
LLNL-CONF-739253

From Job Scripts to Resource
Predictions: Paving the Path to
Next-generation HPC Schedulers

M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, A.
Dong, M. Taufer

September 29, 2017

Principles and Practice of Parallel Programming
Vienna, Austria
February 24, 2018 through February 28, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

From Job Scripts to Resource Predictions:
Paving the Path to Next-generation HPC Scheduling

Anonymous Author(s)

Abstract
Resource managers in modern HPC batch systems allocate
compute resources (nodes) to parallel compute jobs. Users
submit scripts to launch parallel programs along with re-
quests for nodes and time. While the available compute re-
sources on HPC clusters have grown rapidly over the years,
the bandwidth of parallel filesystems used by these clus-
ters has not kept pace. Modern batch systems do little or
nothing to efficiently share IO resources among jobs, and
IO-intensive jobs can thrash the filesystem if they are sched-
uled together, causing dramatic slowdowns. Unfortunately,
while HPC users provide up-front estimates of node and time
requirements, they typically know very little about their pro-
grams’ IO requirements. The scheduler is thus blind to the
IO resource usage of submitted jobs.
This paper introduces a set of techniques to enable IO-

aware scheduling without burdening HPC users. We show
that neural networks can be used to predict the runtime
and IO behavior of HPC programs, based only on submitted
job scripts. Runtime prediction of batch jobs is not new,
but we show that our technique is more accurate than prior
approaches, and that it requires no manual parsing or a priori
knowledge of the jobs. We further show that by combining
our predictions with queue simulation, we can predict IO
bursts with good accuracy. This allows HPC centers to warn
users about upcoming periods of high IO usage. It also has the
potential to enable truly practical IO-aware scheduling, by
giving resource managers detailed insight into the behavior
of jobs in the queue, without any help from HPC users.

Keywords Convolutional Neural Network, IO-Aware Sched-
uler, IO Prediction

1 Introduction
HPC users submit job scripts to a batch system with requests
for compute resources (nodes) and time. The batch system is
responsible for scheduling these jobs in a way that efficiently
shares the system’s resources. Current schedulers consider
only compute and time, but jobs still contend for other re-
sources. For example, co-scheduling many I/O-intensive jobs
can heavily impact performance as they thrash the paral-
lel filesytstem. This will only worsen in the future, since
per-compute-node bandwidth to the parallel filesystem is

PPoPP’18, February 2018, Vosendorf, Austria
2018. ACM ISBN . . . $15.00
https://doi.org/

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0

True Runtime (minutes)

960

840

720

600

480

360

240

120

0U
se

r
R

eq
ue

st
ed

 R
un

tim
e

(m
in

ut
es

)

1

8

64

512

4096

32768

Figure 1. Heatmap of user requested runtime versus ac-
tual job runtime for nearly 300,000 HPC jobs shows that
users over-estimate the time needed for job execution. The
heatmap values have been loд2 normalized to show more
detail.

decreasing over time. To solve such contention issues, next-
generation schedulers must consider resources like I/O and
network bandwidth [5] in addition to compute.
To effectively manage jobs constrained by multiple re-

sources, schedulers need accurate estimates of each job’s
resource usage. Users provide a maximum runtime for each
job at submission time. However, jobs are typically termi-
nated if they exceed their requested time, so users are highly
incentivized to overestimate, and the requested runtime is
seldom accurate. Figure 1 shows how users over-request time
for their jobs. The average overage for 300,000 jobs in 2016
on a large cluster in a national laboratory was 231 minutes.
This may seem bad, but the situation with I/O is worse.

Users must provide compute and time requirements up front,
before they submit their jobs, but they are not required to
estimate their I/O usage. In fact, users in scientific computing
do not typically have a good understanding of their jobs’ I/O
requirements, or the time to learn how to estimate them.
So, they cannot be relied upon to provide accurate esimates.
This means that schedulers have little information to use
when making resource allocation decisions for I/O.

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PPoPP’18, February 2018, Vosendorf, Austria Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

An I/O-aware scheduler needs to know when contention
for I/O resources is high, and this requires accurate predic-
tions of runtime and I/O bandwidth usage for each job. A
practical I/O-aware scheduler must do this without placing
any additional burden onHPC users. In this paper, we employ
machine learning to predict the resource usage of queued
jobs. Previous work has also utilized machine learning for
runtime prediction [17], and has shown that this approach
can yield better runtime estimates than those provided by
users. However, this work also required significant mainte-
nance effort, in that new parsers need to be developed and
maintained over time to extract necessary information from
job scripts. This approach is tedious and unscalable.

In this paper, we extend the existing work and show that
neural networks can be used to parse job scripts without
any human effort to understand features in the scripts. We
transform entire job scripts into image-like data and use the
images to train a Convolutional Neural Network (CNN) for
resource usage predictions, and we show that our approach
is general and can be applied just as easily to I/O predictions.
Our results show that our methods predict runtime more
accurately than previous methods, and that we can predict
jobs’ I/O behavior with similar accuracy. We further show
that our prediction can be used as input for a queue simulator,
and that this approach can accurately predict future I/O
bursts on large clusters. The contributions of this paper are
as follows:

• Amethod for predicting resource usage of queued jobs
in an HPC system using neural networks to interpret
unstructured, unannotated job scripts;
• A validation of the accuracy of our method for predict-
ing runtime and I/O; and
• A technique for I/O burst prediction that uses the
above predictions in conjunction with queue simu-
lation

We conclude by showing that our system can tolerate at
least 57.9% and 36.4% mean turnaround time and aggregate
IO prediction error to predict future I/O bursts with >50% ac-
curacy. Our approach to predicting expected resource usage
of HPC jobs is portable to many different HPC systems, and
it requires no help from the HPC system users. We expect
that these techniques can form the basis of a truly I/O-aware,
practical resource manager.
The rest of this paper is organized as follows: Section 2

compares our method with other state of the art methods;
Section 3 differentiates between parsed and unparsed job
scripts; Section 4 describes how to capture knowledge from
unparsed job scripts; Section 5 presents runtime and I/O
predictions of real HPC data; Section 6 uses our prediction in
an I/O-aware scheduler; and Section 7 concludes the paper.

