

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-CONF-746729

Imaged Analysis and machine Learning for NIF Optics Inspection

L. Kegelmeyer

February 23, 2018

Women in Data Science conference
Livermore, CA, United States
March 5, 2018 through March 5, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Image Analysis and Machine Learning for NIF Optics Inspection

Women in Data Science

(WiDS East Bay @ LLNL)

March 5, 2018

Laura M. Kegelmeyer
Team Lead, Optics Inspection Analysis
National Ignition Facility

LLNL-PRES-XXXXXX

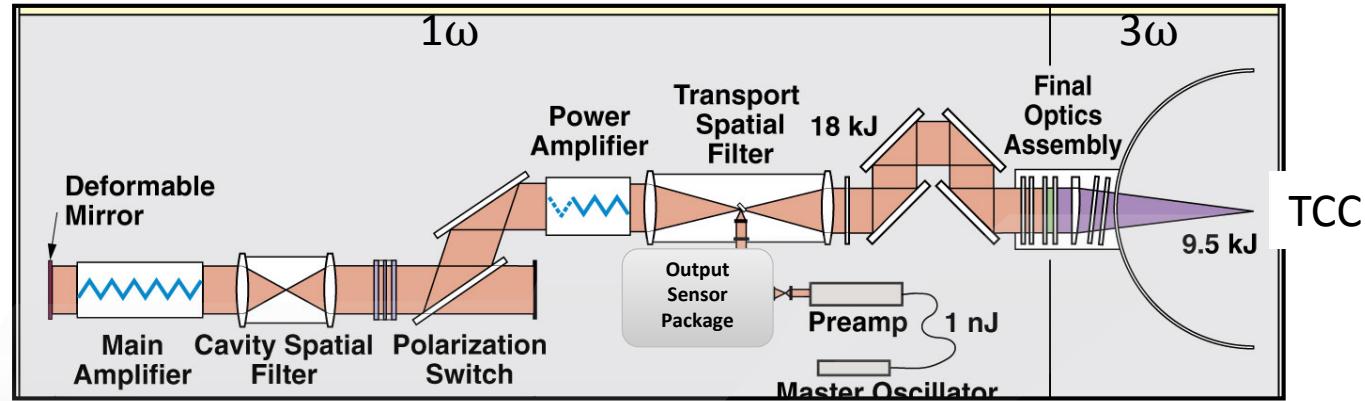
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

The National Ignition Facility recreates the conditions inside of stars and giant planets

- NIF, the most energetic laser in the world, requires extraordinary optics
 - 3 of the 7 NIF Wonders are specialty optics
 - Breakthrough optic technologies enabled unprecedented, high-quality optics
- NIF routinely operates at 1.8 MJ (8 J/cm²), twice the fluence that damages ordinary fused silica optics
- The highly damage resistant optics still get damaged at these fluences
- An Optics Recycle Loop repairs damage and enables high fluence operation.
- Automated Optics inspection, analysis and machine learning has informed and enabled an efficient recycle loop

Since ~2007, we've used machine learning to improve analysis accuracy, automation and quality control to inform and enable the NIF Optics Recycle Loop.

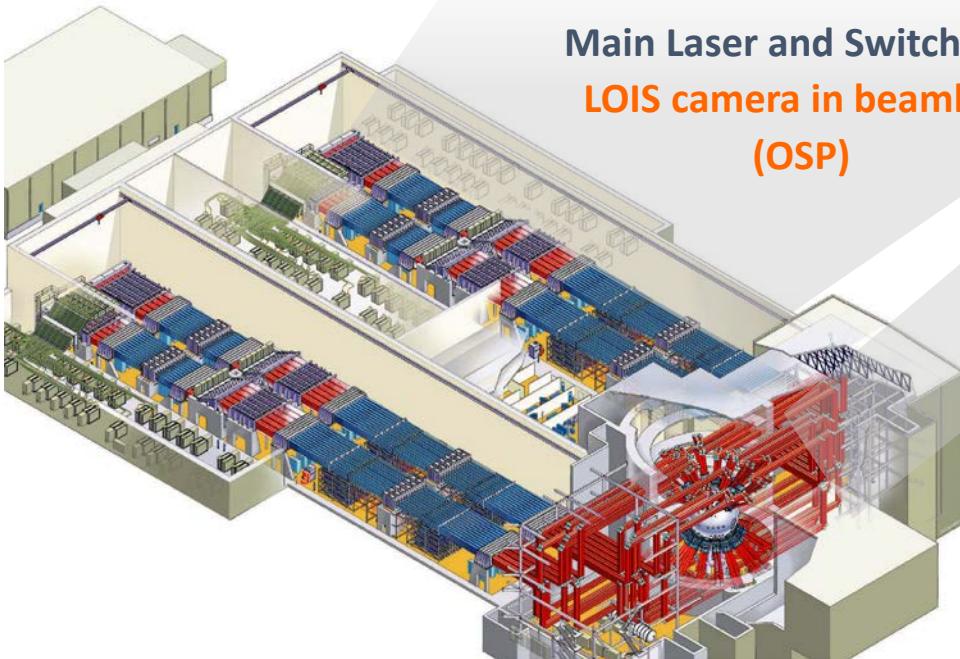
Several custom camera systems inspect optics in situ (on the NIF Beamlne) to constantly monitor each and every damage site on thousands of optics



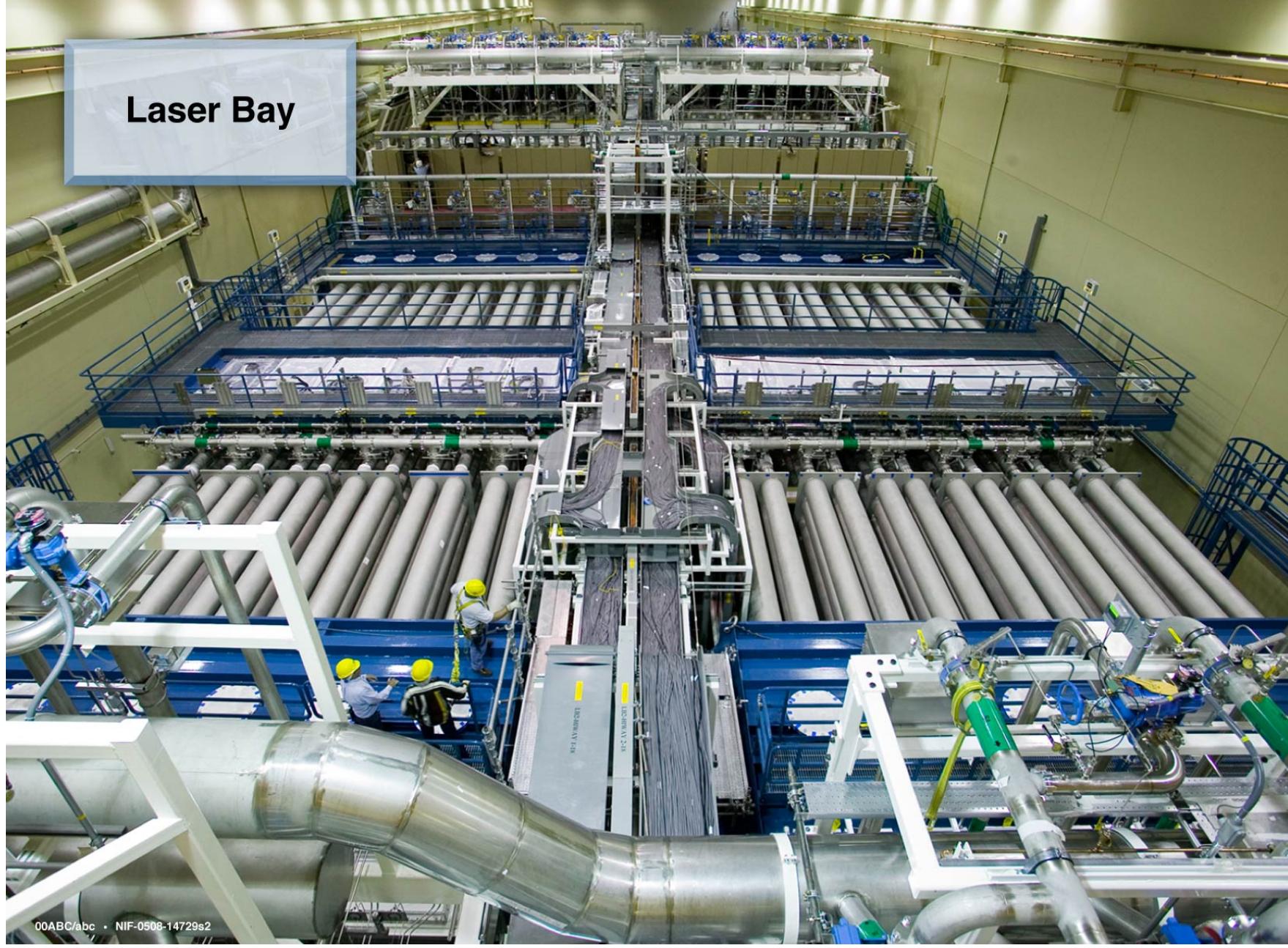
Main Laser and Switchyard
LOIS camera in beamline
(OSP)

