin beam section tube
section = TUBE
D1 = {D1_Tube}
D2 = {D2_Tube}
D3 = {D3_Tube}
t axis = 0.0 1.0 0.0
end beam section tube
# Ix and Iy for Cl beam
#D1_Cl = {D1_Cl1 = 0.1002}
#D2_C1 = {D2_C1 = 0.1004}
#D3_Cl1 = {D3_Cl = 0.0002}
#D4_C1 = {D4_Cl = 0.0002}
#b1_Cl = {bl_Cl = D1_C1}
#hl_Cl = {hl_Cl = D3_C1}
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#b2_Cl = {b2_Cl = D4_C1}
#h2_Cl1 = {h2_Cl = D2_Cl -2%D3_C1}
#b3_Cl = {b3_Cl = D1_C1}
#h3_Cl = {h3_Cl = D3_C1}

#al_Cl = {al_Cl = bl_Clxhl_C1}
#a2_Cl = {a2_Cl = b2_Cl%h2_C1}
#a3_Cl = {a3_Cl = b3_Cl+xh3_C1}
#at_Cl = {at_Cl = al_Cl + a2_Cl + a3_C1l}

#x1_Cl = {x1_Cl = D1_C1/2}
#x2_Cl = {x2_Cl1 = D4_C1/2}
#x3_Cl = {x3_Cl = D1_C1/2}

#yl_Cl = {yl_Cl = D3_C1/2}
#y2_Cl = {y2_Cl = D2_Cl/2}
#y3_Cl = {y3_Cl = D2_Cl - D3_C1/2}

#xbar_Cl = {xbar_Cl = (al_Cl*x1_Cl+a2_Cl*x2_Cl+a3_Clxx3_Cl)/at_C1}

#ybar_Cl = {ybar_Cl = (al_Cl*yl_Cl+a2_Clxy2_Cl+a3_Clxy3_Cl)/at_C1}

#Ix1_Cl = {Ix1_Cl = (1/12)*bl_Cl*(h1_Cl**(3))+bl_Clxhl_Cl* ((yl_Cl-ybar_C1l)xx(2))}
#Ix2_Cl = {Ix2_Cl = (1/12)*b2_Clx(h2_Cl%%(3))+b2_Cl*h2_Clx((y2_Cl-ybar_Cl)x*(2))}
#Ix3_Cl = {Ix3_Cl = (1/12)*b3_Cl* (h3_Cl**(3))+b3_Clxh3_Clx ((y3_Cl-ybar_Cl)**(2))}
#Ix_Cl = {Ix_Cl = Ix1 Cl + Ix2_Cl + Ix3_C1l}

#Iyl_Cl = {Iyl_Cl = (1/12)%(b1_Cl%%(3))*hl_Cl+bl_Cl+hl_Clx((x1_Cl-xbar_Cl)x**(2))}

#Iy2_Cl = {Iy2_C1 (1/12) % (b2_Cl*x(3))*h2_Cl+b2_Clxh2_Clx((x2_Cl-xbar_Cl)*x(2))}
#Iy3_Cl = {Iy3_C1 (1/12) % (b3_Clxx(3))*h3_Cl+b3_Cl*h3_Cl*((x3_Cl-xbar_Cl)x*x*(2))}
#Iy_Cl = {Iy_Cl = Iyl Cl + Iy2_Cl + Iy3_Cl}

#Ip_Cl = {Ip_Cl = Ix_Cl + Iy_Cl}

begin beam section cl

section = C1

D1 = {D1_C1}

D2 = {D2_C1}

D3 {D3_C1}

D4 = {D4_C1}

t axis = 0.0 1.0 0.0
end beam section cl

# Ix and Iy for C2 beam

#D1_C2 = {D1_C2 = 0.1004}
#D2_C2 = {D2_C2 = 0.1002}
#D3_C2 = {D3_C2 = 0.0002}
#D4_C2 = {D4_C2 = 0.0002}

#b1_C2 = {bl_C2 = D4_C2}
#h1_C2 = {hl_C2 = D2_C2}
#b2_C2 = {b2_C2 = D1_C2-2xD4_C2}
#h2_C2 = {h2_C2 = D3_C2}
#b3_C2 = {b3_C2 = D4_C2}
#h3_C2 = {h3_C2 = D2_C2}

#al_C2 = {al_C2 = bl_C2 x hl_C2}
#a2_C2 = {a2_C2 = b2_C2 * h2_C2}
#a3_C2 = {a3_C2 = b3_C2 * h3_C2}
#at_C2 = {at_C2 = al_C2 + a2_C2 + a3_C2}

#x1_C2 = {x1_C2 = D4_C2/2}
#x2_C2 = {x2_C2 = D1_C2/2}
#x3_C2 = {x3_.C2 = D1_C2 - D4_C2/2}

#y1l_C2 = {yl_C2 = D2_C2/2}

#y2_C2 = {y2_C2 = D3_C2/2}
#y3_C2 = {y3_C2 = D2_C2/2}
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#xbar_C2 = {xbar_C2 =

#ybar_C2 = {ybar_C2 =

#Ix1_C2 = {Ix1_C2 = (1/12)*bl_C2% (h1_C2%x*(3)
#Ix2_C2 = {Ix2_C2 = (1/12)*b2_C2% (h2_C2xx (3)
#Ix3_C2 = {Ix3_C2 = (1/12)*b3_C2x (h3_C2x%x* (3)
#Ix_C2 = {Ix_C2 = Ix1_C2 + Ix2_C2 + Ix3_C2}
#Iyl_C2 = {Iyl_C2 =

#Iy2_C2 = {Iy2_C2 =

#Iy3_C2 = {Iy3_C2 =

#Iy_C2 (Iy_C2 = Iyl_C2 + Iy2_C2 + Iy3_C2}
#Ip_C2 = {Ip_C2 = Ix_C2 + Iy_C2}

begin beam section c2

section = C2
D1 = {D1_C2}
D2 = {D2_C2}
D3 = {D3_C2}
D4 = {D4_C2}
t axis = 0.0 1.0 0.0

end beam section c2

# Ix and Iy for I beam

#D1_TI = {D1_I = 0.1}

#D2_I = {D2_I = 0.1004}

#D3_I = {D3_I = 0.0002}

#D4_I = {D4_I = 0.0002}

#01_TI = {bl1_I = D1_TI}

#h1_I = {hl_I = D4_TI}

#b2_TI = {b2_I = D3_1I}

#h2_I = {h2_I = D2_I - 2%D4_TI}

#b3_I = {b3_I = D1_TI}

#h3_I = {h3_I = D4_TI}

#al_I = {al_I = bl_I % hl_TI}

#a2_I = {a2_I = b2_I % h2_T}

#a3_I = {a3_I = b3_I * h3_I}

#at_I = {at_I = al_I + a2_I + a3_1I}
#x1_I = {x1_I = D1_1I/2}

#x2_1 = {x2_1 = D1_1/2}

#x3_1 = {x3_1 = D1_1I/2}

#y1_TI = {yl_I = D4_1/2}

#y2_I = {y2_I = D2_1/2}

#y3_I = {y3_I = D2_I - D4_I/2}

#xbar_ I = {xbar_I = (al_I*x1_TI+a2_TIxx2_TI+a3_
#ybar_I = {ybar_I = (al_Ixyl_I+a2_Ixy2_TI+a3_
#Ix1 I = {Ix1_TI = (1/12)xbl_TIx(hl_TIx*(3)
#Ix2_ I = {Ix2_I = (1/12)*b2_I*(h2_Ix*(3)
#Ix3_ I = {Ix3_I = (1/12)*b3_Ix (h3_I**(3)
#Ix I = {Ix_ I = Ix1_TI + Ix2_I + Ix3_TI}
#Iyl I = {Iyl_I =

#Iy2_I = {Iy2_1I =

#Iy3_I = {Iy3_I =

#$#Iy_ I = {Iy_I = Iyl I + Iy2_I + Iy3_I}
#Ip_ I = {Ip_I = Ix_I + Iy_I}

begin beam section I
section I
D1 {D1_TI}

(al_C2%x1_C2+a2_C2%x2_C2+a3_C2%*x3_C2)/at_C2}
(al_C2xyl_C2+a2_C2*y2_C2+a3_C2xy3_C2)/at_C2}

)+bl_C2xhl_C2x ((yl_C2-ybar_C2)**(2))}
) +b2_C2+h2_C2* ((y2_C2-ybar_C2)x* (2))}
) +b3_C2+h3_C2x ((y3_C2-ybar_C2)x*(2))}

(1/12) * (b1_C2xx(3))*hl_C2+bl_C2%hl_C2* ((x1_C2-xbar_C2)**(2))}
(1/12) % (b2_C2%*(3) ) *h2_C2+b2_C2+h2_C2x ( (x2_C2-xbar_C2) x* (2)) }
(1/12) * (b3_C2xx (3)) *h3_C2+b3_C2+h3_C2* ((x3_C2—-xbar_C2)**(2))}

I+«x3_TI)/at_1I}
Ixy3_I)/at_TI}

)+bl_TIxhl Ix((yl_I-ybar_I)*=%(2))}
) +b2_TIxh2_TIx ((y2_I-ybar_TI)x*x*(2))}
) +b3_Ixh3_Ix ((y3_I-ybar_TI)**(2))}

(1/12) % (b1_TI*x*(3))+hl_T+bl_T+hl_TIx* ((x1_TI-xbar_TI)=*x(2))}
(1/12) % (b2_TI**(3)) xh2_TI+b2_TI+h2_TI* ((x2_I-xbar_I)x*x(2))}
(1/12) % (b3_TI**(3))*h3_TI+b3_I+h3_Ix((x3_I-xbar_TI)=**(2))}
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D2
D3
D4

(D2_1}
(D3_I}
(D4_T}

t axis = 0.0 1.0 0.0

end beam section I

# Ix an

d

#D1_I2 =

#D2_1I2
#D3_1I2
#D4_1I2
#D5_12
#D6_1I2

#bl1_1I2

#h1_1I2 =

#b2_12
#h2_12
#b3_12
#h3_1I2

#al_1I2

#a2_12 =

#a3_1I2
#at_I2

#x1_12
#x2_12
#x3_1I2

#yl_I2
#y2_1I2
#y3_1I2

#xbar_ T
#ybar_TI

#Ix1_1I2
#Ix2_12
#Ix3_1I2
#Ix_I2

#Iyl_1I2
#Iy2_12
#Iy3_I2
#Iy_1I2
#Ip_I2

2 =

2

Iy for I2 beam
{D1_I2 = 0.1}
{D2_I2 = 0.10045}
{D3_I2 = 0.0002}
{D4_I2 = 0.0002}
{D5_I2 = 0.08}
{D6_I2 = 0.00025 }
{bl_I2 = D5_I2}
{hl_I2 = D6_I2}
{b2_I2 = D4_1I2}
{h2_I2 = D2_I2 - D3_I2 - D6_1I2}
{b3_I2 = D1_1I2}
{h3_I2 = D3_1I2}
{al_I2 = bl_I2 % hl_1I2}
{a2_I2 = b2_I2 x h2_1I2}
{a3_I2 = b3_I2 » h3_1I2}
{at_I2 = al_I2 + a2_I2 + a3_1I2}
{x1_I2 = D1_1I2/2}
{x2_I2 = D1_12/2}
{x3_I2 = D1_I2/2}
{yl_I2 = D6_1I2/2}
{y2_I2 = D6_I2 + (D2_I2-D6_I2-D3_I2)/2}
{y3_I2 = D2_I2 - D3_1I2/2}
{xbar_I2 = (al_I2xx1_I2+a2_I2%x2_I2+a3_I2%xx3_1I2)/at_I2}
= {ybar_I2 = (al_I2xyl_TI2+a2_TI2xy2_I2+a3_I2*y3_I2)/at_I2}
= {Ix1_I2 = (1/12)*bl_I2x(h1_I2%%(3))+bl_I2+hl_I2*((yl_I2-ybar_I2)*x(2))}
= {Ix2_I2 = (1/12)*b2_TI2% (h2_TI2x%(3))+b2_I2+h2_TI2* ((y2_I2-ybar_I2)*x(2))}
= {Ix3_I2 = (1/12)*b3_I2%(h3_I2%* (3))+b3_I2+h3_I2* ((y3_I2-ybar_I2)*x(2))}
= {Ix_I2 = Ix1_1I2 + Ix2_I2 + Ix3_1I2}
= {Iyl_I2 = (1/12)% (b1_TI2x%(3))+hl_TI2+bl_TI2+hl_TI2*((x1_I2-xbar_I2)+*x(2))}
= {Iy2_I2 = (1/12)% (b2_I2x* (3))+h2_TI2+b2_TI2+h2_TI2* ((x2_I2-xbar_I2)*x(2))}
= {Iy3_I2 = (1/12)* (b3_I2%%(3))*h3_I2+b3_I2+h3_I2* ((x3_I2-xbar_I2)*x(2))}
{Iy_TI2 = Iyl_I2 + Iy2_TI2 + Iy3_I2}
(Ip_I2 = Ix_I2 + Iy_I2}

begin beam section I2

section = I2
D1 = {D1_1I2}
D2 = {D2_1I2}
D3 = {D3_I2}
D4 = {D4_1I2}
D5 = {D5_I2}
D6 = {D6_I2}

t axis = 0.0 1.0 0.0
end beam section I2

# Ix and Iy for

#D1_T =
#D2_T =
#D3_T
#D4_T =

#b1_T =
#h1_T =

(D1_T =
(D2_T =
{D3_T =
(D4_T =

{bl_T =
{h1_T

T
0
0.
0
0

beam

.1}

1002}

.0002}
.0002}

D4_T}

= D2_T -D3_T}
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#02_T = {b2_T = DI1_T}
#h2_T = {h2_T D3_T}

#al_T = {al_T = bl_T * hl_T}
#a2_T = {a2_T b2_T * h2_T}
#at_T = {at_T = al_T + a2_T}

#x1_T = {x1_T = b2_T/2}
#x2_T = {x2_T b2_T/2}

#y1_T = {yl_T = hl_T/2}
#y2_T = {y2_T = h1_T + h2_T/2}

#xbar_T = {xbar_T = (al_T*x1_T+a2_Txx2_T)/at_T}

#ybar_T = {ybar_T = (al_Txyl_T+a2_T*y2_T)/at_T}

#Ix1 T = {Ix1_T = (1/12)*bl_T*(hl_T##(3))+bl_T*hl T« ((yl_T-ybar T)**(2))}
#Ix2_T = {Ix2_T = (1/12)*b2_T*x (h2_Tx* (3))+b2_T+h2_Tx ((y2_T-ybar_T)x*(2))}
#Ix T = {Ix_ T = Ix1_T + Ix2_T}

#Iy1_T = {Iyl_T = (1/12) % (b1_T**(3))*hl_T+bl_Txhl_Tx ((x1_T-xbar_T)**(2))}
#Iy2_T = {Iy2_T = (1/12) % (b2_Tx*(3)) h2_T+b2_T+xh2_Tx ((x2_T-xbar_T)x*(2))}
#Iy_ T = {Iy_T = Iyl _T + Iy2_T}

#Ip_T = {Ip_T = Ix_T + Iy_T}

begin beam section T
section = T

D1 = {D1_T}
D2 = {D2_T}
D3 = {D3_T}
D4 = {D4_T}

t axis = 0.0 1.0 0.0
end beam section T

# Ix and Iy for Tl beam

#D1_T1 = {D1_T1 = 0.1002}
#D2_T1 = {D2_T1 = 0.1}

#D3_T1 = {D3_T1 = 0.0002}
#D4_T1 = {D4_T1 = 0.0002}

#b1_T1 = {b1l_T1 = D1_T1 - D4_T1}
#h1_T1 = {h1_T1 = D3_T1}
#b2_T1 = {b2_T1 = D4_T1}
#h2_T1 = {h2_T1 = D2_T1}

#al_T1 = {al_T1 = bl_T1lx hl_T1}
#a2_T1 = {a2_T1 = b2_T1xh2_T1}
#at_T1 = {at_T1 = al_T1+a2_T1}

#x1_T1 = {x1_T1 = (D1_T1-D4_T1)/2}
#x2_T1l = {x2_T1 = DI1_T1 - (D4_T1/2)}

#yl Tl = {yl_T1 = D2_T1/2}
#y2_T1 = {y2_T1 = D2_T1/2}

#xbar_T1l = {xbar_T1l = (al_Tl*x1_Tl+a2_T1lxx2_T1)/at_T1}
#ybar_T1 = {ybar_T1 = (al_Tl*yl_T1+a2_T1lxy2_T1)/at_T1}

#Ix1 _T1 = {Ix1_T1 (1/12) *b1_T1x (h1_T1%%(3))+bl_Tlxhl_T1l*((yl_Tl-ybar_T1)=*(2))}
#Ix2_T1 = {Ix2_T1 = (1/12)*b2_T1x (h2_T1xx(3))+b2_T1+h2_T1lx ((y2_Tl-ybar_T1)xx%(2))}
#Ix_ Tl = {Ix_Tl = Ix1_T1 + Ix2_T1}

#Iyl_T1 = {Iyl_T1 (1/12) * (b1_T1%*(3)) *hl_T1+bl_T1lxhl_T1l*((x1_Tl-xbar_T1)=*(2))}

#Iy2_T1 = {Iy2_T1 = (1/12)* (b2_T1%%(3))*h2_T1+b2_TI1+h2_T1* ((x2_Tl-xbar_T1)*x(2))}
#Iy_T1 = {Iy_T1l = Iyl _T1 + Iy2_T1}
#Ip_T1 = {Ip_T1 = Ix_T1 + Iy_T1}

356



begin beam section T1

secti
D1
D2
D3
D4 =
t axi

on = T1
{D1_T1}
{D2_T1}
{D3_T1}
{D4_T1}
s =0.01.0

0.0

end beam section T1

# Ix and
#D1_HAT =
#D2_HAT =
#D3_HAT =
#D4_HAT =

#bl_HAT =
#h1_HAT =
#b2_HAT =
#h2_HAT =
#b3_HAT =
#h3_HAT =
#b4d_HAT =
#h4_HAT =
#b5_HAT =
#h5_HAT =

#al_HAT =
#a2_HAT =
#a3_HAT =
#ad4_HAT =
#a5_HAT =
#at_HAT =

#x1_HAT =
#x2_HAT =
#x3_HAT =
#x4_HAT =
#x5_HAT =

#yl_HAT =
#y2_HAT =
#y3_HAT =
#y4_HAT =
#y5_HAT =

#xbar_ HAT
#ybar_HAT

#Ix1_HAT
#Ix2_HAT
#Ix3_HAT
#Ix4_HAT
#Ix5_HAT
#Ix_HAT

#Iyl_HAT

#Iy2_HAT =

#Ty3_HAT
#Iy4_HAT
#Iy5_HAT
#Iy_HAT
#Ip_HAT

begin b
secti
D1 =
D2
D3

Iy for HAT beam

{DI_HAT = 0.3004}

{D2_HAT = 0.1004}

{D3_HAT = 0.1004}

{D4_HAT = 0.0002}

{bl_HAT = D3_HAT-D4_HAT}

{h1_HAT = D4_HAT}

{b2_HAT = D4_HAT}

{h2_HAT = D3_HAT-2xD4_HAT}

{b3_HAT = D3_HAT}

{h3_HAT = D4_HAT}

{b4_HAT = D4_HAT}

{h4_HAT = D3_HAT-2xD4_HAT}

{b5_HAT = D3_HAT-D4_HAT}

{h5_HAT = D4_HAT}

{al_HAT = b1l_HAT = hl_HAT}

{a2_HAT = Db2_HAT » h2_HAT}

{a3_HAT = Db3_HAT = h3_HAT}

{a4_HAT = Db4_HAT = h4_HAT}

{a5_HAT = Db5_HAT = h5_HAT}

{at_HAT = al_HAT + a2_HAT + a3_HAT + a4_HAT + a5_HAT}

{x1_HAT = (D3_HAT - D4_HAT)/2}

{x2_HAT = D3_HAT - D4_HAT - (D4_HAT/2)}

{x3_HAT = D1_HAT/2}

{x4_HAT = DI1_HAT - bl_HAT + D4_HAT/2}

{x5_HAT = D1_HAT - bl_HAT/2}

{y1_HAT = D4_HAT/2}

{y2_HAT = D3_HAT/2}

{y3_HAT = D3_HAT - D4_HAT/2}

{y4_HAT = D3_HAT/2}

{y5_HAT = D4_HAT/2}

= {xbar_HAT =(al_HAT*x1_ HAT+a2_ HAT*x2_HAT+a3_HAT+x3_HAT+a4_HAT*x4_HAT+a5_ HATxx5_HAT) /at_HAT}
= {ybar_HAT =(al_HATxyl_HAT+a2_HAT+y2_HAT+a3_HAT*y3_HAT+ad_HATxy4_HAT+a5_HAT+y5_HAT) /at_HAT}
= {Ix1_HAT = (1/12)*bl_HATx (h1_HAT*x (3))+bl_HAT+hl_HATx ((yl_HAT-ybar_ HAT)x*x(2))}
= {Ix2_HAT = (1/12) *b2_HAT* (h2_HATx*%* (3))+b2_HAT+h2_HAT~* ((y2_HAT-ybar_HAT)x* (2))}
= {Ix3_HAT = (1/12) *b3_HAT* (h3_HATx*~* (3))+b3_HAT+xh3_HATx* ( (y3_HAT-ybar_HAT) x* (2)) }
= {Ix4_HAT = (1/12)*b4_HATx (h4_HAT*x (3))+b4_HAT+h4_HATx* ( (y4_HAT-ybar_HAT) % (2))}
= {Ix5_HAT = (1/12) *b5_HAT* (h5_HATx*~* (3))+b5_HAT+h5_HATx* ((y5_HAT-ybar_HAT) x* (2)) }
= {Ix_HAT = Ix1_HAT + Ix2_HAT + Ix3_HAT + Ix4_HAT + Ix5_HAT}
= {Iyl_HAT = (1/12)* (b1_HAT#** (3))+hl_HAT+bl_ HAT+hl_HATx ((x1_HAT-xbar_ HAT)*x(2))}

{Iy2_HAT = (1/12) % (b2_HAT+*x (3)) *h2_HAT+b2_HAT+h2_HATx* ( (x2_HAT-xbar_HAT) x* (2))}

= {Iy3_HAT = (1/12) % (b3_HAT*x (3)) *h3_HAT+b3_HAT+h3_HAT~* ( (x3_HAT-xbar_HAT) x* (2)) }
= {Iy4_HAT = (1/12) % (b4_HAT+*x(3)) +«h4_HAT+b4_HATxh4_HAT~* ( (x4_HAT-xbar_ HAT)x*(2))}
= {Iy5_HAT = (1/12) % (b5_HAT*x (3)) *h5_HAT+b5_HATxh5_HATx* ( (x5_HAT-xbar_HAT) x* (2)) }
= {Iy_HAT = Iyl_HAT + Iy2_HAT + Iy3_HAT + Iy4_HAT + Iy5_HAT}
= {Ip_HAT = Ix_HAT + Iy_HAT}
eam section HAT
on = HAT