2 Related Work
Many HPC job resource usage prediction methods have been
proposed. Previous methods have involved a variety of ma-
chine learning algorithms, familiar and novel. A variety of
data sources are used to obtain information about jobs, in-
cluding log files, job scripts, and job traces. The common
attribute of each method is the parsing of text for features.
The features parsed from text files (i.e., logs, job scripts, and
job traces) are used with machine learning algorithms to
produce resource usage predictions.

Most of the previous efforts for job resource usage predic-
tion has focused on runtime predictions and derivatives of
runtime, like turnaround time and wait time. Smith, Foster,
and Taylor used historical HPC job data to predict runtime
in [16, 17]. Runtime predictions are obtained through a lin-
ear regression model which is trained on jobs similar to the
job being predicted. Job similarity is calculated with several
parsed text features, including user and job queue. For sake
of our comparisons, we replicated the work of Smith, Foster,
and Taylor and compared the state of art method in the paper
a Random Forest (RF) regressor. We trained and obtained pre-
dictions from the RF with the exact same parsed text features
as in the paper for two of the four datasets in the Smith, Tay-
lor, and Foster’s paper. We verified the prediction accuracy
of the RF with a comparison to results in the paper. Table 1
shows the Mean Absolute Error (MAE) for runtimes from
the Smith and co-workers’ paper and from the RF model. We
matched or improved the runtime error with the RF model.
This indicates the RF model is comparable to the state of the
art method described in the paper if not better. We parsed
features (e.g., user, job queue, requested time, and job name)
from the job scripts and job logs in our dataset to use with
the RF model. The parsed features and RF model provides
a representation of prediction accuracy for state of the art
methods for comparison during our selection of parameters
and evaluation of our method.

Other runtime prediction papers have utilized similar tem-
plates of parsed text features andmachine learning algorithm
as Smith, Foster, and Taylor. For example, Krishnaswamy,
Loke, and Zaslavsky develop similarity templates for predict-
ing job runtime based on parsed text features in [7]. Cunha et
al. use a k-Nearest Neighbors (kNN)model to predict runtime
and turnaround time for HPC jobs in [3]. This work utilizes
parsed text features from job scripts augmented with data
from the scheduler, such as number of jobs in the queue at
job submission time. Tsafrir, Etsion, and Feitelson predict job
runtimes based on a user-centric model in [18]. They average
users’ previous job runtimes and use this as an estimation
for the runtime of the next job submitted by a user. Downey
developed a statistical model for predicting the queue time
of a job based on jobs already running on an HPC system
in [4]. Similarly, in the work of Nurmi, Brevik, and Wolksi a
statistical method is developed, QBETS, to predict wait times

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

From Job Scripts to Resource Predictions: PPoPP’18, February 2018, Vosendorf, Austria

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Runtime MAE (minutes)
Dataset Data Size Smith, et al. [17] Our Replication
SDSC95 76,840 59.65 35.95
SDSC96 32,100 74.56 76.69

Table 1. Mean Absolute Error (MAE) for runtime from the Smith and co-workers’ paper and from the RF model considered in
this paper as the state of the art method because of its accuracy.

for jobs [13]. Both of these works make predictions from
wait times of jobs currently running on a system and do not
build a prediction model based on job properties. Chen, Lu,
and Pattabiraman present a method for predicting runtimes
of jobs being executed using parsed features from log files
and a hidden markov model [2].
A smaller body of work has also focused on prediction

of other job resources, such as IO, CPU, and memory usage,
based on parsed text features. McKenna et al. test several
machine learning methods for predicting runtime and IO
usage of HPC jobs in [11]. They test kNN, decision tree, and
RF models with parsed text features from job scripts and
job logs. Rodrigues et al. predict job runtime, wait time, and
memory usage with an ensemble of machine learning algo-
rithms, including kNN and RF, in [14]. Their method parsed
text data from log files and batch scheduler logs. Matsunaga
and Fortes investigate the prediction of many job features,
such as CPU, memory, and IO usage with several machine
learning algorithms using parsed text features in [10].

To the best of our knowledge, no previous work has been
published on the use of resource predictions to predict IO
activity, such as IO bursts, for IO-aware schedulers.

All previous efforts for predicting job features have relied
heavily on features parsed from text files. The use of parsed
text has several disadvantages, which we discuss in Section 3.
Our methods are novel in that we perform no parsing of text
to obtain usable features. By doing so, we avoid the many
disadvantages associated with parsed text features.

3 Parsed vs. Unparsed Job Script Data
Real data from supercomputers plays a key role in ourmethod.
Here we describe the dataset used, its content, and the novel
approach we propose in using it.

