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Abstract
Resource managers in modern HPC batch systems allocate
compute resources (nodes) to parallel compute jobs. Users
submit scripts to launch parallel programs along with re-
quests for nodes and time. While the available compute re-
sources on HPC clusters have grown rapidly over the years,
the bandwidth of parallel filesystems used by these clus-
ters has not kept pace. Modern batch systems do little or
nothing to efficiently share IO resources among jobs, and
IO-intensive jobs can thrash the filesystem if they are sched-
uled together, causing dramatic slowdowns. Unfortunately,
while HPC users provide up-front estimates of node and time
requirements, they typically know very little about their pro-
grams’ IO requirements. The scheduler is thus blind to the
IO resource usage of submitted jobs.
This paper introduces a set of techniques to enable IO-

aware scheduling without burdening HPC users. We show
that neural networks can be used to predict the runtime
and IO behavior of HPC programs, based only on submitted
job scripts. Runtime prediction of batch jobs is not new,
but we show that our technique is more accurate than prior
approaches, and that it requires no manual parsing or a priori
knowledge of the jobs. We further show that by combining
our predictions with queue simulation, we can predict IO
bursts with good accuracy. This allows HPC centers to warn
users about upcoming periods of high IO usage. It also has the
potential to enable truly practical IO-aware scheduling, by
giving resource managers detailed insight into the behavior
of jobs in the queue, without any help from HPC users.

Keywords Convolutional Neural Network, IO-Aware Sched-
uler, IO Prediction

1 Introduction
HPC users submit job scripts to a batch system with requests
for compute resources (nodes) and time. The batch system is
responsible for scheduling these jobs in a way that efficiently
shares the system’s resources. Current schedulers consider
only compute and time, but jobs still contend for other re-
sources. For example, co-scheduling many I/O-intensive jobs
can heavily impact performance as they thrash the paral-
lel filesytstem. This will only worsen in the future, since
per-compute-node bandwidth to the parallel filesystem is
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Figure 1. Heatmap of user requested runtime versus ac-
tual job runtime for nearly 300,000 HPC jobs shows that
users over-estimate the time needed for job execution. The
heatmap values have been loд2 normalized to show more
detail.

decreasing over time. To solve such contention issues, next-
generation schedulers must consider resources like I/O and
network bandwidth [5] in addition to compute.
To effectively manage jobs constrained by multiple re-

sources, schedulers need accurate estimates of each job’s
resource usage. Users provide a maximum runtime for each
job at submission time. However, jobs are typically termi-
nated if they exceed their requested time, so users are highly
incentivized to overestimate, and the requested runtime is
seldom accurate. Figure 1 shows how users over-request time
for their jobs. The average overage for 300,000 jobs in 2016
on a large cluster in a national laboratory was 231 minutes.
This may seem bad, but the situation with I/O is worse.

Users must provide compute and time requirements up front,
before they submit their jobs, but they are not required to
estimate their I/O usage. In fact, users in scientific computing
do not typically have a good understanding of their jobs’ I/O
requirements, or the time to learn how to estimate them.
So, they cannot be relied upon to provide accurate esimates.
This means that schedulers have little information to use
when making resource allocation decisions for I/O.
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An I/O-aware scheduler needs to know when contention
for I/O resources is high, and this requires accurate predic-
tions of runtime and I/O bandwidth usage for each job. A
practical I/O-aware scheduler must do this without placing
any additional burden onHPC users. In this paper, we employ
machine learning to predict the resource usage of queued
jobs. Previous work has also utilized machine learning for
runtime prediction [17], and has shown that this approach
can yield better runtime estimates than those provided by
users. However, this work also required significant mainte-
nance effort, in that new parsers need to be developed and
maintained over time to extract necessary information from
job scripts. This approach is tedious and unscalable.

In this paper, we extend the existing work and show that
neural networks can be used to parse job scripts without
any human effort to understand features in the scripts. We
transform entire job scripts into image-like data and use the
images to train a Convolutional Neural Network (CNN) for
resource usage predictions, and we show that our approach
is general and can be applied just as easily to I/O predictions.
Our results show that our methods predict runtime more
accurately than previous methods, and that we can predict
jobs’ I/O behavior with similar accuracy. We further show
that our prediction can be used as input for a queue simulator,
and that this approach can accurately predict future I/O
bursts on large clusters. The contributions of this paper are
as follows:

