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This paper is dedicated to the memory of Bob Owens (University of Glasgow),
who passed away in 2015 and had led the development
of the tagged-photon facility at MAMI.

Abstract. High-statistics measurements of the photon asymmetry X for the ¥p — 7°p reaction have been
made in the center-of-mass energy range W = 1214-1450 MeV. The data were measured with the MAMI
A2 real photon beam and Crystal Ball/ TAPS detector systems in Mainz, Germany. The results significantly
improve the existing world data and are shown to be in good agreement with previous measurements, and
with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry
results with recent cross-section measurements from Mainz to calculate the profile functions, X (= oo X)),
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and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows
that the precision of the data is good enough to further constrain the higher partial waves, and there
is an indication of interference between the very small F-waves and the N(1520)3/27 and N(1535)1/2~

resonances.

1 Introduction

Quantum Chromodynamics (QCD) successfully describes
many of the phenomena associated with elementary par-
ticles at high energies. Yet, our understanding of the low-
energy, non-perturbative regime is more limited, demon-
strated by our lack of precise knowledge of the excitation
spectra of nucleons and mesons. The properties of baryon
resonances have been mainly determined from the results
of pion-nucleon scattering analyses [1], with other reac-
tions helping to fix branching ratios and photocouplings.
Beyond elastic pion-nucleon scattering, single-pion photo-
production remains the most studied source of resonance
information [2] and many recent efforts have been directed
towards obtaining complete, or nearly complete, measure-
ments in meson-nucleon photoproduction reactions us-
ing double-polarization observables [3,4]. However, high-
statistics measurements of single-polarization observables,
over a wide photon energy and angular range remain vi-
tally important in determining the photoproduction am-
plitudes from which the underlying resonance information
may be extracted.

This work exploits the linearly polarized, tagged pho-
ton beam at the MAMI 1.6 GeV electron microtron in
Mainz to provide beam asymmetry measurements for
beam energies, F2y, = 0.32-0.65 GeV, corresponding to a
center-of-mass energy range of W = 1.214-1.450 GeV. As
shown below, the results are in good agreement with pre-
vious measurements from Mainz, GRAAL, and Yerevan
in regions where there is overlap, and provide new high-
statistics measurements in kinematic regions not, covered
by these previous experiments. In addition the new results
have much finer binning in W (typically 3MeV). They
are compared with the results of the partial wave anal-
ysis (PWA) fits from MAID, SAID, and Bonn-Gatchina
models [5-7].

A discussion of the experimental arrangements for
these measurements is presented in sect. 2. An overview of
the methods used to extract the photon beam asymmetry
is given in sect. 3. This is followed in sect. 4 by a discussion
of the results of the beam asymmetry, Y, measurements.
The conclusions drawn from this work are presented in
sect. o.

2 Experiment

The photon asymmetry X for the reaction 4p — w'p

was measured using the Crystal Ball (CB) [8] as a cen-
tral calorimeter and TAPS [9] as a forward calorimeter.
These detectors were installed at the energy-tagged pho-
ton beam produced by bremsstrahlung from the electron
beam of the 1.6 GeV Mainz Microtron (MAMI) [10,11].

% e-mail: s.gardner.1@research.gla.ac.uk

The CB detector is a sphere consisting of 672 optically
isolated Nal(T1) crystals, shaped as truncated triangular
pyramids, which point toward the center of the sphere.
The crystals are arranged in two hemispheres that cover
93% of 4 sr, sitting outside a central spherical cavity with
a radius of 25 cm, in which the target and inner detectors
are located. In the present experiment, the 384 hexagonal
cross-section BaFs crystals of TAPS were arranged as a
forward detector wall. It was installed 1.5 m downstream
of the CB center and covered the full azimuthal range for
laboratory polar angles from 1° to 20°. More details on
the calorimeters and their resolutions are given in ref. [12]
and references therein.