3.1 Data Description
Datasets from supercomputers can comprise user-submitted
job scripts, scheduler job logs, and system monitoring data.
Job scripts are the user-submitted text files which contain
parameters for the scheduler and a set of commands to exe-
cute an application. Information in job scripts is available at
the time of the job submission. Job logs contain information
about the job submission and execution, such as submission
time, start time, and runtime. Logs’ information is normally
available after a job has executed. System monitoring data
has information about how each job used the HPC resources

during execution, such as total bytes read and written to a
PFS.

Datasets are split into features and target values. Features
are broadly defined as any information about a job which is
available before a job is executed. This includes the entirety
of job scripts and some values from the scheduler job logs
(e.g., submission directory and user). Target values describe
the resource usage of the executed jobs that we predict. Run-
time comes from the scheduler job logs and bytes read and
written come from the systemmonitoring data. For our work,
we consider only data available before the execution (i.e., job
script text) for resource usage prediction.

3.2 Limitations of Parsed Job Script Data
We state in this paper that job features about resource usage
are embedded in the job scripts. State of the art resource
prediction methods often parse and process these files’ text
to extract features in addition to features extracted from log
files. However, capturing useful information for resource
predictions from job scripts and logs comes with four key
limitations.

First, parsed features represent a small amount of the pre-
execution information available about a job. Job scripts and
job logs contain consistently structured lines which can be
parsed for information. In addition, job scripts contain many
lines for application execution which are application-specific
and non-trivial to parse for features’ extraction. Figure 2
shows an example job script with easily parsed features at
the top and many lines for application execution which are
more difficult to parse. Many potentially meaningful features
are not used in state of the art resource prediction due to the
difficulty associated with parsing these parts of the files. Sec-
ond, features that can be parsed from job scripts and job logs
require development and maintenance of parsing methods.
Development of text parsing methods is a time-consuming
and error-prone task which increases the cost to obtain ac-
curate resource predictions. Additionally, if job scripts or
scheduler logs change, parsing methods are liable to break.
The need for maintenance of parsing methods further in-
creases the cost of resource prediction using parsed features.

Third, features which are parsed from text must also be
processed into usable data types. Machine learning algo-
rithms used in state of the art methods require either numer-
ical or categorical data. Yet, many parsed features from job

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PPoPP’18, February 2018, Vosendorf, Austria Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Figure 2. Example of job script with lines that are easy to
parse and lines that are difficult to parse.

scripts and job logs are date-time and string values. These
features must be appropriately processed into numerical or
categorical values for resource usage prediction. The need to
develop and maintain these processing methods adds to the
cost of predicting resource usage. Last, the development and
maintenance costs of parsing and processing features from
job scripts and job logs is incurred for each machine where
these methods are applied. Different HPC machines are not
guaranteed to accept job scripts of the same format and may
produce vastly different scheduler logs. This means that cus-
tom parsing and processing methods need to be developed
and maintained for each HPC machine.
To sum up, limited usable information, high costs, and

lack of portability make parsing text features for state of
the art resource prediction methods undesirable. These rea-
sons help describe why state of the art resource prediction
methods are not more widely deployed on HPC machines.
Our method does not rely on parsed text features and avoids
these limitations.

3.3 Benefits of Unparsed Job Script Data
We overcome the problems associated with parsing features
from text in job scripts by transforming the entire unparsed
job scripts into images and use these images to perform
resource usage prediction. Using the transformed unparsed
job script text allows us to utilize all information available
in a job script. Features which cannot be easily parsed are
now included in the image. By considering the entire job
script, both the features parsed with state of the art methods
and features that are not parsed are all used to predict job
resource usage.
The high cost of obtaining and processing parsed text

features described in the section above is replaced by a low
cost automated method for transforming unparsed text into
images. Our method for processing job scripts can be applied
to any unparsed text. Moreover, the automated processing
of unparsed job script text allows our method to be portable
between all HPC machines. Our method works whenever
job scripts are stored as text files. Therefore, there is no need
to customize our method with each HPC machine where it is
applied. Last, the benefits of our method using unparsed text

for resource usage prediction make it ideal for integration
with current and next generation schedulers.

4 Knowledge from Unparsed Scripts
We transform unparsed job script text into images and exploit
the capabilities of CNNs to automatically identify and learn
new job features. Figure 3 shows the overview of the process.
Specifically, our process consists of three steps: we transform
unparsed job script text into image-like data; we exploit the
capabilities of CNNs to automatically identify and learn new
features from the images; and we optimize text to image
transformation and CNN model selection.

4.1 Transforming Job Scripts into Images
Our first step in extracting features from job scripts is the
transformation of the job script text into image-like data to
fit the expected input for a CNN. Because CNNs require a
fixed input size across all data points, we standardize the size
of each job script text to 64 rows of text with 64 characters
in each row. Job scripts with less than 64 rows or columns of
characters are padded with space characters. Job scripts with
more than 64 rows or columns of characters are cropped.
During this process a small amount of data is lost from some
job scripts. Only 9.9% of job scripts have more than 64 lines
of text and 13.8% of job script text lines are more than 64
characters in length. Therefore, a majority of all job script
text data is preserved.
In the transformation process, we map each character in

the file into a pixel value using character embedding. Charac-
ter embedding provides a method to map unique characters
to unique pixels values. Each pixel may contain a single or
multiple channels of information (i.e., each pixel is a single
value or vector of values). We explore four methods for trans-
forming characters to pixel values: binary, simple, one-hot,
and word2vec. The binary character transformation method
is a lossy transformation that converts each character to a
binary single channel pixel. All space characters (i.e., space,
tab) are assigned the value “0” and all non-space characters
are assigned the value “1”. The simple character transfor-
mation method is a lossless transformation that converts
each unique character to a unique single channel pixel. We
convert each standard ASCII character from the job script
text file to a unique integer values. The pixel values of the
transformed job script are then normalized by dividing each
pixel value by the maximum pixel value (i.e., 127).
The one-hot character transformation method is a widely

used lossless transformation that converts each unique char-
acter to a unique 128 channel pixel. Each pixel has exactly 1
channel with value “1” and the remaining are value “0”. The
word2vec transformation method is a lossless transformation
that converts each unique character to a unique multichan-
nel pixel. We use Google’s word2vec method to obtain this
transformation [12]. This method examines the context of