• Amethod for predicting resource usage of queued jobs
in an HPC system using neural networks to interpret
unstructured, unannotated job scripts;
• A validation of the accuracy of our method for predict-
ing runtime and I/O; and
• A technique for I/O burst prediction that uses the
above predictions in conjunction with queue simu-
lation

We conclude by showing that our system can tolerate at
least 57.9% and 36.4% mean turnaround time and aggregate
IO prediction error to predict future I/O bursts with >50% ac-
curacy. Our approach to predicting expected resource usage
of HPC jobs is portable to many different HPC systems, and
it requires no help from the HPC system users. We expect
that these techniques can form the basis of a truly I/O-aware,
practical resource manager.
The rest of this paper is organized as follows: Section 2

compares our method with other state of the art methods;
Section 3 differentiates between parsed and unparsed job
scripts; Section 4 describes how to capture knowledge from
unparsed job scripts; Section 5 presents runtime and I/O
predictions of real HPC data; Section 6 uses our prediction in
an I/O-aware scheduler; and Section 7 concludes the paper.

2 Related Work
Many HPC job resource usage prediction methods have been
proposed. Previous methods have involved a variety of ma-
chine learning algorithms, familiar and novel. A variety of
data sources are used to obtain information about jobs, in-
cluding log files, job scripts, and job traces. The common
attribute of each method is the parsing of text for features.
The features parsed from text files (i.e., logs, job scripts, and
job traces) are used with machine learning algorithms to
produce resource usage predictions.

Most of the previous efforts for job resource usage predic-
tion has focused on runtime predictions and derivatives of
runtime, like turnaround time and wait time. Smith, Foster,
and Taylor used historical HPC job data to predict runtime
in [16, 17]. Runtime predictions are obtained through a lin-
ear regression model which is trained on jobs similar to the
job being predicted. Job similarity is calculated with several
parsed text features, including user and job queue. For sake
of our comparisons, we replicated the work of Smith, Foster,
and Taylor and compared the state of art method in the paper
a Random Forest (RF) regressor. We trained and obtained pre-
dictions from the RF with the exact same parsed text features
as in the paper for two of the four datasets in the Smith, Tay-
lor, and Foster’s paper. We verified the prediction accuracy
of the RF with a comparison to results in the paper. Table 1
shows the Mean Absolute Error (MAE) for runtimes from
the Smith and co-workers’ paper and from the RF model. We
matched or improved the runtime error with the RF model.
This indicates the RF model is comparable to the state of the
art method described in the paper if not better. We parsed
features (e.g., user, job queue, requested time, and job name)
from the job scripts and job logs in our dataset to use with
the RF model. The parsed features and RF model provides
a representation of prediction accuracy for state of the art
methods for comparison during our selection of parameters
and evaluation of our method.

Other runtime prediction papers have utilized similar tem-
plates of parsed text features andmachine learning algorithm
as Smith, Foster, and Taylor. For example, Krishnaswamy,
Loke, and Zaslavsky develop similarity templates for predict-
ing job runtime based on parsed text features in [7]. Cunha et
al. use a k-Nearest Neighbors (kNN)model to predict runtime
and turnaround time for HPC jobs in [3]. This work utilizes
parsed text features from job scripts augmented with data
from the scheduler, such as number of jobs in the queue at
job submission time. Tsafrir, Etsion, and Feitelson predict job
runtimes based on a user-centric model in [18]. They average
users’ previous job runtimes and use this as an estimation
for the runtime of the next job submitted by a user. Downey
developed a statistical model for predicting the queue time
of a job based on jobs already running on an HPC system
in [4]. Similarly, in the work of Nurmi, Brevik, and Wolksi a
statistical method is developed, QBETS, to predict wait times

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

From Job Scripts to Resource Predictions: PPoPP’18, February 2018, Vosendorf, Austria

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Runtime MAE (minutes)
Dataset Data Size Smith, et al. [17] Our Replication
SDSC95 76,840 59.65 35.95
SDSC96 32,100 74.56 76.69

Table 1. Mean Absolute Error (MAE) for runtime from the Smith and co-workers’ paper and from the RF model considered in
this paper as the state of the art method because of its accuracy.

for jobs [13]. Both of these works make predictions from
wait times of jobs currently running on a system and do not
build a prediction model based on job properties. Chen, Lu,
and Pattabiraman present a method for predicting runtimes
of jobs being executed using parsed features from log files
and a hidden markov model [2].
A smaller body of work has also focused on prediction

of other job resources, such as IO, CPU, and memory usage,
based on parsed text features. McKenna et al. test several
machine learning methods for predicting runtime and IO
usage of HPC jobs in [11]. They test kNN, decision tree, and
RF models with parsed text features from job scripts and
job logs. Rodrigues et al. predict job runtime, wait time, and
memory usage with an ensemble of machine learning algo-
rithms, including kNN and RF, in [14]. Their method parsed
text data from log files and batch scheduler logs. Matsunaga
and Fortes investigate the prediction of many job features,
such as CPU, memory, and IO usage with several machine
learning algorithms using parsed text features in [10].