Final Optics Damage Inspection
FODI camera at target chamber
center (TCC)

Side-Illuminated Damage Evaluation
SIDE camera in beamline
Inspects TCVW



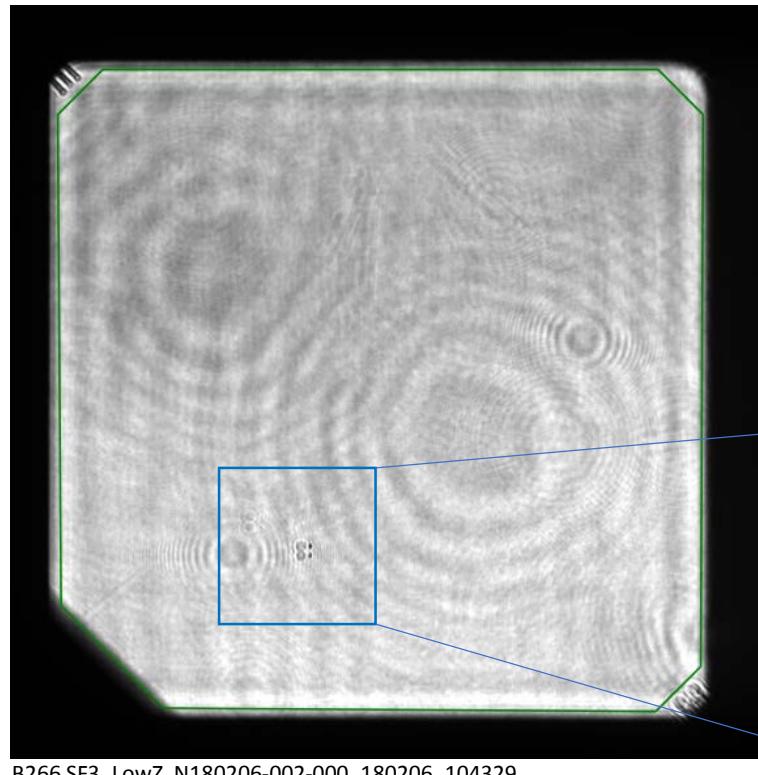
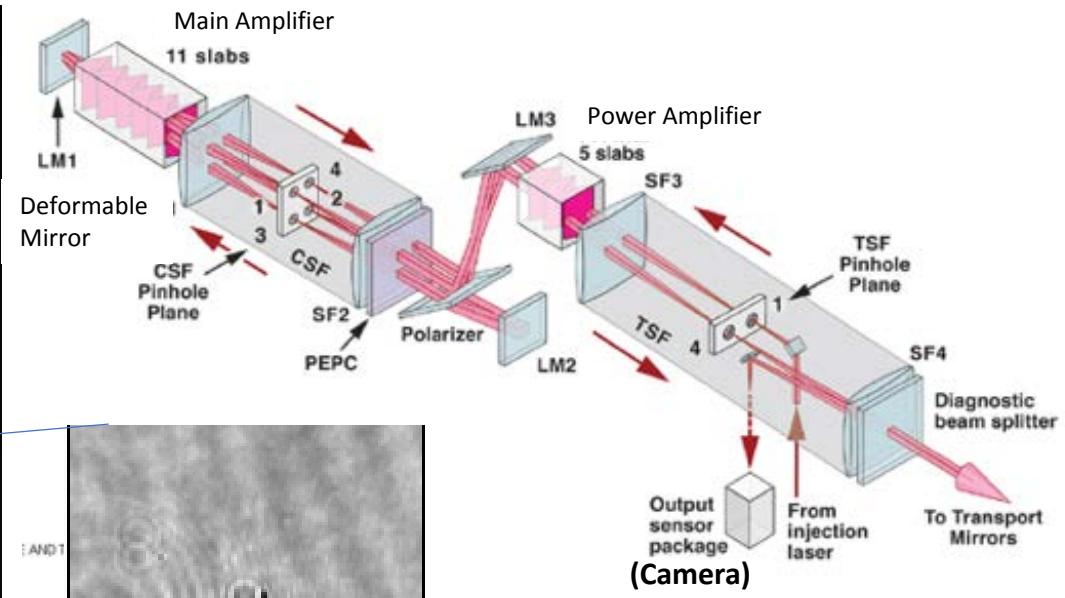
Laser Bay



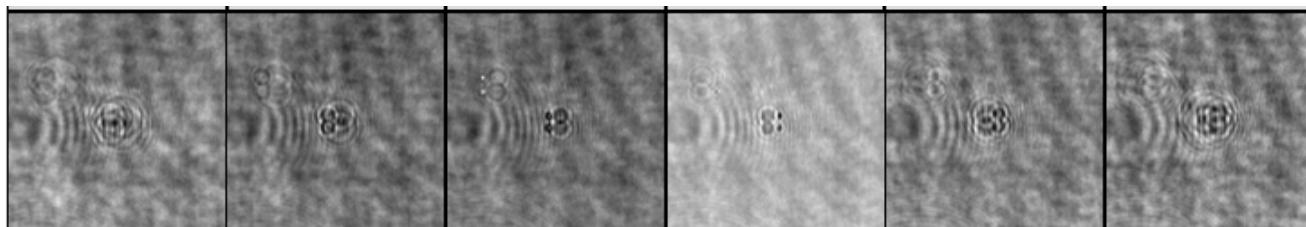
00ABC/abc • NIF-0508-14729s2

Lawrence Livermore National Laboratory
LLNL-PRES-XXXXXX

Backlit laser illumination travels through all the optics, picking up and carrying information along the way -- damage sites scatter light and leave a shadow



For 1 year (~2007) a dozen SMEs classified each site found.



Supervised Machine Learning -- ensemble of decision trees (random forests)

Input: expert-labeled “ground truth”

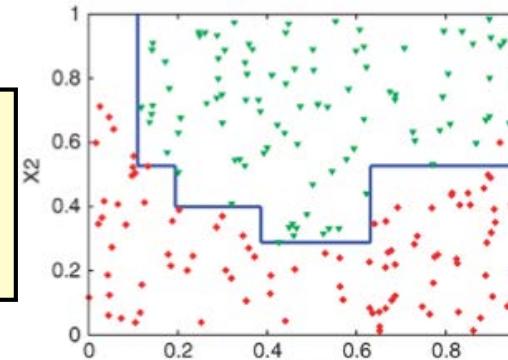
<u>Sample</u>	<u>Attributes</u>	<u>Truth</u>
Data point 1	size1 optic-type1	brightness1... “defect”
Data point 2	size2 optic-type2	brightness2... “camera flaw”
Data point 3	size3 optic-type3	brightness3... “debris”

2-D Attribute space

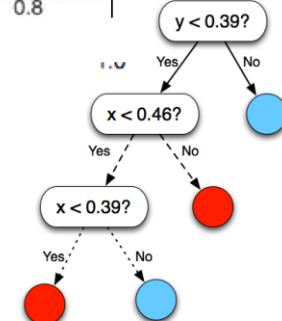
Grow Decision Trees

Divide up feature space along straight lines

Use a different subset of the data for each tree



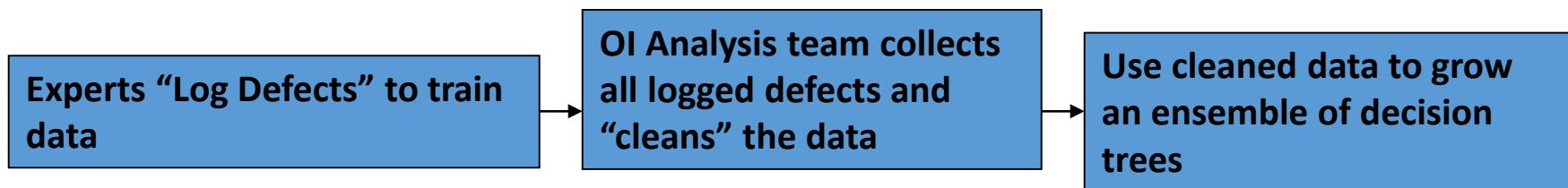
Decision tree



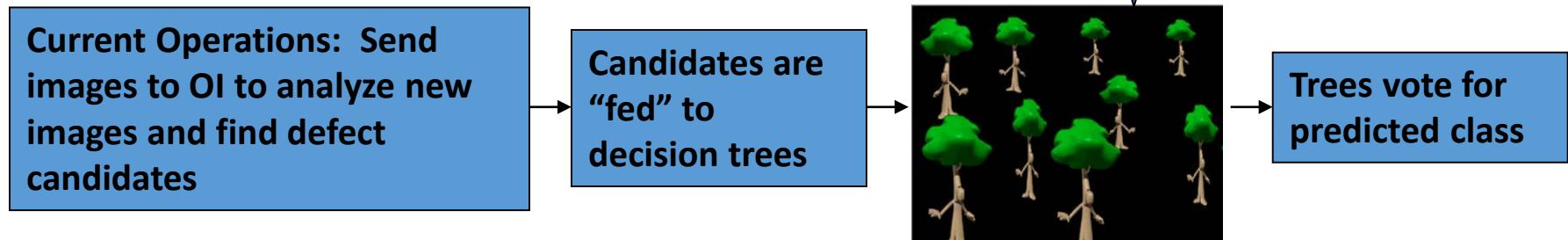
Output: Rules for labeling new, unlabeled data: A partitioning of attribute space with which to classify (predict the classification of) new data points