{D1_HAT}

{D2_HAT}

{D3_HAT}
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D4 = {D4_HAT}
t axis = 0.0 1.0 0.0
end beam section HAT

# Ix and Iy for Z beam

#D1_7 = {D1_Z = 0.2002}
#D2_7 = {D2_2% = 0.1004}
#D3_7 = {D3_2 = 0.0002}
#D4_7 = {D4_Z = 0.0002}

#bl_7 = {bl_Z = D2_7 - D3_7Z}
#hl1_7 = {hl_2 D3_2}

#b2_7 = {b2_7Z = D4_7}

#h2_7 = {h2_2 D2_7 - 2%D3_7}
#b3_7 = {b3_2Z D2_27 - D3_7}
#h3_7 = {h3_2 D3_2}

#al_7 = {al_Z = bl_7Z x hl_27}
#a2_7 = {a2_2 = b2_72 % h2_27}
#a3_7 = {a3_2Z2 = b3_7Z * h3_7}
#at_7Z = {at_Z2 = al_7Z + a2_7 + a3_27}

#x1_72 = {x1_2 bl_2z/2}
#x2_7 = {x2_2 bl_z - D4_27/2}
#x3_7 = {x3_2 = D1_7 - b3_7/2}

#yl_7 = {yl_2 = D2_Z - D3_Z/2}

#y2_7 = {y2_7 = D2_7/2}

#y3_2 = {y3_2 = D3_2z/2}

#xbar_7 = {xbar_Z = (al_Z*x1_Z+a2_7Zxx2_7+a3_7*x3_7)/at_27}

#ybar_7 = {ybar_2Z = (al_Z*yl_Z+a2_7Zxy2_7+a3_z*y3_7)/at_2z}

#Ix1_ 7 = {Ix1_7Z = (1/12)+bl_Zx(hl_Zx*(3))+bl_Zxhl_Z« ((yl_Z-ybar_Z)x*(2))}
#Ix2_72 = {Ix2_7 = (1/12)%b2_2Zx (h2_Z*x (3))+b2_2xh2_Z«* ((y2_Z-ybar_Z) xx(2))}
#Ix3_Z = {Ix3_7 = (1/12)*b3_Z*x(h3_Zx*(3))+b3_7Z+h3_Z« ((y3_Z-ybar_Z)x*(2))}
#Ix 7 = {Ix_ 7 = Ix1_7 + Ix2_27 + Ix3_7}

#Iyl_ 72 = {Iyl_7Z = (1/12)x(bl_Zx*(3))*hl_Z+bl_Zxhl_Z« ((x1_Z-xbar_Z)**(2))}
#Iy2_2 = {Iy2_Z2 = (1/12)* (b2_2Z**(3)) *h2_2Z+b2_7Z+h2_Zx ((x2_Z-xbar_Z) **(2))}
#Iy3_Z2 = {Iy3_7Z = (1/12) % (b3_Z**(3))*h3_Z+b3_7Z+h3_Z« ((x3_Z-xbar_Z)**(2))}
#Iy_72 = {Iy_2 = Iyl_2 + Iy2_7 + 1y3_7}

#Ip_ 72 = {Ip_2Z = Ix_7 + Iy_ 7}

begin beam section Z

section = Z

D1 = {D1_2}

D2 = {D2_Z}

D3 {D3_1z}

D4 = {D4_1z}

t axis = 0.0 1.0 0.0
end beam section Z

# Ix and Iy for L beam
#D1_L = {D1_L = 0.1}
#D2_I1 = {D2_L = 0.1}
#D3_L = {D3_L = 0.0002}
#D4_L = {D4_L = 0.0002}

#bl1_L = {bl_L = D1_L-D4_L}
#h1_L = {hl_L= D3_L}
#b2_1L {b2_L = D4_L}
#h2_1L = {h2_L = D2_L}

#al L = {al_L = bl_L = hl_L}
#a2_L {a2_L = b2_L % h2_L}
#at_L = {at_L = al_L + a2_L}
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#x1 L = {x1_L = bl_L/2 + b2_L}

#x2_ L = {x2_L = b2_L/2}

#yl L = {yl_L = hl_L/2}

#y2_L = {y2_L = h2_L/2}

#xbar_L = {xbar_L = (al_L*x1_L+a2_Lxx2_L)/at_L}

#ybar_L = {ybar_L = (al_L*yl_L+a2_L*y2_L)/at_L}

#Ix1_L = {Ix1_L = (1/12)*bl_ L% (hl_L#+(3))+bl_Lxhl_Lx((yl_L-ybar_L)**(2))}
#Ix2_L = {Ix2_L = (1/12)*b2_L*x(h2_Lx* (3))+b2_Lxh2_Lx ((y2_L-ybar_L)x*(2))}
#Ix L = {Ix_ L = Ix1_L + Ix2_L}

#Iyl_L = {Iyl_L = (1/12)x (bl_Lx*(3))*hl_L+bl_Lxhl_Lx ((x1_L-xbar_L)x*(2))}
#Iy2_L = {Iy2_L = (1/12)x (b2_Lx*(3))*h2_L+b2_Lxh2_ L« ((x2_L-xbar_L)x*(2))}
#Iy_ L = {Iy_L = Iyl L + Iy2_L}

#Ip_ L = {Ip_L = Ix_L + Iy_L}

begin beam section L

section = L

D1 = {D1_L}

D2 {D2_L}

D3 {D3_L}

D4 = {D4_L}

t axis = 0.0 1.0 0.0
end beam section L

# Ix and Iy for ROD (Ellipse) beam
#D1_E = {DI1_E = 0.1}
#D2_E = {D2_E = 0.08}

#Ix_E = {Ix_E = (PIx(D1_E/2)*(D2_E/2)*%3)/4}
#Iy_E = {Iy_E = (PIx(D2_E/2)*(D1_E/2)*%3)/4}
#Ip_E = {Ip_E Ix_E + Iy_E}

begin beam section ellipse
section = ROD
D1 = {D1_E}
D2 = {D2_E}
t axis = 0.0 1.0 0.0
end beam section ellipse

begin presto procedure Apst_Procedure

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for presto region presto
time step scale factor = 1.0
time step increase factor = 1.1
step interval = 100
end parameters for presto region presto
end time stepping block pl

begin time stepping block p2
start time = 3.2e-2
begin parameters for presto region presto
time step scale factor = 1.0
time step increase factor = 1.1
step interval = 100
end parameters for presto region presto
end time stepping block p2

termination time = 4.2e-2
end time control

begin presto region presto
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use finite element model beams

### output description ###
begin Results Output results
Database Name = beamElasticVerif.e

Database Type =
Increment =

At Time 0.0,
nodal Variables
nodal Variables
nodal Variables
nodal Variables

exodusII

2.0e-5

moment_external as mext
force_external as fext
displacement as displacement
rotational_displacement as rdispl

end results output results

= {L= 5}

{Ll = L**3}

= {G =E/(2%x(1.3))}

BAR

Begin user output
node set = nodelist_1001
compute
compute
compute
compute
compute at every step

End user output

Begin user output
node set = nodelist_1002
compute
compute
compute
compute
compute at every step

End user output

Begin user output

(Moment_bar_torsion =*

global F_bar_bending as average of nodal force_external (Y)
global Disp_bar_bending as max absolute value of nodal displacement (Y)

global bar_Ix from expression " ((F_bar_bendingx{L1l})/ (3*x{E}+Disp_bar_bending))"
global bar_bending_Ix_error from expression " abs(((bar_Ix -

global F_bar_bending_Z as average of nodal force_external (Z)

global Disp_bar_bending_Z as max absolute value of nodal displacement (Z)

global bar_Iy from expression " ((F_bar_bending_Z* ({L1}))/ (3*x{E}*«Disp_bar_bending_Zz))"
global bar_bending_Iy_error from expression " abs(((bar_Iy - {Iy_bar})/{Iy_bar})*100)

global Disp_bar_theta as max absolute value of nodal rotational_displacement (X)

{L})/ ({G}+«Disp_bar_theta) )"
{Ip_bar})/{Ip_bar})*100)

node set = nodelist_1003

compute global Moment_bar_torsion as average of nodal moment_external (X)
compute

compute global bar_Ip from expression " (

compute global bar_torsion_Ip_error from expression " abs(((bar_Ip -
compute at every step

End user output

# BOX
Begin user output
node set = nodelist_2001
compute
compute
compute
compute
compute at every step

End user output

Begin user output
node set = nodelist_2002
compute
compute
compute
compute
compute at every step
End user output

Begin user output
node set = nodelist_2003

global F_box_bending as average of nodal force_external (Y)
global Disp_box_bending as max absolute value of nodal displacement (Y)

global box_Ix from expression " ((F_box_bending* ({L1}))/(3«{E}*xDisp_box_bending))"
global box_bending_ Ix_error from expression " abs(((box_Ix -

{Ix_box})/{Ix_box})=*100)

global F_box_bending_Z as average of nodal force_external (Z)

global Disp_box_bending_Z as max absolute value of nodal displacement (Z)

global box_Iy from expression " ((F_box_bending_Z* ({L1}))/ (3*x{E}*«Disp_box_bending_2z))"
global box_bending_Iy_error from expression " abs(((box_Iy - {Iy_box})/{Iy_box})*100)

compute global Moment_box_torsion as average of nodal moment_external (X)
compute global Disp_box_theta as max absolute value of nodal rotational_displacement (X)
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compute global box_Ip from expression " ( (Moment_box_torsion » {L})/({G}+Disp_box_theta) )"
compute global box_torsion_Ip_error from expression " abs(((box_Ip - {Ip_box})/{Ip_box})=x100) "
compute at every step

End user output

# ROD

Begin user output
node set = nodelist_3001
compute global F_rod_bending as average of nodal force_external (Y)
compute global Disp_rod_bending as max absolute value of nodal displacement (Y)
compute global rod_Ix from expression " ((F_rod_bending=* ({L1l}))/(3«{E}+«Disp_rod_bending))"
compute global rod_bending_Ix_error from expression " abs(((rod_Ix — {Ix_ROD})/{Ix_ROD})=*100) "
compute at every step

End user output

Begin user output
node set = nodelist_3002
compute global F_rod_bending_Z as average of nodal force_external (Z)
compute global Disp_rod_bending_Z as max absolute value of nodal displacement (Z)
compute global rod_Iy from expression " ((F_rod_bending_Z* ({L1}))/(3*x{E}«Disp_rod_bending_z))"
compute global rod_bending_Iy_error from expression " abs(((rod_Iy - {Iy_ROD})/{Iy_ROD})=100) "
compute at every step

End user output

Begin user output
node set = nodelist_3003
compute global Moment_rod_torsion as average of nodal moment_external (X)
compute global Disp_rod_theta as max absolute value of nodal rotational_displacement (X)
compute global rod_Ip from expression " ( (Moment_rod_torsion = {L})/ ({G}+«Disp_rod_theta) )"
compute global rod_torsion_Ip_error from expression " abs(((rod_Ip - {Ip_ROD})/{Ip_ROD})=*100) "
compute at every step

End user output

# TUBE

Begin user output
node set = nodelist_4001
compute global F_tube_bending as average of nodal force_external (Y)
compute global Disp_tube_bending as max absolute value of nodal displacement (Y)
compute global tube_Ix from expression " ((F_tube_bending* ({L1}))/ (3*x{E}*«Disp_tube_bending))"
compute global tube_bending_Ix_error from expression " abs(((tube_Ix - {Ix_TUBE})/{Ix_TUBE})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_4002
compute global F_tube_bending_Z as average of nodal force_external (Z)
compute global Disp_tube_bending_Z as max absolute value of nodal displacement (Z)
compute global tube_Iy from expression " ((F_tube_bending_ Zx ({L1}))/(3x{E}*Disp_tube_bending_2z))"
compute global tube_bending_ly_error from expression " abs(((tube_Iy - {Iy_TUBE})/{Iy_TUBE})=*100) "
compute at every step

End user output

Begin user output
node set = nodelist_4003
compute global Moment_TUBE_torsion as average of nodal moment_external (X)
compute global Disp_TUBE_theta as max absolute value of nodal rotational_displacement (X)
compute global TUBE_Ip from expression " ( (Moment_TUBE_torsion x {L})/({G}+«Disp_TUBE_theta) )"
compute global TUBE_torsion_Ip_error from expression " abs(((TUBE_Ip - {Ip_TUBE})/{Ip_TUBE})*100) "
compute at every step

End user output

# Cc1l
Begin user output
node set = nodelist_5001
compute global F_cl bending as average of nodal force_external (Y)
compute global Disp_cl_bending as max absolute value of nodal displacement (Y)
compute global cl_Ix from expression " ((F_cl_bending* ({L1}))/(3x{E}*Disp_cl_bending))"
compute global cl_bending_Ix_error from expression " abs(((cl_Ix - {Ix_Cl})/{Ix_Cl})=*100) "
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compute at every step
End user output

Begin user output
node set = nodelist_5002
compute global F_cl_bending_Z as average of nodal force_external (Z)
compute global Disp_cl_bending_Z as max absolute value of nodal displacement (Z)
compute global cl_Iy from expression " ((F_cl_bending_Z=* ({L1}))/(3*{E}*Disp_cl_bending_2z))"
compute global cl_bending Iy_error from expression " abs(((cl_Iy - {Iy_Cl})/{Iy_Cl})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_5003
compute global Moment_cl_torsion as average of nodal moment_external (X)
compute global Disp_cl_theta as max absolute value of nodal rotational_displacement (X)
compute global cl_Ip from expression " ( (Moment_cl_torsion x {L})/({G}*Disp_cl_theta) )"
compute global cl_torsion_Ip_error from expression " abs(((cl_Ip - {Ip_Cl})/{Ip_Cl})*100) "
compute at every step

End user output

c2
Begin user output
node set = nodelist_6001
compute global F_C2_bending as average of nodal force_external (Y)
compute global Disp_C2_bending as max absolute value of nodal displacement (Y)
compute global C2_Ix from expression " ((F_C2_bendingx ({L1}))/(3%x{E}*Disp_C2_bending))"
compute global C2_bending_Ix_error from expression " abs (((C2_Ix - {Ix_C2})/{Ix_C2})*100) "
compute at every step
End user output

Begin user output
node set = nodelist_6002
compute global F_c2_bending_Z as average of nodal force_external (Z)
compute global Disp_c2_bending_Z as max absolute value of nodal displacement (Z)
compute global c2_Iy from expression " ((F_c2_bending_Zx* ({L1}))/(3*x{E}*Disp_c2_bending_2z))"
compute global c2_bending_Iy_error from expression " abs(((c2_Iy - {Iy_C2})/{Iy_C2})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_6003
compute global Moment_c2_torsion as average of nodal moment_external (X)
compute global Disp_c2_theta as max absolute value of nodal rotational_displacement (X)
compute global c2_Ip from expression " ( (Moment_c2_torsion x {L})/ ({G}*Disp_c2_theta) )"
compute global c2_torsion_Ip_error from expression " abs(((c2_Ip - {Ip_C2})/{Ip_C2})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_7001
compute global F_I_bending as average of nodal force_external (Y)
compute global Disp_I_bending as max absolute value of nodal displacement (Y)
compute global I_Ix from expression " ((F_I_bendingx ({L1}))/(3*x{E}*Disp_I_bending))"
compute global I_bending Ix_error from expression " abs(((I_Ix - {Ix_I})/{Ix_I})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_7002
compute global F_I_bending_Z as average of nodal force_external (Z)
compute global Disp_I_bending Z as max absolute value of nodal displacement (Z)
compute global I_TIy from expression " ((F_I_bending Zx ({L1}))/(3*x{E}*Disp_I_bending_Z))"
compute global I_bending_ Iy_error from expression " abs(((I_Iy - {Iy_I})/{Iy_I})=100) "
compute at every step

End user output
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Begin user output
node set = nodelist_7003
compute global Moment_I_torsion as average of nodal moment_external (X)
compute global Disp_I_theta as max absolute value of nodal rotational_displacement (X)
compute global I_Ip from expression " ( (Moment_I_torsion % {L})/({G}*Disp_I_theta) )"
compute global I_torsion_Ip_error from expression " abs(((I_Ip - {Ip_I})/{Ip_I})=*100) "
compute at every step

End user output

12
Begin user output
node set = nodelist_8001
compute global F_I2_bending as average of nodal force_external (Y)
compute global Disp_I2_bending as max absolute value of nodal displacement (Y)
compute global I2_Ix from expression " ((F_I2_bending* ({L1}))/(3x{E}*Disp_I2_bending))"
compute global I2_bending_Ix_error from expression " abs (((I2_Ix - {Ix_I2})/{Ix_I2})*100) "
compute at every step
End user output

Begin user output
node set = nodelist_8002
compute global F_I2_bending_Z as average of nodal force_external (Z)
compute global Disp_I2_bending_Z as max absolute value of nodal displacement (Z)
compute global I2_Iy from expression " ((F_I2_bending_Zx* ({L1}))/(3*x{E}*Disp_I2_bending_Z))"
compute global I2_bending_ Iy_error from expression " abs (((I2_Iy - {Iy_I2})/{Iy_I2})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_8003
compute global Moment_I2_torsion as average of nodal moment_external (X)
compute global Disp_I2_theta as max absolute value of nodal rotational_displacement (X)
compute global I2_Ip from expression " ( (Moment_I2_ torsion x {L})/({G}*Disp_I2_theta) )"
compute global I2_torsion_Ip_error from expression " abs(((I2_Ip - {Ip_I2})/{Ip_I2})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_9001
compute global F_T_bending as average of nodal force_external (Y)
compute global Disp_T_bending as max absolute value of nodal displacement (Y)
compute global T_Ix from expression " ((F_T_bendingx ({L1}))/(3x{E}*Disp_T_bending))"
compute global T_bending_Ix_error from expression " abs (((T_Ix — {Ix_T})/{Ix_T})=100) "
compute at every step

End user output

Begin user output
node set = nodelist_9002
compute global F_T_bending_Z as average of nodal force_external (Z)
compute global Disp_T_bending_Z as max absolute value of nodal displacement (Z)
compute global T_Iy from expression " ((F_T_bending_Zx* ({L1}))/(3*x{E}*Disp_T_bending_z))"
compute global T_bending_Iy_error from expression " abs (((T_Iy - {Iy_T})/{Iy_T})=100) "
compute at every step

End user output

Begin user output
node set = nodelist_9003
compute global Moment_T_torsion as average of nodal moment_external (X)
compute global Disp_T_theta as max absolute value of nodal rotational_displacement (X)
compute global T_Ip from expression " ( (Moment_T_torsion x {L})/({G}*Disp_T_theta) )"
compute global T_torsion_Ip_error from expression " abs (((T_Ip - {Ip_T})/{Ip_T})=100) "
compute at every step

End user output

—==== T] ======

Begin user output
node set = nodelist_100001
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compute global F_T1_bending as average of nodal force_external (Y)
compute global Disp_T1l_bending as max absolute value of nodal displacement (Y)
compute global Tl_Ix from expression " ((F_T1_bendingx ({L1}))/ (3x{E}*xDisp_T1l bending))"
compute global Tl _bending Ix_error from expression " abs(((T1_Ix - {Ix_T1})/{Ix_T1})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_100002
compute global F_T1_bending_Z as average of nodal force_external (Z)
compute global Disp_Tl_bending_Z as max absolute value of nodal displacement (Z)
compute global T1_Iy from expression " ((F_T1_bending_2Z* ({L1}))/ (3*{E}*xDisp_TI1_bending_Z))"
compute global Tl_bending_Iy_error from expression " abs (((T1_Iy - {Iy_T1})/{Iy_T1})=*100) "
compute at every step

End user output

Begin user output
node set = nodelist_100003
compute global Moment_T1_torsion as average of nodal moment_external (X)
compute global Disp_T1l_theta as max absolute value of nodal rotational_displacement (X)
compute global T1l_Ip from expression " ( (Moment_T1_torsion * {L})/({G}*Disp_T1_theta) )"
compute global Tl_torsion_Ip_error from expression " abs (((T1_Ip - {Ip_T1})/{Ip_T1})=*100) "
compute at every step

End user output

===== HAT =====

Begin user output
node set = nodelist_1101
compute global F_HAT_bending as average of nodal force_external (Y)
compute global Disp_HAT_bending as max absolute value of nodal displacement (Y)
compute global HAT_Ix from expression " ((F_HAT_bending=* ({L1}))/(3*{E}*Disp_HAT_bending))"
compute global HAT_bending_Ix_error from expression " abs (((HAT_Ix - {Ix_HAT})/{Ix_HAT})=%100) "
compute at every step

End user output

Begin user output
node set = nodelist_1102
compute global F_HAT _bending_Z as average of nodal force_external (Z)
compute global Disp_HAT bending_Z as max absolute value of nodal displacement (Z)
compute global HAT_Iy from expression " ((F_HAT_bending_Zx ({L1}))/(3x{E}*Disp_HAT_bending_Z))"
compute global HAT_bending_Iy_error from expression " abs (((HAT_Iy - {Iy_HAT})/{Iy_HAT})=%100) "
compute at every step

End user output

Begin user output
node set = nodelist_1103
compute global Moment_HAT_torsion as average of nodal moment_external (X)
compute global Disp_HAT_theta as max absolute value of nodal rotational_displacement (X)
compute global HAT_Ip from expression " ( (Moment_HAT_torsion x {L})/({G}+Disp_HAT_theta) )"
compute global HAT_torsion_Ip_error from expression " abs(((HAT_Ip - {Ip_HAT})/{Ip_HAT})=%100) "
compute at every step

End user output

Begin user output
node set = nodelist_1201
compute global F_Z_bending as average of nodal force_external (Y)
compute global Disp_Z_bending as max absolute value of nodal displacement (Y)
compute global 7Z_Ix from expression " ((F_Z_bendingx ({L1}))/(3x{E}*Disp_Z_bending))"
compute global Z_bending_Ix_error from expression " abs(((Z_Ix — {Ix_2Z})/{Ix_Z})=100) "
compute at every step

End user output

Begin user output
node set = nodelist_1202
compute global F_Z_bending_Z as average of nodal force_external (Z)
compute global Disp_Z_bending_Z as max absolute value of nodal displacement (Z)
compute global Z_Iy from expression " ((F_Z_bending_Z* ({L1}))/(3*x{E}*Disp_Z_bending_z))"
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compute global Z_bending_ Iy_error from expression " abs(((Z_Iy - {Iy_Z})/{Iy_Z})*100) "
compute at every step
End user output