To the best of our knowledge, no previous work has been
published on the use of resource predictions to predict IO
activity, such as IO bursts, for IO-aware schedulers.

All previous efforts for predicting job features have relied
heavily on features parsed from text files. The use of parsed
text has several disadvantages, which we discuss in Section 3.
Our methods are novel in that we perform no parsing of text
to obtain usable features. By doing so, we avoid the many
disadvantages associated with parsed text features.

3 Parsed vs. Unparsed Job Script Data
Real data from supercomputers plays a key role in ourmethod.
Here we describe the dataset used, its content, and the novel
approach we propose in using it.

3.1 Data Description
Datasets from supercomputers can comprise user-submitted
job scripts, scheduler job logs, and system monitoring data.
Job scripts are the user-submitted text files which contain
parameters for the scheduler and a set of commands to exe-
cute an application. Information in job scripts is available at
the time of the job submission. Job logs contain information
about the job submission and execution, such as submission
time, start time, and runtime. Logs’ information is normally
available after a job has executed. System monitoring data
has information about how each job used the HPC resources

during execution, such as total bytes read and written to a
PFS.

Datasets are split into features and target values. Features
are broadly defined as any information about a job which is
available before a job is executed. This includes the entirety
of job scripts and some values from the scheduler job logs
(e.g., submission directory and user). Target values describe
the resource usage of the executed jobs that we predict. Run-
time comes from the scheduler job logs and bytes read and
written come from the systemmonitoring data. For our work,
we consider only data available before the execution (i.e., job
script text) for resource usage prediction.

3.2 Limitations of Parsed Job Script Data
We state in this paper that job features about resource usage
are embedded in the job scripts. State of the art resource
prediction methods often parse and process these files’ text
to extract features in addition to features extracted from log
files. However, capturing useful information for resource
predictions from job scripts and logs comes with four key
limitations.

First, parsed features represent a small amount of the pre-
execution information available about a job. Job scripts and
job logs contain consistently structured lines which can be
parsed for information. In addition, job scripts contain many
lines for application execution which are application-specific
and non-trivial to parse for features’ extraction. Figure 2
shows an example job script with easily parsed features at
the top and many lines for application execution which are
more difficult to parse. Many potentially meaningful features
are not used in state of the art resource prediction due to the
difficulty associated with parsing these parts of the files. Sec-
ond, features that can be parsed from job scripts and job logs
require development and maintenance of parsing methods.
Development of text parsing methods is a time-consuming
and error-prone task which increases the cost to obtain ac-
curate resource predictions. Additionally, if job scripts or
scheduler logs change, parsing methods are liable to break.
The need for maintenance of parsing methods further in-
creases the cost of resource prediction using parsed features.

Third, features which are parsed from text must also be
processed into usable data types. Machine learning algo-
rithms used in state of the art methods require either numer-
ical or categorical data. Yet, many parsed features from job
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Figure 2. Example of job script with lines that are easy to
parse and lines that are difficult to parse.

scripts and job logs are date-time and string values. These
features must be appropriately processed into numerical or
categorical values for resource usage prediction. The need to
develop and maintain these processing methods adds to the
cost of predicting resource usage. Last, the development and
maintenance costs of parsing and processing features from
job scripts and job logs is incurred for each machine where
these methods are applied. Different HPC machines are not
guaranteed to accept job scripts of the same format and may
produce vastly different scheduler logs. This means that cus-
tom parsing and processing methods need to be developed
and maintained for each HPC machine.
To sum up, limited usable information, high costs, and

lack of portability make parsing text features for state of
the art resource prediction methods undesirable. These rea-
sons help describe why state of the art resource prediction
methods are not more widely deployed on HPC machines.
Our method does not rely on parsed text features and avoids
these limitations.