Steps for applying supervised machine learning (ensemble of decision trees) to NIF main laser optics inspections

Training phase

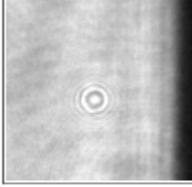
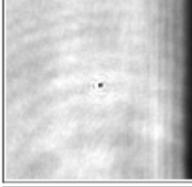
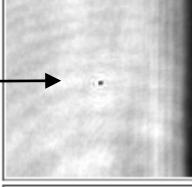
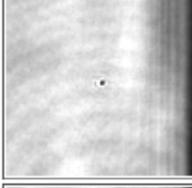
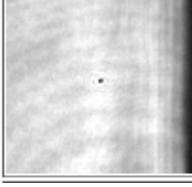


Test or prediction phase

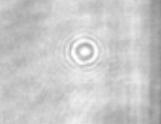
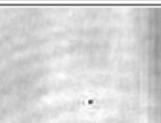
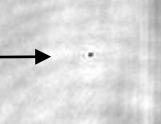
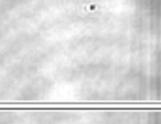


Probability for a class is the percentage of trees that voted for that class. These are presented as $P(\text{Defects})$ on GUI.

OI software tracks defects through history, so if a candidate defect was classified during any one inspection....

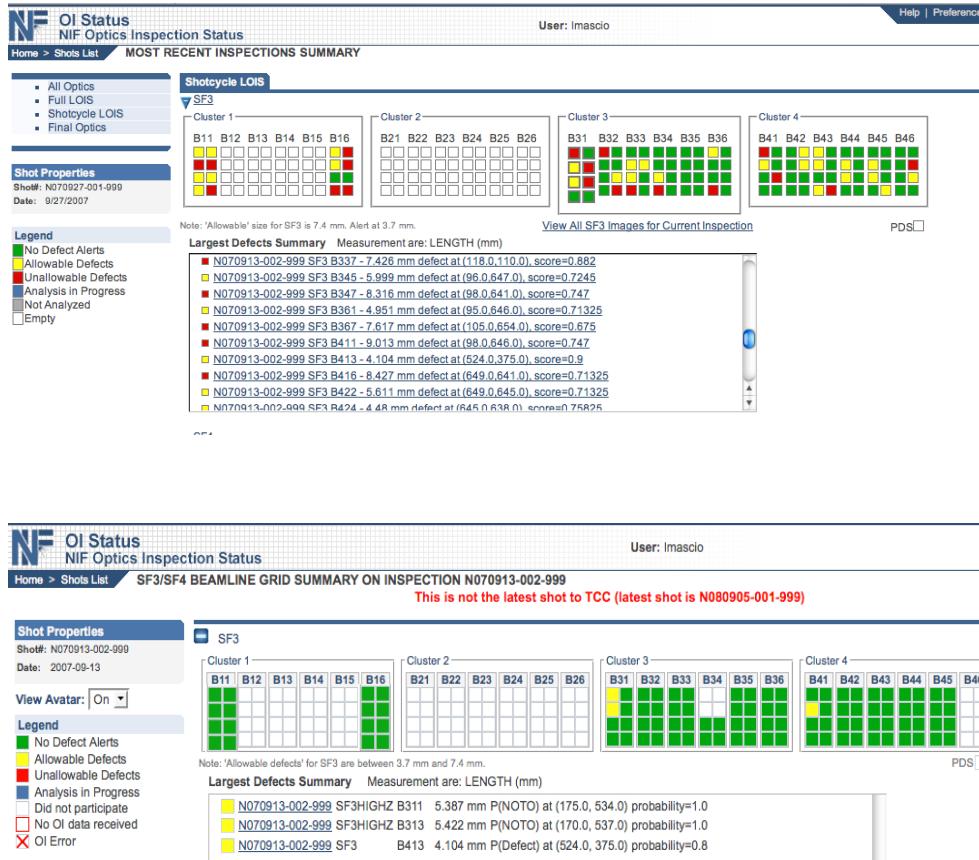
Shot Id	Image Id	Defect Name Id	Beamline	System	Defect Id	Comment Id	Classification	Thumbnail
N050719-001-999	44129	663592	314	SHOTCYCLE_SF3	697238			
N050729-001-999	44364	663592	314	SHOTCYCLE_SF3	698434			
N050801-001-999	45114	663592	314	SHOTCYCLE_SF3	703542	1. Label as “defect” once		
N050803-002-999	45235	663592	314	SHOTCYCLE_SF3	703542			
N050804-001-999	45320	663592	314	SHOTCYCLE_SF3	703906			

... we could apply the same “expert truth” label to each instance in history to get nearly 6000 data points!

Shot Id	Image Id	Defect Name Id	Beamline	System	Defect Id	Comment Id	Classification	Thumbnail
N050719-001-999	44129	663592	314	SHOTCYCLE_SF3	697238		defect	
N050729-001-999	44364	663592	314	SHOTCYCLE_SF3	698434		defect	
N050801-001-999	45114	663592		1. Label as "defect" once				
				2. Apply label to all				
N050803-002-999	45235	663592	314	SHOTCYCLE_SF3	703542		defect	
N050804-001-999	45320	663592	314	SHOTCYCLE_SF3	703906		defect	

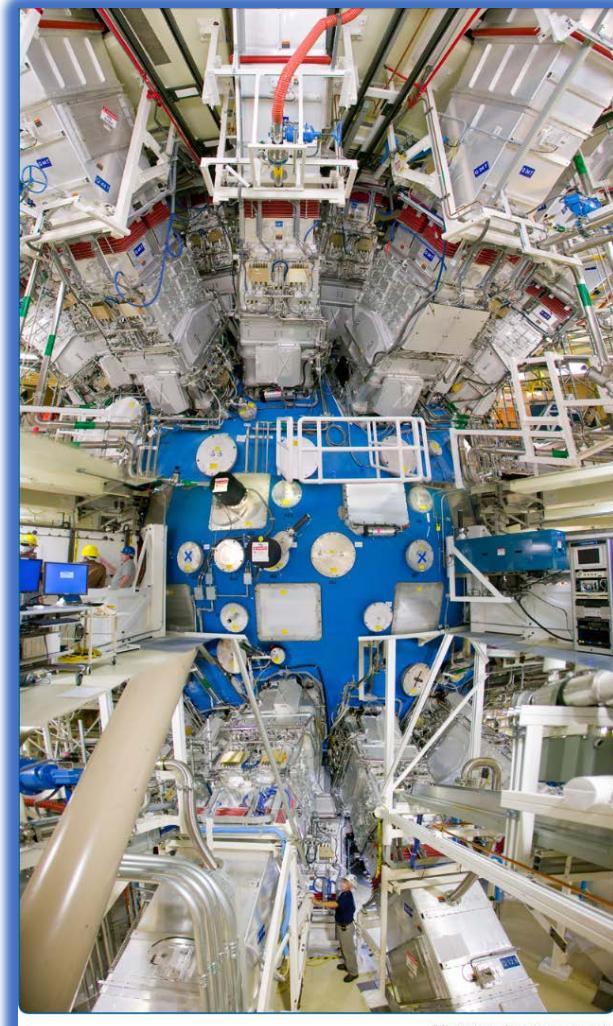
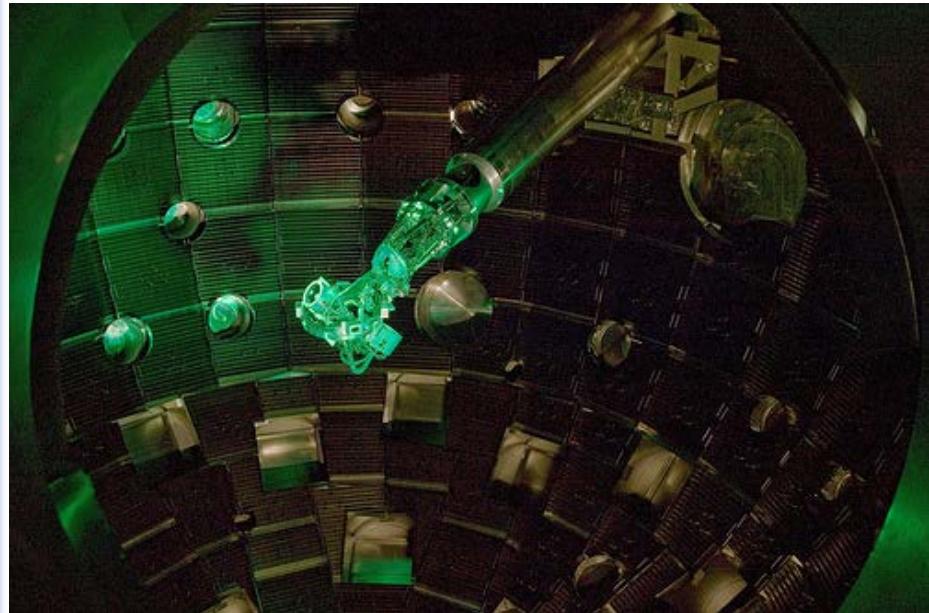
With traditional image analysis alone, the Inspection Summary Chart had too many false alarms to follow-up within the time constraints