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

From Job Scripts to Resource Predictions: PPoPP’18, February 2018, Vosendorf, Austria

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Job	Script	

#!/bin/bash	
#PBS	-q	pbatch	
#PBS	–l	nodes=8	

⋮	
#run_mpirun()	
#{	
mpirun	–np	8	main.py	
#}	 2D	convolu1on	network	

Figure 3. Overview of the method for extracting knowledge on resource usage from unparsed job scripts.

a character (i.e., surrounding characters) to embed informa-
tion about that character in a multidimensional vector. To
obtain relevant character embedding knowledge, we train
the word2vec model on combined training and testing job
script data.

4.2 CNN and other ML Techniques
CNNs have been successfully applied to many image recogni-
tion andNatural Language Processing (NLP) tasks [6, 8, 9, 15].
This feature of CNNs has inspired our use for interpreting
entire job scripts. A 2D CNN is the type of Neural Network
(NN) which is typically used for image recognition. Our 2D
CNN consists of two 2D Convolutional layers after the input
layer. These layers look at rectangular portions of the input
text and pass information to the next layer.

For the sake of completeness, we compare and contrast our
CNN against other NN structures. Our comparison methods
are: 1D CNN, NN, and RF. Each NN has a common struc-
ture of input, hidden, and output layers. The most important
differences between the 3 NNs (i.e., 2D CNN, 1D CNN, and
NN) is the data input layer. A 1D CNN is a CNN which is
adapted for NLP tasks. Similar to the 2D CNN, there are
two Convolutional layers at the input of the network. How-
ever, these layers look at a flattened version of the input
text. Our 2D CNN input image dimension is 64x64 pixels and
the 1D CNN input image dimension is 1x4096. The convolu-
tional layers linear sections of text rather than rectangular
blocks. Standard NNs can also be used to learn from text.
Our NN consists of several fully connected layers. Similar to
the 1D CNN, the NN input is the flattened input text with a
dimension of 1x4096. The NN is different from the 1D CNN
in that each node of the input layer is connected to every
input value. Last, the input of the RF is a combination of
parsed text features. The configuration of RF is based on the
work in [16, 17] and represents the state of art in prediction
methods.

4.3 Training and Parameter Selection
For the training of our method and the other ML techniques
in this and the next sections, we use a dataset with informa-
tion for 295,077 jobs provided by a national laboratory. Each
job in the dataset was executed on a supercomputer at the

laboratory between January 2016 and December 2016. The
supercomputer has 1,296 nodes and a maximum runtime of
16 hours; it is connected to a Lustre PFS. A total of 29,291
jobs in our dataset were either canceled by the user or re-
moved from the system. We do not include these jobs in our
analysis.

We consider which text-to-image transformation method
works best with our CNN and if other NN models provided
any benefits over our CNN. We compare the accuracy of run-
time prediction for the text-to-image transformation meth-
ods and alternative NN models described in the previous
sections. Runtime predictions are obtained by simulating on-
line training and prediction of runtime for jobs in our dataset.
Specifically, we simulate the online training and predicting
of runtime using the real submission times, start times, and
ends times of jobs in our dataset. As new jobs are submitted
in the simulation, we make predictions for their runtime
using our prediction model. The model is trained on histori-
cal job information (i.e., jobs that have already executed in
the simulation). We retrain our model after every 100 job
submissions using the 500 most recently executed jobs.
For our metrics of success, we consider the accuracy of

predictions and the time to train the model. The two metrics
are orthogonal: if training a highly accurate model takes too
long, delays can make the prediction worthless. We measure
the prediction accuracy with relative accuracy. Relative ac-
curacy is an ideal metric because it takes into account the
true value and scales the score accordingly. For example, a
runtime prediction error of 30 minutes is far worse for a
one-hour job than for a three-hour job. Additionally, rela-
tive accuracy has a range between 0% and 100%. Equation 1
shows how we calculate relative accuracy for each job re-
source prediction, where true is the actual value and pred is
the predicted value. The ϵ value in the denominator prevents
division by zero when both true and pred are 0.

relativeAccuracy = 1 −
|true − pred |

max (true,pred) + ϵ
(1)

We run our training and prediction simulation with the
2D CNN and each of the four embedding methods described
above (i.e., binary, simple, one-hot, and word2vec). Figure 4
shows the runtime relative accuracy with each embedding

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PPoPP’18, February 2018, Vosendorf, Austria Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

method. The first and third quartiles are the bottom and top
of the box; the median is the red band inside the box; the
mean is the blue dot; and the ends of the whiskers represents
the 95th percentile and 5th percentile. Word2vec embedding
has the highest mean andmedian accuracy of 76.1% and 100%.
The simple character embedding performs second best with
a mean and median accuracy of 73.1% and 95.1%. The time to
transform job script text into images with each embedding
method is negligible in comparison to the time to train our
model (i.e., less than 1%). Therefore, we do not consider
processing time when selecting an embedding method. We
select the word2vec embedding method because it gives the
highest accuracy runtime predictions empirically.

binary simple onehot word2vec
Text to Image Transformation

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

Re
lat

ive
 A

cc
ur

ac
y

Figure 4. Relative accuracy for runtime predictions using
binary, simple, one-hot, and word2vec character embedding
methods.