3.3 Benefits of Unparsed Job Script Data
We overcome the problems associated with parsing features
from text in job scripts by transforming the entire unparsed
job scripts into images and use these images to perform
resource usage prediction. Using the transformed unparsed
job script text allows us to utilize all information available
in a job script. Features which cannot be easily parsed are
now included in the image. By considering the entire job
script, both the features parsed with state of the art methods
and features that are not parsed are all used to predict job
resource usage.
The high cost of obtaining and processing parsed text

features described in the section above is replaced by a low
cost automated method for transforming unparsed text into
images. Our method for processing job scripts can be applied
to any unparsed text. Moreover, the automated processing
of unparsed job script text allows our method to be portable
between all HPC machines. Our method works whenever
job scripts are stored as text files. Therefore, there is no need
to customize our method with each HPC machine where it is
applied. Last, the benefits of our method using unparsed text

for resource usage prediction make it ideal for integration
with current and next generation schedulers.

4 Knowledge from Unparsed Scripts
We transform unparsed job script text into images and exploit
the capabilities of CNNs to automatically identify and learn
new job features. Figure 3 shows the overview of the process.
Specifically, our process consists of three steps: we transform
unparsed job script text into image-like data; we exploit the
capabilities of CNNs to automatically identify and learn new
features from the images; and we optimize text to image
transformation and CNN model selection.

4.1 Transforming Job Scripts into Images
Our first step in extracting features from job scripts is the
transformation of the job script text into image-like data to
fit the expected input for a CNN. Because CNNs require a
fixed input size across all data points, we standardize the size
of each job script text to 64 rows of text with 64 characters
in each row. Job scripts with less than 64 rows or columns of
characters are padded with space characters. Job scripts with
more than 64 rows or columns of characters are cropped.
During this process a small amount of data is lost from some
job scripts. Only 9.9% of job scripts have more than 64 lines
of text and 13.8% of job script text lines are more than 64
characters in length. Therefore, a majority of all job script
text data is preserved.
In the transformation process, we map each character in

the file into a pixel value using character embedding. Charac-
ter embedding provides a method to map unique characters
to unique pixels values. Each pixel may contain a single or
multiple channels of information (i.e., each pixel is a single
value or vector of values). We explore four methods for trans-
forming characters to pixel values: binary, simple, one-hot,
and word2vec. The binary character transformation method
is a lossy transformation that converts each character to a
binary single channel pixel. All space characters (i.e., space,
tab) are assigned the value “0” and all non-space characters
are assigned the value “1”. The simple character transfor-
mation method is a lossless transformation that converts
each unique character to a unique single channel pixel. We
convert each standard ASCII character from the job script
text file to a unique integer values. The pixel values of the
transformed job script are then normalized by dividing each
pixel value by the maximum pixel value (i.e., 127).
The one-hot character transformation method is a widely

used lossless transformation that converts each unique char-
acter to a unique 128 channel pixel. Each pixel has exactly 1
channel with value “1” and the remaining are value “0”. The
word2vec transformation method is a lossless transformation
that converts each unique character to a unique multichan-
nel pixel. We use Google’s word2vec method to obtain this
transformation [12]. This method examines the context of

4
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Job	Script	

#!/bin/bash	
#PBS	-q	pbatch	
#PBS	–l	nodes=8	

⋮	
#run_mpirun()	
#{	
mpirun	–np	8	main.py	
#}	 2D	convolu1on	network	

Figure 3. Overview of the method for extracting knowledge on resource usage from unparsed job scripts.

a character (i.e., surrounding characters) to embed informa-
tion about that character in a multidimensional vector. To
obtain relevant character embedding knowledge, we train
the word2vec model on combined training and testing job
script data.

4.2 CNN and other ML Techniques
CNNs have been successfully applied to many image recogni-
tion andNatural Language Processing (NLP) tasks [6, 8, 9, 15].
This feature of CNNs has inspired our use for interpreting
entire job scripts. A 2D CNN is the type of Neural Network
(NN) which is typically used for image recognition. Our 2D
CNN consists of two 2D Convolutional layers after the input
layer. These layers look at rectangular portions of the input
text and pass information to the next layer.

For the sake of completeness, we compare and contrast our
CNN against other NN structures. Our comparison methods
are: 1D CNN, NN, and RF. Each NN has a common struc-
ture of input, hidden, and output layers. The most important
differences between the 3 NNs (i.e., 2D CNN, 1D CNN, and
NN) is the data input layer. A 1D CNN is a CNN which is
adapted for NLP tasks. Similar to the 2D CNN, there are
two Convolutional layers at the input of the network. How-
ever, these layers look at a flattened version of the input
text. Our 2D CNN input image dimension is 64x64 pixels and
the 1D CNN input image dimension is 1x4096. The convolu-
tional layers linear sections of text rather than rectangular
blocks. Standard NNs can also be used to learn from text.
Our NN consists of several fully connected layers. Similar to
the 1D CNN, the NN input is the flattened input text with a
dimension of 1x4096. The NN is different from the 1D CNN
in that each node of the input layer is connected to every
input value. Last, the input of the RF is a combination of
parsed text features. The configuration of RF is based on the
work in [16, 17] and represents the state of art in prediction
methods.