Before ↓ After



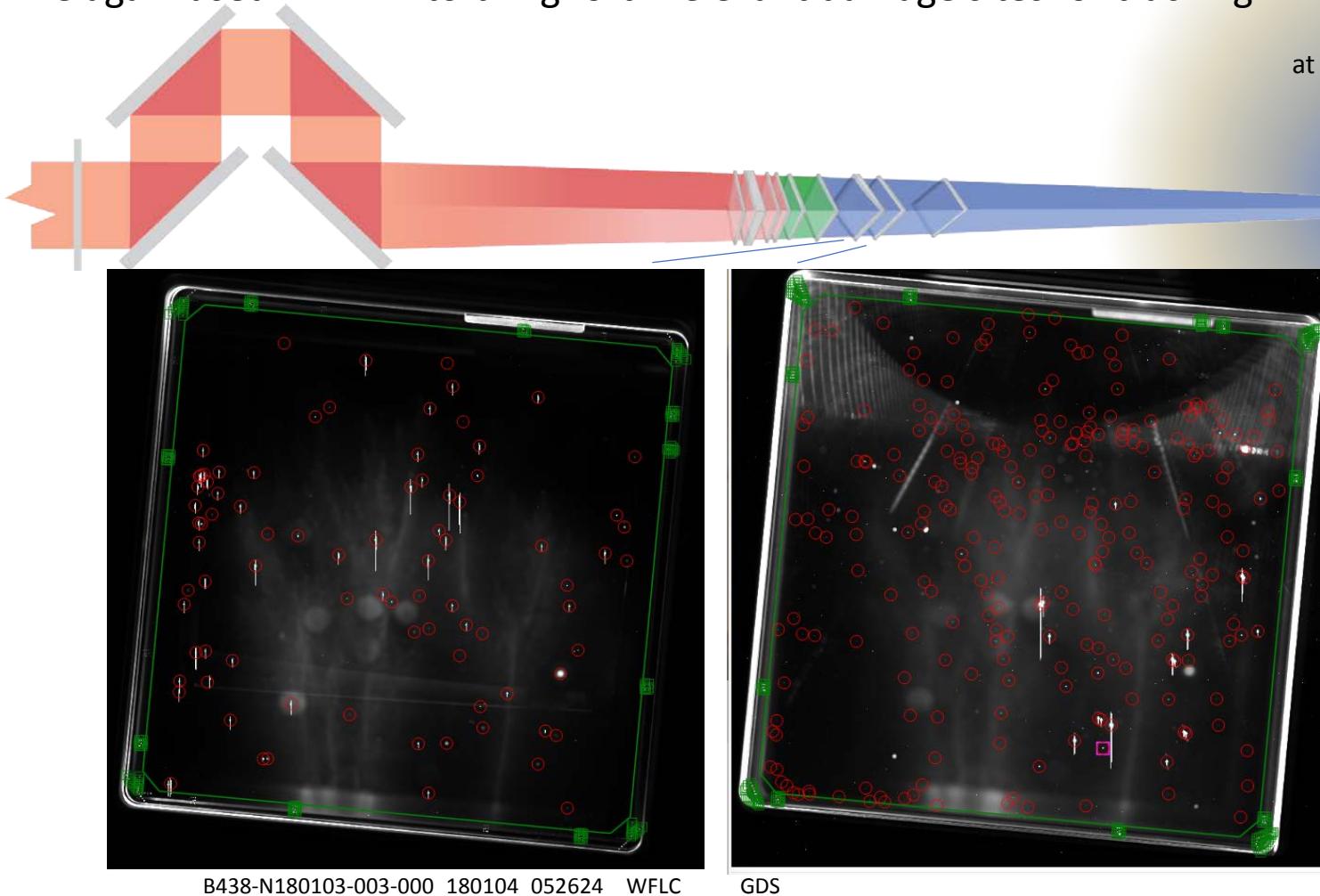
Reduction of false alarms allows operators to focus on the most relevant subset of the optics from 192 beamlines.

The Final Optics Damage Inspection (FODI) system includes a high resolution camera on a hexapod positioner inserted at Target Chamber Center

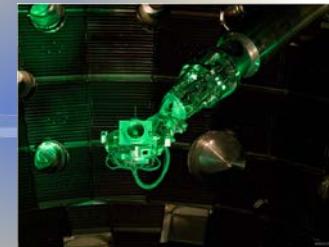


This system can image tiny damage sites (~20 microns) on optics from ~6.9 to 60 meters away (Debris Shield through LM4).

We again used ML-EDT to bring forth relevant damage sites for tracking

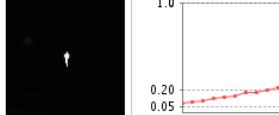
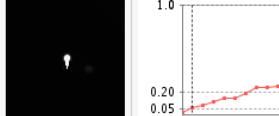
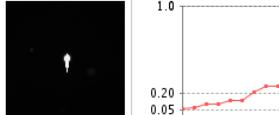
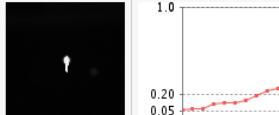
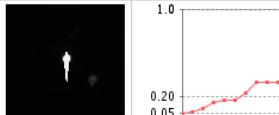
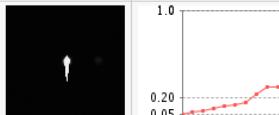


FODI Camera
at target chamber center



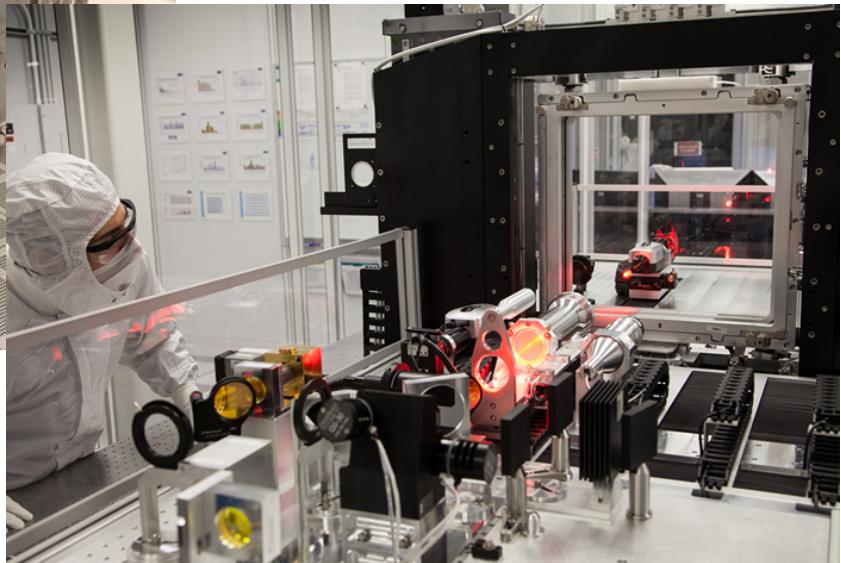
Some detectable sites are damage/pits (actionable), while others are hardware reflections, stray/out-of-focus light, previously-repaired damage or camera flaws (not actionable)

We monitor growth of relevant sites and any approaching its optic-specific size limit is “blocked” until it can be removed and repaired