Begin user output
node set = nodelist_1203
compute global Moment_Z_torsion as average of nodal moment_external (X)
compute global Disp_Z_theta as max absolute value of nodal rotational_displacement (X)
compute global Z_Ip from expression " ( (Moment_Z_torsion % {L})/({G}+«Disp_Z_theta) )"
compute global Z_torsion_Ip_error from expression " abs(((Z_Ip - {Ip_Z})/{Ip_Z})*100) "
compute at every step

End user output

Begin user output
node set = nodelist_1301
compute global F_IL_bending as average of nodal force_external (Y)
compute global Disp_IL_bending as max absolute value of nodal displacement (Y)
compute global L_Ix from expression " ((F_L_bendingx ({L1}))/(3x{E}*Disp_L_bending))"
compute global L_bending_Ix_error from expression " abs(((L_Ix - {Ix_L})/{Ix_L})=100) "
compute at every step

End user output

Begin user output
node set = nodelist_1302
compute global F_L_bending_Z as average of nodal force_external (Z)
compute global Disp_L_bending_Z as max absolute value of nodal displacement (Z)
compute global IL_Iy from expression " ((F_L_bending_Zx ({L1}))/ (3*x{E}*Disp_L_bending_Z))"
compute global IL_bending_Iy_error from expression " abs(((L_Iy - {Iy_L})/{Iy_L})=*100) "
compute at every step

End user output

Begin user output
node set = nodelist_1303
compute global Moment_I_torsion as average of nodal moment_external (X)
compute global Disp_L_theta as max absolute value of nodal rotational_displacement (X)
compute global L_Ip from expression " ( (Moment_IL_torsion % {L})/({G}*Disp_L_theta) )"
compute global IL_torsion_Ip_error from expression " abs(((L_Ip - {Ip_L})/{Ip_L})=*100) "
compute at every step

End user output

===== Ellipse =====

Begin user output
node set = nodelist_1401
compute global F_E_bending as average of nodal force_external (Y)
compute global Disp_E_bending as max absolute value of nodal displacement (Y)
compute global E_Ix from expression " ((F_E_bending* ({L1}))/(3*x{E}*Disp_E_bending))"
compute global E_bending_Ix_error from expression " abs(((E_Ix — {Ix_E})/{Ix_E})=x100) "
compute at every step

End user output

Begin user output
node set = nodelist_1402
compute global F_E_bending_Z as average of nodal force_external (Z)
compute global Disp_E_bending_Z as max absolute value of nodal displacement (Z)
compute global E_Iy from expression " ((F_E_bending_ Z* ({L1}))/(3*x{E}*Disp_E_bending_2z))"
compute global E_bending_Iy_error from expression " abs(((E_Iy - {Iy_E})/{Iy_E})=x100) "
compute at every step

End user output

Begin user output
node set = nodelist_1403
compute global Moment_E_torsion as average of nodal moment_external (X)
compute global Disp_E_theta as max absolute value of nodal rotational_displacement (X)
compute global E_Ip from expression " ( (Moment_FE_torsion x {L})/({G}+«Disp_E_theta) )"
compute global E_torsion_Ip_error from expression " abs(((E_Ip - {Ip_E})/{Ip_E})=x100) "
compute at every step

End user output
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begin history output
database name = beamElasticVerif.h
database type = exodusII

Increment = 2.0e-5

At Time 0.0,

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

variable
variable
variable
variable

variable =

variable
variable
variable
variable
variable
variable
variable

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global

F_bar_bending
Disp_bar_bending
bar_Ix
bar_bending_Ix_error
F_bar_bending_Z
Disp_bar_bending_Z
bar_1Iy
bar_bending_Iy_error
Moment_bar_torsion
Disp_bar_theta
bar_Ip
bar_torsion_Ip_error

F_box_bending
Disp_box_bending
box_Ix
box_bending_Ix_error
F_box_bending_Z
Disp_box_bending_2Z
box_1Iy
box_bending_Iy_error
Moment_box_torsion
Disp_box_theta
box_Ip
box_torsion_Ip_error

F_rod_bending
Disp_rod_bending
rod_Ix
rod_bending_Ix_error
F_rod_bending_Z
Disp_rod_bending_Z
rod_TIy
rod_bending_Iy_error
Moment_rod_torsion
Disp_rod_theta
rod_Ip
rod_torsion_Ip_error

F_tube_bending
Disp_tube_bending
tube_Ix
tube_bending_Ix_error
F_tube_bending_7
Disp_tube_bending_2Z
tube_TIy
tube_bending_Iy_error
Moment_tube_torsion
Disp_tube_theta
tube_Ip
tube_torsion_Ip_error

F_cl_bending
Disp_cl_bending
cl_TIx
cl_bending_Ix_error
F_cl_bending_ Z
Disp_cl_bending_Z
cl_Ty
cl_bending_Iy_error
Moment_cl_torsion
Disp_cl_theta

cl_Ip
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variable

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

variable
variable
variable
variable
variable
variable
variable

variable =

variable
variable
variable
variable

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

variable
variable

variable =

variable
variable
variable
variable
variable
variable
variable
variable
variable

variable

global

global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global
global
global
global
global

global

cl_torsion_Ip_error

F_C2_bending
Disp_C2_bending
C2_1Ix
C2_bending_Ix_error
F_C2_bending_Z
Disp_C2_bending_Z
C2_1y
C2_bending_Iy_error
Moment_C2_torsion
Disp_C2_theta

C2_1Ip
C2_torsion_Ip_error

F_I bending
Disp_I_bending
I_Ix

I_bending Ix_error
F_I_bending_Z
Disp_I_bending 7
I_Ty
I_bending Iy _error
Moment_TI_torsion
Disp_I_theta

I_TIp
I_torsion_Ip_error

F_I2_bending
Disp_I2_bending
I2_1Ix
I2_bending_Ix_error
F_I2_bending_Z
Disp_I2_bending_2Z
I2_1y
I2_bending_Iy_error
Moment_I2_torsion
Disp_I2_theta

I2_1Ip
I2_torsion_Ip_error

F_T bending
Disp_T_bending

T Ix
bar_T_Ix_error

F_T bending_2Z
Disp_T_bending_Z
T_ Ty
T_bending_Iy_error
Moment_T_torsion
Disp_T_theta

T_Ip
T_torsion_Ip_error

F_T1l_bending
Disp_T1l_bending

Tl _Ix
Tl_bending_Ix_error
F_T1l_bending_Z
Disp_T1 _bending_2Z
Tl Iy
Tl_bending_Iy_error
Moment_T1_torsion
Disp_T1_theta

Tl Ip
Tl_torsion_Ip_error

F_HAT_bending
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variable = global

variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global
end

### Solution Verifcati

Disp_HAT_bending
HAT_Ix

HAT bending Ix_error
F_HAT_bending_Z
Disp_HAT_bending_Z
HAT_ Iy
HAT_bending_Iy_error
Moment_HAT_torsion
Disp_HAT_theta
HAT_Ip
HAT_torsion_Ip_error

F_Z_bending
Disp_Z_bending
Z_Ix
Z_bending_Ix_error
F_Z7_bending_2Z
Disp_Z_bending_7Z
Z_1y
Z_bending_Iy_error
Moment_Z_torsion
Disp_Z_theta

Z_Ip
Z_torsion_Ip_error

F_L_bending
Disp_L_bending
L_Ix
L_bending_Ix_error
F_L_bending_Z
Disp_L_bending_Z
L_Ty
L_bending_Iy_error
Moment_I_torsion
Disp_L_theta

L_Tp
L_torsion_Ip_error

F_E_bending
Disp_E_bending
E_Ix
E_bending_Ix_error
F_E_bending_2Z
Disp_E_bending_Z
E_Ty
E_bending_Iy_error
Moment_E_torsion
Disp_E_theta

E_Tp
E_torsion_Ip_error

on###

Begin Solution Verification
Skip Times = 0.0 t
completion file =

verify
verify

verify
verify

verify
verify

verify
verify

o 3.19%e-2
elastic_verif_bending

global
global

global
global

global
global

global
global

bar_bending_Ix_error = 0.
0.

bar_bending_Iy_error

box_bending_Ix_error
box_bending_Iy_error

rod_bending_Ix_error
rod_pbending Iy_error

tube_bending_ Ix_error
tube_bending_Iy_error

plus
plus

plus
plus

plus
plus

plus
plus
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or
or

or
or

or
or

minus
minus

minus
minus

minus
minus

minus
minus



verify global cl_bending_Ix_error = 1.0 plus or minus 0.5

verify global cl_bending_Iy_error = 2.0 plus or minus 1.0
verify global C2_bending_Ix_error = 2.0 plus or minus 1.0
verify global C2_bending_TIy_error = 1.0 plus or minus 0.5
verify global I_bending_Ix_error = 0.02 plus or minus 0.02
verify global I_bending_Iy_error = 0.7 plus or minus 0.2
verify global I2_bending_Ix_error = 1.0 plus or minus 0.5
verify global I2_bending_Iy_error = 5.0 plus or minus 2.0
verify global T_bending_ Ix_error = 1.5 plus or minus 0.5
verify global T_bending_Iy_error = 4.0 plus or minus 2.0
verify global Tl_bending_Ix_error = 3.0 plus or minus 2.0
verify global Tl_bending_TIy_error = 1.0 plus or minus 0.5
verify global HAT_bending_Ix_error = 2.0 plus or minus 1.0
verify global HAT bending Iy error = 0.2 plus or minus 0.1
verify global Z_bending Ix_error = 1.0 plus or minus 0.5
verify global Z_bending_Iy_error = 1.0 plus or minus 0.5
verify global L_bending_Ix_error = 1.5 plus or minus 1.5
verify global L_bending_Iy_error = 1.5 plus or minus 1.5
verify global E_bending_Ix_error = 0.7 plus or minus 0.2
verify global E_bending Iy _error = 0.7 plus or minus 0.2

End Solution Verification

Begin Solution Verification
Skip Times = 0.0 to 4.199%9e-2
completion file = elastic_verif_ torsion

verify global bar_torsion_Ip_error = 15 plus or minus 5
verify global box_torsion_Ip_error = 10 plus or minus 5
verify global rod_torsion_ Ip_error = 1.0 plus or minus 1.0
verify global tube_torsion_Ip_error = 20 plus or minus 5
verify global cl_torsion_Ip_error = 35 plus or minus 5
verify global C2_torsion_Ip_error = 35 plus or minus 5
verify global I_torsion_Ip_error = 35 plus or minus 5
verify global I2_torsion_Ip_error = 30 plus or minus 5
verify global T_torsion_Ip_error = 80 plus or minus 5
verify global Tl_torsion_Ip_error = 80 plus or minus 5
verify global HAT_torsion_Ip_error = 80 plus or minus 15
verify global Z_torsion_Ip_error = 60 plus or minus 5
verify global L_torsion_Ip_error = 70 plus or minus 5
verify global E_torsion_Ip_error =5 plus or minus 3

End Solution Verification

Begin Viscous Damping
Include all blocks
Mass Damping coefficient = 1000.0
Stiffness Damping Coefficient = 0.0
End Viscous Damping

begin fixed displacement
node set = nodelist_1
components = X Y Z

end fixed displacement

begin fixed displacement
node set = nodelist_12011
components = Z

end fixed displacement
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begin fixed displacement

node set = nodelist_12022

components = Y
end fixed displacement

begin fixed displacement

node set = nodelist_13011

components = 2
end fixed displacement

begin fixed displacement

node set = nodelist_13022

components = Y
end fixed displacement

begin fixed rotation
node set = nodelist_1
components = X Y Z
end fixed rotation

begin prescribed force

node set = nodelist_2
direction =y
function = constant

scale factor = 0.0005
end prescribed force

begin prescribed force
node set = nodelist_3
direction = z
function = constant
scale factor = 0.0005

end prescribed force

begin prescribed moment
node set = nodelist_4
direction = x

function = cos_function

scale factor = 0.1
active periods = pl
end prescribed moment

begin prescribed moment
node set = nodelist_4
direction = x
function = constant_1
scale factor = 0.1
active periods = p2

end prescribed moment

end presto region presto

end presto procedure Apst_Procedure
end sierra Beam_Problems
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B.25 Elastic and Plastic Beam Section Verification 3.12

#
# Test elastic and plastic properties of beam sections
#

begin sierra beamPropertyTest

begin function ramp
type is piecewise linear
begin values
0.0 0.0
1.0 1.0
end
end

# Material properties
# {ym = 1.0e+6}
# {y0 = 1.0}

begin material matl

density = .0002588

begin parameters for model elastic_plastic
poissons ratio = 0.0
youngs modulus = {ym}
yield stress = {y0}
hardening modulus = 0.0

end

end

define direction x with vector 1 0 0
define direction y with vector 0 1 0
define direction z with vector 0 0 1

#

#

# Hat Section:

# Note, thickness is d4 for all sections

#

#

# ds

# f———— + ——— +-—
# r2 |

# Fmt e +——+

# d4 | | I |

# | lrl] ->|r3|<-d4 dz2
# v | | I |

# o —— +——+ fo— e +

# I r0 | I rd |

# o + o + - +-
# A~

# | | |

# 0t o dl——mm e +

A

#0

#

# +-—->s

#

begin beam section hat
section = HAT
dl = 0.40
d2 = 0.10
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H o o o o 3 3 o o o o

H o o o 3 3 H o S S o S S 3 3 3

H o o o S S o 3 3 H o o o

d3 = 0.15

d4 = 0.01

t axis = 0 1 0

#Visualize Integration Points = on
end

BAR, Rectangluar Section:

d1i
f— +
I I
| |
\ |d2
I I
t \ \
~ Fmm +
I
I
+-——>s

begin beam section bar

section = BAR

dl = 0.1

d2 = 0.2

t axis = 0 1 0

#Visualize Integration Points = on
end

Box, Hollow Rectangluar Section:

dl
Fomm o +
| A= +
I ->| |<-d3
1 \
1 | 1d2
1 \
1 [
t T +
O +
I
I
+-——>s

begin beam section box
section = BOX

dl = 0.10

d2 = 0.20

d3 = 0.01

t axis = 0 1 0

#Visualize Integration Points = on
end

ROD, elliptical Section:

/ \ |
/ \ |
/ \ d2
I\ /1 |
AN /| |
| | I_
t |
I dl---——-— +
[ |
I
+-———>s
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begin b

eam section rod

section = ROD
dl = 0.20
d2 = 0.20
t axis = 0 1 0
#Visualize Integration Points = on
end
#
# I Section:
#
# o + - +-
# I \ I
# o + |
# —>| | <-d3 |
# | I [
# ([ d2
# | | |
# | I I
# t tomm + |
# " I |d4 I
# o + ——— +-
#o di
# +--->s
#
begin beam section I
section = I
dl = 0.15
d2 = 0.20
d3 = 0.01
d4 = 0.015
t axis = 0 1 0
end
#
# Analytic Results:
# Problem consists of four beams for each section type. The beams are organized in a matrix with
# numbering scheme
# block_AO0O0 : Beams of section type A.
# nodelist_ABC : Nodelist on beam section type A, loading condition B, and beam end C
#
# The four beams of a section type are subjected to pure axial extension, pure T direction bending, pure
# S direction bending, and pure R direction torsion.
#
# The analytic results are computed with the following mathematica code (betwen the #ifdef and #endif lines.
# In order to run this mathematica code:
# 1) run the ’"MATERIAL MODEL SETUP BLOCK’
# 2) Run ONE of the section defintion blocks
# 3) Run the ’'RESPONSE EQUATIONS BLOCK’
# 4) Run the ’'DATA GATHERING BLOCK’
# 5) run the 'DATA PRINT BLOCK’. he data print block will output the analytic force response functions whic
# found below
#
#{ifdef (COMMENT_OUT) }
(% *)
(» MATERIAL MODEL SETUP BLOCK x)
Clear([dl, d2, d3, d5, height, width, y0, ym, stress, x, y, strain, e0];
(x Stress Strain Law. Elastic Perfectly Plastic.
ym = youngs modulus
y0 = yield stress
gm = shear modulus
g0 = shear yield strength
beamLen = the physical length of the beams in the mesh x)
(x Note, here assuming poissons ratio 0.0 which makes the shear modulus one half of youngs modulus x)
beamLen = 2.0;
y0 = 1.0;
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ym = 1000000;
g0 = y0/2.0;
gm = ym/2.0;

stressRR[strain_] = TIf[strainxym < y0, If[strain*ym > -y0, strainxym, -y0], vyO0];
stressST([strain_] = If[strainxgm < g0, If[strain*gm > -g0, strainxgm, -g0], g0];
(* *)
(% *)

(x Specific Parameters for I section x)
Clear[x, y, IStencil, DatalIl;

SectName = "I";

dl = 0.15;

d2 = 0.2;

d3 = 0.01;

d4 = 0.015;

height = d2;

width = di;

(x Use open section analytic J, which is given by sum of section sub lengths B times t"3 / 3. *)

SumBl = dl1 + dil;

SumB2 = d2 - 2xd4;

J = SumBl x (d473) / 3.0 + SumB2 x (d373)/3.0;

(» Use open section analytic Tmax, T = g0 * B % t"2 /2 )

Tmax = SumBl = g0 * (d472)/2.0 + SumB2x (d372)/2.0;

(» T stencil. Returns 1 if X/Y is in the section, Returns 0 if X/Y is not in the section x)

IStencil(x_, y_]1 = If[y <= d4 [y > (d2 - d4), 1,
If[{x > dl/2.0 - d3/2.0 && x < d1/2.0 + d3/2.0, 1, 011;

(x Plot the section to make sure it the stencil is right «)
Datal = {};
For[x = 0.0, x <= width, x += width/200,
For[y = 0.0, y < height, y += height/200,
If[IStencil[x, y] > 0, Datal = Append[Datal, {x, y}]]
17
I
ListPlot [Datal]

SectionStencil = IStencil;
(* *)
(% *)

(x Specific Parameters for Hat section x)
Clear[x, y, HatStencil, DataHat];

SectName = "Hat";
dl = 0.4;

dz = 0.1;

d3 = 0.15;

d4 = 0.01;

height = d2;
width = di;

(x Engineering Approximation: Use open section analytic J, which is given by sum of section sub lengths B times
SumB = (2% (d1/2.0 - d3/2.0 + d4/2.0) + 2x(d2 - d4) + (d3 - d4));
J = SumB x (d4~3) / 3.0;
(» Use open section analytic Tmax, T = g0 » B * t"2 /2 x)
Tmax = SumB * g0 * (d4"72)/2.0;
(* Hat stencil. Returns 1 if X/Y is in the section, Returns 0 if X/Y is not in the section =)
HatStencil[x_, y_] =
Ifly <= d4 && (x <= (d1/2.0 - d3/2.0 + d4) ||
x >= (d1/2.0 + d3/2.0 - d4)), 1,
If[y >= d4 &&
y <= d2 -
d4 && (x >= dl1/2.0 - d3/2.0 && x <= (d1/2.0 - d3/2.0) + d4 ||
x >= dl1/2.0 + d3/2.0 - d4 && x <= dl1/2.0 + d3/2.0), 1,
Ifly >=
d2 - d4 && (x >= d1/2.0 - d3/2.0 && x <= d1/2.0 + d3/2.0), 1,
01115
(x Plot the section to make sure it the stencil is right «)
DataHat = {};
For[x = 0.0, x <= width, x += width/200,
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For[y = 0.0, y < height, y += height/200,
If[HatStencil[x, y] > 0, DataHat = Append[DataHat, {x, y}]]
17
17
ListPlot [DataHat]

SectionStencil = HatStencil;
(* *)
(* *)

(x» Specific Parameters for Bar section =)

Clear[x, y, BarStencil, DataBar];

SectName = "Bar";

dl = 0.10;

d2 = 0.20;

height = d2;

width = di;

(*» Engineering Approximation: compute J and Tmax based of of the warping correction factors for a 2 by 1 rectangl
J = 0.229%xd2+d1"3;

Tmax = ((g0xd2+d172)/4.07)*1.694;

(» Bar stencil. Returns 1 if X/Y is in the section, Returns 0 if X/Y is not in the section *)
BarStencil[x_, y_] = 1.0;

DataBar {};

For[x = 0.0, x <= width, x += width/200,
For[y = 0.0, y < height, y += height/200,
If[BarStencil[x, y] > 0, DataBar = Append|[DataBar, {x, y}]]
1;
17
ListPlot [DataBar]
SectionStencil = BarStencil;
(* *)

(% *)

(x» Specific Parameters for Rod section =)

Clear[x, y, RodStencil, DataRod];
SectName = "Rod";
dl = 0.20;
d2 = 0.20;
height = d2;
width = di;
(» Engineering Approximation: For a circular section under torsion plane sections actually
will remain plane (no warping) analytic solution exists for J and max torision =)
J = Pi x (d174)/32;
Tmax = ((2+«Pix (d1/2)"3)/3)*g0;
(» Rod stencil. Returns 1 if X/Y is in the section, Returns 0 if X/Y is not in the section x)
RodStencil[x_, y_] =

If[(x - dl/2)"2 + (y - dl1/2)*2 < (di/2)~2, 1, 01;
DataRod = {};
For[x = 0.0, x <= width, x += width/100,

For[y = 0.0, y < height, y += height/100,

If[RodStencil([x, y] > 0, DataRod = Append[DataRod, {x, y}1]]
17

17
ListPlot [DataRod]
SectionStencil = RodStencil;
(* *)

(% *)
( Box Section Parameters =)
Clear[x, y, BoxStencil, DataBox];

SectName = "Box";

dl = 0.10;

d2 = 0.20;

d3 = 0.01;

height = d2;

width = dil;

(» Use closed section analytic J, which is given by J = 4A"2/(B/t). x)

(x Engineering Approximation: Compute J useing closed seciton approximation. A is the area enclosed by the sec
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0, 11;

{x,

yi1]

A (dl - d3)x(d2 - d3);
B = 2x(dl - d3) + 2x(d2 - d3);
J (4*A~2) / (B/d3);
(x Use closed section analytic T = 2xg0*xtxA )
Tmax = 2xg0*xd3*A;
(* Box stencil. Returns 1 if X/Y is in the section,
BoxStencil[x_, y_] =
DataBox = {};
For[x = 0.0, x <= width, x += width/200,
For[y = 0.0, y < height, y += height/200,
If[BoxStencil[x, y] > 0, DataBox = Append[DataBox,
17
17
ListPlot [DataBox]
SectionStencil = BoxStencil;

(*

%)

(*

(+ RESPONSE EQUATIONS BLOCK x)
(x Define equation for force
Clear [Mtt,
(

*)

and moment produced by section for a given incremental rotation or extension.