4.3 Training and Parameter Selection
For the training of our method and the other ML techniques
in this and the next sections, we use a dataset with informa-
tion for 295,077 jobs provided by a national laboratory. Each
job in the dataset was executed on a supercomputer at the

laboratory between January 2016 and December 2016. The
supercomputer has 1,296 nodes and a maximum runtime of
16 hours; it is connected to a Lustre PFS. A total of 29,291
jobs in our dataset were either canceled by the user or re-
moved from the system. We do not include these jobs in our
analysis.

We consider which text-to-image transformation method
works best with our CNN and if other NN models provided
any benefits over our CNN. We compare the accuracy of run-
time prediction for the text-to-image transformation meth-
ods and alternative NN models described in the previous
sections. Runtime predictions are obtained by simulating on-
line training and prediction of runtime for jobs in our dataset.
Specifically, we simulate the online training and predicting
of runtime using the real submission times, start times, and
ends times of jobs in our dataset. As new jobs are submitted
in the simulation, we make predictions for their runtime
using our prediction model. The model is trained on histori-
cal job information (i.e., jobs that have already executed in
the simulation). We retrain our model after every 100 job
submissions using the 500 most recently executed jobs.
For our metrics of success, we consider the accuracy of

predictions and the time to train the model. The two metrics
are orthogonal: if training a highly accurate model takes too
long, delays can make the prediction worthless. We measure
the prediction accuracy with relative accuracy. Relative ac-
curacy is an ideal metric because it takes into account the
true value and scales the score accordingly. For example, a
runtime prediction error of 30 minutes is far worse for a
one-hour job than for a three-hour job. Additionally, rela-
tive accuracy has a range between 0% and 100%. Equation 1
shows how we calculate relative accuracy for each job re-
source prediction, where true is the actual value and pred is
the predicted value. The ϵ value in the denominator prevents
division by zero when both true and pred are 0.

relativeAccuracy = 1 −
|true − pred |

max (true,pred ) + ϵ
(1)

We run our training and prediction simulation with the
2D CNN and each of the four embedding methods described
above (i.e., binary, simple, one-hot, and word2vec). Figure 4
shows the runtime relative accuracy with each embedding
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method. The first and third quartiles are the bottom and top
of the box; the median is the red band inside the box; the
mean is the blue dot; and the ends of the whiskers represents
the 95th percentile and 5th percentile. Word2vec embedding
has the highest mean andmedian accuracy of 76.1% and 100%.
The simple character embedding performs second best with
a mean and median accuracy of 73.1% and 95.1%. The time to
transform job script text into images with each embedding
method is negligible in comparison to the time to train our
model (i.e., less than 1%). Therefore, we do not consider
processing time when selecting an embedding method. We
select the word2vec embedding method because it gives the
highest accuracy runtime predictions empirically.
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Figure 4. Relative accuracy for runtime predictions using
binary, simple, one-hot, and word2vec character embedding
methods.

We simulate the online training and predicting with the
word2vec embedding and each of the three NN models as
well as RF. The relative accuracy for runtime predictions of
each model and the RF are shown in Figure 5. Each of the NN
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Figure 5. Relative accuracy for runtime predictions using
2D CNN, 1D CNN, NN, and RF learning models.

structures has similar mean and median runtime prediction
accuracy of 76% and 100%; all three NN structures (i.e., 2D

CNN, 1D CNN, and NN) perform better than state of the
art (i.e., RF) with a mean and median accuracy of 70.8% and
99.1%.
Figure 6 shows the time needed to train each NN model

using the word2vec embedding as well as RF with a training
data size of 500 jobs. The time to train each model with
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Figure 6. Time to train on 500 jobs for 2D CNN, 1D CNN,
NN, and RF learning models.

500 jobs varies considerably. We observe how the 2D CNN
provides the shortest training timewith comparable accuracy
(see Figure 5) of all three NN structures. The results enforce
our selection of CNN as the learning model for our resource
usage prediction method in the rest of the paper.

5 Runtime and IO of Real HPC Data
We assess the accuracy of ourmethod for runtime predictions
and IO predictions using the real HPC data described in
Section 4.3.