Quad	Beam	Optic Type	Optic SN	Taxon	Flaw Information										Blocker Information			Image	Growth Chart	Generate Blocker NCR 5 (5)
					Flaw Id	Observed Size (mm)	Dwg X (mm)	Dwg Y (mm)	Flaw Classification	First Seen	Last Seen	Growing?	Has Grown?	Available Blockers	NCR Number	I-Stat				
Q24B	B246	WFLF	272049	Mod4_A2_RAM	10507953	0.219	206.5	109.1		FODI	N120422-001-999_120423_112222	1	1	NULL					<input type="checkbox"/>	
Q24B	B247	WFLF	271167	Mod4_A2RAM_RAM	3328371	0.250	381.1	125.7	OMF SCRATCH, UNDAMAGED	ELV	N120422-001-999_120423_111632	1	1	456633	4.1				<input checked="" type="checkbox"/>	
Q24B	B247	WFLF	271167	Mod4_A2RAM_RAM	11151729	0.266	387.5	109.3	MITIGATED - RAM2000-E_4	FODI	N120422-001-999_120423_111632	1	1	457388	4.1				<input checked="" type="checkbox"/>	
Q24B	B247	WFLF	271167	Mod4_A2RAM_RAM	11115471	0.256	347.6	114.7	MITIGATED - RAM2000-E_4	FODI	N120422-001-999_120423_111632	1	1	458003	4.1				<input checked="" type="checkbox"/>	
Q24B	B247	WFLF	271167	Mod4_A2RAM_RAM	3305757	0.332	349.2	55.8	MITIGATED - RAM2000-E_4	OPL	N120422-001-999_120423_111632	1	1	456733	4.1				<input checked="" type="checkbox"/>	
Q24B	B247	WFLF	271167	Mod4_A2RAM_RAM	11036678	0.302	313.3	186.4	MITIGATED - RAM2000-E_4	FODI	N120422-001-999_120423_111632	1	1	457263	4.1				<input checked="" type="checkbox"/>	
Q24B	B247	WFLF	271167	Mod4_A2RAM_RAM	11058819	0.222	242.2	263.4		FODI	N120422-001-999_120423_111632	1	1	NULL					<input type="checkbox"/>	

Optics are removed from NIF, repaired and then re-used on NIF

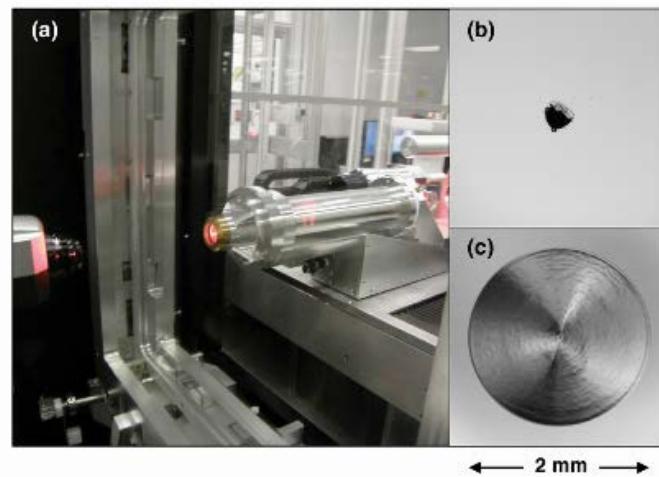
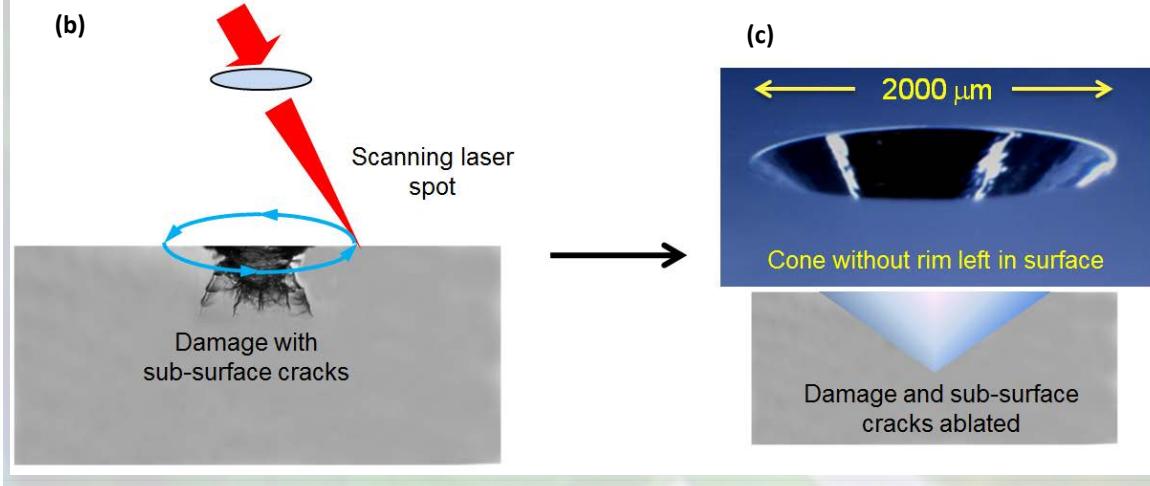
Optics are removed from NIF and brought to this Optics Mitigation Facility to repair each relevant damage site



NIF recycles optics by finding, tracking and repairing sub-millimeter damage sites

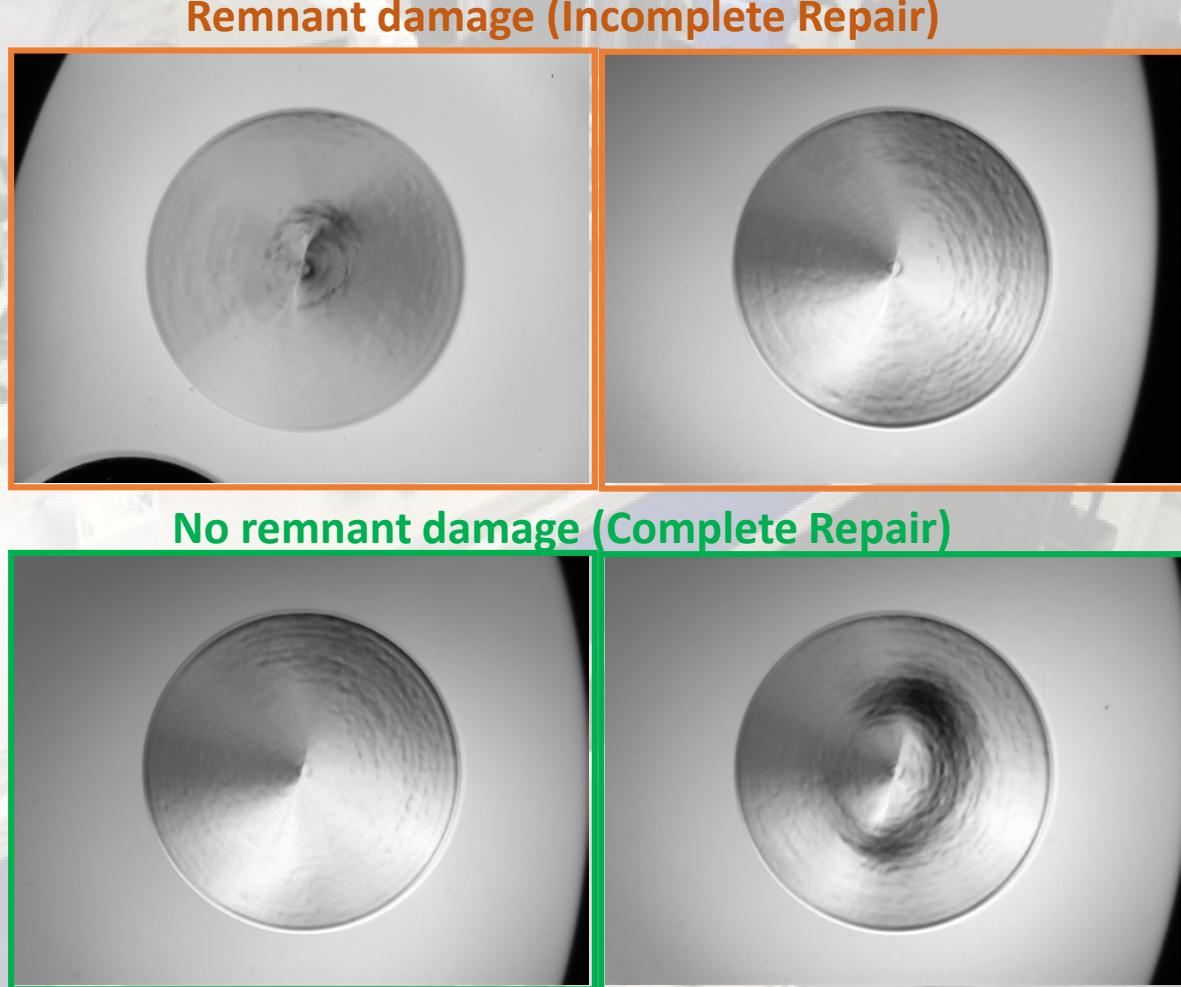
- OMF repairs sub-mm damage found on NIF optics by etching a small cone over the damage site.
- This will effectively “erase” the damage from the view of NIF’s pulsed laser light allowing it to disperse evenly.