We simulate the online training and predicting with the
word2vec embedding and each of the three NN models as
well as RF. The relative accuracy for runtime predictions of
each model and the RF are shown in Figure 5. Each of the NN

2D CNN 1D CNN NN RF
Prediction Model

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nti

me
 R

ela
tiv

e A
cc

ur
ac

y

Figure 5. Relative accuracy for runtime predictions using
2D CNN, 1D CNN, NN, and RF learning models.

structures has similar mean and median runtime prediction
accuracy of 76% and 100%; all three NN structures (i.e., 2D

CNN, 1D CNN, and NN) perform better than state of the
art (i.e., RF) with a mean and median accuracy of 70.8% and
99.1%.
Figure 6 shows the time needed to train each NN model

using the word2vec embedding as well as RF with a training
data size of 500 jobs. The time to train each model with

2D CNN 1D CNN NN RF
Prediction Model

0

5

10

15

20

25

30

Tr
ain

ing
 T

im
e (

se
co

nd
s)

Figure 6. Time to train on 500 jobs for 2D CNN, 1D CNN,
NN, and RF learning models.

500 jobs varies considerably. We observe how the 2D CNN
provides the shortest training timewith comparable accuracy
(see Figure 5) of all three NN structures. The results enforce
our selection of CNN as the learning model for our resource
usage prediction method in the rest of the paper.

5 Runtime and IO of Real HPC Data
We assess the accuracy of ourmethod for runtime predictions
and IO predictions using the real HPC data described in
Section 4.3.

5.1 Runtime Predictions
We predict the runtime of each job in our dataset with our
method and the state of the art RF method. Training and
predicting with our method and RF is done using the method
described in Section 4.3. For sake of comparison to Figure 1,
we plot the real runtime versus predicted runtimes from our
method as a heatmap in Figure 7. This figure shows a large
concentration of jobs along the diagonal from the bottom
left to top right of the heatmap. Jobs which fall along this
diagonal have accurately predicted runtimes. Comparing
Figures 1 and 7 shows that more jobs fall along the diagonal
with our predicted runtimes than user requested runtimes,
indicating that our predictions are far more accurate to actual
job runtimes than user requested runtimes.

Figure 8a shows boxplots describing our dataset in terms
of the distribution of actual runtimes for our data. The dataset
source is described in Section 4.3. Nearly half of the jobs have
a runtime between 0 and 1 minute. The mean job runtime
is 44 minutes and very few jobs have runtimes over three
hours. Figure 8b shows the boxplots describing the relative

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

From Job Scripts to Resource Predictions: PPoPP’18, February 2018, Vosendorf, Austria

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0

True Runtime (minutes)

960

840

720

600

480

360

240

120

0

P
re

di
ct

ed
 R

un
tim

e
(m

in
ut

es
)

1

8

64

512

4096

32768

Figure 7. Heatmap of predicted runtimes using our method
versus actual job runtime for nearly 300,000 HPC jobs. This
heatmap shall be compared with the heatmap in Figure 1.

accuracy for predicted job runtime of user requested time,
state of the art method, and our method. We observe how our
method has a mean accuracy of 76.1%, an increase of 6.0%
over the state of the art RF method. The median accuracy
for our predictions is 100%, indicating that for over half of
the jobs in our dataset, we correctly predicted the runtime.

Actual
Job Runtimes

0

25

50

75

100

125

150

175

200

R
un

tim
e

(m
in

ut
es

)

(a)

User RF CNN
Prediction Method

0

20

40

60

80

100

Ru
nt

im
e

Re
la

tiv
e

Ac
cu

ra
cy

(b)

Figure 8. Distribution of actual runtimes for our data (a)
and the relative accuracy for predicted job runtimes of user
requested time, RF, and our method (b).

5.2 IO Predictions
For the IO, we predict two values: total bytes read and total
bytes written using our method (i.e., CNN). We use the same

dataset as in the section above. We report the bandwidth of
each feature rather than the total bytes as this is the value
that an IO-aware scheduler uses. Figure 9a shows the dis-
tribution of read and write bandwidth for our dataset. The
mean bandwidth for read and write is orders of magnitude
larger than the median, indicating a handful of jobs in our
dataset have extremely large IO bandwidth compared to a
majority of the jobs. We predict the total bytes read and total
bytes written for each job in our dataset with our method
and RF. We then convert this value to bandwidth by dividing
the total bytes read or written with the actual runtimes of
jobs. Figures 9c and 9b show the boxplots of the relative
accuracy for predicted read and write bandwidth with RF
and our method. Our method has a mean accuracy of 80.2%
and 75.6% for read and write bandwidth, which is 12.1% and
9.6% higher than the RF predictions.