* X moment in a beam for incremental rotation dthet about x at end of beam x)

Mss, Frr, Mrr];
Mtt [dthet_] := Modulel
{eps, Force, MomentTot, ForceTot, x, vy,
Clear[eps, Force, MomentTot, ForceTot,
If[dthet == 0.0, Return[0]];

(+ eps is the strain at a given X/Y point.

eps[x_, y_, yc_] = (dthet)x(y - yc);
(* Stress at a given point in a section.

yel,
X’

y, ycli

dthet known, location of neutral axis,

If point is not in the stencil it is zero.

given by the stress stain law evaluated at the given strain =)

yc_] = stressRR[eps[x, vy,
Binary search to find neutral axis.

Forcelx_, v_,
(*

ycl]l*SectionStencil [x,
Find the yc at which the integral of force over the section is =zero.

vli

Returns 0 if X/Y is not in the section *)
If[x > d3 && x < dl - d3 && y > d3 && y < d2 - d3,

*)

yc 1is unknownx)

If point is in section t

ypO = 0.0;
ypl = height;
vy0 = Re[ NIntegrate[Forcelx, vy, yp0l]l, {x, 0, width}, {y, 0, height}, AccuracyGoal -> 8]11];
vyl = Re[ NIntegrate[Forcelx, vy, ypll, {x, 0, width}, {y, 0, height}, AccuracyGoal -> 8]1];
For[i = 0, 1 < 20, ++i,
ypm = (yp0 + ypl)/2.0;
vym = Re[NIntegrate[Forcelx, y, ypm], {x, 0, width}, {y, 0, height}, AccuracyGoal -> 8]1];
If[(vy0 <= 0 && vym >= 0) [l (vy0 >= 0 && vym <= 0),
ypl = ypm;
vyl = vym;

Continuel];

1i

If[(vym <= 0 && vyl >= 0)

yp0 = ypm;

vy0 = vym;

Continuel];

1;

17

yc =

(yp0 + ypl)/2.0;

(vym >= 0 &&

vyl <= 0),

(» Return the actual moment assocaited with the solved for neutral axisx)

MomentTot =
Re [MomentTot]
17

NIntegrate[Force[x, vy,

(*

Mss [dthet_] := Module[
{eps, Force, MomentTot, ForceTotx, x, vV,
Clear[eps, Force, MomentTot, ForceTot,
If[dthet == 0.0, Return[0]];

(x eps 1s the strain at a given X/Y point.

eps[x_, y_, xc_] = (dthet)«*(x - xc);
(# Stress at a given point in a section.

yclxy,

Xy

{x, 0, width}, {y, 0, height}];

Y moment in a beam for incremental rotation dthet about y at end of beam x)

xc}l,

Y, xclj;

dthet known, location of neutral axis,

If point is not in the stencil it is zero.

given by the stress stain law evaluated at the given strain x)

Forcelx_, v_,
(%
xp0 =
xpl =

xc_] = stressRR[eps[x, y,
Binary search to find neutral axis.
0.0;

width;

xc]]*SectionStencil([x, vyI;
Find the xc at which the integral of force
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If point is in section t
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(*

vx0 = Re[NIntegrate[Force[x, y, xp0O], {x, 0, width}, {y, 0, height}, AccuracyGoal -> 8]1];
vxl = Re[NIntegrate[Force[x, vy, xpl]l, {x, 0, width}, {y, 0, height}, AccuracyGoal -> 8]];
For[i = 0, 1 < 20, ++i,

xpm = (xp0 + xpl)/2.0;

vxm = Re[NIntegrate[Force[x, y, xpm], {x, 0, width}, {y, 0, height}, AccuracyGoal -> 8]11];

If[(vx0 <= 0 && vxm >= 0) [l (vx0 >= 0 && vxm <= 0),
xpl = xpm;
vxl = vxm;

Continuel];

1;

If[(vxm <= 0 && vxl >= 0) [ (vxm >= 0 && vxl <= 0),
xp0 = xpm;
vx0 = vxm;

Continuel];

1;
17

xc = (xp0 + xpl)/2.0;

(x Return the actual moment assocaited with the solved for neutral axisx)

MomentTot = NIntegrate[Forcel[x, y, xclxx, {x, 0, width}, {y, 0, height}];

Re [MomentTot]

17

Define equation of force produced by section for a given incremental extension dL/length. This is for the ext

Frr[dL_] := Module|

{eps, Force, ForceTot, x, v},

Clear[eps, Force, ForceTot, x, V]

If[dL == 0.0, Return[0]];

(x eps is the strain at a given X/Y point. This is just the uniform value based on the apply dLx)

eps[x_, y_] = dL;
(# Stress at a given point in a section. If point is not in the stencil it is zero. If point is in section t
given by the stress stain law evaluated at the given strain. Integrate stress over section to compute tota

Force[x_, y_] = stressRR[eps[x, y]]*SectionStencil[x, vyI;

ForceTot = NIntegrate[Forcelx, yl, {x, 0, width}, {y, 0, height}];

ForceTot

17
(* R moment in a beam for incremental rotation dthet about r at end of beam. This is torsional resistance. Thi
MrrNoWarping[dthet_] := Modulel

{eps, Force, ForceTot, x, y, xc, yc, MomentRR, MomentTot, dx, dy, dtot, Fxy, Forcex, Forcey},
Clear[eps, Force, ForceTot, x, y, xc, yc, MomentRR, MomentTot, dx, dy, dtot, Fxy, Forcex, Forcey, yp0, ypl, v

If[dthet == 0.0, Return[0]];

Compute strains at an XY point. Location of neutral axis (xc, yc) 1is unknown. =)
dx([x_, y_, xc_, yc_] = dthetx(yc - vy);
dy[x_, y_, xc_, yc_] = dthetx(x - xc);
dtot([x_, y_, xc_, yc_] = Sqgrt[dx[x, y, xc, ycl”2 + dy[x, y, xc, ycl”™2];

compute shear stress at a given point (Fxy) and force per unit area at a given point (Forcex and Forcey) x)
Fxylx_, y_, xc_, yc_] = stressST[dtot[x, y, xc, ycllxSectionStencil[x, yI;
Forcex[x_, y_, %c_, yc_]l = Fxy [x, y, xc, ycl* (dx[x, y, xc, ycl/dtotlx, y, xc, ycl);
Forcey[x_, y_, xc_, yc_] = Fxy [x, y, xc, yclx (dylx, y, xc, ycl/dtot[x, y, xc, ycl);

Binary search for location of neutral axis. The neutral axis is the (xc, yc) point in the beam at which the
Note all current sections tested are symmetric about x, so for all these sections it is known that the neutra
up the netural axis calculations. The only section this may not hold for are L and Tl, and Cl, will need to
xc = width/2.0;

yp0 = 0.0;

ypl = height;

vy0 = Re[NIntegrate[Forcex[x, y, xc, ypO0], {x, 0, width}, {y, 0O, height}, AccuracyGoal -> 811];

vyl = Re[ NIntegrate[Forcex[x, vy, xc, ypll, {x, 0, width}, {y, 0, height}, AccuracyGoal -> 8]1];

For[i = 0, i < 20, ++i,
ypm = (ypO + ypl)/2.0;

vym = Re[NIntegrate[ Forcex[x, y, xc, ypm], {x, 0, width}, {y, 0, height}, AccuracyGoal -> 8]11];
If[(vy0 <= 0 && vym >= 0) [l (vy0 >= 0 && vym <= 0),
ypl = ypm;
vyl = vym;
Continuel];
17
If[(vym <= 0 && vyl >= 0) [l (vym >= 0 && vyl <= 0),
yp0 = ypm;
vy0 = vym;

Continuel];
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(*

1i

17
yc = (yp0 + ypl)/2.0;

Integrate to compute the actual moment assocaited with the solved for refernce axis. x)
MomentRR[x_, y_, xc_, yc_] = (x - xc)xForcey[x, y, xc, yc] - (y - yc)x Forcex[x, y, xc, ycl;
MomentTot = NIntegrate[ MomentRR[x, y, xc, ycl, {x, 0, width}, {y, 0, height}];

Re [MomentTot]
17

Calculate torsion based on engineering assumptions, I.e., known elastic J and max torsion resitance Tmax. x)

MrrEnginneeringApprox[dthet_] := Module]|

{Melastic, MomentTot},

Clear [Melastic, MomentTot];

(* Compute the elastic moment, if this is less than the maximum plastic moment use it, othersise use max plas
Melastic = Jxdthetxgm;

If[Melastic < Tmax, MomentTot = Melastic, MomentTot = Tmax];

MomentTot

17

*)

*)

DATA GATHERING BLOCK x)
Given applied total displacements, compute incremental dtheta and dL, pass those values to the moment and for

DataMtt = {};

DataMss

{};

DataFrr = {};
DataMrrNoWarping = {};

DataMrrEngineeringApprox = {};

Nstep = 25;

Tterm = 1.0;

RotFinalTT = 1.0x10"-4;

RotFinalSS = 1.0%x10"-4;

RotFinalRR = 1.0%x10"-4;

ExtFinalRR = 1.0%x10"-5;

For[dt = 0.0, dt <= 1.0, dt += Tterm/Nstep,
dthetTT = (dt*1.0xRotFinalTT) /beamlLen;
dthetSS = (dtx1.0xRotFinalSS) /beamLen;
dthetRR = (dtx1.0xRotFinalRR)/beamlLen;
dLRR = (dtx1l.0+ExtFinalRR)/beamlen;

valMtt = Mtt[dthetTT];

valMss = Mss[dthetSS];

valMrrNoWarping = MrrNoWarping[dthetRR];

valMrrEngineeringApprox = MrrEngineeringApprox[dthetRR];

valFrr = Frr[dLRR];

DataMtt = Append[DataMtt, {dt, valMtt}];

DataMss = Append[DataMss, {dt, valMss}];

DataMrrNoWarping = Append[DataMrrNoWarping, {dt, valMrrNoWarping}];

DataMrrEngineeringApprox = Append[DataMrrEngineeringApprox, {dt, valMrrEngineeringApprox}];

DataFrr = Append[DataFrr, {dt, valFrr}];

Print[dt, ": ", valMtt, " ", valMss, " ", valMrrNoWarping, " ",
valMrrEngineeringApprox, " ", valFrr]

1i

ListPlot [DataMtt]

ListPlot

DataMss]

ListPlot [DataMrrEngineeringApprox]
ListPlot [DataFrr]

(*

(*

[
[
ListPlot [DataMrrNoWarping]
[
[

(» DATA PRINT BLOCK x*)

(*

Print the section response data points in a form usable by sierra x)

Print ["Begin Function AnalyticMtt", SectName];

Print[" type is piecewise linear"]

Print[" Dbegin values"];

For[i = 1, 1 <= Length[DataMtt], i++,
Print[" ", DataMtt [[1]1T[[1]], "™ ", DataMtt[[i]][[2]111;
17

Print[" end values"];
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Print ["End function AnalyticMtt", SectName];

Print[""];

Print ["Begin Function AnalyticMss", SectName];

Print[" type is piecewise linear"]

Print[" begin values"];

For[i = 1, i <= Length[DataMss], i++,
Print [" ", DataMss[[1]][[1]], "™ ", DataMss[[i]][[2]]1];
1i

Print[" end values"];

Print ["End function AnalyticMss", SectName];

Print[""];

Print ["Begin Function AnalyticMrrNoWarping", SectName];

Print[" type is piecewise linear"]

Print[" Dbegin values"];

For[i = 1, i1 <= Length[DataMrrNoWarping], i++,
Print [" ", DataMrrNoWarping[[i]1[[1]], " ", DataMrrNoWarping[[i]][[2
1i

Print [" end values"];

Print ["End function AnalyticMrrNoWarping", SectName];

Print[""];

Print ["Begin Function AnalyticMrrEngineeringApprox", SectName];

Print[" type is piecewise linear"]

Print[" Dbegin values"];

For[i = 1, i <= Length[DataMrrEngineeringApprox], i++,
Print [" ", DataMrrEngineeringApprox([[i]][[1l]], " ",

DataMrrEngineeringApprox[[1]][[2]]];

17

Print[" end values"];

Print ["End function AnalyticMrrEngineeringApprox", SectNamel];

Print[""];

Print ["Begin Function AnalyticFrr", SectName];

Print[" type 1is piecewise linear"]

Print[" Dbegin values"];

For[i = 1, i <= Length[DataFrr], i++,
Print[" ", DataFrr([[1i]1[[1]], "™ ", DataFrr[[i]][[2111];
17

Print[" end values"];

Print ["End function AnalyticFrr",

(*

SectName] ;

1113

#{endi
#

£}

# Analytic beam responses from the above Mathematica code

#

Begin Function AnalyticMttHat
type 1s piecewise linear

begi
0.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

n values
0

.04 0.0000177812
.08 0.0000355623
.12 0.0000533435
.16 0.0000711247
.2 0.0000889059
.24 0.000106687
.28 0.000124468
.32 0.000142249
.36 0.000158804
.4 0.00016808
.44 0.000173186
.48 0.000177359
.52 0.000180819
.56 0.000183725
.6 0.000186193
.64 0.00018831
.68 0.000190132
.72 0.000191667
.76 0.000192964
.8 0.000194072
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end

End function AnalyticMttHat

Begin Function AnalyticMssHat
type is piecewise linear

.84 0
.88 0.000195847
.92 0
.96 0.000197194

= O O O o

.000195023

.000196565

0.000197749
values

begin values

0.
.04 0.000124336
.08 0.000248672
.12 0.000360416
.16 0.000418595
.2 0.000455015

.24 0.00048287

.28 0.000505496
.32 0.000512978
.36 0.000515711
.4 0.000517667

.44 0.000519112
.48 0.000520212
.52 0.000521068
.56 0.000521748
.6 0.000522296

.64 0.000522744
.68 0.000523116
.72 0.000523429
.76 0.000523691
.8 0.000523917

.84 0.000524111
.88 0.000524277
.92 0.000524425
.96 0.000524552

H O O OOOOOOOOOOOOOOOOoOOoOoOoOoOoOo

end

End function AnalyticMssHat

Begin Function AnalyticMrrNoWarpingHat
type is piecewise linear

0

0.000524666
values

begin values

0.
.04 0.0000710589
.08 0.000142118
.12 0.000205361
.16 0.000239442
.2 0.000261395
.24 0.000277704
.28 0.000287394
.32 0.000290289
.36 0.000291849
.4 0.000292932
.44 0.00029366
.48 0.000294058
.52 0.000294227
.56 0.000294269
.6 0.000294269
.64 0.000294269
.68 0.000294269
.72 0.000294269
.76 0.000294269
.8 0.000294269

O O O O O OO OOOO0OOO0OO0OO0OO0OO0OO0OOOoOOoOOoOo

0

.84 0.000294269
.88 0.000294269
.92 0.000294269
.96 0.000294269
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1.

end

End function AnalyticMrrNoWarpingHat

Begin Function AnalyticMrrEngineeringApproxHat
type is piecewise linear

0.000294269
values

begin values

0.

H O O OOOOOOOOOOOOOOOOOoOOoOo oo o

end

End function AnalyticMrrEngineeringApproxHat

Begin Function AnalyticFrrHat
type is piecewise linear

0.
.04 5.93333e-7
.08 1.18667e-6
.12 1.78e-6
.16 2.37333e-6
.2 2.96667e-6
.24 3.56e-6

.28 4.15333e-6
.32 4.74667e-6
.36 5.34e-6

.4 5.93333e-6
.44 6.52667e-6
.48 7.12e-6

.52 7.71333e-6
.56 8.30667e-6
.6 8.9e-6

.64 9.49333e-6
.68 0.0000100867
.72 0.00001068
.76 0.0000112733
.8 0.0000118667
.84 0.00001246
.88 0.0000130533
.92 0.0000136467
.96 0.00001424

0.0000148333
values

begin values

0.
0.04
0.08
0.12
0.16
0.2 0.0058
0.24 0.0058
0.28 0.0058
0.32 0.0058
0.36 0.0058
0.4 0.0058
0.44 0.0058
0.48 0.0058
0.
0
0
0
0
0
0
0
0
0
0
0
1

end

End function AnalyticFrrHat

0

.00116
.00232
.00348
.00464

o O O O

52 0.0058

.56 0.0058
.6 0.0058
.64 0.0058
.68 0.0058
.72 0.0058
.76 0.0058
.8 0.0058
.84 0.0058
.88 0.0058
.92 0.0058
.96 0.0058

0.0058
values
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Begin Function AnalyticMttBar
type is piecewise linear

begin values

0.

P O OO OOOOOOOOO0OO0OO0OO0OO0OO0OOoOOoOoOOoOOoOOoOo

end

End function AnalyticMttBar

Begin Function AnalyticMssBar
type is piecewise linear

0
.04 0.000133333
.08 0.000266666
.12 0.000399999
.16 0.000533332

.2 0.000666665
.24 0.00076852
.28 0.00082993
.32 0.00086979
.36 0.000897117
.4 0.000916669
.44 0.000931128
.48 0.000942128
.52 0.000950688
.56 0.000957481
.6 0.000962965
.64 0.000967446
.68 0.000971167
.72 0.000974278
.76 0.000976914
.8 0.000979169
.84 0.000981105
.88 0.00098278
.92 0.000984245
.96 0.000985531

0.000986665
values

begin values

0.

P O OO OOOOOOOOO0OO0OO0OO0OO0OOOoOOoOoOOoOOoOOoOo

end

End function AnalyticMssBar

Begin Function AnalyticMrrNoWarpingBar
type is piecewise linear

0
.04 0.0000333332
.08 0.0000666665
.12 0.0000999997
.16 0.000133333

.2 0.000166666

.24 0.000199999
.28 0.000233333
.32 0.000266666
.36 0.000299999
.4 0.000333332

.44 0.00036226

.48 0.000384258
.52 0.00040138

.56 0.000414967
.6 0.000425925

.64 0.000434895
.68 0.000442331
.72 0.000448559
.76 0.000453833
.8 0.000458332

.84 0.000462206
.88 0.000465566
.92 0.000468493
.96 0.000471064

0.000473332
values

begin values

0.

0
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end

End function AnalyticMrrNoWarpingBar

Begin Function AnalyticMrrEngineeringApproxBar
type is piecewise linear

.04 0.0000833333
.08 0.000166667
.12 0.00025

.16 0.000333333

0

0

0

0

0.2 0.000415009

0.24 0.000472429
0.28 0.000508213
0.32 0.000532089
0.36 0.000548719
0.4 0.000560508

0.44 0.000568647
0.48 0.000574295
0.
0
0
0
0
0
0
0
0
0
0
0
1

52 0.000578338

.56 0.000581307
.6 0.000583537
.64 0.000585244
.68 0.000586573
.72 0.000587622
.76 0.000588462
.8 0.000589143

.84 0.0005897

.88 0.00059016
.92 0.000590544
.96 0.000590866

0.000591139
values

begin values

0.

P O OO OOOOOOOO0OOOO0OOOOOoOOoOoOoOOoOoOo

end

End function AnalyticMrrEngineeringApproxBar

Begin Function AnalyticFrrBar
type is piecewise linear

0.
.04 0.0000458
.08 0.0000916
.12 0.0001374
.16 0.0001832
.2 0.000229

.24 0.0002748

.28 0.0003206

.32 0.0003664

.36 0.0004122

.4 0.000416216
.44 0.000416216
.48 0.000416216
.52 0.000416216
.56 0.000416216
.6 0.000416216
.64 0.000416216
.68 0.000416216
.72 0.000416216
.76 0.000416216
.8 0.000416216
.84 0.000416216
.88 0.000416216
.92 0.000416216
.96 0.000416216

0.000416216
values

begin values

0.

0
0
0
0

0
.04 0.004
.08 0.008
.12 0.012
.16 0.016
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end

End function AnalyticFrrBar

Begin Function AnalyticMttRod
type is piecewise linear

2 0.02

.24 0.02
.28 0.02
.32 0.02
.36 0.02
.4 0.02

.44 0.02
.48 0.02
.52 0.02
.56 0.02
.6 0.02

.64 0.02
.68 0.02
.72 0.02
.76 0.02
.8 0.02

.84 0.02
.88 0.02
.92 0.02
.96 0.02

0.02
values

begin values

0.
0.04 0.000157079
0.08 0.000314158
0.12 0.000471237
0.16 0.000628316
0.2 0.000785395

0.24 0.000923749
0.28 0.00102111

0.32 0.00108898

0.36 0.00113749
0.4 0.00117311

0.44 0.00119997

0.48 0.00122067

0.
0
0
0
0
0
0
0
0
0
0
0
1

end

End function AnalyticMttRod

Begin Function AnalyticMssRod
type is piecewise linear

0

52 0.00123694

.56 0.00124995
.6 0.00126051

.64 0.0012692

.68 0.00127642
.72 0.00128249
.76 0.00128765
.8 0.00129206

.84 0.00129586
.88 0.00129917
.92 0.00130205
.96 0.00130458

0.00130682
values

begin values

0.
.04 0.00015708
.08 0.000314158
.12 0.000471237
.16 0.000628316
.2 0.000785401
.24 0.000923756
.28 0.00102111
.32 0.00108899

O O O O O o o o

0
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end

End function AnalyticMssRod

Begin Function AnalyticMrrNoWarpingRod
type is piecewise linear

0.36 0.00113748
0.4 0.00117312

0.44 0.00119997
0.48 0.00122067
0.52 0.00123695
0.56 0.00124995
0.6 0.00126051

0.64 0.00126919
0.
0
0
0
0
0
0
0
1

68 0.00127642

.72 0.0012825

.76 0.00128765
.8 0.00129206

.84 0.00129586
.88 0.00129916
.92 0.00130206
.96 0.00130458

0.00130683
values

begin values

0.
0.04 0.00015708

0.08 0.000314159
0.12 0.000471239
0.16 0.000628319
0.2 0.000785398

0.24 0.000895693
0.28 0.00095179
0.32 0.000983282
0.36 0.00100231

0.4 0.00101447

0.44 0.00102261

0.48 0.00102826
0.
0
0
0
0
0
0
0
0
0
0
0
1

end

End function AnalyticMrrNoWarpingRod

Begin Function AnalyticMrrEngineeringApproxRod
type is piecewise linear

0

52 0.0010323

.56 0.00103527
.6 0.0010375

.64 0.00103921
.68 0.00104054
.72 0.00104159
.76 0.00104243
.8 0.00104311

.84 0.00104366
.88 0.00104412
.92 0.00104451
.96 0.00104483

0.0010451
values

begin values

0.
.04
.08
.12
.16
.2 0.000785398
.24 0.000942478
.28 0.0010472
.32 0.0010472
.36 0.0010472
.4 .0.0010472
.44 0.0010472
.48 0.0010472

O O O O OO OO oo oo

0.