5.1 Runtime Predictions
We predict the runtime of each job in our dataset with our
method and the state of the art RF method. Training and
predicting with our method and RF is done using the method
described in Section 4.3. For sake of comparison to Figure 1,
we plot the real runtime versus predicted runtimes from our
method as a heatmap in Figure 7. This figure shows a large
concentration of jobs along the diagonal from the bottom
left to top right of the heatmap. Jobs which fall along this
diagonal have accurately predicted runtimes. Comparing
Figures 1 and 7 shows that more jobs fall along the diagonal
with our predicted runtimes than user requested runtimes,
indicating that our predictions are far more accurate to actual
job runtimes than user requested runtimes.

Figure 8a shows boxplots describing our dataset in terms
of the distribution of actual runtimes for our data. The dataset
source is described in Section 4.3. Nearly half of the jobs have
a runtime between 0 and 1 minute. The mean job runtime
is 44 minutes and very few jobs have runtimes over three
hours. Figure 8b shows the boxplots describing the relative
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Figure 7. Heatmap of predicted runtimes using our method
versus actual job runtime for nearly 300,000 HPC jobs. This
heatmap shall be compared with the heatmap in Figure 1.

accuracy for predicted job runtime of user requested time,
state of the art method, and our method. We observe how our
method has a mean accuracy of 76.1%, an increase of 6.0%
over the state of the art RF method. The median accuracy
for our predictions is 100%, indicating that for over half of
the jobs in our dataset, we correctly predicted the runtime.
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Figure 8. Distribution of actual runtimes for our data (a)
and the relative accuracy for predicted job runtimes of user
requested time, RF, and our method (b).

5.2 IO Predictions
For the IO, we predict two values: total bytes read and total
bytes written using our method (i.e., CNN). We use the same

dataset as in the section above. We report the bandwidth of
each feature rather than the total bytes as this is the value
that an IO-aware scheduler uses. Figure 9a shows the dis-
tribution of read and write bandwidth for our dataset. The
mean bandwidth for read and write is orders of magnitude
larger than the median, indicating a handful of jobs in our
dataset have extremely large IO bandwidth compared to a
majority of the jobs. We predict the total bytes read and total
bytes written for each job in our dataset with our method
and RF. We then convert this value to bandwidth by dividing
the total bytes read or written with the actual runtimes of
jobs. Figures 9c and 9b show the boxplots of the relative
accuracy for predicted read and write bandwidth with RF
and our method. Our method has a mean accuracy of 80.2%
and 75.6% for read and write bandwidth, which is 12.1% and
9.6% higher than the RF predictions.
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Figure 9. Distribution of read and write bandwidth for our
dataset (a) and relative accuracy for predicted read and write
bandwidth with RF (b) and our method (c).

6 Application to Real HPC Systems
We demonstrate the applicability of our runtime and IO
predictions for an IO-aware scheduler.

6.1 IO-aware Scheduler
An IO-aware scheduler relies on runtime and IO predictions
to predict future IO usage and schedule jobs such that IO
contention is avoided. The scheduler uses runtime to deter-
mine which jobs will be running on a HPC system at some
time in the future. To evaluate the effectiveness of our run-
time predictions for this task, we perform turnaround time
predictions using a system simulator. An IO-aware scheduler
uses IO with turnaround time to predict future IO bandwidth
usage for the HPC system. We evaluate our ability to pre-
dict future IO in two steps. First, we assume perfect runtime
and turnaround time knowledge and evaluate IO predictions.
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Second, we use the predicted runtime and turnaround time
with predicted IO to evaluate IO predictions.

We use the open-source simulator of the open-source,
next-generation job scheduler Flux to mimic the evolution of
a high-end HPC systems [1, 5]. We modify the simulator to
use job runtimes (i.e., the time a job is in execution) that are
predicted either by our method defined in Section 4 or users.
The outputs of the simulator are the simulated schedule
of jobs (i.e., submit times, start times, and end times) and
turnaround time predictions. Both the simulated schedule
and turnaround time predictions are usedwith IO predictions
to predict future system IO.