The present measurements were made in October 2008
and used a 1508 MeV electron beam from the Mainz Mi-
crotron, MAMI-C [10,11]. The energies of the incident
photons were analyzed by detecting post-bremsstrahlung
electrons in the Glasgow-Mainz tagged-photon spectrome-
ter [13—15]. The photon beam was incident on a 5c¢m long
liquid hydrogen (LHs) target located in the center of the
CB. The uncertainty in the energy of the tagged photons
was mainly given by the width of the tagger focal-plane
detectors in combination with the energy of the MAMI
electron beam used in experiments. For the MAMI energy
of 1508 MeV such an uncertainty was typically +2 MeV.
The systematic uncertainty in the absolute value of FE.,
which is dominated by the energy calibration of the tag-
ger, was about 0.5MeV [15].

The linear polarization of the photons was produced
from coherent bremsstrahlung [16,17], where the electron
beam scatters coherently from a suitably aligned crys-
tal radiator. A thin diamond crystal (30 pm), with low
mosaic-structure, was used to minimize the energy smear-
ing of the coherent spectrum arising from electron multi-
ple scattering effects and crystal defects in the lattice [18].
The alignment of the diamond was carried out using the
Stonehenge technique [19] and the two orthogonal plane
orientations were chosen to be at azimuthal angles of +45°
with respect to the equatorial plane of the CB detector. A
2mm diameter Pb collimator was installed 2.5 mm down-
stream of the radiator to enhance the ratio of coherent
to incoherently scattered photons that reached the target,
and to increase the degree of linear polarization. The pho-
ton polarization ranged from 4% at E, = 320MeV to a
maximum of 53% at 632 MeV.

The degree of polarization was determined through
constructing the enhancement (the ratio of the E. spec-
trum from the diamond radiator to that from an amor-
phous radiator) and fitting the enhancement with a co-
herent bremsstrahlung calculation. This technique gives a
reliable shape for the polarization spectrum as a function
of W (see fig. 1), but was found to have a systematic



Eur. Phys. J. A (2016) 52: 333

=N

— 145°
-45°

o
i

I
=

=3
L
T ‘ TTTT ‘ LI ‘ TTTT ‘ TTTT ‘ TTTT

Degree of Polarisation

0.2

0.1

1 PR Y
0 1250

EC) D
Fig. 1. (Color online) Degree of linear photon polarization, for
the two diamond crystal orientations shown over the range of
the coherent peak in the center-of-mass energy W.

uncertainty of 5-10% in the overall scaling due to the un-
certainty in the baseline. To improve on this, we used the
well-determined value of the photon beam asymmetry X/
in the region of the A(1232) (1225 < W < 1278) and lim-
ited the 7° angular distribution to (0.2 < cos 0 < 0.6)
where the predictions from all the PWA models are in
excellent agreement. Figure 1 shows the final polarization
obtained for both crystal orientations. The systematic un-
certainty in the polarization was estimated to be 2% of
the magnitude of the polarization (i.e., AP = £0.02P,
where P is the degree of photon polarization). This was
calculated using a comparison over all measured photon
energics and 70 angles with the PWA solutions thereby
determining the systematic uncertainty, including uncer-
tainties in the normalization and shape of the polarization
peak.

3 Data analysis

The photon asymmetry X' has been determined as a func-
tion of W and cos 6.y, where 0., is the polar angle of the
70 produced in the center-of-mass frame of the proton and
the incident photon. The reaction channel was identified
by detecting a single 7% in coincidence with a tagged pho-
ton and selecting events with a missing mass consistent
with the proton. In terms of Lorentz vectors the missing
vector, Ppiss 18

Pmiss:Pp‘i'P’y_Pﬂ'“a (1)
where P,, P,, P.o are the 4-vectors of the target proton,
tagged photon and detected 7°, respectively.

The identification of the 7° was performed by recon-
struction from its 27 decay products. The CB and TAPS
arrangement provides a very high angular acceptance for
the 7% decay photons that create electromagnetic show-
ers in the crystals. This in turn leads to a high detection
efficiency over most of the 7° production phase space.