.00015708
.000314159
.000471239
.000628319

o O O O
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end

End function AnalyticMrrEngineeringApproxRod

Begin Function AnalyticFrrRod
type is piecewise linear

0.52 0.0010472
0.56 0.0010472
0.6 0.0010472
0.64 0.0010472
0.68 0.0010472
0.72 0.0010472
0.
0
0
0
0
0
1

76 0.0010472

.8 0.0010472
.84 0.0010472
.88 0.0010472
.92 0.0010472
.96 0.0010472

0.0010472
values

begin values

0.
0.04 0.00628319
0.08 0.0125664
0.12 0.0188496
0.16 0.0251327
0.2 0.0314159
0.24 0.0314159
0.28 0.0314159
0.32 0.0314159
0.36 0.0314159
0.4 0.0314159
0.44 0.0314159
0.48 0.0314159
0.
0
0
0
0
0
0
0
0
0
0
0
1

end

End function AnalyticFrrRod

Begin Function AnalyticMttBox
type is piecewise linear

0

52 0.0314159

.56 0.0314159
.6 0.0314159
.64 0.0314159
.68 0.0314159
.72 0.0314159
.76 0.0314159
.8 0.0314159
.84 0.0314159
.88 0.0314159
.92 0.0314159
.96 0.0314159

0.0314159
values

begin values

0.
.04
.08
.12
.16
.2 0.000277866

.24 0.000305703
.28 0.000317986
.32 0.000325958
.36 0.000331423
.4 0.000335333

.44 0.000338226
.48 0.000340426
.52 0.000342138
.56 0.000343496
.6 0.000344592

.64 0.000345489

O O O O OO OO0 O0O0O OO o oo

0

.0000555732
.000111146
.00016672
.000222293

o O O O
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end

End function AnalyticMttBox

Begin Function AnalyticMssBox
type is piecewise linear

.68 0.000346233
.72 0.000346856
.76 0.000347383
.8 0.000347833
.84 0.00034822
.88 0.000348556
.92 0.000348849
.96 0.000349106

0.000349333
values

begin values

0.

end

End function AnalyticMssBox

Begin Function AnalyticMrrNoWarpingBox
type is piecewise linear

0
0
0
0
0
0
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
0
0
1

0
.04 0.0000179734
.08 0.0000359467
.12 0.0000539201
.16 0.0000718934

.2 0.0000898668
.24 0.00010784
.28 0.000125814
.32 0.000143787
.36 0.00016176
.4 0.000179734
.44 0.000193299
.48 0.000199939
52 0.000202138
.56 0.000203497
.6 0.000204593
.64 0.00020549
.68 0.000206233
.72 0.000206856
.76 0.000207383
.8 0.000207833
.84 0.000208221
.88 0.000208557
.92 0.000208849
.96 0.000209107

0.000209333
values

begin values

0.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

.04 0.0000367733
.08 0.0000735467
.12 0.00011032
.16 0.000147093
.2 0.000182209
.24 0.00019754
.28 0.000205895
.32 0.000211478
.36 0.000215247
.4 0.000217644
.44 0.000218744
.48 0.000219046
.52 0.000219063
.56 0.000219063
.6 0.000219063
.64 0.000219063
.68 0.000219063
.72 0.000219063
.76 0.000219063
.8 0.000219063

387



end

End function AnalyticMrrNoWarpingBox

Begin Function AnalyticMrrEngineeringApproxBox
type is piecewise linear

= O O O o

.84
.88
.92
.96
0.

0
0.
0

0.

.000219063
000219063
.000219063
000219063

000219063
values

begin values

0.

H O O OOOOOOOOOOOOOOOOoOOoOoOoOoOoOo

end

End function AnalyticMrrEngineeringApproxBox

Begin Function AnalyticFrrBox
type is piecewise linear

0.
.04
.08
.12
.16

0.0000208864
0.0000417729
0.0000626593
0.0000835457
.2 0.000104432
.24 0.000125319
.28 0.000146205
.32 0.000167091
.36 0.000171

.4 0.000171

.44 0.000171

.48 0.000171

.52 0.000171

.56 0.000171

.6 0.000171

.64 0.000171

.68 0.000171

.72 0.000171

.76 0.000171

.8 0.000171

.84
.88
.92
.96

0
0
0
0

.000171
.000171
.000171
.000171

0.000171
values

begin values

0.
.04
.08
.12
.16
.2 0.0056
.24 0.0056
.28 0.0056
.32 0.0056
.36 0.0056
.4 0.0056
.44 0.0056
.48 0.0056
.52 0.0056
.56 0.0056
.6 0.0056
.64 0.0056
.68 0.0056
.72 0.0056
.76 0.0056
.8 0.0056
.84
.88
.92
.96

O O O O O OO OOOO0OOO0OO0OO0OO0OO0OO0OOOoOOoOOoOo

0

0
0
0
0

0
0
0
0

.00112
.00224
.00336
.00448

.0056
.0056
.0056
.0056
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1.

end

End function AnalyticFrrBox

Begin Function AnalyticMttI
type is piecewise linear

0.0056
values

begin values

0.
0.04 0.0000853635
0.08 0.000170727
0.12 0.00025609

0.16 0.000341454

0.2 0.000426817

0.24 0.000465352
0.28 0.000471493
0.32 0.000475479
0.36 0.000478212
0.4 0.000480167

0.44 0.000481613
0.48 0.000482713
0.
0
0
0
0
0
0
0
0
0
0
0
1

end

End function AnalyticMttI

Begin Function AnalyticMssI
type is piecewise linear

0

52 0.000483569

.56 0.000484248
.6 0.000484796
.64 0.000485245
.68 0.000485617
.72 0.000485928
.76 0.000486192
.8 0.000486417
.84 0.000486611
.88 0.000486778
.92 0.000486925
.96 0.000487053

0.000487167
values

begin values

0.

end

End function AnalyticMssI

0
.04 0.0000169034
.08 0.0000338068
.12 0.0000507102
.16 0.0000676136

0
0
0
0
0.2 0.000084517
0.24 0.00010142
0.28 0.000117927
0.32 0.000129915
0.36 0.00013814
0.4 0.000144034
0.44 0.000148401
0.48 0.000151729
0.
0
0
0
0
0
0
0
0
0
0
0
1

52 0.000154325

.56 0.000156392
.6 0.000158064

.64 0.000159438
.68 0.000160582
.72 0.000161543
.76 0.000162364
.8 0.000163067

.84 0.000163677
.88 0.000164209
.92 0.000164677
.96 0.000165089

0.000165459
values
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Begin Function AnalyticMrrNoWarpingI
type is piecewise linear

begin values

0.
0.04 0.0000511333
0.08 0.000102267
0.12 0.0001534
0.16 0.000204533
0.2 0.000243874
0.24 0.000253751
0.28 0.000256828
0.32 0.000258827
0.36 0.000260198
0.4 0.00026118
0.44 0.000261907
0.48 0.00026246
0.
0
0
0
0
0
0
0
0
0
0
0
1

end

End function AnalyticMrrNoWarpingIl

Begin Function AnalyticMrrEngineeringApproxI
type is piecewise linear

0

52 0.000262892

.56 0.000263234
.6 0.000263511

.64 0.000263738
.68 0.000263927
.72 0.000264085
.76 0.000264219
.8 0.000264333

.84 0.000264432
.88 0.000264518
.92 0.000264593
.96 0.000264659

0.000264717
values

begin values

0.

end

End function AnalyticMrrEngineeringApproxI

Begin Function AnalyticFrrI
type is piecewise linear

0.
.04 3.94167e-7
.08 7.88333e-7
.12 1.1825e-6
.16 1.57667e-6

0
0
0
0
0.2 1.97083e-6
0.24 2.365e-6
0.28 2.75917e-6
0.32 3.15333e-6
0.36 3.5475e-6
0.4 3.94167e-6
0.44 4.33583e-6
0.48 4.73e-6

0.
0
0
0
0
0
0
0
0
0
0
0
1

52 5.12417e-6

.56 5.51833e-6
.6 5.9125e-6

.64 6.30667e-6
.68 6.70083e-6
.72 7.095e-6

.76 7.48917e-6
.8 7.88333e-6
.84 8.2775e-6
.88 8.67167e-6
.92 9.06583e-6
.96 9.46e-6

9.85417e-6
values

begin values
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0.
.04
.08

.00124
.00248
.12 0.00372
.16 0.00496
.2 0.0062
.24 0.0062
.28 0.0062
.32 0.0062
.36 0.0062
.4 0.0062
.44 0.0062
.48 0.0062
.52 0.0062
.56 0.0062
.6 0.0062
.64 0.0062
.68 0.0062
.72 0.0062
.76 0.0062
.8 0.0062
.84 0.0062
.88 0.0062
.92 0.0062
.96 0.0062
0.0062
end values

o O O O

End function AnalyticFrrI

begin finite element model beams
database name = beamPropertyTest.g
database type = exodusII

begin parameters for block block_100
material = matl

model = elastic_plastic
section = hat
end

begin parameters for block block_200
material = matl

model = elastic_plastic
section = bar
end

begin parameters for block block_300
material = matl

model = elastic_plastic
section = box
end

begin parameters for block block_400
material = matl

model = elastic_plastic
section = rod
end

begin parameters for block block_500
material = matl

model = elastic_plastic
section = I
end

end

begin adagio procedure beam_setup_test
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#
# *x% Time step control information
begin time control

begin time stepping block pl
start time = 0.0
begin parameters for adagio regi
number of time steps = 25
end parameters for adagio region
end time stepping block pl
termination time = 1.0
end time control
begin adagio region adagio

use finite element model beams

### output description ###
begin results output results

database name = beamElasticPlast
database type = exodusII
At Time 0.0, Increment = 1.0e-3

nodal variables = displacement
nodal variables = force_internal
nodal variables = moment_interna
element variables
element variables =
end results output results

Axial extension boundary conditions.

Begin fixed displacement

node set = nodeset_111 nodeset_211
component = xXyz

end

Begin fixed rotation
node set = nodeset_111 nodeset_211
component = xXyz

end

Begin fixed displacement

node set = nodeset_112 nodeset_212
component = xy
end

begin prescribed displacement
node set = nodeset_112 nodeset_212

function = ramp
scale factor = 1.0e-5
component = z
end
Begin fixed rotation
node set = nodeset_112 nodeset_212
component = xyz
end

Uniform T bending boundary condition.

Begin fixed displacement

node set = nodeset_121 nodeset_221
component = xyz

end

Begin fixed rotation
node set = nodeset_121 nodeset_221
component = xyz

end

= beam_stress_.
beam_strain_.

on adagio

icVerif.e

1
axial
axial

Hold right

nodeset_311

nodeset_311

nodeset_312

nodeset_312

nodeset_312

Rotate ends of beam in opposite directions by theta

node fixed,

nodeset_411

nodeset_411

nodeset_412

nodeset_412

nodeset_412

pull on left node

nodeset_511

nodeset_511

nodeset_512

nodeset_512

nodeset_512

nodeset_321 nodeset_421 nodeset_521

nodeset_321 nodeset_421 nodeset_521
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#

Begin fixed displacement

node set = nodeset_122 nodeset_222
component = x

end

Begin fixed rotation
node set = nodeset_122 nodeset_222
component = yz

end

begin prescribed rotation

node set = nodeset_122 nodeset_222
function = ramp
scale factor = 1.0e-4
direction = x
end

Uniform S bending boundary condition.

Begin fixed displacement

node set = nodeset_131 nodeset_231
component = xyz

end

Begin fixed rotation
node set = nodeset_131 nodeset_231
component = xyz

end

Begin fixed displacement

node set = nodeset_132 nodeset_232
component =y
end

Begin fixed rotation
node set nodeset_132
component XZ

end

begin prescribed rotation

nodeset_232

node set = nodeset_132 nodeset_232
function = ramp
scale factor = 1.0e-4
direction =y
end

Uniform R torsion boundary condition.

begin fixed displacement

node set = nodeset_141 nodeset_241
component = xyz

end

begin fixed rotation
node set = nodeset_141 nodeset_241
component = xyz

end

begin fixed displacement

node set = nodeset_142 nodeset_242
component = xXyz

end

Begin fixed rotation
node set = nodeset_142 nodeset_242
component = xy

end

begin prescribed rotation
node set = nodeset_142 nodeset_242

function = ramp
scale factor = 1.0e-4
direction = z

end

Extract the react resultants to veri

nodeset_322

nodeset_322

nodeset_322

nodeset_331

nodeset_331

nodeset_332

nodeset_332

nodeset_332

Hold left

nodeset_341

nodeset_341

nodeset_342

nodeset_342

nodeset_342

fy for each
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nodeset_422 nodeset_522

nodeset_422 nodeset_522

nodeset_422 nodeset_522

Rotate ends of beam in opposite directions by theta

nodeset_431 nodeset_531

nodeset_431 nodeset_531

nodeset_432 nodeset_532

nodeset_432 nodeset_532

nodeset_432 nodeset_532

end fixed, rotate right end by theta

nodeset_441 nodeset_541

nodeset_441 nodeset_541
nodeset_442 nodeset_542
nodeset_442

nodeset_542

nodeset_442 nodeset_542

loading condition



HAT
begin user output
node set = nodelist_112
compute global F_hat_axial_c as average of nodal reaction(z)
compute global F_hat_axial_a as function AnalyticFrrHat
compute global hat_axial_err from expression "abs (F_hat_axial_c-F_hat_axial_a)/min(abs (F_hat_axial_a), abs(F
compute at every step
end
begin user output
node set = nodelist_122
compute global M_hat_bend_t_c as average of nodal rotational_reaction (x)
compute global M_hat_bend_t_a as function AnalyticMttHat
compute global hat_mt_err from expression "abs (M_hat_bend_t_c-M_hat_bend_t_a)/min (abs (M_hat_bend_t_a), abs (M
compute at every step
end
begin user output
node set = nodelist_132
compute global M_hat_bend_s_c as average of nodal rotational_reaction (y)
compute global M_hat_bend_s_a as function AnalyticMssHat
compute global hat_ms_err from expression "abs (M_hat_bend_s_c-M_hat_bend_s_a)/min (abs (M_hat_bend_s_a), abs (M
compute at every step
end
begin user output
node set = nodelist_142
compute global M_hat_torsion_r_c as average of nodal rotational_reaction(z)
compute global M_hat_torsion_r_al as function AnalyticMrrNoWarpingHat
compute global M_hat_torsion_r_a2 as function AnalyticMrrEngineeringApproxHat
compute global hat_mr_err from expression "abs (M_hat_torsion_r_c-M_hat_torsion_r_a2)/min (abs (M_hat_torsion_r
compute at every step
end

BAR
begin user output
node set = nodelist_212
compute global F_bar_axial_c as average of nodal reaction (z)
compute global F_bar_axial_a as function AnalyticFrrBar
compute global bar_axial_err from expression "abs (F_bar_axial_ c-F_bar_axial_a)/min (abs(F_bar_axial_a), abs(F
compute at every step
end
begin user output
node set = nodelist_222
compute global M_bar_bend_t_c as average of nodal rotational_reaction (x)
compute global M_bar_bend_t_a as function AnalyticMttBar
compute global bar_mt_err from expression "abs (M_bar_bend_t_c-M _bar_bend_t_a)/min(abs (M_bar_bend_t_a), abs (M
compute at every step
end
begin user output
node set = nodelist_232
compute global M_bar_bend_s_c as average of nodal rotational_reaction (y)
compute global M _bar_bend_s_a as function AnalyticMssBar
compute global bar_ms_err from expression "abs (M_bar_bend_s_c-M _bar_bend_s_a)/min (abs (M_bar_bend_s_a), abs (M
compute at every step
end
begin user output
node set = nodelist_242
compute global M_bar_torsion_r_c as average of nodal rotational_reaction(z)
compute global M _bar_torsion_r_al as function AnalyticMrrNoWarpingBar
compute global M_bar_torsion_r_a2 as function AnalyticMrrEngineeringApproxBar
compute global bar_mr_err from expression "abs (M_bar_torsion_r_c-M_bar_torsion_r_a2)/min (abs (M_bar_torsion_r
compute at every step
end

BOX
begin user output
node set = nodelist_312
compute global F_box_axial_c as average of nodal reaction(z)
compute global F_box_axial_a as function AnalyticFrrBox
compute global box_axial_err from expression "abs (F_box_axial_ c-F_box_axial_a)/min (abs (F_box_axial_a), abs(F
compute at every step
end
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begin user output
node set = nodelist_322
compute global M _box_bend t_c as average of nodal rotational_reaction (x)
compute global M_box_bend_t_a as function AnalyticMttBox
compute global box_mt_err from expression "abs (M_box_bend_t_c-M_box_bend_t_a) /min (abs (M_box_bend_t_a), abs (M
compute at every step
end
begin user output
node set = nodelist_332
compute global M _box_bend_s_c as average of nodal rotational_reaction (y)
compute global M_box_bend_s_a as function AnalyticMssBox
compute global box_ms_err from expression "abs (M_box_bend_s_c-M_box_bend_s_a) /min (abs (M_box_bend_s_a), abs (M
compute at every step
end
begin user output
node set = nodelist_342
compute global M _box_torsion_r_c as average of nodal rotational_reaction(z)
compute global M_box_torsion_r_al as function AnalyticMrrNoWarpingBox
compute global M _box_torsion_r_ a2 as function AnalyticMrrEngineeringApproxBox
compute global box_mr_err from expression "abs (M_box_torsion_r_c-M _box_torsion_r_a2)/min (abs(M_box_torsion_r
compute at every step
end
ROD

begin user output
node set = nodelist_412
compute global F_rod_axial_c as average of nodal reaction(z)
compute global F_rod_axial_a as function AnalyticFrrRod
compute global rod_axial_err from expression "abs (F_rod_axial_c-F_rod_axial_a)/min (abs(F_rod_axial_a), abs(F
compute at every step
end
begin user output
node set = nodelist_422
compute global M_rod_bend_t_c as average of nodal rotational_reaction (x)
compute global M_rod_bend_t_a as function AnalyticMttRod
compute global rod_mt_err from expression "abs (M_rod_bend_t_c-M_rod_bend_t_a) /min (abs (M_rod_bend_t_a), abs (M
compute at every step
end
begin user output
node set = nodelist_432
compute global M_rod_bend_s_c as average of nodal rotational_reaction (y)
compute global M_rod_bend_s_a as function AnalyticMssRod
compute global rod_ms_err from expression "abs (M_rod_bend_s_c-M_rod_bend_s_a) /min (abs (M_rod_bend_s_a), abs (M
compute at every step
end
begin user output
node set = nodelist_442
compute global M_rod_torsion_r_c as average of nodal rotational_reaction(z)
compute global M_rod_torsion_r_al as function AnalyticMrrNoWarpingRod
compute global M_rod_torsion_r_a2 as function AnalyticMrrEngineeringApproxRod
compute global rod_mr_err from expression "abs (M_rod_torsion_r_c-M_rod_torsion_r_a2)/min (abs(M_rod_torsion_r
compute at every step
end

I
begin user output
node set = nodelist_512
compute global F_i_axial_c as average of nodal reaction(z)
compute global F_i_axial_a as function AnalyticFrrI
compute global i_axial_err from expression "abs(F_i_axial_c-F_i_axial_a)/min(abs(F_i_axial_a), abs(F_i_axial
compute at every step
end
begin user output
node set = nodelist_522
compute global M_i_bend t_c as average of nodal rotational_reaction (x)
compute global M_i_bend_t_a as function AnalyticMttI
compute global i_mt_err from expression "abs(M_i_bend_t_c-M_i_bend_t_a)/min(abs(M_i_bend_t_a), abs(M_i_bend_
compute at every step
end
begin user output
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node set = nodelist_532
compute global M_i_bend_s_c as average of nodal rotational_reaction (y)
compute global M_i_bend_s_a as function AnalyticMssI
compute global i_ms_err from expression "abs(M_i_bend_s_c-M_i_bend_s_a)/min(abs(M_i_bend_s_a), abs(M_i_bend_
compute at every step
end
begin user output
node set = nodelist_542
compute global M_i_torsion_r_c as average of nodal rotational_reaction(z)
compute global M_i_torsion_r_al as function AnalyticMrrNoWarpingI
compute global M_i_torsion_r_a2 as function AnalyticMrrEngineeringApproxI
compute global i_mr_err from expression "abs(M_i_torsion_r_c-M_i_torsion_r_a?2)/min(abs(M_i_torsion_r_c), abs
compute at every step
end

begin history output
database name = beamElasticPlasticVerif.h
database type = exodusII
At Time 0.0, Increment = 1.0e-4
variable = global F_hat_axial_a
variable = global M_hat_bend_t_a
variable = global M_hat_bend_s_a

variable = global M_hat_torsion_r_al
variable = global M_hat_torsion_r_a2
variable = global F_bar_axial_a

variable = global M_bar_bend_t_a
variable = global M _bar_bend_s_a

variable = global M_bar_torsion_r_al
variable = global M_bar_torsion_r_a2
variable = global F_box_axial_a

variable = global M_box_bend_t_a
variable = global M_box_bend_s_a

variable = global M_box_torsion_r_al
variable = global M_box_torsion_r_a2
variable = global F_rod_axial_a

variable = global M_rod_bend_t_a
variable = global M_rod_bend_s_a

variable = global M_rod_torsion_r_al
variable = global M_rod_torsion_r_a2
variable = global F_i_axial_a

variable = global M_i_bend_t_a
variable = global M_i_bend_s_a
variable = global M_i_torsion_r_al
variable = global M_i_torsion_r_a2

variable = global F_hat_axial_c
variable = global M_hat_bend_t_c
variable = global M_hat_bend_s_c
variable = global M_hat_torsion_r_c

variable = global F_bar_axial_c
variable = global M_bar_bend_t_c
variable = global M _bar_bend_s_c
variable = global M_bar_torsion_r_c

variable = global F_box_axial_c
variable = global M_box_bend_t_c
variable = global M_box_bend_s_c
variable = global M_box_torsion_r_c

variable = global F_rod_axial_c
variable = global M_rod_bend_t_c
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variable = g

variable = g
variable = g
variable = g
variable = g
variable = g

variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g
variable = g

end

#

# elastic response solution verification,

#

lobal M_rod_bend_s_c
lobal M_rod_torsion_r_c

lobal F_i_axial_c
lobal M_i_bend_t_c
lobal M_i_bend_s_c
lobal M_i_torsion_r_c

lobal hat_axial_err
lobal hat_mt_err
lobal hat_ms_err
lobal hat_mr_err

lobal bar_axial_err
lobal bar_mt_err
lobal bar_ms_err
lobal bar_mr_err

lobal box_axial_err
lobal box_mt_err
lobal box_ms_err
lobal box_mr_err

lobal rod_axial_err
lobal rod_mt_err
lobal rod_ms_err
lobal rod_mr_err

lobal i_axial_err
lobal i_mt_err
lobal i_ms_err
lobal i_mr_err

begin solution verification
skip times = 0.0 to 0.0399
skip times =

verify
verify
verify
verify

verify
verify
verify
verify

verify
verify
verify
verify

verify
verify
verify
verify

verify
verify
verify
verify

global
global
global
global

global
global
global
global

global
global
global
global

global
global
global
global

global
global
global
global

0.0401 to 2.0

hat_axial_err = 0.00 plus or minus 0.001
hat_mt_err = 1.5 plus or minus 0.2
hat_ms_err = 1.00 plus or minus 0.1
hat_mr_err = 2500 plus or minus 100
bar_axial_err = 0.00 plus or minus 0.001
bar_mt_err = 0.005 plus or minus 0.005
bar_ms_err = 0.02 plus or minus 0.02
bar_mr_err = 25 plus or minus 5.0
box_axial_err = 0.00 plus or minus 0.001
box_mt_err = 24 plus or minus 5
box_ms_err = 5 plus or minus 5
box_mr_err = 91 plus or minus 10
rod_axial_err = 0.00 plus or minus 0.001
rod_mt_err = 0.004 plus or minus 0.004
rod_ms_err = 0.004 plus or minus 0.004
rod_mr_err = 0.0 plus or minus 0.001
i_axial_err = 0.00 plus or minus 0.001
imt_err = 0.2 plus or minus 0.2
i_ms_err = 0.2 plus or minus 0.2
i_mr_err = 9668 plus or minus 500
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completion file = elastic_verif
end