Read Write
Actual IO

0
100

101

102

103

104

105

106

107

108

IO
 B

an
dw

id
th

 (
by

te
s/

s)

(a)

Read Write
RF Accuracy

0

20

40

60

80

100

IO
 R

el
at

iv
e

A
cc

ur
ac

y

(b)

Read Write
CNN Accuracy

0

20

40

60

80

100

IO
 R

el
at

iv
e

A
cc

ur
ac

y

(c)

Figure 9. Distribution of read and write bandwidth for our
dataset (a) and relative accuracy for predicted read and write
bandwidth with RF (b) and our method (c).

6 Application to Real HPC Systems
We demonstrate the applicability of our runtime and IO
predictions for an IO-aware scheduler.

6.1 IO-aware Scheduler
An IO-aware scheduler relies on runtime and IO predictions
to predict future IO usage and schedule jobs such that IO
contention is avoided. The scheduler uses runtime to deter-
mine which jobs will be running on a HPC system at some
time in the future. To evaluate the effectiveness of our run-
time predictions for this task, we perform turnaround time
predictions using a system simulator. An IO-aware scheduler
uses IO with turnaround time to predict future IO bandwidth
usage for the HPC system. We evaluate our ability to pre-
dict future IO in two steps. First, we assume perfect runtime
and turnaround time knowledge and evaluate IO predictions.

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PPoPP’18, February 2018, Vosendorf, Austria Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Second, we use the predicted runtime and turnaround time
with predicted IO to evaluate IO predictions.

We use the open-source simulator of the open-source,
next-generation job scheduler Flux to mimic the evolution of
a high-end HPC systems [1, 5]. We modify the simulator to
use job runtimes (i.e., the time a job is in execution) that are
predicted either by our method defined in Section 4 or users.
The outputs of the simulator are the simulated schedule
of jobs (i.e., submit times, start times, and end times) and
turnaround time predictions. Both the simulated schedule
and turnaround time predictions are usedwith IO predictions
to predict future system IO.

6.2 Turnaround Time Prediction
The turnaround time is defined as the amount of time be-
tweenwhen a job is first submitted to the scheduler andwhen
the job completes. Accurate estimates of jobs’ turnaround
times is important for predictingwhich jobs will be executing
on an HPC system in the future. As a result the scheduler’s
ability to make efficient scheduling decisions is improved
and future bandwidth usage can be predicted [4] [5]. Turn-
around time prediction for any job depends on the predicted
runtime of every job before it in the queue or currently run-
ning on the system. Therefore, single inaccuracies in job
runtime predictions can sum up to inaccurate turnaround
time predictions. Relying on inaccurate runtime predictions,
such as those based on user estimates, can result in very
poor turnaround time predictions that are detrimental to
IO-aware schedulers.
For our predictions, we use real submission times for a

subset of 10,000 jobs in our dataset and submit jobs to a
simulated version of the HPC system used to collect our data.
A snapshot of the system is created when a job is submitted
to the system. We move through the snapshots and for each
snapshot we perform four steps. First, we copy in memory
the system state. Second, we modify the runtime of each job
in execution and in the queue with the predicted job runtime.
Third, we simulate the evolution of the system state until the
submitted job is completed. Last, we record the completion
time of the job as our turnaround time prediction.
To quantify the prediction accuracy, we compare the ob-

served turnaround time for each job (i.e., the actual turn-
around time for the jobs) with our predicted job turnaround
time. Figure 10a shows the distribution of actual turnaround
times for jobs on the simulated system. Figure 10b shows the
relative accuracy of turnaround time predictions with user
requested runtime and our method. We improve the mean
accuracy by 14.0% and the median accuracy by 14.1% over
user requested runtime. Our mean and median turnaround
time accuracy are 42.1% and 40.8%.

6.3 System IO Prediction
We split our evaluation of system IO prediction into two
parts. The first system IO prediction uses perfect knowledge

Actual
Turnaround Time

0

2

4

6

8

10

12

14

Tu
rn

ar
ou

nd
 T

im
e (

ho
ur

s)

(a)

User CNN
Prediction Method

0

20

40

60

80

100

Tu
rn

ar
ou

nd
 T

im
e R

ela
tiv

e A
cc

ur
ac

y

(b)

Figure 10. Distribution of actual turnaround times for jobs
on the simulated system (a) and relative accuracy of turn-
around time predictions with user requested runtime and
our method (b).

of turnaround time and the real trace of job execution. Eval-
uating system IO predictions with perfect turnaround time
knowledge isolates the IO predictions and indicates how
well we predict IO. The second prediction uses predicted
turnaround time from our simulator. Evaluations with our
predicted turnaround time mimics how an IO-aware sched-
uler would use runtime and IO predictions. The associated
results indicate how well our turnaround time and IO pre-
dictions perform together to predict the IO usage of a HPC
system.
For each part of the evaluation, we report two metrics.

The first metric we use is the aggregate system IO. Here, we
predict the future IO bandwidth of a system and compare
magnitudes of predicted bandwidth to the actual bandwidth.
The second metric we use is IO burst detection. IO bursts are
unusually high levels of IO bandwidth on an HPC system
and represent most likely times of IO contention.
For our evaluation of system’s IO bandwidth prediction

using perfect turnaround time knowledge, we use the real
start and end times of jobs to replay the execution of jobs
and calculate system IO. For each job, we calculate the real
IO bandwidth from filesystem monitoring data and the pre-
dicted IO bandwidth from our IO predictions. We calculate
the real and predicted bandwidth at 1 minute intervals dur-
ing a replay of all jobs in our dataset. Figure 11a shows the
distribution of the system’s IO bandwidth (also called ac-
tual aggregate IO), collected at one minute intervals. The
distribution of bandwidth measurements forms a normal dis-
tribution with the logarithmic Y-axis, indicating that system
bandwidth follows a lognormal distribution. We fit a lognor-
mal distribution to the bandwidth measurements to calculate
the mean and standard deviation. One standard deviation
above the mean is marked with a green horizontal line at
1.35 × 109 bytes/s. We define an IO burst as any bandwidth

