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Introducing a new control scheme for capacitively coupled @
QDHQs WISCONSIN

* (Given two capacitively coupled
guantum dot “hybrid™ qubits
(QDHQs), we propose an
entanglement gate which only
requires adiabatic control of
detunings

* We show that these entanglement
gates are robust under charge noise




Quantum dot “hybrid” qubit has a tunable W
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Quantum dot “hybrid” qubit has a tunable W
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Changes in detuning yield a tunable effective @
coupling WISCONSIN
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Similar to S-T qubits: M. D. Shulman et al., Science 336 (6078), 202-205 (2012).




Adiabatic changes vield only Z1, Z2, and Z/ @
(entangling) gates WISCONSIN

An adiabatic process will only affect the phases of a state (in the
adiabatic basis):
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Operating a controlled-Z gate in capacitively @

coupled QDHQ system WISCONSIN
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We consider the effect of quasistatic charge noise on @

two-qubit gate fidelities WISCONSIN
* Low-frequency charge noise will dominate the noise spectrum. /
/2

* This leads to dephasing (of Z1, Z2, and ZZ) 0y 7 0
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For chosen parameters gate achieves 90% fidelity
at ~4ueV charge noise, 99% at ~1 ueV
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* [ntroduce quasistatic noise on both -
detunings, taken from gaussian distribution
with some o. 107

e (alculate resulting average process fidelity
A. Gilchrist, N. K. Langford, and M. A.
Nielsen, arXiv:quant-ph/0408063.

* Achieve 90% fidelity at 0 =4 ueV, 99% at o
~ 1 ueV
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to favorable gate fidelities WISCONSIN

A numerical search for optimal pulse sequence leads

Infidelity for o = 5 ueV
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seqguence, we 50l 10.75
consider all possible | 2
“entangling points™ in —~ 0'56
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* For each "entangling &
point,” we optimize 0.2
over moving time 0.15
and waiting time.
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Summary
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The proposed coupling scheme:

* Allows for static, non-equal gubit frequencies: in the
simulations here, w = (52 ueV)h, w2 = (45 ueV)/h

 Compatible with pre-existing single-qubit control schemes:
lowering detuning on only one qubit does not turn on coupling

* Only requires adiabatic control of detunings: induces Z1, Z2,
and ZZ gates

* Relatively robust under charge noise: 90% fidelity at ~4ueV
charge noise, 99% at ~1 ueV
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Thank you!
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Additional slides




Capacitive coupling in two charge qubits @
leads to a static coupling WISCONSIN

One qubit

What is the coupling
term between 2
H =610, + Aj0, capacitively-coupled

charge qubits?
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Li, H.-O., et al. Nature Comm. 6, 7681 (2015).
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Changes in detuning yield a tunable effective @

coupling WISCONSIN

Qubit 1 Qubit 2
By changing detuning, we can

change the rate of entanglement, as
in S-T qubits M. D. Shulman et al.,
Science 336 (6078), 202-205

(2012).
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For chosen parameters gate achieves 90% ftidelity
at ~4ueV charge noise, 99% at ~1 ueV
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To minimize interaction with electric field in QDHQ, go to @
large detuning WISCONSIN
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To operate QDHQ), go to detuning where longitudinal field is @
Zero WISCONSIN
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Goal: find order of magnitude of any potential WISC?NS'N
two-qubit operation
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