#
# plastic response solution verification, verify known error bounds are reproduced. Verify one time in the late
#
begin solution verification
skip times = 0.0 to 0.99

verify global hat_axial_err = 0.0005 plus or minus 0.001
verify global hat_mt_err = 0.36 plus or minus 0.1
verify global hat_ms_err = 0.1 plus or minus 0.1
verify global hat_mr_err = 1028 plus or minus 100

verify global bar_axial_err = 0.000 plus or minus 0.001
verify global bar mt_err = 9 plus or minus 1

verify global bar_ms_err = 14 plus or minus 1

verify global bar_mr_err = 34 plus or minus 5.0

verify global box_axial err = 0.000 plus or minus 0.001
verify global box_mt_err = 9 plus or minus 5

verify global box ms_err = 16 plus or minus 5

verify global box_mr_err = 50 plus or minus 10

verify global rod_axial_err = 0.000 plus or minus 0.001
verify global rod_mt_err = 0.16 plus or minus 0.05
verify global rod_ms_err = 0.16 plus or minus 0.05
verify global rod_mr_err = 10 plus or minus 01

verify global i_axial_err = 0.000 plus or minus 0.001
verify global i_mt_err = 1.0 plus or minus 0.5

verify global i_ms_err = 7.5 plus or minus 2.0

verify global i_mr_err = 2400 plus or minus 500

completion file = plastic_verif
end

begin solver

begin cg
maximum iterations = 5000
target relative residual 1.0e-5
end
end

end adagio region adagio
end

end

B.26 Pressure Loaded Layered Cantilever 3.13

B.26.1 Input File - Multiple Lofted Shells Implicit Dynamics

# This is the input file for the multiple lofted shells,
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# implicit dynamics version of this test.
begin sierra vp20

{include ("ClosedFormSolution.inp") }
{include ("MaterialsAndFunctions.inp") }
{include ("ShellSectionsBTShell.inp") }
{include ("MultiBlockModel.inp") }

(

{include ("AdagioProcedure.inp") }

end sierra vp20

B.26.2 Input File - Multiple Lofted Shells Explicit Dynamics

# This is the input file for the multiple lofted shells,
# explicit dynamics version of this test.

begin sierra vp20
{include ("ClosedFormSolution.inp") }
{include ("MaterialsAndFunctions.inp") }
{include ("ShellSectionsBTShell.inp") }
{include ("MultiBlockModel.inp") }
(

{include ("PrestoProcedure.inp") }

end sierra vp20

B.26.3 Input File - Single Layered Shell Implicit Dynamics

# This is the input file for the single layered shell,
# implicit dynamics version of this test.

begin sierra vp20
{include ("ClosedFormSolution.inp") }
{include ("MaterialsAndFunctions.inp")}
{include ("ShellSectionsBTShell.inp") }
{include ("LayeredModel.inp") }
(

{include ("AdagioProcedure.inp") }

end sierra vp20

B.26.4 Input File - Single Layered Shell Explicit Dynamics

# This is the input file for the single layered shell,
# explicit dynamics version of this test.

begin sierra vp20
{include ("ClosedFormSolution.inp") }
{include ("MaterialsAndFunctions.inp") }
{include ("ShellSectionsBTShell.inp") }
{include ("LayeredModel.inp") }
(

{include ("PrestoProcedure.inp") }

end sierra vp20
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B.27 Contact Frictional Energy 4.1

FH4E4E S #H444S contact_energy_friction.explicit.i #####444###H#444#H
begin sierra contact_energy_friction_explicit

begin function pressure
type is piecewise linear
begin values
0.0
0.005
1.0e6
end values
end function pressure

= e o

.0
.0
.0

begin function slide
type is piecewise linear
begin values

0.0 0.0
0.005 0.0
0.025 0.2

end values
end function slide

begin function analyticContactEnergy
type is piecewise analytic
begin expressions

0.0 "o.o"
0.005 "- (120.0 » 0.1 )*x( x - 0.005 )=x( 10.0 ) "
end

end

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O

begin material linear_elastic

density = T7.4e-4

begin parameters for model elastic
youngs modulus = 30e6
poissons ratio = 0.0

end parameters for model elastic
end material linear_elastic

begin finite element model meshl
Database Name = contact_energy_friction.g
Database Type = exodusII

begin parameters for block block_1
material = linear_elastic
model = elastic

end parameters for block block_1

begin parameters for block block_2
material = linear_elastic
model = elastic

end parameters for block block_2

end finite element model meshl

begin presto procedure Presto_Procedure

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for presto region presto_region
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time step scale factor = 1.0
time step increase factor = 2.0
step interval = 1000
end parameters for presto region presto_region
end time stepping block pl
termination time = 0.015
end time control

begin presto region presto_region
use finite element model meshl

### output description ###

begin Results Output output_presto
Database Name = contact_energy_friction.explicit.e
Database Type = exodusII
At Time 0.0, Increment = 0.0015

nodal Variables = displacement as displ

nodal Variables = velocity as vel

nodal variables = force_contact as fcon

element variables = stress as stress

global Variables = timestep as timestep

global Variables = contact_energy

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy

global variables = momentum as Momentum
global variables = analyticCE
end

begin history output hist
Database Name = contact_energy_friction.explicit.h
Database Type = exodusII
At Step 0, interval = 50
variable = nodal displacement at node 4 as displacement

variable = global contact_energy
variable = global fsuml
variable = global fsum2

variable = global analyticCE
end history output hist

begin user output
compute global analyticCE as function analyticContactEnergy
end

### definition of BCs ###

begin prescribed displacement
block = block_1
component = x
function = slide

end prescribed displacement

begin fixed displacement
block = block_1
components =y z

end

begin fixed displacement

surface = surface_20
component = x
end

begin user output

block = block_1

compute global fsuml as sum of nodal force_contact
end
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begin user output

block = block_2

compute global fsum2 as sum of nodal force_contact
end

begin prescribed displacement
surface = surface_20
component =y
function = pressure
scale factor = -4.0e-6

end prescribed displacement

begin contact definition
search = dash
contact surface surf_10 contains surface_10
contact surface surf_2 contains surface_2

begin constant friction model cFric
friction coefficient = 0.1

end constant friction model cFric

begin interaction

master = surf_2
slave = surf_10
normal tolerance = 0.01
friction model = cFric

end interaction
begin enforcement options

momentum balance iterations = 100
end

end contact definition

begin solution verification

verify global contact_energy = function analyticContactEnergy
relative tolerance = 0.03
skip times = 0.0 to 0.006
completion file = contact_energy_friction.explicit.verif
end

end presto region presto_region
end presto procedure Presto_Procedure

end sierra contact_energy_friction_explicit
FHHEFFHFHHHHFHFS contact_energy_friction.impd.i #####FHFHFRFRFHSHS

begin sierra contact_energy_friction_impd

begin function pressure
type is piecewise linear
begin values
0.0
0.005
1.0e6
end values
end function pressure

e o

.0
.0
.0

begin function slide
type is piecewise linear
begin values

0.0 0.0
0.005 0.0
0.025 0.2

end values
end function slide

begin function analyticContactEnergy
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type is piecewise analytic
begin expressions

0.0 "o.o"
0.005 "- (120.0 » 0.1 )*x( x - 0.005 )x( 10.0 ) "
end
end

define direction x with vector
define direction y with vector
define direction z with vector

o O
o O O
o = O
coo
= O O
o O O

begin material linear_elastic

density = T7.4e-4

begin parameters for model elastic
youngs modulus = 30e6
poissons ratio = 0.0

end parameters for model elastic
end material linear_elastic

begin finite element model meshl
Database Name = contact_energy_friction.g
Database Type = exodusII

begin parameters for block block_1
material = linear_elastic
model = elastic

end parameters for block block_1

begin parameters for block block_2
material = linear_elastic
model = elastic

end parameters for block block_2

end finite element model meshl

begin adagio procedure Adagio_Procedure

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for adagio region adagio_region
number of time steps = 2000
end parameters for adagio region adagio_region
end time stepping block pl
termination time = 0.015
end time control

begin adagio region adagio_region
use finite element model meshl

### output description ###

begin Results Output output_adagio
Database Name = contact_energy_friction.impd.e
Database Type = exodusII
At Time 0.0, Increment = 0.0015

nodal Variables = displacement as displ

nodal Variables = velocity as vel

nodal variables = force_contact as fcon

element variables = stress as stress

global Variables = timestep as timestep

global Variables = contact_energy

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy

global variables = momentum as Momentum
global variables = analyticCE
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end

begin history output hist
Database Name = contact_energy_friction.impd.h
Database Type = exodusII
At Step 0, interval = 50
variable = nodal displacement at node 4 as displacement

variable = global contact_energy
variable = global fsuml
variable = global fsum2

variable = global analyticCE
end history output hist

begin user output
compute global analyticCE as function analyticContactEnergy
end

### definition of BCs ###

begin prescribed displacement
block = block_1
component = x
function = slide

end prescribed displacement

begin fixed displacement
block = block_1
components =y z

end

begin fixed displacement

surface = surface_20
component = x
end

begin user output

block = block_1

compute global fsuml as sum of nodal force_contact
end

begin user output

block = block_2

compute global fsum2 as sum of nodal force_contact
end

begin prescribed displacement
surface = surface_20
component =y
function = pressure
scale factor = -4.0e-6

end prescribed displacement

begin contact definition
search = dash
contact surface surf_10 contains surface_10
contact surface surf_2 contains surface_2

begin constant friction model cFric
friction coefficient = 0.1

end constant friction model cFric

begin interaction

master = surf_2
slave = surf_10
normal tolerance = 0.01
friction model = cFric
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end interaction

end contact definition

begin solution verification

verify global contact_energy = function analyticContactEnergy
relative tolerance = 0.125
skip times = 0.0 to 0.006
completion file = contact_energy_friction.impd.verif
end

begin implicit dynamics
end

begin solver
begin control contact
target residual = 1.0e-6
end
begin cg
target residual = 1.0e-8
end
end

end adagio region adagio_region
end adagio procedure Adagio_Procedure

end sierra contact_energy_friction_impd
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B.28 Contact Energy without Friction 4.2

FH4EH S H#H444S contact_energy_frictionless.explicit.i #########444####44
begin sierra contact_energy_frictionless_explicit

begin function pressure
type is piecewise linear
begin values
0.0
0.005
1.0e6
end values
end function pressure

= e o

.0
.0
.0

begin function slide
type is piecewise linear
begin values

0.0 0.0
0.005 0.0
0.025 0.2

end values
end function slide

begin function analyticContactEnergy
type is piecewise analytic
begin expressions

0.0 "o.o"
0.005 "o0.0"
end
end

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O

begin material linear_elastic

density = T7.4e-4

begin parameters for model elastic
youngs modulus = 30e6
poissons ratio = 0.0

end parameters for model elastic
end material linear_elastic

begin finite element model meshl
Database Name = contact_energy_frictionless.g
Database Type = exodusII

begin parameters for block block_1
material = linear_elastic
model = elastic

end parameters for block block_1

begin parameters for block block_2
material = linear_elastic
model = elastic

end parameters for block block_2

end finite element model meshl

begin presto procedure Presto_Procedure

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for presto region presto_region
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time step scale factor = 1.0
time step increase factor = 2.0
step interval = 1000
end parameters for presto region presto_region
end time stepping block pl
termination time = 0.015
end time control

begin presto region presto_region
use finite element model meshl

### output description ###

begin Results Output output_presto
Database Name = contact_energy_frictionless.explicit.e
Database Type = exodusII
At Time 0.0, Increment = 0.0015

nodal Variables = displacement as displ

nodal Variables = velocity as vel

nodal variables = force_contact as fcon

element variables = stress as stress

global Variables = timestep as timestep

global Variables = contact_energy

global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy

global variables = momentum as Momentum
global variables = analyticCE
end

begin history output hist
Database Name = contact_energy_frictionless.explicit.h
Database Type = exodusII
At Step 0, interval = 50
variable = nodal displacement at node 4 as displacement

variable = global contact_energy
variable = global fsuml
variable = global fsum2

variable = global analyticCE
end history output hist

begin user output
compute global analyticCE as function analyticContactEnergy
end

### definition of BCs ###

begin prescribed displacement
block = block_1
component = x
function = slide

end prescribed displacement

begin fixed displacement
block = block_1
components =y z

end

begin fixed displacement
block = block_2
component = x

end

begin user output

block = block_1

compute global fsuml as sum of nodal force_contact
end
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begin user output

block = block_2

compute global fsum2 as sum of nodal force_contact
end

begin prescribed displacement
surface = surface_20
component =y
function = pressure
scale factor = -4.0e-6

end prescribed displacement

begin contact definition
search = dash
contact surface surf_10 contains surface_10
contact surface surf_2 contains surface_2

begin interaction

master = surf_2

slave = surf_10

normal tolerance = 0.01
friction model = frictionless

end interaction
begin enforcement options

momentum balance iterations = 100
end

end contact definition

begin solution verification

verify global contact_energy = function analyticContactEnergy

tolerance = 1.0e-2

completion file = contact_energy_frictionless.explicit.verif
end

end presto region presto_region
end presto procedure Presto_Procedure

end sierra contact_energy_frictionless_explicit
#HEFHEFHEHFHEHESF contact_energy_frictionless.impd.i ######FHFFHFHEFHHEH
begin sierra contact_energy_frictionless_impd

begin function pressure
type is piecewise linear
begin values
0.0
0.005
1.0e6
end values
end function pressure

=R o

.0
.0
.0

begin function slide
type is piecewise linear
begin values

0.0 0.0
0.005 0.0
0.025 0.2

end values
end function slide

begin function analyticContactEnergy
type is piecewise analytic
begin expressions

0.0 "o.o"
0.005 "o.0"
end
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end

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material linear_elastic
= 7.4e-4
begin parameters for model elastic

density

youngs modulus

poissons

ratio =

0

= 30e6
.0

end parameters for model elastic
end material linear_elastic

begin finite element model meshl
ame = contact_energy_frictionless.g
ype = exodusII

Database N
Database T

begin parameters for block block_1

material
model =

elastic

= linear_elastic

end parameters for block block_1

begin parameters for block block_2
= linear_elastic

material
model =

elastic

end parameters for block block_2

end finite element model meshl

begin adagio procedure Adagio_Procedure

begin time

control

begin time stepping block pl

start

time = 0.0

begin parameters for adagio region adagio_region
number of time steps = 2000
end parameters for adagio region adagio_region
end time stepping block pl

terminat
end time c

ion time =

ontrol

0.015

begin adagio region adagio_region
use finite element model meshl

### output description ###
begin Results Output output_adagio

Database Name = contact_energy_frictionless.impd.e
Database Type = exodusII
At Time 0.0, Increment = 0.0015

nodal Variables
nodal Variables
nodal variables
element variables

global
global
global
global
global
global
global
end

Variables
Variables
variables
variables
variables
variables
variables

displacement as displ
velocity as vel
force_contact as fcon
= stress as stress

= timestep as timestep

contact_energy

external_energy as ExternalEnergy
internal_energy as InternalEnergy
kinetic_energy as KineticEnergy
momentum as Momentum

analyticCE

begin history output hist
contact_energy_frictionless.impd.h

Databa

se Name =
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Database Type = exodusII
At Step 0, interval = 50
variable = nodal displacement at node 4 as displacement

variable = global contact_energy
variable = global fsuml
variable = global fsum2

variable = global analyticCE
end history output hist

begin user output
compute global analyticCE as function analyticContactEnergy
end

### definition of BCs ###

begin prescribed displacement
block = block_1
component = x
function = slide

end prescribed displacement

begin fixed displacement
block = block_1
components =y z

end

begin fixed displacement
block = block_2
component = x

end

begin user output

block = block_1

compute global fsuml as sum of nodal force_contact
end

begin user output

block = block_2

compute global fsum2 as sum of nodal force_contact
end

begin prescribed displacement
surface = surface_20
component =y
function = pressure
scale factor = -4.0e-6

end prescribed displacement

begin contact definition
search = dash
contact surface surf_10 contains surface_10
contact surface surf_2 contains surface_2

begin interaction

master = surf_2

slave = surf_10

normal tolerance = 0.01
friction model = frictionless

end interaction

end contact definition

begin solution verification

verify global contact_energy = function analyticContactEnergy
tolerance = 1.5e-2
completion file = contact_energy_frictionless.impd.verif

410



end

begin implicit dynamics
end

begin solver
begin control contact
target residual = 1.0e-6
end
begin cg
target residual = 1.0e-8
end
end

end adagio region adagio_region
end adagio procedure Adagio_Procedure

end sierra contact_energy_frictionless_impd
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B.29 External Energy due to Applied Force 4.3

FHEHHE #4444 S external_energy_nograv.explicit.i ######44H##HEHESES

begin sierra external_ energy_nograv

title external energy test

define direction x with vector
define direction y with vector
define direction z with vector

begin function CONSTANT
type is piecewise linear
ordinate is temperature
abscissa is time
begin values
-500.00 1.0
0.00 1.
500.00
end values
end function CONSTANT

= o

## a = 9.81 (acceleration)

## mass = volume * density

## mass = 1.0 » 1000.0

## distance = 0.5 » 1 * t"2
## force = mass * a

1.0 0.
0.0 1.
0.0 0.

o O O
= O O
o O O

begin function analyticExternalEnergy

type is analytic

evaluate expression = "0.5 % 1000.0 » 1.0 = 9.81 % 9.81 % x * x"

end

begin function FORCE
type is piecewise linear
ordinate is force
abscissa is time
begin values

0.0 2452.5 ## force is 9810 N divided over 4 nodes

500.00 2452.5
end values
end function FORCE

begin material steel

density = 1000 # actually,

###444## Material Definition #######4#4#

7900.0 kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e+9 # GPa

poissons ratio = 0.3

end parameters for model elastic

end material steel

begin solid section solid_1

#44444# BV Problem Definition #########

strain incrementation = strongly_objective

end solid section solid_1

begin finite element model model_1
database name = external_energy_nograv.g

begin parameters for block block_1

material = steel
model = elastic
section = solid_1

end parameters for block block_1
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end finite element model model_1
begin presto procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for presto region region_1
time step scale factor = 1.0

step interval = 1000
end parameters for presto region region_1
end time stepping block time_control_1
termination time = 0.1
end time control

begin presto region region_1
use finite element model model_1

#H###### definition of BCs ###########

begin prescribed force

node set = nodelist_1

direction =y

function = FORCE

scale factor = 1.0

active periods = time_control_1
end prescribed force

######### output description ###F#HFHFFHFFHH
begin results output output_1

database name = external_energy_nograv.explicit.e
at step 0 increment = 1000

nodal variables = displacement

nodal variables = acceleration

nodal variables = force_external
nodal variables = force_internal
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = external_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

global variables = analyticEE
end results output output_1

begin history output history_1
database name = external_energy_nograv.explicit.h

at step 1 increment = 1

#H#H variable = nodal acceleration
variable = global artificial_energy
variable = global external_energy
variable = global internal_energy
variable = global kinetic_energy
variable = global strain_energy

variable = global analyticEE
end history output history_1

begin user output
compute global analyticEE as function analyticExternalEnergy
end

begin solution verification
verify global external_energy = function analyticExternalEnergy
relative tolerance = 0.005
skip times = 0.0 to 0.01
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completion file = external_energy_nograve.explicit.verif
end

end presto region region_1
end presto procedure procedure_1

end sierra external_energy_nograv
FHEHEAHH A HESE external_energy_nograv.impd.i ###ESFEEEEESEEESEES
begin sierra external_energy_nograv

title external energy test

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= o O
o O O

begin function CONSTANT
type is piecewise linear
ordinate is temperature
abscissa is time
begin values
-500.00 1.0
0.00 1.
500.00
end values
end function CONSTANT

= o

## a = 9.81 (acceleration)
## mass = volume * density
## mass = 1.0 » 1000.0
## distance = 0.5 %= 1 * t"2
## force = mass * a
begin function analyticExternalEnergy
type is analytic
evaluate expression = "0.5 % 1000.0 = 1.0 » 9.81 % 9.81 % x * x"
end

begin function FORCE
type is piecewise linear
ordinate is force
abscissa is time
begin values
0.0 2452.5 ## force is 9810 N divided over 4 nodes
500.00 2452.5
end values
end function FORCE

####### Material Definition ########4#

begin material steel
density = 1000 # actually, 7900.0 kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e+9 # GPa
poissons ratio = 0.3
end parameters for model elastic
end material steel
####### BV Problem Definition ########4#
begin solid section solid_1
strain incrementation = strongly_objective

end solid section solid_1

begin finite element model model_1
database name = external_energy_nograv.g
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begin parameters for block block_1

material = steel
model = elastic
section = solid_1

end parameters for block block_1
end finite element model model_ 1
begin adagio procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for adagio region region_1
time increment = 0.001

end parameters for adagio region region_1
end time stepping block time_control_1
termination time = 0.1
end time control

begin adagio region region_1
use finite element model model_1

#######4# definition of BCs ##########4#

begin prescribed force

node set = nodelist_1

direction =y

function = FORCE

scale factor = 1.0

active periods = time_control_1
end prescribed force

#H####### output description ###HFHFHFFFFFFFH

begin results output output_1
database name = external_energy_nograv.impd.e

at step 0 increment =1

nodal variables = displacement

nodal variables = acceleration

nodal variables = force_external
nodal variables = force_internal
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = external_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

global variables = analyticEE
end results output output_1

begin history output history_1
database name = external_energy_nograv.impd.h

at step 1 increment = 1

#H## variable = nodal acceleration
variable = global artificial_energy
variable = global external_energy
variable = global internal_energy
variable = global kinetic_energy
variable = global strain_energy

variable = global analyticEE
end history output history_1

begin user output

compute global analyticEE as function analyticExternalEnergy
end
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begin solution verification
verify global external_energy = function analyticExternalEnergy
relative tolerance = 0.005
skip times = 0.0 to 0.01
completion file = external_energy_nograve.explicit.verif
end

begin implicit dynamics
alpha = 0.0
beta = 0.25
gamma = 0.5

end

begin solver
end

end adagio region region_1
end adagio procedure procedure_1

end sierra external_energy_nograv
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B.30 External Energy due to Gravity 4.4