Slide by Nathan Mundhenk



Remnant damage was difficult-to-detect even for expert operators

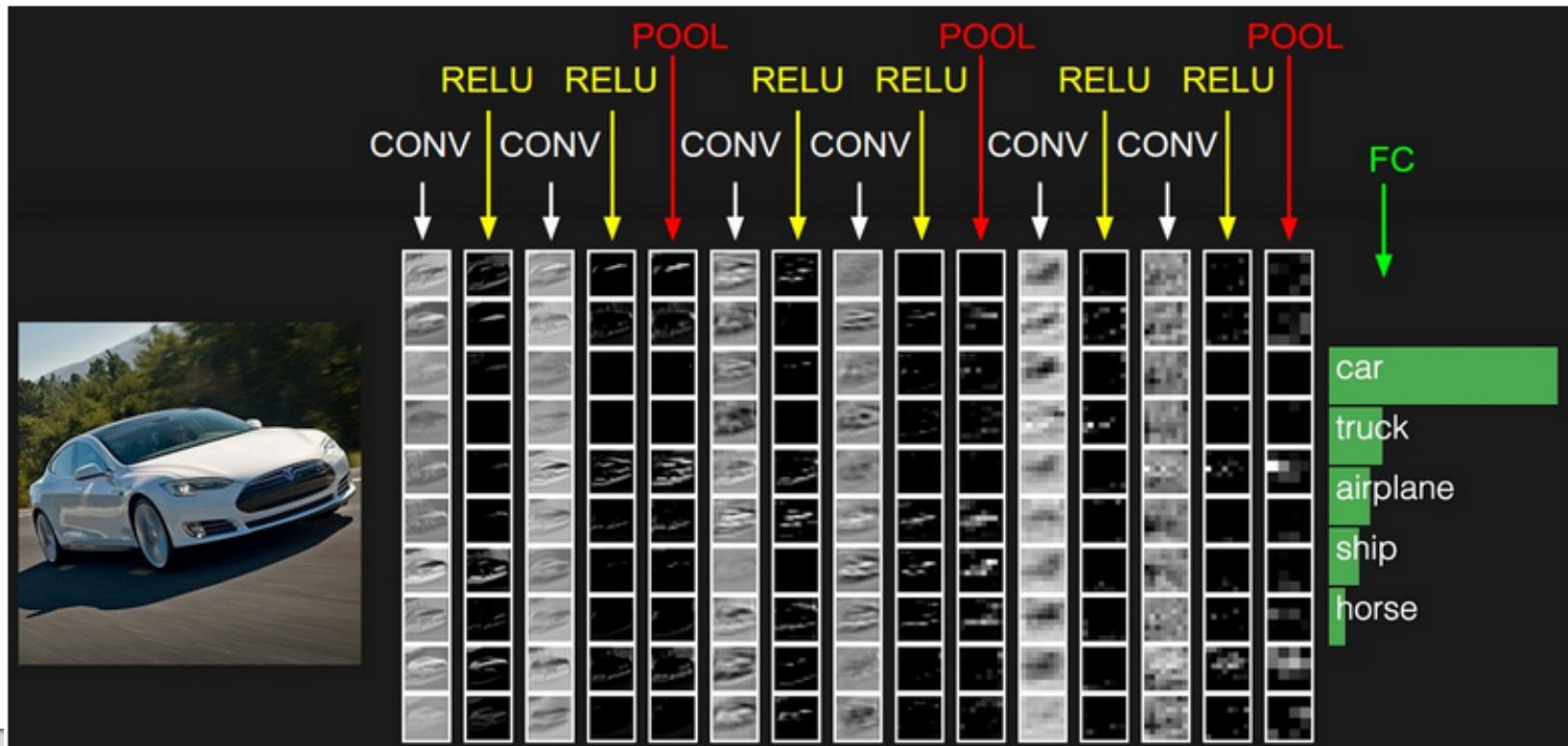
- Expert operators watched a video of the entire repair process (0.3 – 5 minutes) before an image of the final repair is captured.
- The final, still image can be nearly inconclusive to the human operator without context from the video.
- In 2016 we compared machine learning methods using only the final, still image. [TN Mundhenk, LM Kegelmeyer, SK Trummer]



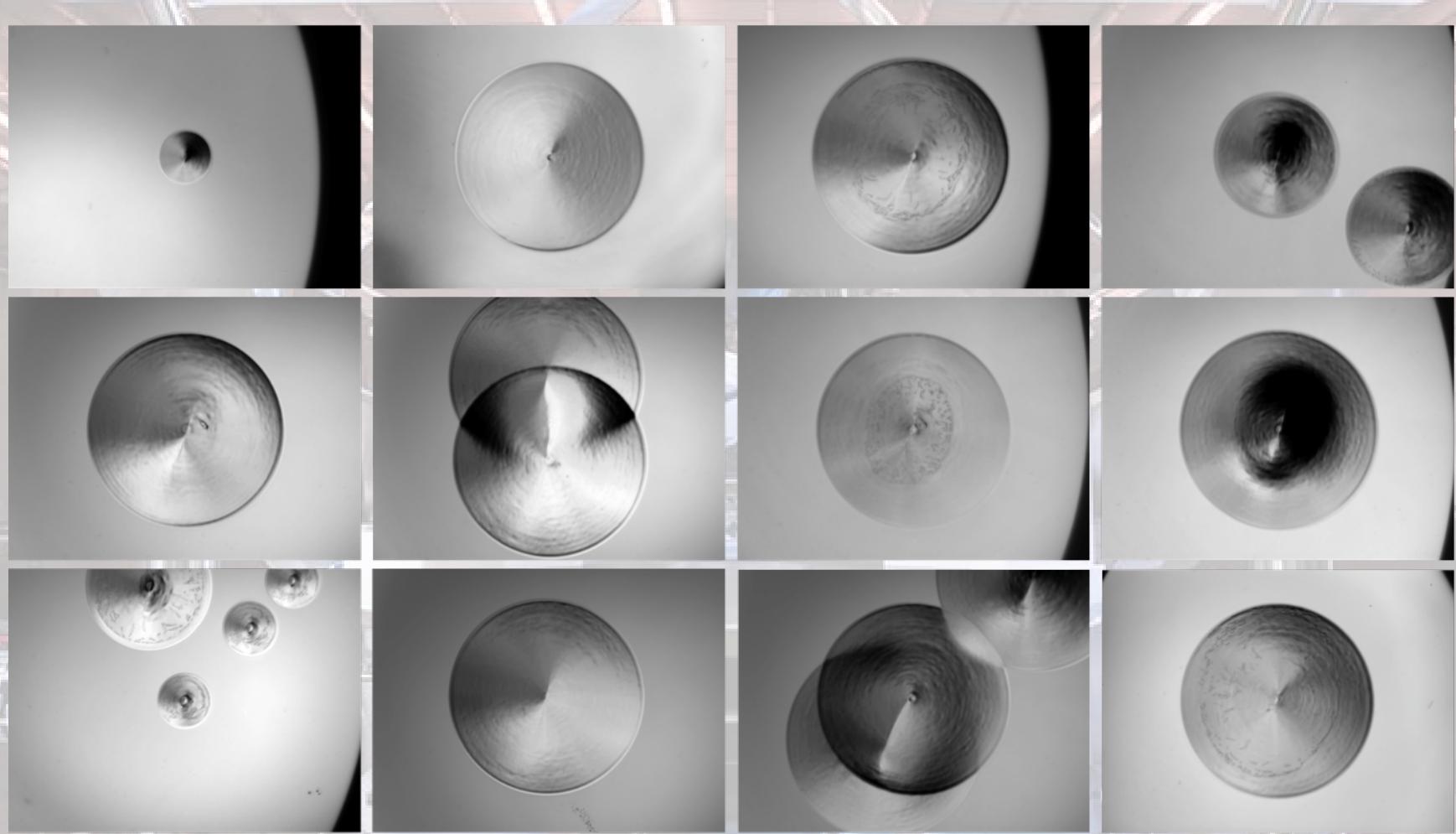
Slide by Nathan Mundhenk

Transfer Learning: take a Convolutional Neural Net (CNN) model trained on a different (huge) dataset and re-tune it to work with the image dataset at hand.