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

From Job Scripts to Resource Predictions: PPoPP’18, February 2018, Vosendorf, Austria

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

measurement above this value. Our IO burst prediction with
perfect turnaround time knowledge is performed with the
same replay of job execution. Figure 11b shows the rela-
tive accuracy of system accumulate IO predictions using our
method. We achieve a mean and median accuracy of 63.6%
and 55.3%. We compare the real and predicted IO bursts. For

Aggregate IO
Accuracy

0
100

101

102

103

104

105

106

107

108

109

1010

IO
 B

an
dw

idt
h (

by
tes

/s)

(a)

Predicted
Aggregate IO

0

20

40

60

80

100

IO
 R

ela
tiv

e A
cc

ur
ac

y

(b)

Figure 11. Actual aggregate IO (a) and relative accuracy
of the system’s accumulate IO predictions (b) using perfect
turnaround time knowledge.

each real IO burst, we determine if an IO burst was predicted
within a given window of time. For example, with a three-
minute window, we look for a predicted burst one minute
before the actual IO burst, at the minute of the IO burst, and 1
minute after the actual IO burst. If a burst is predicted in this
window, we record a true positive prediction. In addition,
we also record false positive predictions of IO bursts using
this same method. If an IO burst is predicted, but there is
no corresponding real IO burst within a window of time,
we record a false positive prediction. Figure 12 shows the
sensitivity and precision of our IO burst prediction across
windows ranging from 5 minutes to 60 minutes. Sensitivity
is ratio of correctly predicted IO bursts to actual IO bursts.
Precision is the ratio of correctly predicted IO bursts to total
predicted IO bursts. Each metric has a range from 0 to 1 and
larger values indicate better performance. Figure 12 shows
that we predict 47.5% of IO bursts at the exact time they
happen with high precision (i.e., low false positive rate). As
the window size for predicting IO bursts increase, we see an
increase in both sensitivity and precision.

For our evaluation of system IO bandwidth prediction us-
ing our predicted turnaround time from our simulator, we
replay the execution of jobs from our simulator. For each job,
we calculate the real IO bandwidth from filesystem monitor-
ing data. Moreover, we calculate the predicted IO bandwidth
using our IO predictions and runtime predictions. We calcu-
late the real and predicted bandwidth at one-minute intervals
during a replay of the simulated jobs. Figure 13a shows the ac-
tual aggregate IO and Figure 13b shows the relative accuracy

0 5 10 15 20 25 30 35 40 45 50 55 60
Window Size (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Precision
Sensitivity

Figure 12. Sensitivity and precision of our IO burst predic-
tions across windows ranging from 5 minutes to 60 minutes
using perfect turnaround time knowledge.

of our predictions for aggregate IO. Comparing Figure 11a
with Figure 13a shows that our simulation of 10,000 jobs has
a different distribution of IO bandwidths. Comparing Fig-
ure 11bwith Figure 13b indicates that the prediction accuracy
for aggregate IO decreases when our turnaround time predic-
tions are used over perfect turnaround time knowledge. This
is an expected result of using less accurate turnaround time
information. Despite the decreased average accuracy, we are
able to accurately predict many IO values in the simulation,
as indicated by the top whisker of the boxplot in Figure 13b.

Aggregate IO
Accuracy

0
100

101

102

103

104

105

106

107

108

109

1010

IO
 B

an
dw

idt
h (

by
tes

/s)

(a)

Predicted
Aggregate IO

0

20

40

60

80

100
IO

 R
ela

tiv
e A

cc
ur

ac
y

(b)

Figure 13. Actual aggregate IO (a) and relative accuracy of
the system’s accumulate IO predictions (b) using our pre-
dicted turnaround time from our simulated system.

We use the system bandwidth measurements from our ag-
gregate bandwidth predictions with prediction turnaround
time to compare real and predicted IO bursts. We use the
IO burst definition described above (i.e., bandwidth above

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PPoPP’18, February 2018, Vosendorf, Austria Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1.35 × 109 bytes/s). We apply the same metrics for true posi-
tive and false positive IO burst predictions. Figure 14 shows
the sensitivity and precision of our IO burst prediction across
windows ranging from 5 minutes to 60 minutes. We observe
a higher sensitivity and lower precision than the IO burst
predictions with perfect turnaround time knowledge in Fig-
ure 12. This difference can be explained by the use of pre-
dicted turnaround time and the use of a simulated subset of
jobs compared to the entire dataset used in Figure 12. Regard-
less, we are able to accurately predict IO bursts with high
sensitivity and precision using our turnaround time and IO
predictions.

0 5 10 15 20 25 30 35 40 45 50 55 60
Window Size (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Precision
Sensitivity

Figure 14. Sensitivity and precision of our IO burst predic-
tion across windows ranging from 5 minutes to 60 minutes
using our predicted turnaround time from our simulated
system.

Our results in this section indicate that our runtime and
IO predictions can be used to generate accurate predictions
of HPC system aggregate IO bandwidth and IO bursts. We
show that with at most 57.9% mean turnaround prediction
error, future IO bursts can be predicted with >50% accuracy.
Additionally, with at most 36.4% aggregate IO preddiction
error, future IO bursts can be predicted with >50% accuracy.