$H4HH SR HH4EES external_energy_wgrav.explicit.i #######EEEEHEFEEES
begin sierra external energy_wgrav
title external energy test

define direction x with vector
define direction y with vector
define direction z with vector

o O
o O O
o = O
coo
= O O
o O O

begin function CONSTANT
type is piecewise linear
ordinate is temperature
abscissa is time
begin values
-500.00 1.0
0.00 1.0
500.00 1.0
end values
end function CONSTANT

## a = 9.81 (acceleration)
## mass = volume * density
## mass = 1.0 » 1000.0
## distance = 0.5 » a * t"2
## force = mass * a
## external energy = force x distance
begin function analyticExternalEnergy
type is analytic
evaluate expression = "0.5 % 1000.0 = 1.0 = 9.81 % 9.81 % x * x"
end

#####4# Material Definition ########4#

begin material steel
density = 1000 # actually, 7900.0 kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e+9 # GPa
poissons ratio = 0.3
end parameters for model elastic
end material steel
###44#4# BV Problem Definition ########4#
begin solid section solid_1
strain incrementation = strongly_objective

end solid section solid_1

begin finite element model model_1
database name = external_energy_wgrav.g

begin parameters for block block_1

material = steel
model = elastic
section = solid_1

end parameters for block block_1
end finite element model model_ 1
begin presto procedure procedure_1
begin time control

begin time stepping block time_control_1
start time = 0.0
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begin parameters for presto region region_1

time step scale factor = 1.0
step interval = 1
user time step = 0.1

end parameters for presto region region_1
end time stepping block time_control_1
termination time = 0.1
end time control

begin presto region region_1
use finite element model model_1

#H###### definition of BCs ###########

begin gravity
include all blocks
direction =y
function = CONSTANT

gravitational constant = 9.81
scale factor = 1.0
active periods = time_control_1

end gravity
#H#4#4### output description ###########H#H

begin results output output_1
database name = external_energy_wgrav.explicit.e

at step 0 increment = 1

nodal variables = displacement

nodal variables = acceleration
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = external_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

global variables = analyticEE
end results output output_1

begin history output history_1
database name = external_energy_wgrav.explicit.h

at step 1 increment =1

#HE# variable = nodal acceleration
variable = global artificial_energy
variable = global external_ energy
variable = global internal_energy
variable = global kinetic_energy
variable = global strain_energy

variable = global analyticEE
end history output history_1

begin user output
compute global analyticEE as function analyticExternalEnergy
end

begin solution verification
verify global external_energy = function analyticExternalEnergy
relative tolerance = 0.005
skip times = 0.0 to 0.01
completion file = external_energy_wgrav.explicit.verif
end
end presto region region_1

end presto procedure procedure_1

end sierra external_energy_wgrav
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FHERFHFHHHHFHFE external_energy_wgrav.impd.i #####FFEFRFEFREES
begin sierra external_energy_wgrav
title external energy test

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O

begin function CONSTANT
type is piecewise linear
ordinate is temperature
abscissa is time
begin values
-500.00 1.0
0.00 1.0
500.00 1.0
end values
end function CONSTANT

## a = 9.81 (acceleration)
## mass = volume * density
## mass = 1.0 * 1000.0
## distance = 0.5 » a * t"2
## force = mass * a
## external energy = force x distance
begin function analyticExternalEnergy
type is analytic
evaluate expression = "0.5 % 1000.0 » 1.0 = 9.81 % 9.81 % x * x"
end

$44444# Material Definition ########4

begin material steel
density = 1000 # actually, 7900.0 kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e+9 # GPa
poissons ratio = 0.3
end parameters for model elastic
end material steel
####### BV Problem Definition ########+#
begin solid section solid_1
strain incrementation = strongly_objective

end solid section solid_1

begin finite element model model_1
database name = external_energy_wgrav.g

begin parameters for block block_1

material = steel
model = elastic
section = solid_1

end parameters for block block_1
end finite element model model_1
begin adagio procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for adagio region region_1
time increment = 0.001

end parameters for adagio region region_1
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end time stepping block time_control_1
termination time = 0.1
end time control

begin adagio region region_1
use finite element model model_1

#H#####HE definition of BCs #########H##

begin gravity
include all blocks
direction =y
function = CONSTANT

gravitational constant = 9.81
scale factor = 1.0
active periods = time_control_1

end gravity
#H##HFHHHF#HE output description ####H#HFFFF#FHFAF

begin results output output_1
database name = external_energy_wgrav.impd.e

at step 0 increment = 1

nodal variables = displacement

nodal variables = acceleration
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = external_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

global variables = analyticEE
end results output output_1

begin history output history_1
database name = external_energy_wgrav.impd.h

at step 1 increment =1

#HEH variable = nodal acceleration
variable = global artificial_energy
variable = global external_energy
variable = global internal_energy
variable = global kinetic_energy
variable = global strain_energy

variable = global analyticEE
end history output history_1

begin user output
compute global analyticEE as function analyticExternalEnergy
end

begin solution verification
verify global external_energy = function analyticExternalEnergy
relative tolerance = 0.005
skip times = 0.0 to 0.01
completion file = external_energy_wgrav.impd.verif
end

begin implicit dynamics
alpha = 0.0
beta = 0.25
gamma = 0.5

end

begin solver
end

end adagio region region_1
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end adagio procedure procedure_1

end sierra external_energy_wgrav
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B.31 Hourglass Energy for Uniform Gradient Hex Element with Midpoint
Increment Formulation 4.5

begin sierra hourglass_ughex_mi_stiff_lelem
title hourglass energy test

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 O.

o O O
= O O
o O O

begin function expectedHourglassEnergy

type is analytic

evaluate expression = "4.61546e8+xxx*x{reductionFactor}"
end

begin function upperHourglassEnergy

type is analytic

evaluate expression = "4.61546e8+x*xxx{upperFactor}"
end

begin function lowerHourglassEnergy

type is analytic

evaluate expression = "4.61546e8+x*xxx{lowerFactor}"
end

begin function disp
type is piecewise linear
begin values
0.0 0.0
1.0 0.01
end values
end function disp

##4444# Material Definition #######44#

begin material steel
density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e+9 # GPa
poissons ratio = 0.3
end parameters for model elastic
end material steel
###4444# BV Problem Definition ########4#
begin solid section solid_1
strain incrementation = midpoint_increment

end solid section solid_1

begin finite element model model_1
database name = hourglass_ughex_mi_stiff.{meshSize}lelem.qg

begin parameters for block block_1

material = steel

model = elastic

section = solid_1
hourglass stiffness = 0.05
hourglass viscosity = 0.0

end parameters for block block_1
end finite element model model_ 1

begin presto procedure procedure_1
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begin time control
begin time stepping block time_control_1

start time = 0.0

begin parameters for presto region region_1
user time step = 2.0e-5
time step scale factor = 1.0
time step increase factor = 1.0

step interval = 1000
end parameters for presto region region_1
end time stepping block time_control_ 1
termination time = 0.25
end time control

begin presto region region_1
use finite element model model_1

#######4# definition of BCs ##########4#

begin prescribed displacement
node set = nodelist_1
node set subroutine = hourglass_sideset
scale factor = 0.2

end prescribed displacement

begin prescribed displacement
node set = nodelist_2
node set subroutine = hourglass_sideset
scale factor = -0.2

end prescribed displacement

$HE#44#HE output description #####H#FESFEESSE

begin results output output_1
database name = hourglass_ughex_mi_stiff.explicit.{meshSize}elem.e

at step 0 increment = 1

nodal variables = displacement
element variables = stress

nodal variables = hourglass_energy
global variables = artificial_energy
global variables = contact_energy
global variables = external_energy
global variables = hourglass_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

global variables = expectedHGE
end results output output_1

begin history output history_1
database name = hourglass_ughex_mi_stiff.explicit.{meshSize}elem.h

at step 1 increment = 1

variable = global artificial_energy
variable = global contact_energy
variable = global external_energy
variable = global hourglass_energy
variable = global internal_energy
variable = global kinetic_energy
variable = global strain_energy

variable = global expectedHGE

variable = global upperHGE

variable = global lowerHGE
end history output history_1

begin user output
compute global expectedHGE as function expectedHourglassEnergy
compute global upperHGE as function upperHourglassEnergy
compute global lowerHGE as function lowerHourglassEnergy

end
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begin solution verification
verify global hourglass_energy <= function upperHourglassEnergy
verify global hourglass_energy >= function lowerHourglassEnergy
skip times = 0.0 to 1.0e-3
completion file = hourglass_ughex_mi_stiff.{meshSize}elem.verif
end

end presto region region_1
end presto procedure procedure_l

end sierra hourglass_ughex_mi_stiff_ lelem
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B.32 Hourglass Energy for Uniform Gradient Hex Element with Strongly
Objective Formulation 4.6

begin sierra hourglass_ughex_so_stiff_lelem
title hourglass energy test

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 O.

o O O
= O O
o O O

begin function disp
type is piecewise linear
begin values
0.0 0.0
1.0 0.01
end values
end function disp

#####4# Material Definition ########4#

begin material steel
density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e+9 # GPa
poissons ratio = 0.3
end parameters for model elastic
end material steel
####### BV Problem Definition ########4#
begin solid section solid_1
strain incrementation = strongly_objective

end solid section solid_1

begin finite element model model_1
database name = hourglass_ughex_so_stiff_ lelem.g

begin parameters for block block_ 1

material = steel

model = elastic

section = solid_1
hourglass stiffness = 0.05
hourglass viscosity = 0.0

end parameters for block block_1
end finite element model model_1
begin presto procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for presto region region_1
time step scale factor = 1.0

step interval = 1000
end parameters for presto region region_1
end time stepping block time_control_1
termination time = 0.25
end time control

begin presto region region_1
use finite element model model_1

######## definition of BCs ###########
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begin prescribed displacement
node set = nodelist_1
node set subroutine = hourglass_sideset
scale factor = 0.2

end prescribed displacement

begin prescribed displacement
node set = nodelist_2
node set subroutine = hourglass_sideset
scale factor = -0.2

end prescribed displacement

######HF## output description ###F#H#FHFFFFFHF

begin results output output_1
database name = hourglass_ughex_so_stiff_lelem.e

at step 0 increment = 1

nodal variables = displacement
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = contact_energy
global variables = external_energy
global variables = hourglass_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

end results output output_1

begin history output history_1

database name = hourglass_ughex_so_stiff_lelem.h
at step 1 increment =1

variable = global artificial_energy

variable = global contact_energy

variable = global external_energy

variable = global hourglass_energy

variable = global internal_energy

variable = global kinetic_energy

variable = global strain_energy

end history output history_1
end presto region region_1
end presto procedure procedure_1

end sierra hourglass_ughex_so_stiff_lelem
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B.33 Hourglass Energy with Viscosity Control for Uniform Gradient Hex
Element with Strongly Objective Formulation 4.7

begin sierra hourglass_ughex_so_viscous_lelem
title hourglass energy test

user subroutine file = faces.F

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

#H###4# Material Definition #######44#

begin material steel
density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e+9 # GPa
poissons ratio = 0.3
end parameters for model elastic
end material steel
###4444## BV Problem Definition #########
begin solid section solid_1
strain incrementation = strongly_objective

end solid section solid_1

begin finite element model model_1
database name = hourglass_ughex_so_viscous_lelem.g

begin parameters for block block_1

material = steel

model = elastic

section = solid_1

hourglass stiffness = 0.0
hourglass viscosity = 0.002

end parameters for block block_1
end finite element model model_ 1
begin presto procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for presto region region_1
time step scale factor = 1.0

step interval = 1000
end parameters for presto region region_1
end time stepping block time_control_1
termination time = 0.01
end time control

begin presto region region_1
use finite element model model_1

######## definition of BCs ##########4#

begin prescribed displacement
node set nodelist_1
node set subroutine = hourglass_sideset
scale factor = 7.0

end prescribed displacement
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begin prescribed displacement
node set = nodelist_2
node set subroutine = hourglass_sideset
scale factor = -7.0

end prescribed displacement

#H######## output description ########HH##HES

begin results output output_1
database name = hourglass_ughex_so_viscous_lelem.e

at step 0 increment = 1

nodal variables = displacement
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = contact_energy
global variables = external_energy
global variables = hourglass_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

end results output output_1

begin history output history_1
database name = hourglass_ughex_so_viscous_lelem.h

at step 1 increment = 1

variable = global artificial_energy
variable = global contact_energy
variable = global external_ energy
variable = global hourglass_energy
variable = global internal_energy
variable = global kinetic_energy
variable = global strain_energy

end history output history_1
end presto region region_1
end presto procedure procedure_1l

end sierra hourglass_ughex_so_viscous_lelem
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B.34 Internal Energy — Explicit and Implicit Dynamics 4.8

#h####H#H#####F Internal_energy.explicit.i ########HH#HH#HFHH4H
begin sierra internal_ energy
title internal energy test

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0
## area = 1.0
## modulus 200000.0
## strain_rate = 0.0001
## strain = log(l-timexstrain_rate)
## internal_energy = 0.5 % area % modulus * strain x strain
begin function strainRate
type is analytic
evaluate expression = "0.0001xx"
end
begin function analyticInternalEnergy
type is analytic
evaluate expression = "0.5%1.0x200000.0%1log(1.0-x%0.0001)+*1log(1l.0-xx0.0001);™"

end

begin material steel
density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e3 # MPa
poissons ratio = 0.3

end parameters for model elastic

end material steel

begin finite element model model_1
database name = internal_energy.g

begin block defaults

material = steel
model = elastic
end

begin parameters for block block_1
end parameters for block block_1

end finite element model model_1
begin presto procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0

begin parameters for presto region region_1
user time step = 0.149
time step scale factor = 1.0
step interval =1

end parameters for presto region region_1
end time stepping block time_control_1
termination time = 100.0
end time control

begin presto region region_1

global energy reporting = exact
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use finite element model model_1

begin fixed displacement
node set = nodelist_1
components = z

end fixed displacement

begin fixed displacement
node set = nodelist_2
components = x y

end fixed displacement

begin fixed displacement
node set = nodelist_3
components =y

end fixed displacement

begin prescribed displacement

node set = nodelist_4
direction = z
function = strainRate
scale factor = -1.0

end prescribed displacement

begin initial velocity

node set = nodelist_4
component = z
magnitude = -0.0001

end initial velocity

begin results output output_1

database name = internal_energy.explicit.e
at step 0 increment =1

nodal variables = displacement

nodal variables = velocity

nodal variables = force_internal
element variables = stress

element variables = hourglass_energy
global variables = contact_energy
global variables = external_energy
global variables = hourglass_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

global variables = analyticIE
end results output output_1

begin history output history_1

database name = internal_energy.explicit.h
at step 1 increment =1

variable = global contact_energy

variable = global external_energy

variable = global hourglass_energy
variable = global internal_energy

variable = global kinetic_energy

variable = global strain_energy

variable = global analyticIE
end history output history_1

begin user output
compute global analyticIE as function analyticInternalEnergy

end

begin solution verification

verify global internal_energy = function analyticInternalEnergy
relative tolerance = 0.10

skip times = 0.0 to 1.1

completion file = internal_energy.explicit.verif
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end
end presto region region_1
end presto procedure procedure_1l

end sierra internal_energy
FHEFHE LAY internal_energy.impd. i ##FEEFEEEEEEEEESSE
begin sierra internal_energy

title internal energy test

define direction x with vector 1.0 0.
define direction y with vector 0.0 1.
define direction z with vector 0.0 0.

o O O
= O O
o O O

## area = 1.0

## modulus 200000.0

## strain_rate = 0.0001

## strain = log(l-timexstrain_rate)

## internal_energy = 0.5 x area x modulus * strain x strain

begin function strainRate
type is analytic
evaluate expression
end

"0.0001*x"

begin function analyticInternalEnergy

type is analytic

evaluate expression = "0.5%1.0%x200000.0%1log(1.0-x%0.0001)+*1log(1l.0-x*0.0001);"
end

begin material steel
density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e3 # MPa
poissons ratio = 0.3

end parameters for model elastic

end material steel

begin finite element model model_1
database name = internal_energy.g

begin block defaults

material = steel
model = elastic
end

begin parameters for block block_1
end parameters for block block_1

end finite element model model_1
begin adagio procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for adagio region region_1
time increment = 0.09

end parameters for adagio region region_1
end time stepping block time_control_1
termination time = 100.0
end time control

begin adagio region region_1
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global energy reporting = exact
use finite element model model_1

begin fixed displacement
node set = nodelist_1
components = z

end fixed displacement

begin fixed displacement
node set = nodelist_2
components = X y

end fixed displacement

begin fixed displacement
node set = nodelist_3
components =y

end fixed displacement

begin prescribed displacement

node set = nodelist_4
direction = z
function = strainRate
scale factor = -1.0

end prescribed displacement

begin initial velocity

node set = nodelist_4
component = z
magnitude = -0.0001

end initial velocity

begin results output output_1

database name = internal_energy.impd.e
at step 0 increment = 1

nodal variables = displacement

nodal variables = velocity

nodal variables = force_internal
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = contact_energy
global variables = external_energy
global variables = hourglass_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

global variables = analyticIE
end results output output_1

begin history output history_1

database name = internal_energy.impd.h
at step 1 increment = 1

variable = global artificial_energy
variable = global contact_energy
variable = global external_energy
variable = global hourglass_energy
variable = global internal_energy
variable = global kinetic_energy
variable = global strain_energy

variable = global analyticIE
end history output history_1

begin user output
compute global analyticIE as function analyticInternalEnergy

end

begin solution verification
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verify global internal_energy = function analyticInternalEnergy
relative tolerance = 0.0027
skip times = 0.0 to 1.0
completion file = internal_energy.impd.verif
end

begin implicit dynamics
alpha = 0.0
beta = 0.25
gamma = 0.5

end

begin solver
end

end adagio region region_1
end adagio procedure procedure_1

end sierra internal_energy
#HEHHHHHEFHEHESF internal_energy.impd.default.i ######FFHFFHFHEFHS
begin sierra internal_energy

title internal energy test

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

## area = 1.0

## modulus 200000.0

## strain_rate = 0.0001

## strain = log(l-timexstrain_rate)

## internal_energy = 0.5 * area x modulus * strain % strain

begin function strainRate

type is analytic

evaluate expression = "0.0001xx"
end

begin function analyticInternalEnergy

type is analytic

evaluate expression = "0.5%1.0x200000.0%1log(1.0-x%x0.0001)+*1log(1l.0-xx0.0001);™"
end

begin material steel
density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e3 # MPa
poissons ratio = 0.3

end parameters for model elastic

end material steel

begin finite element model model_1
database name = internal_energy.g

begin block defaults

material = steel
model = elastic
end

begin parameters for block block_1
end parameters for block block_1

end finite element model model_1

begin adagio procedure procedure_1
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begin time control
begin time stepping block time_control_ 1

start time = 0.0
begin parameters for adagio region region_1
time increment = 0.09

end parameters for adagio region region_1
end time stepping block time_control_ 1
termination time = 100.0
end time control

begin adagio region region_1
global energy reporting = exact
use finite element model model_1

begin fixed displacement
node set = nodelist_1
components = z

end fixed displacement

begin fixed displacement
node set = nodelist_2
components = x y

end fixed displacement

begin fixed displacement
node set = nodelist_3
components =y

end fixed displacement

begin prescribed displacement

node set = nodelist_4
direction = z
function = strainRate
scale factor = -1.0

end prescribed displacement

begin initial velocity

node set = nodelist_4
component = z
magnitude = -0.0001

end initial velocity

begin results output output_1

database name = internal_energy.impd.default.e
at step 0 increment = 1

nodal variables = displacement

nodal variables = velocity

nodal variables = force_internal
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = contact_energy
global variables = external_energy
global variables = hourglass_energy
global variables = internal_energy
global variables = kinetic_energy
global variables = strain_energy

global variables = analyticIE
end results output output_1

begin history output history_1

database name = internal_energy.impd.default.h
at step 1 increment = 1

variable = global artificial_energy

variable = global contact_energy
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variable = global external_energy

variable = global hourglass_energy
variable = global internal_energy
variable = global kinetic_energy
variable = global strain_energy

variable = global analyticIE
end history output history_1

begin user output
compute global analyticIE as function analyticInternalEnergy

end

begin solution verification

verify global internal_energy = function analyticInternalEnergy
relative tolerance = 0.0027
skip times = 0.0 to 1.0
completion file = internal_energy.impd.default.verif
end

begin implicit dynamics
end

begin solver
end

end adagio region region_1
end adagio procedure procedure_1

end sierra internal_energy
FHEFHEHHEHHESY internal_energy.impd.approx.i ###4#FEEFEEREEESEES
begin sierra internal_energy

title internal energy test

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

## area = 1.0

## modulus 200000.0

## strain_rate = 0.0001

## strain = log(l-timexstrain_rate)

## internal_energy = 0.5 x area x modulus * strain x strain

begin function strainRate

type is analytic

evaluate expression = "0.0001xx"
end

begin function analyticInternalEnergy

type is analytic

evaluate expression = "0.5%1.0%x200000.0%1log(1.0-x*0.0001)+*log(1l.0-x*0.0001);™"
end

begin material steel
density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e3 # MPa
poissons ratio = 0.3

end parameters for model elastic

end material steel

begin finite element model model_ 1
database name = internal_energy.g

begin block defaults
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material = steel
model = elastic
end

begin parameters for block block_1
end parameters for block block_1

end finite element model model_1
begin adagio procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for adagio region region_1
time increment = 0.09

end parameters for adagio region region_1
end time stepping block time_control_1
termination time = 100.0
end time control

begin adagio region region_1
global energy reporting = approximate
use finite element model model_1