- ImageNet (Database): Millions of images from Google with labels Cat/Dog/Truck/Cat ...
- AlexNet (Large CNN): Trained to find what distinguishes one image type from another.
- DamageNet (LLNL): Modified (tuned) AlexNet to distinguish our Hi-Res microscopy sites.



The automated method must handle the subtleties of still images, as well as various repair sizes, configurations, and illuminations



Slide by Nathan Mundhenk

Lawrence Livermore National Laboratory
LLNL-PRES-XXXXXX

We evaluated various supervised ML techniques and found likely improvement over human accuracy (estimated at ~91% worst-case)

Method	Accuracy
Decision Trees	93.55%
AlexNet	96.86%
ResCeption	97.52%
BN-GoogLeNet	97.65%
ResNet-152	97.91%
Inception-v2	98.17%

How to be sure the Machine Learning techniques aren't "cheating"? Use visual feedback.

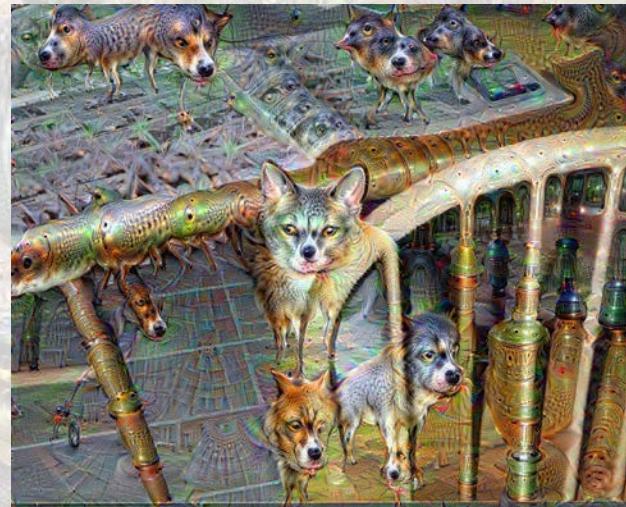
Visualization of results using unsupervised feedback helped evaluate Deep Learning results

- Main idea: Rather than propagate the loss backwards through the network, we propagate the actual network output backwards.
 - This projects the output backwards to the places on the image **most responsible** for the result.
 - This is similar to how information is pushed backwards using Deep Dreams.
 - It is easy to do in *Caffe*. Just switch out the loss values in the “diff” layer with the outputs in the “data” layer and call the backwards phase function of the network.

Slide by Nathan Mundhenk

The network projection looks like its training data

Input Image



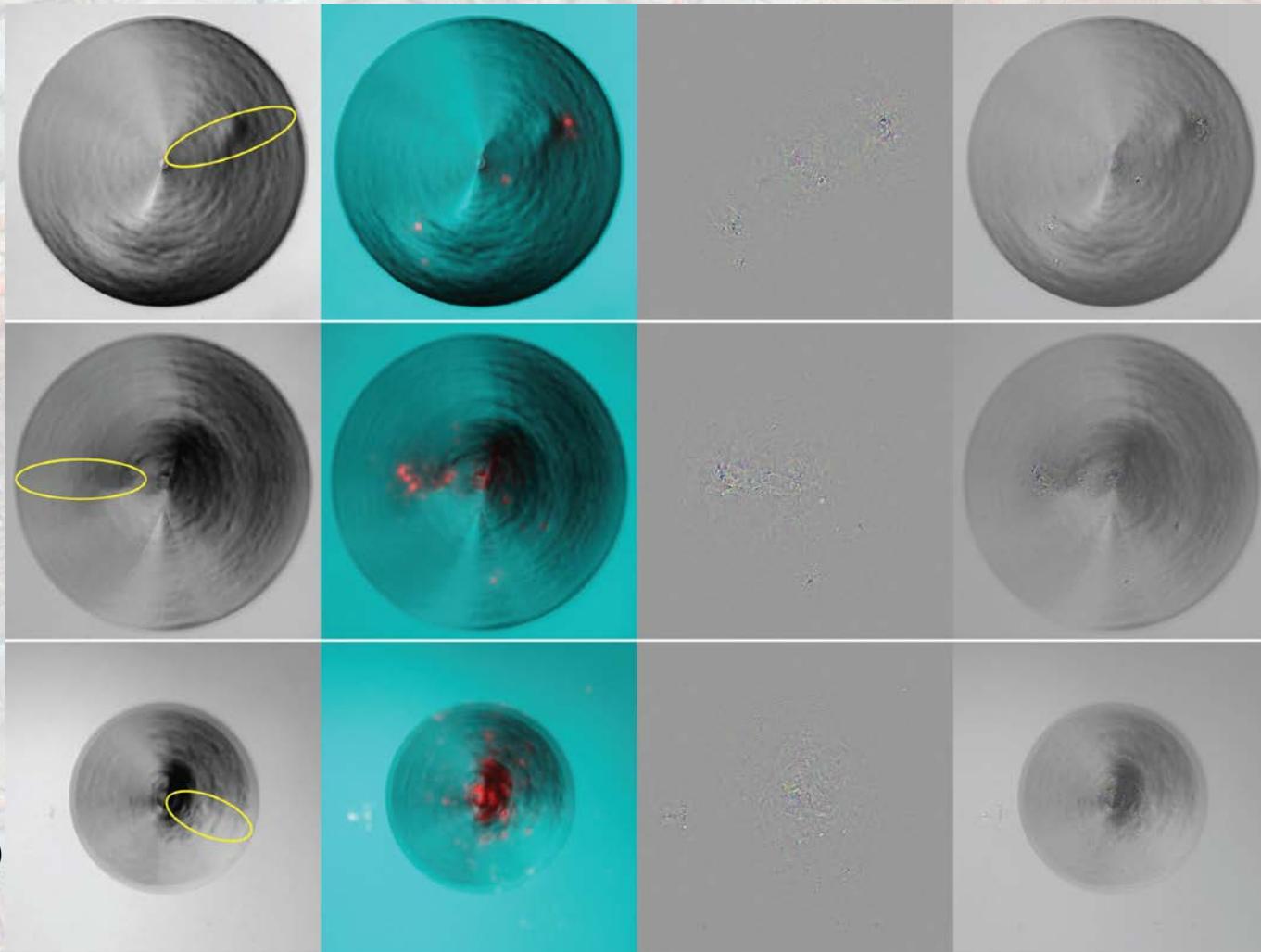
Network trained
on *ImageNet*

Network trained
on *CompCars*
(cars)

Slide by Nathan Mundhenk

Unsupervised Results – backwards projection creates a “heat map” showing areas of focus for the neural net

- Three images selected at random with detected remnants.
- Yellow ellipse is the ground truth provided by operator.