Events were selected if they had two or three signal
clusters in neighboring detector crystals. These were all
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Fig. 2. (Color online) Timing fits used to calculate the
sWeights for random subtraction. The events are divided into
prompt (blue Gaussian PDF) and random (green line PDF)
with the sum of these PDFs (red) fitting the experimental data
(black). The example illustrated is a fit for a single photon en-
ergy - pion polar angle bin (W = 1327 MeV, 0y, = 90°).

initially assumed to be photons. Candidate 7° mesons
were tested by iterating over the various combinations of
clusters. The 7% 4-vector was constructed from the pair
with an invariant mass closest to the pion mass, and the
3rd cluster, if present, was assumed to be from the recoil-
ing proton and not used further in the analysis. Incorrect
combinations that may arise are cut, or subtracted, in the
sWeights analysis [20] of the missing-mass spectra outlined
below. The reason for not utilizing the proton cluster was
so as not to be limited by its acceptance, particularly for
events with low proton momenta where the proton does
not, leave the target cell.

The missing mass was constructed taking the mass of
the missing 4-vector described in eq. (1) and a signal-
background separation was performed using the (Plot
technique [20]. This is a statistical tool used to disentangle
contributions from different species of events (e.g., signal
and background) from observable distributions.

The sPlot analysis first fitted (unbinned ex-
tended maximum likelihood method) discriminatory vari-
ables with appropriate probability distribution functions
(PDFs) to allow the determination of the yields of differ-
ent species of events as a function of the discriminatory
variables. The sWeights were then calculated from the co-
variance matrix of the fit. These steps were performed
using the jPlot class in the CERN ROOT RooStats pack-
age [21].

Specifically, the discriminatory variables used were: the
coincidence time between the photon tagger and the de-
tected 70 decay photons in the CB and TAPS; and Py
(eq. (1)).

Two consecutive ¢Plot fits are carried out on the data.
Initially the coincidence time is fitted with a simple model
of a Gaussian signal on a linear background. Figure 2
shows the initial fit selecting tagged photons which are
prompt to the trigger. Prompt timing sWeights calculated
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Fig. 3. (Color online) Missing mass from events weighted
by the sWeights calculated from the timing fit. The weighted
events are divided into prompt (blue) and random (green) with
the total data (black). The example illustrated is a fit for a
single photon energy - pion polar angle bin (W = 1327 MeV,
Oem = 90°).

from the ¢Plot are applied to the data, reproducing the
missing-mass spectrum found in fig. 3.

The second fit is made to the missing-mass distribution
using PDFs from Geant4 [22] simulations of contributing
reaction channels. Considered background reaction chan-
nels include Compton scattering and photoproduction of
two pion combinations off the proton. The PDFs are given
some freedom to fit the experimental data. An additional
PDF is constructed from data collected during experimen-
tal runs with an empty target to account for events origi-
nating from the target cell.

Parameters for adjusting the simulated PDI" shapes
and yields were left as [ree parameters in the first iter-
ation with the exception of the empty target which is
given a constant scale yield related to the relative total
flux in empty target and production runs. Fits were per-
formed for every £, and cos 0.y, bin for which the photon
asymmetry is determined. A further fit is conducted where
background PDFs have been summed together and only
signal and background yields are left as free parameters.
The resulting covariance matrix and values of the PDFs
for a given event were used to calculate the sWeight for
each event as described in [20].

Examples showing the results of the fits to the yields
are displayed in figs. 4 and 5. These figures show how the
missing-mass distribution is split into the different event
contributions.

Using the weights derived from this ¢Plot fit, signal
events are separated from all sources of background. For
example, fig. 6 shows a histogram of the 27 invariant-
mass distribution for all events and events weighted with
the calculated signal. The result is a clean peak at the
expected 7° mass, compared with a peak on a back-
ground distribution. A low mass tail remains in the signal
weighted events due to calorimeter shower loss. For anal-
ysis of the photon asymmetry, these weights were used
to produce signal distributions for the 7° production az-
imuthal angle.
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Fig. 4. (Color online) Projections of fits used to calculate
the weights for sPlot. The events are divided into signal,
background, and random events. The sum of these PDFs fits
the experimental data very well. The example illustrated is a
fit for a single center-of-mass energy - pion polar angle bin
(W = 1246 MeV, 0cr, = 90°).
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Fig. 5. (Color online) Projections of fits used to calculate
the weights for (Plot. The events are divided into signal,
background, and random events. The sum of these PDFs fits
the experimental data very well. The example illustrated is a
fit for a single center-of-mass energy - pion polar angle bin
(W = 1421 MeV, 0., = 114°).
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The photon asymmetries X' were extracted using the
equation