begin fixed displacement
node set = nodelist_1
components = z

end fixed displacement

begin fixed displacement
node set = nodelist_2
components = X y

end fixed displacement

begin fixed displacement
node set = nodelist_3
components =y

end fixed displacement

begin prescribed displacement

node set = nodelist_4
direction = z
function = strainRate
scale factor = -1.0

end prescribed displacement

begin initial velocity

node set = nodelist_4
component = z
magnitude = -0.0001

end initial velocity

begin results output output_1

database name = internal_energy.impd.approx.e
at step 0 increment = 1

nodal variables = displacement

nodal variables = velocity

nodal variables = force_internal
element variables = stress

element variables = hourglass_energy
global variables = artificial_energy
global variables = contact_energy
global variables = external_energy
global variables = hourglass_energy
global variables = internal_energy
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global variables = kinetic_energy
global variables = strain_energy
global variables = analyticIE

end results output output_l1

begin history output history_1

database name = internal_energy.impd.approx.h
at step 1 increment =1

variable = global artificial_energy

variable = global contact_energy

variable = global external_energy

variable = global hourglass_energy

variable = global internal_energy

variable = global kinetic_energy

variable = global strain_energy

variable = global analyticIE
end history output history_1

begin user output
compute global analyticIE as function analyticInternalEnergy

end

begin solution verification

verify global internal_energy = function analyticInternalEnergy
relative tolerance = 0.0027
skip times = 0.0 to 1.0
completion file = internal_energy.impd.approx.verif
end

begin implicit dynamics
alpha = 0.0
beta = 0.25
gamma = 0.5

end

begin solver
end

end adagio region region_1
end adagio procedure procedure_1
end sierra internal_energy
#HEHFFHFHFHFHFHFHF internal_energy.impd.approx.default.i #####FFHFHFFHFFHHFH

begin sierra internal_energy
title internal energy test

define direction x with vector 1.0 0.0 0.0

define direction y with vector 0.0 1.0 0.0

define direction z with vector 0.0 0.0 1.0

## area = 1.0

## modulus 200000.0

## strain_rate = 0.0001

## strain = log(l-time*strain_rate)

## internal_energy = 0.5 * area x modulus * strain % strain

begin function strainRate

type is analytic

evaluate expression = "0.0001xx"
end

begin function analyticInternalEnergy
type is analytic
evaluate expression = "0.5%1.0%x200000.0x10og(1.0-x%x0.0001)+1log(1.0-xx0.0001);"

end

begin material steel
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density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e3 # MPa
poissons ratio = 0.3

end parameters for model elastic

end material steel

begin finite element model model_1
database name = internal_energy.g

begin block defaults

material = steel
model = elastic
end

begin parameters for block block_1
end parameters for block block_1
end finite element model model_1

begin adagio procedure procedure_1

begin time control
begin time stepping block time_control_1

start time = 0.0
begin parameters for adagio region region_1
time increment = 0.09

end parameters for adagio region region_1
end time stepping block time_control_1
termination time = 100.0
end time control

begin adagio region region_1
global energy reporting = approximate
use finite element model model_1

begin fixed displacement
node set = nodelist_1
components = z

end fixed displacement

begin fixed displacement
node set = nodelist_2
components = x y

end fixed displacement

begin fixed displacement
node set = nodelist_3
components =y

end fixed displacement

begin prescribed displacement

node set = nodelist_4
direction = z
function = strainRate
scale factor = -1.0

end prescribed displacement

begin initial velocity

node set = nodelist_4
component = z
magnitude = -0.0001

end initial velocity

begin results output output_1
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database name = i
at step 0 increment = 1
nodal variables =
nodal variables =
nodal variables =
element variables = stress
element variables

global variables =

global variables
global variables
global variables
global variables
global variables
global variables
global variables
end results output

nternal_energy.impd.approx.default.e

displacement
velocity
force_internal

= hourglass_energy
artificial_energy
= contact_energy

= external_energy

= hourglass_energy
= internal_energy

= kinetic_energy

= strain_energy

= analyticIE
output_1

begin history output history_1

database name = internal_energy.impd.approx.default.h
at step 1 increment = 1

variable = global artificial_energy

variable = global contact_energy

variable = global external_ energy

variable = global hourglass_energy

variable = global internal_energy

variable = global kinetic_energy

variable = global strain_energy

variable = global analyticIE

end history output history_1

begin user output
compute global analyticIE as function analyticInternalEnergy

end

begin solution verification
verify global internal_energy = function analyticInternalEnergy
relative tolerance = 0.0027
skip times
completion file =

end

= 0.0

to 1.0
internal_energy.impd.approx.default.verif

begin implicit dynamics

end

begin solver

end

end adagio region region_1

end adagio procedure procedure_1

end sierra internal_energy
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B.35 Internal (Strain) Energy — Quasistatics 4.9

FHHEHHFEHHHEFHHE strain_energy.qgs. i ###EHFRFEFEEEHERFRS
begin sierra strain_energy
title strain energy test

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

## modulus 200000.0

## strain_rate = 0.0001 (ext) or 0.00001/2 (shear)

## strain = log(l-timexstrain_rate)

## strain energy density = 0.5 » modulus * strain * strain

begin function strain
type is piecewise linear
begin values
0.0 0.0
50.0 0.005
100.0 0.0
150.0 0.0005
200.0 0.0
end values
end

begin function analyticInternalEnergyExt
type is piecewise analytic
begin expressions

0.0 "0.5 % 200000.0 % log(l.0 - (x ) = 0.0001) % log(l.0 - (x ) = 0.0001)"
50.0 "0.5 % 200000.0 * log(l.0 — (100.0 - x) = 0.0001) % log(l.0 - (100.0 - x) * 0.000L1)"
100.0 "0.0"

end

end

begin function analyticInternalEnergyShr
type is piecewise analytic
begin expressions
0.0 "o.0"

100.0 "0.25 % 200000.0 / (1.0 + 0.3) % log(l.0 - (x — 100.0) * 0.00001) * log(l.0 - (x - 100.0) = 0.00001)"
150.0 "0.25 x 200000.0 / (1.0 + 0.3) % log(l.0 - (200.0 - x) * 0.00001) * log(l.0 - (200.0 - x) * 0.00001)"
end
end

begin material steel
density = 7900.0 # kg/m"3

begin parameters for model elastic
youngs modulus = 200.0e3 # MPa
poissons ratio = 0.3

end parameters for model elastic

end material steel
begin finite element model model_1
database name = strain_energy.g
begin parameters for block block_1
material = steel
model = elastic
end parameters for block block_1
end finite element model model_ 1
begin adagio procedure procedure_1

begin time control

begin time stepping block time_control_1
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start time = 0.0
begin parameters for adagio region region_1
time increment = 5.26
end parameters for adagio region region_1
end time stepping block time_control_1

begin time stepping block time_control_2

start time = 100.0
begin parameters for adagio region region_1
time increment = 5.26

end parameters for adagio region region_1
end time stepping block time_control_2

termination time = 150.0

end time control

begin adagio region region_1
global energy reporting = exact
use finite element model model_1

begin fixed displacement
node set = nodelist_1
components = z

end fixed displacement

begin fixed displacement
node set = nodelist_2
components = X y

end fixed displacement

begin fixed displacement
node set = nodelist_3
components =y

end fixed displacement

begin prescribed displacement
active periods = time_control_1
node set = nodelist_4
direction = z
function = strain
scale factor = -1.0

end prescribed displacement

begin prescribed displacement
active periods = time_control_2
node set = nodelist_4
direction =y
function = strain
scale factor = 1.0

end prescribed displacement

begin fixed displacement
active periods = time_control_2
node set = nodelist_4
components = x z

end fixed displacement

begin fixed displacement
active periods = time_control_2
node set = nodelist_1 nodelist_2 nodelist_3
components = x y z

end fixed displacement

begin initial velocity
node set = nodelist_4
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component = z
magnitude = -0.00
end initial velocit

begin results outpu
database name = s
at step 0 increme
nodal variables =
nodal variables =
nodal variables =
element variables
element variables
element variables
element variables

global variables =

global variables
global variables
global variables
global variables
global variables
global variables
global variables
global variables
end results output

begin history outpu
database name = s
at step 1 increme
variable = global
variable = global
variable = global
variable = global
variable = global
variable = global

01
y

t output_1

train_energy.gs.e

nt = 1

displacement

velocity
force_internal

= stress

= strain

= hourglass_energy
= strain_energy
artificial_energy

= contact_energy

= external_energy

= hourglass_energy

= internal_energy

= kinetic_energy

= strain_energy

= analyticIEExt

= analyticIEShr

output_1

t history_1
train_energy.gs.h
nt =1
artificial_energy
contact_energy
external_energy
hourglass_energy
internal_energy
kinetic_energy

variable = global strain_energy

variable = global analyticIEExt

variable = global analyticIEShr
end history output history_1

begin user output
compute at every step
compute global analyticIEExt as
compute global analyticIEShr as
compute global strainEnergy as
compute global hgEnergy as sum
end

begin solution verification

function analyticInternalEnergyExt
function analyticInternalEnergyShr
sum of element strain_energy
of element hourglass_energy

verify global strainEnergy = function analyticInternalEnergyExt

verify global internal_energy =
relative tolerance = 0.0014
skip times = 0.0 to 1.0

skip times = 50.0 to 150.0

completion file = strain_energy_

end

begin solution verification

function analyticInternalEnergyExt

ext.gs.verif

verify global strainEnergy = function analyticInternalEnergyShr

verify global internal_energy =
relative tolerance = 0.00051
skip times = 0.0 to 101.0

completion file = strain_energy_

end

begin solution verification
verify global hgEnergy = 0
tolerance = 1.0e-12
skip times = 0.0 to 1.0

function analyticInternalEnergyShr

shr.gs.verif
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# completion file = hg_energy.gs.verif
# end

begin solver
end

end adagio region region_1
end adagio procedure procedure_1

end sierra strain_energy
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B.36 Kinetic Energy 4.10

FHEFHE S HH4E4S kinetic_energy.explicit.i #######444###HEEES

begin sierra kinietic_energy

begin function sine
type is analytic

evaluate expression is "amplitude=2; \#
frequency=2+pi; \#
phase=0; \#

amplitude % sin(frequencyxx + phase)"
end

begin function analyticKE

type is analytic

# KE = 0.5 « M » V"2

#M=p x V

evaluate expression is " 0.5 % (100.0 % 1.0) =« (2.0 * sin(2.0xpi*x) * 2.0 * sin(2.0xpixx) ) "
end

begin function zero

type is analytic

evaluate expression is "0.0"
end

begin material flubber
density = 100.0
begin parameters for model elastic
youngs modulus = 30.0e6
poissons ratio = 0.3
end parameters for model elastic
end material flubber

#{ Ax =
#{ Ay
#{ Az =
define direction offaxis with vector {Ax} {Ay} {Az}
# offaxis crossed with 1 0 0

1.
1.
1.

o O O

}
}
}

#{ Bx = 0.0 }
#{ By = 1.0 }
#{ Bz = -1.0 }

define direction perpOne with vector {Bx} {By} ({Bz}
# A cross B

#{ Cx = Ay*Bz - AzxBy }
#{ Cy = Az+Bx — Ax*Bz }
#{ Cz = Ax*By — Ay*Bx }

define direction perpTwo with vector {Cx} {Cy} {Cz}
begin finite element model kinietic_energyl
database name = kinetic_energy.g

database type = exodusII

begin parameters for block block_1

material = flubber
model = elastic
end

end finite element model kinietic_energyl
begin adagio procedure rigidBody

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for presto region adagio
time step scale factor = 1.0
user time step = 2.24e-2
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step interval =1
end

end time stepping block pl
termination time = 1.0

end time control

begin adagio region adagio
use finite element model kinietic_energyl

begin user output
include all blocks

compute global analyticKE as function analyticKE
compute at every step

end

begin solution verification
completion file = VerifGlobalInternal
verify global kinetic_energy = function analyticKE
relative tolerance = 0.005
## Skip crossings of zero
skip times = 0.000 to 0.001
skip times = 0.499 to 0.501
skip times = 0.999 to 1.001

end

begin history output frederica
database name = kinetic_energy.explicit.h
database type = exodusII

at step 0, increment =1
variable = global kinetic_energy as KineticEnergy
variable global analyticKE

end history output frederica

begin prescribed velocity

block = block_1
direction = offaxis
function = sine

end

begin prescribed velocity

block = block_1
direction = perpOne
function = zero

end

begin prescribed velocity

block = block_1

direction = perpTwo
function zero
end

end adagio region adagio

end adagio procedure rigid
end sierra kinietic_energy

#HH#HHHHFH#H#HHHF kinetic_ener

begin sierra kinietic_energy

begin function sine
type is analytic
evaluate expression is "

end

begin function analyticKE
type is analytic
# KE = 0.5 « M x V"2

Body

gy.impd.i #######EEESSESSEES

amplitude=2; \ #
frequency=2+*pi; \#
phase=0; \#

amplitude % sin(frequency*x + phase)"
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#M=p *V

evaluate expression is " 0.5 = (100.0 % 1.0) =« (2.0 % sin(2.0xpix*x)

end

begin function zero

type is analytic

evaluate expression is "0.0"
end

begin material flubber
density = 100.0
begin parameters for model elastic
youngs modulus = 30.0e6
poissons ratio = 0.3
end parameters for model elastic
end material flubber

#{ Ax 1.0 }

#{ Ay = 1.0 }

#{ Az = 1.0 }

define direction offaxis with vector {Ax} {Ay} {Az}
# offaxis crossed with 1 0 O

#{ Bx = 0.0 }

#{ By = 1.0 }

#{ Bz = -1.0 }

define direction perpOne with vector {Bx} {By} {Bz}
# A cross B

#{ Cx = Ay*Bz — AzxBy }
#{ Cy = Az+Bx - Axx*Bz }
#{ Cz = Ax*By — Ay*Bx }

define direction perpTwo with vector {Cx} {Cy} {Cz}
begin finite element model kinietic_energyl
database name = kinetic_energy.g

database type = exodusII

begin parameters for block block_1

material = flubber
model = elastic
end

end finite element model kinietic_energyl
begin adagio procedure fred

begin time control
begin time stepping block pl
start time = 0.0
begin parameters for adagio region adagio

time increment = 0.005
end
end
termination time = 1.0
end

begin adagio region adagio
use finite element model kinietic_energyl

begin user output
include all blocks
compute global analyticKE as function analyticKE
compute at every step

end

begin solution verification
completion file = VerifGlobalInternal
verify global kinetic_energy = function analyticKE
relative tolerance = 0.005
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## Skip crossings of zero

skip times = 0.000 to 0.001

skip times = 0.499 to 0.501

skip times = 0.999 to 1.001
end

begin history output fred
database name = kinetic_energy.impd.h
database type = exodusII

at step 0, increment =1
variable = global kinetic_energy as KineticEnergy
variable = global analyticKE

end

begin prescribed velocity
block = block_1
direction = offaxis
function = sine

end

begin prescribed velocity
block = block_1
direction = perpOne
function = zero

end

begin prescribed velocity
block = block_1
direction = perpTwo
function = zero

end

begin implicit dynamics
alpha = 0.0
beta = 0.25
gamma = 0.5

end

begin solver
begin cg
reference = belytschko
target residual = 1.0e-8
end
end

end

end
end

447



Distribution

1 0899  Technical Library, 9536 (1 electronic)

448



449



@ Sandia National Laboratories



	Cover
	Title
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Objectives
	Scope
	Background
	Convergence
	Types of Verification Tests
	Reference Solutions
	Discretization Error Tests
	Convergence Tests
	Error Quantification Tests

	Observed Convergence Rate
	Convergence Tests using a Surrogate Solution
	Convergence Tests using Asymptotic Analysis

	Manual Organization
	References

	Contact Verification Tests
	Contact Force Balance
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Hertz Sphere-Sphere Contact
	Problem Description
	Boundary Conditions
	Material
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Deriesiewicz Sphere-Sphere Contact
	Problem Description
	Exact Solution
	Numerical Solution
	Verification
	References

	Hertz Cylinder-Cylinder Contact -- Convergence Test
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model
	Boundary Conditions
	Meshes

	Expected Results
	Verification Results
	Results based on Hertz reference solution
	Results based on asymptotic analysis

	References

	Mindlin Cylinder-Cylinder Contact -- Convergence Test
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model
	Boundary Conditions
	Meshes

	Expected Results
	Verification Results
	Results based on asymptotic analysis

	References

	Hertz Sphere-Sphere Contact -- Convergence Test
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model
	Boundary Conditions
	Meshes

	Expected Results
	Verification Results
	Results based on Hertz reference solution
	Results based on asymptotic analysis

	References

	Lubkin Sphere-Sphere Contact -- Convergence Test
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model
	Boundary Conditions
	Meshes

	Expected Results
	Verification Results
	Results based on Hertz reference solution
	Results based on asymptotic analysis

	References

	Sticking-Slipping Block and Spring - Explicit Dynamics
	Problem Description
	Boundary Conditions
	Material Model
	Contact Interaction Model
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Sticking-Slipping Block and Spring - Implicit Dynamics
	Problem Description
	Boundary Conditions
	Material Model
	Contact Interaction Model
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Sticking-Slipping Block and Spring - Implicit Quasi-statics
	Problem Description
	Boundary Conditions
	Material Model
	Contact Interaction Model
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Coulomb Friction with Sliding
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Oscillating Block Spring With Friction
	Problem Description
	Boundary Conditions and Body Forces
	Material Models
	Contact Interaction Model
	Feature Tested

	Assumptions and notes
	Verification of Solution
	References

	Friction Wedge
	Problem Description
	Boundary Conditions
	Material Models
	Contact Interaction Model
	Feature Tested

	Assumptions and notes
	Verification of Solution


	Element Verification Tests
	Hex Patch Tests -- Quasi-Static, Linear Elastic
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model

	Expected Results
	References

	Hex Patch Tests -- Quasi-Static, Finite Deformation
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model

	Expected Results
	Verification Results
	References

	Hex Patch Test -- Uniform Gradient, Strongly Objective
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model

	Expected Results
	References

	Hex Patch Test -- Uniform Gradient, Midpoint Increment
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model

	Expected Results
	References

	Hex Patch Test -- Uniform Gradient, Midpoint Increment, Thermal
	Problem Description
	Functionality Tested
	Boundary Conditions
	Material Model

	Verification of Solution
	References

	Hex Convergence Test -- Cantilever Beam
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model
	Boundary Conditions
	Meshes

	Expected Results
	Verification Results
	References

	Tet Patch Tests -- Quasi-Static, Linear Elastic
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model

	Expected Results
	References

	Tet Convergence Test -- Cantilever Beam
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model
	Boundary Conditions
	Meshes

	Expected Results
	Verification Results
	References

	Quad Membrane Patch Test -- Selective Deviatoric, Midpoint Increment
	Brief Description
	Functionality Tested
	Mechanics of Test
	Material Model

	Verification of Solution
	References

	Elastic Beam in Axial Tension
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Verification of Solution
	Conclusions

	Elastic Beam in Bending
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Verification of Solution
	Conclusions

	Elastic and Plastic Beam
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Verification of Solution
	Conclusions

	Pressure Loaded Layered Cantilever Beam
	Problem Description
	Boundary Conditions
	Material
	Feature Tested

	Assumptions and notes
	Verification of Solution


	Energy Verification Tests
	Contact Frictional Energy
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Contact Energy without Friction
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Assumptions and notes
	Verification of Solution

	External Energy due to Applied Force
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Verification of Solution

	External Energy due to Gravity
	Problem Description
	Boundary Conditions
	Material Model
	Feature Tested

	Verification of Solution

	Hourglass Energy for Uniform Gradient Hex Element with Midpoint Increment Formulation
	Problem Description
	Boundary Conditions
	Material
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Hourglass Energy for Uniform Gradient Hex Element with Strongly Objective Formulation
	Problem Description
	Boundary Conditions
	Material
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Hourglass Energy with Viscosity Control for Uniform Gradient Hex Element with Strongly Objective Formulation
	Problem Description
	Boundary Conditions
	Material
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Internal Energy -- Explicit and Implicit Dynamics
	Problem Description
	Boundary Conditions
	Material
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Internal (Strain) Energy -- Quasistatics
	Problem Description
	Boundary Conditions
	Material
	Feature Tested

	Assumptions and notes
	Verification of Solution

	Kinetic Energy
	Problem Description
	Boundary Conditions
	Material
	Feature Tested

	Assumptions and notes
	Verification of Solution


	Other Sierra/SM Verification Tests not in this Document
	Input Decks For Verification Problems
	Contact Force Balance 2.1
	Hertz Sphere-Sphere Contact 2.2
	Deriesiewicz Sphere-Sphere Contact 2.3
	Hertz Cylinder-Cylinder Contact -- Convergence Test 2.4
	Mindlin Cylinder-Cylinder Contact -- Convergence Test 2.5
	Hertz Sphere-Sphere Contact -- Convergence Test 2.6
	Lubkin Sphere-Sphere Contact -- Convergence Test 2.7
	Sticking-Slipping Block and Spring - Explicit Dynamics 2.8
	Sticking-Slipping Block and Spring - Implicit Dynamics 2.9
	Sticking-Slipping Block and Spring - Implicit Statics 2.10
	Coulomb Friction with Sliding [Explicit Dynamics, Face/Face Contact] 2.11
	Oscillating Block Spring With Friction 2.12
	Friction Wedge 2.13
	Hex Patch Tests -- Quasi-Static, Linear Elastic 3.1
	Hex Patch Tests -- Quasi-Static, Finite Deformation 3.2
	Hex Patch Test -- Uniform Gradient, Strongly Objective 3.3
	Hex Patch Test -- Uniform Gradient, Midpoint Increment 3.4
	Hex Patch Test -- Uniform Gradient, Midpoint Increment Thermal 3.5
	Hex Convergence Test -- Cantilever Beam 3.6
	Tet Patch Tests -- Quasi-Static, Linear Elastic 3.7
	Tet Convergence Test -- Cantilever Beam 3.8
	Quad Membrane Patch Test -- Selective Deviatoric, Midpoint Increment 3.9
	Elastic Beam Section Property Verification in Axial Tension 3.10
	Elastic Beam Bending Verification 3.11
	Elastic and Plastic Beam Section Verification 3.12
	Pressure Loaded Layered Cantilever 3.13
	Input File - Multiple Lofted Shells Implicit Dynamics
	Input File - Multiple Lofted Shells Explicit Dynamics
	Input File - Single Layered Shell Implicit Dynamics
	Input File - Single Layered Shell Explicit Dynamics

	Contact Frictional Energy 4.1
	Contact Energy without Friction 4.2
	External Energy due to Applied Force 4.3
	External Energy due to Gravity 4.4
	Hourglass Energy for Uniform Gradient Hex Element with Midpoint Increment Formulation 4.5
	Hourglass Energy for Uniform Gradient Hex Element with Strongly Objective Formulation 4.6
	Hourglass Energy with Viscosity Control for Uniform Gradient Hex Element with Strongly Objective Formulation 4.7
	Internal Energy -- Explicit and Implicit Dynamics 4.8
	Internal (Strain) Energy -- Quasistatics 4.9
	Kinetic Energy 4.10
	Index

	Distribution