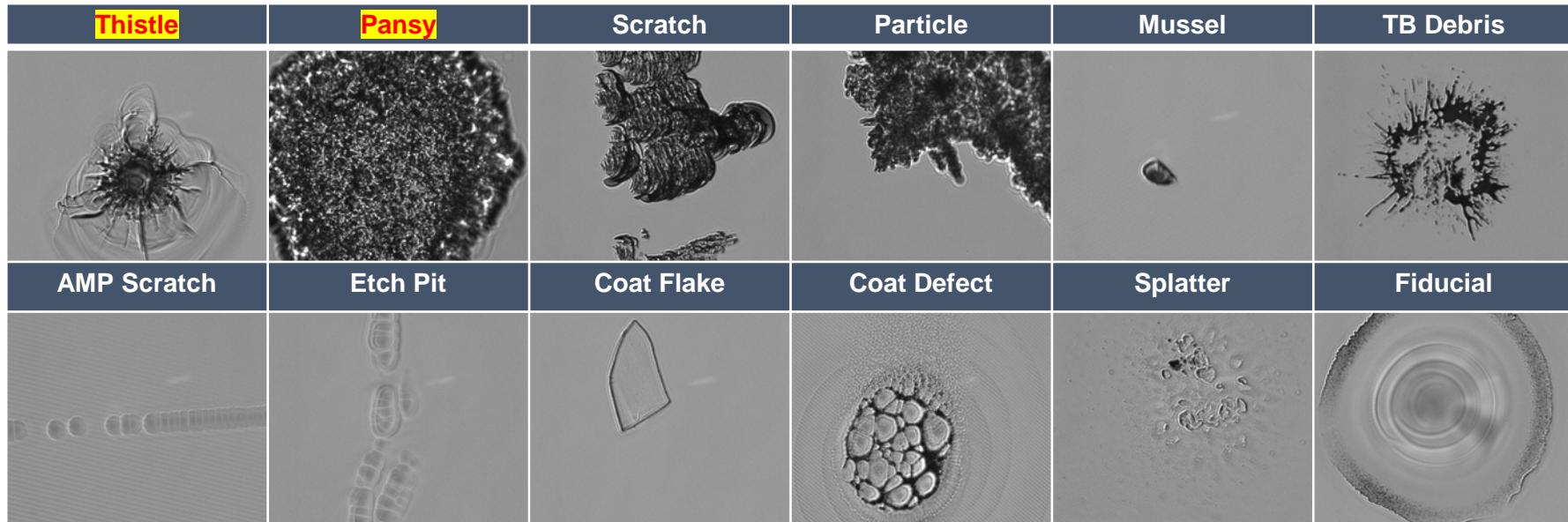


Model	Accuracy
AlexNet	96.86%
Inceptionv2 (5x cross-validation)	98.80%

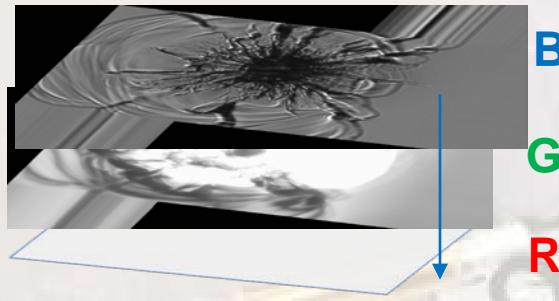
Slide by Nathan Mundhenk

Summer 2017: Use transfer learning to automatically classify 12 types of damage morphology from (View) scanning microscope

- Only a small fraction of tiny sites need to be repaired.
- Automatic classification makes it feasible to repair only these.



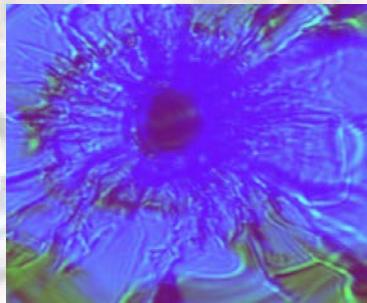
Human SMEs use two illuminations to classify sites. We input different modalities for our transfer learning by taking advantage of the fact that ImageNet consisted of color images.



B

G

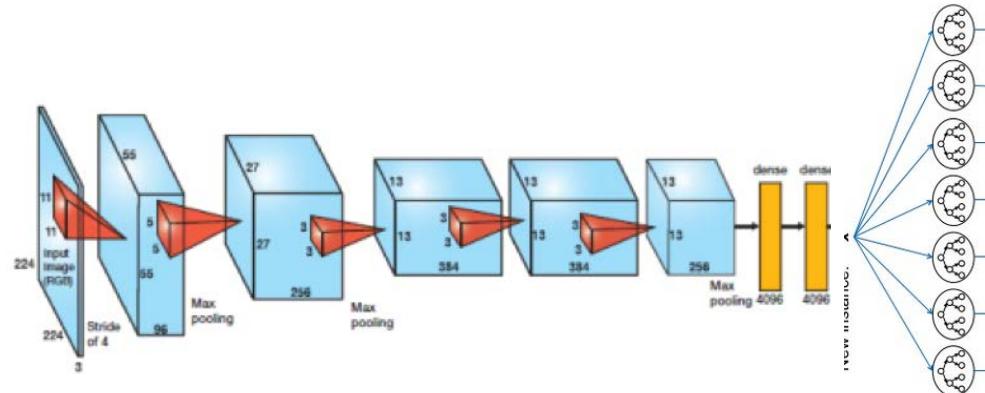
R



Backlight (**B**) and Coaxial (**G**) illumination images of damage sites were concatenated into a color image to prepare them for the CNN

We improved the already-high accuracy results of two established deep learners by replacing the final decision-making layer of AlexNet with an ensemble of decision trees.

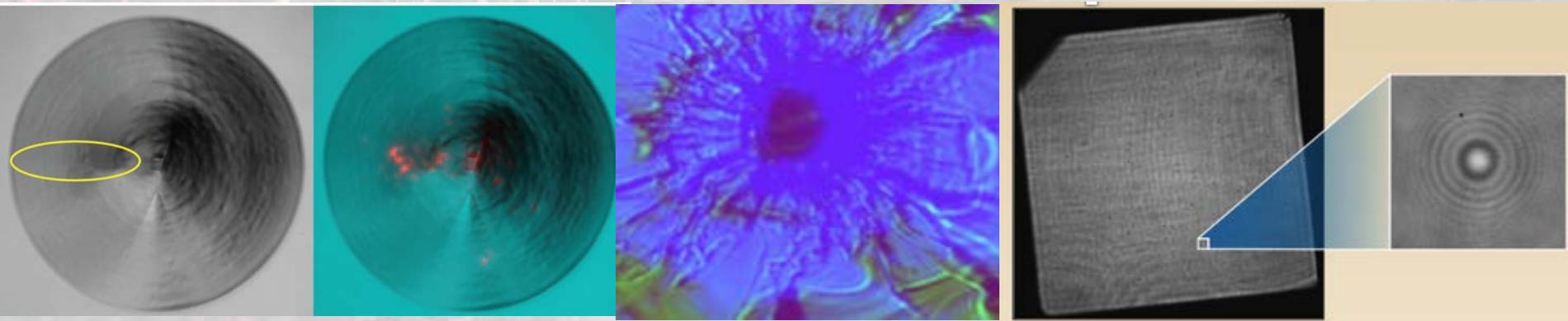
[Connor Amorin (UMass Amherst), Laura Kegelmeyer, Philip Kegelmeyer (Sandia)]



Model	Image Size	Test Accuracy *5-fold cross-validation	
		12-class Damage Dataset	2-class Remnant Dataset [1]
AlexNet	352x352	*97.40%	96.86%
Inceptionv2	352x352	*98.11%	*98.80%
AlexNet + Ensemble Decision Trees	352x352	*99.17%	*99.28%

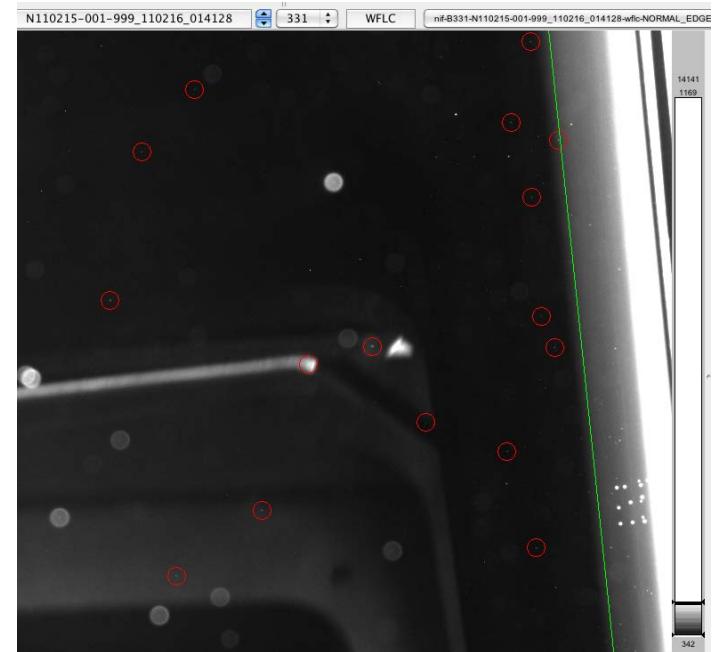
Image Analysis and Machine Learning for NIF Optics Inspection enables an efficient optics recycle loop

- The National Ignition Facility is the world's most energetic laser and recreates conditions on the surface of the sun.
- Monitoring optics throughout their lifetime enables recycling and re-use allowing routine 1.8 MJ of output energy.... And beyond!
- Automated Optics inspection, analysis and machine learning informs and enables an efficient Recycle Loop
- Since ~2007, machine learning, has been used to improve analysis accuracy, automation and quality control to inform and enable the NIF Optics Recycle Loop.



**Lawrence Livermore
National Laboratory**

Some detectable sites are damage/pits (actionable), while others are hardware reflections, stray/out-of-focus light, previously-repaired damage or camera flaws (not actionable)



We again used machine learning (ensemble of decision trees) to distinguish these so we can detect and track relevant sites for repair to extend optic lifetime

area of the object in pixels

Sumint – sum of object intensity_values

Mean

Standard deviation

Median

Min

Max

grx - centroidX, weighted by intensities

gry - centroidY, weighted by intensities

long axis - length of best-fit ellipse

short axis - width of best-fit ellipse

angle - direction of long axis

bgmean - mean intensities pixels surrounding the object

bgstd - standard deviation of the background

snr - peak intensity / bgstd

rgp - mean of roberts gradient along object's perimeter

rgpstd - std of roberts gradient along object's perimeter