6.2 Turnaround Time Prediction
The turnaround time is defined as the amount of time be-
tweenwhen a job is first submitted to the scheduler andwhen
the job completes. Accurate estimates of jobs’ turnaround
times is important for predictingwhich jobs will be executing
on an HPC system in the future. As a result the scheduler’s
ability to make efficient scheduling decisions is improved
and future bandwidth usage can be predicted [4] [5]. Turn-
around time prediction for any job depends on the predicted
runtime of every job before it in the queue or currently run-
ning on the system. Therefore, single inaccuracies in job
runtime predictions can sum up to inaccurate turnaround
time predictions. Relying on inaccurate runtime predictions,
such as those based on user estimates, can result in very
poor turnaround time predictions that are detrimental to
IO-aware schedulers.
For our predictions, we use real submission times for a

subset of 10,000 jobs in our dataset and submit jobs to a
simulated version of the HPC system used to collect our data.
A snapshot of the system is created when a job is submitted
to the system. We move through the snapshots and for each
snapshot we perform four steps. First, we copy in memory
the system state. Second, we modify the runtime of each job
in execution and in the queue with the predicted job runtime.
Third, we simulate the evolution of the system state until the
submitted job is completed. Last, we record the completion
time of the job as our turnaround time prediction.
To quantify the prediction accuracy, we compare the ob-

served turnaround time for each job (i.e., the actual turn-
around time for the jobs) with our predicted job turnaround
time. Figure 10a shows the distribution of actual turnaround
times for jobs on the simulated system. Figure 10b shows the
relative accuracy of turnaround time predictions with user
requested runtime and our method. We improve the mean
accuracy by 14.0% and the median accuracy by 14.1% over
user requested runtime. Our mean and median turnaround
time accuracy are 42.1% and 40.8%.

6.3 System IO Prediction
We split our evaluation of system IO prediction into two
parts. The first system IO prediction uses perfect knowledge
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Figure 10. Distribution of actual turnaround times for jobs
on the simulated system (a) and relative accuracy of turn-
around time predictions with user requested runtime and
our method (b).

of turnaround time and the real trace of job execution. Eval-
uating system IO predictions with perfect turnaround time
knowledge isolates the IO predictions and indicates how
well we predict IO. The second prediction uses predicted
turnaround time from our simulator. Evaluations with our
predicted turnaround time mimics how an IO-aware sched-
uler would use runtime and IO predictions. The associated
results indicate how well our turnaround time and IO pre-
dictions perform together to predict the IO usage of a HPC
system.
For each part of the evaluation, we report two metrics.

The first metric we use is the aggregate system IO. Here, we
predict the future IO bandwidth of a system and compare
magnitudes of predicted bandwidth to the actual bandwidth.
The second metric we use is IO burst detection. IO bursts are
unusually high levels of IO bandwidth on an HPC system
and represent most likely times of IO contention.
For our evaluation of system’s IO bandwidth prediction

using perfect turnaround time knowledge, we use the real
start and end times of jobs to replay the execution of jobs
and calculate system IO. For each job, we calculate the real
IO bandwidth from filesystem monitoring data and the pre-
dicted IO bandwidth from our IO predictions. We calculate
the real and predicted bandwidth at 1 minute intervals dur-
ing a replay of all jobs in our dataset. Figure 11a shows the
distribution of the system’s IO bandwidth (also called ac-
tual aggregate IO), collected at one minute intervals. The
distribution of bandwidth measurements forms a normal dis-
tribution with the logarithmic Y-axis, indicating that system
bandwidth follows a lognormal distribution. We fit a lognor-
mal distribution to the bandwidth measurements to calculate
the mean and standard deviation. One standard deviation
above the mean is marked with a green horizontal line at
1.35 × 109 bytes/s. We define an IO burst as any bandwidth
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measurement above this value. Our IO burst prediction with
perfect turnaround time knowledge is performed with the
same replay of job execution. Figure 11b shows the rela-
tive accuracy of system accumulate IO predictions using our
method. We achieve a mean and median accuracy of 63.6%
and 55.3%. We compare the real and predicted IO bursts. For
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Figure 11. Actual aggregate IO (a) and relative accuracy
of the system’s accumulate IO predictions (b) using perfect
turnaround time knowledge.

each real IO burst, we determine if an IO burst was predicted
within a given window of time. For example, with a three-
minute window, we look for a predicted burst one minute
before the actual IO burst, at the minute of the IO burst, and 1
minute after the actual IO burst. If a burst is predicted in this
window, we record a true positive prediction. In addition,
we also record false positive predictions of IO bursts using
this same method. If an IO burst is predicted, but there is
no corresponding real IO burst within a window of time,
we record a false positive prediction. Figure 12 shows the
sensitivity and precision of our IO burst prediction across
windows ranging from 5 minutes to 60 minutes. Sensitivity
is ratio of correctly predicted IO bursts to actual IO bursts.
Precision is the ratio of correctly predicted IO bursts to total
predicted IO bursts. Each metric has a range from 0 to 1 and
larger values indicate better performance. Figure 12 shows
that we predict 47.5% of IO bursts at the exact time they
happen with high precision (i.e., low false positive rate). As
the window size for predicting IO bursts increase, we see an
increase in both sensitivity and precision.