7 Conclusion and Future Work
In this work, we show the benefits of using unparsed job
script text to predict HPC job resource usage. To this end, we
develop a novel method for transforming job script text into
image-like data. We show that leveraging CNNs to predict
job resource usage (i.e., runtime and IO) from the job script
images increases prediction accuracy over state of the art
methods. We achieved a mean runtime, read bandwidth, and
write bandwidth accuracy of 76.1%, 80.2%, and 75.6%. Fur-
ther, we demonstrate how these predictions are used by an
IO-aware scheduler to predict turnaround time, aggregate
system IO, and system IO bursts with high accuracy. Cur-
rently, there are no tools that allow IO-aware schedulers to

predict IO traffic on HPC machines. Our method fills this
gap.

There are many avenues for future work worth exploring.
First, our work supports the development of more accurate
prediction models that improve job resource usage predic-
tion. This includes finding better resource prediction models
and tuning CNN parameters, as well as investigating and
characterizing low accuracy predictions. Second, our predic-
tion method lends itself to use with data sources other than
job scripts, such as application input decks. Incorporating in-
put decks into our prediction method could further increase
prediction accuracy of job resource usage. Finally, our re-
source prediction methods can be applied for prediction of
other resources, such as power and network, for different
next-generation schedulers. The results in this work provide
a starting point for adoption of next generation schedulers,
and it is an important step towards preventing resource con-
tention and under-utilization of HPC resources.

References
[1] Dong H. Ahn, Jim Garlick, Mark Grondona, Don Lipari, Becky Spring-

meyer, and Martin Schulz. 2014. Flux: A Next-Generation Resource
Management Framework for Large HPC Centers. In 2014 43rd Interna-
tional Conference on Parallel Processing Workshops. 9–17.

[2] Xin Chen, Charng-Da Lu, and Karthik Pattabiraman. 2013. Predicting
job completion times using system logs in supercomputing clusters.
In Dependable Systems and Networks Workshop (DSN-W), 2013 43rd
Annual IEEE/IFIP Conference on. IEEE, 1–8.

[3] Renato LF Cunha, Eduardo R Rodrigues, Leonardo P Tizzei, and
Marco AS Netto. 2017. Job placement advisor based on turnaround pre-
dictions for HPC hybrid clouds. Future Generation Computer Systems
67 (2017), 35–46.

[4] Allen B. Downey. 1997. Using Queue Time Predictions for Processor
Allocation. In Job Scheduling Strategies for Parallel Processing. Springer
Verlag, 35–57. Lect. Notes Comput. Sci. vol. 1291.

[5] Stephen Herbein, Dong H. Ahn, Don Lipari, Thomas R.W. Scogland,
Marc Stearman, Mark Grondona, Jim Garlick, Becky Springmeyer,
and Michela Taufer. 2016. Scalable I/O-Aware Job Scheduling for
Burst Buffer Enabled HPC Clusters. In Proceedings of the 25th ACM
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’16). ACM, New York, NY, USA, 69–80. https://doi.
org/10.1145/2907294.2907316

[6] Yoon Kim. 2014. Convolutional neural networks for sentence classifi-
cation. arXiv preprint arXiv:1408.5882 (2014).

[7] Shonali Krishnaswamy, Seng Wai Loke, and Arkady Zaslavsky. 2004.
Estimating computation times of data-intensive applications. IEEE
Distributed Systems Online 5, 4 (2004).

[8] Alex Krizhevsky, Ilya Sutskever, andGeoffrey EHinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems. 1097–1105.

[9] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent Convo-
lutional Neural Networks for Text Classification.. In AAAI, Vol. 333.
2267–2273.

[10] Andréa Matsunaga and José AB Fortes. 2010. On the use of machine
learning to predict the time and resources consumed by applications.
In Proceedings of the 2010 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing. IEEE Computer Society, 495–504.

[11] R. McKenna, S. Herbein, A. Moody, T. Gamblin, and M. Taufer. 2016.
Machine Learning Predictions of Runtime and IO Traffic on High-End
Clusters. In 2016 IEEE International Conference on Cluster Computing

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

From Job Scripts to Resource Predictions: PPoPP’18, February 2018, Vosendorf, Austria

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

(CLUSTER). 255–258. https://doi.org/10.1109/CLUSTER.2016.58
[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff

Dean. 2013. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems. 3111–3119.

[13] Daniel Nurmi, John Brevik, and Rich Wolski. 2007. QBETS: queue
bounds estimation from time series. In Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 76–101.

[14] Eduardo R Rodrigues, Renato LF Cunha, Marco AS Netto, and Michael
Spriggs. 2016. HelpingHPC users specify jobmemory requirements via
machine learning. In Proceedings of the Third International Workshop
on HPC User Support Tools. IEEE Press, 6–13.

[15] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[16] Warren Smith, Ian Foster, and Valerie Taylor. 1998. Predicting applica-
tion run times using historical information. In Job Scheduling Strategies
for Parallel Processing. Springer, 122–142.

[17] Warren Smith, Valerie Taylor, and Ian Foster. 1999. Using run-time
predictions to estimate queue wait times and improve scheduler perfor-
mance. InWorkshop on Job Scheduling Strategies for Parallel Processing.
Springer, 202–219.

[18] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. 2007. Backfilling using
system-generated predictions rather than user runtime estimates. IEEE
Transactions on Parallel and Distributed Systems 18, 6 (2007).

11