For our evaluation of system IO bandwidth prediction us-
ing our predicted turnaround time from our simulator, we
replay the execution of jobs from our simulator. For each job,
we calculate the real IO bandwidth from filesystem monitor-
ing data. Moreover, we calculate the predicted IO bandwidth
using our IO predictions and runtime predictions. We calcu-
late the real and predicted bandwidth at one-minute intervals
during a replay of the simulated jobs. Figure 13a shows the ac-
tual aggregate IO and Figure 13b shows the relative accuracy
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Figure 12. Sensitivity and precision of our IO burst predic-
tions across windows ranging from 5 minutes to 60 minutes
using perfect turnaround time knowledge.

of our predictions for aggregate IO. Comparing Figure 11a
with Figure 13a shows that our simulation of 10,000 jobs has
a different distribution of IO bandwidths. Comparing Fig-
ure 11bwith Figure 13b indicates that the prediction accuracy
for aggregate IO decreases when our turnaround time predic-
tions are used over perfect turnaround time knowledge. This
is an expected result of using less accurate turnaround time
information. Despite the decreased average accuracy, we are
able to accurately predict many IO values in the simulation,
as indicated by the top whisker of the boxplot in Figure 13b.
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Figure 13. Actual aggregate IO (a) and relative accuracy of
the system’s accumulate IO predictions (b) using our pre-
dicted turnaround time from our simulated system.

We use the system bandwidth measurements from our ag-
gregate bandwidth predictions with prediction turnaround
time to compare real and predicted IO bursts. We use the
IO burst definition described above (i.e., bandwidth above
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1.35 × 109 bytes/s). We apply the same metrics for true posi-
tive and false positive IO burst predictions. Figure 14 shows
the sensitivity and precision of our IO burst prediction across
windows ranging from 5 minutes to 60 minutes. We observe
a higher sensitivity and lower precision than the IO burst
predictions with perfect turnaround time knowledge in Fig-
ure 12. This difference can be explained by the use of pre-
dicted turnaround time and the use of a simulated subset of
jobs compared to the entire dataset used in Figure 12. Regard-
less, we are able to accurately predict IO bursts with high
sensitivity and precision using our turnaround time and IO
predictions.
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Figure 14. Sensitivity and precision of our IO burst predic-
tion across windows ranging from 5 minutes to 60 minutes
using our predicted turnaround time from our simulated
system.

Our results in this section indicate that our runtime and
IO predictions can be used to generate accurate predictions
of HPC system aggregate IO bandwidth and IO bursts. We
show that with at most 57.9% mean turnaround prediction
error, future IO bursts can be predicted with >50% accuracy.
Additionally, with at most 36.4% aggregate IO preddiction
error, future IO bursts can be predicted with >50% accuracy.

7 Conclusion and Future Work
In this work, we show the benefits of using unparsed job
script text to predict HPC job resource usage. To this end, we
develop a novel method for transforming job script text into
image-like data. We show that leveraging CNNs to predict
job resource usage (i.e., runtime and IO) from the job script
images increases prediction accuracy over state of the art
methods. We achieved a mean runtime, read bandwidth, and
write bandwidth accuracy of 76.1%, 80.2%, and 75.6%. Fur-
ther, we demonstrate how these predictions are used by an
IO-aware scheduler to predict turnaround time, aggregate
system IO, and system IO bursts with high accuracy. Cur-
rently, there are no tools that allow IO-aware schedulers to

predict IO traffic on HPC machines. Our method fills this
gap.

There are many avenues for future work worth exploring.
First, our work supports the development of more accurate
prediction models that improve job resource usage predic-
tion. This includes finding better resource prediction models
and tuning CNN parameters, as well as investigating and
characterizing low accuracy predictions. Second, our predic-
tion method lends itself to use with data sources other than
job scripts, such as application input decks. Incorporating in-
put decks into our prediction method could further increase
prediction accuracy of job resource usage. Finally, our re-
source prediction methods can be applied for prediction of
other resources, such as power and network, for different
next-generation schedulers. The results in this work provide
a starting point for adoption of next generation schedulers,
and it is an important step towards preventing resource con-
tention and under-utilization of HPC resources.
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