Yi(¢) —Y_(¢)
P_Yi(¢) + PrY_(¢)

where P, _ are the degrees of photon linear polarization
scaling each event by values averaged over the full beam-
time; Y, _(¢) are the normalized azimuthal distributions
taken with two orthogonal photon polarization orienta-
tions at +45° to the laboratory horizontal plane; ¢ is the
azimuthal angle of the plane containing the pion and recoil
proton momenta, defined anti-clockwise around the beam
direction from horizontal. The phase constant ¢ aligns
the polarization of Y, (¢) parallel to ¢ = 0 in the detector
coordinate system and A provides for the possibility of a
small systematic uncertainty in the normalization of the
yields.

A small dilution of the asymmetry within the signal
events was expected due to the detector resolution and
analysis procedure. This dilution was measured by simu-
lating 7% events with a X of 1 with perpendicular polariza-
tion across the kinematic range. The resulting asymmetry
was measured between 0.97 and 1 across cos 0.y, with no
significant variation with W. The dilution was divided out
of the final asymmetry.

For X measurements, systematic uncertainties in the
location of detector systems, detector efficiencies, target
density, etc. cancel. The uncertainty arising from the flex-
ibility in the simulation PDFs was estimated by perform-
ing repeated fits and fits with varied limits on the accepted
range of missing mass. The resulting X' values were found
to be consistent within 3%. In addition the photon polar-
ization P was the other significant source of systematic
uncertainty, which in this case resulted in +2% in X as
discussed in sect. 2.

= A + ECOS(?(QS - ¢0))7 (2)

4 Results and interpretation

The results of the X' measurements are presented in figs. 7
and 8 as binned cos 0., distributions across the W range
1.214-1.450 GeV, where the uncertainty in the degree of
polarization is small compared with the magnitude of the
signal. In total 1403 new measurements of X are pre-
sented. Each data bin is shown alongside any previous
data found on the SAID database [23] that lies within the
energy range of the bin. In many cases the W-binning of
previous data, which is not shown on the figures, was much
larger than the present work. This needs to be borne in
mind in comparing the statistical accuracy of the previous
data with the current measurements.

It is clear that the new photon asymmetry measure-
ments represent a significant improvement in precision in
this energy range and are an important addition to the
world data pool. The high statistics also provide the op-
portunity to carry out a moment analysis, where angular
distributions of the profile function of the beam asymme-
try, ¥ (= 0¢X), are fitted with associated Legendre poly-
nomials. Comparison of the fitted coefficients with model
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predictions can then be used to draw inferences about
the partial wave contributions. For a full description of
this method, and its application to recent photoproduc-
tion data, we refer the reader to [24] with similar work
carried out in [25] along with results for center-of-mass
energies W = 1700-2100 MeV. As outlined in these works,
the profile function can be expressed as

2€max
DW0) = Y ar(W)Pi(coso),

n=2

®3)

where PJ"(cos0) are associated Legendre polynomials,
af (W) are the energy-dependent Legendre coefficients
and £ is a Lorentz-invariant 2-body phase space factor.
The strategy is to increase the truncation order fp,x,
starting from fpmax = 1, performing repeated fits using
eq. (3) until the x2/ndf is satisfactory (i.e. as close to 1
as possible) and is not improved further by increasing the
truncation limit €,,x. This way, one gets an indication of
the dominant partial wave contributions by looking at the
angular distributions ol the profile function. The proce-
dure is fully model-independent and, furthermore, reliably
extracts the £,y of the dominant partial waves contribut-
ing to an observable!.

In order to evaluate the profile function, data for the
unpolarized differential cross-section oy are needed. For
this purpose, we chose the recent m°-data measured by
the A2 Collaboration [26]. For each kinematic bin (W, 6)
in this work, data at nearest neighboring kinematic points
were selected from the oy dataset for the evaluation of the
profile function. Standard rules for error propagation were
applied. Example fits are shown in fig. 9 and the result of
the moment analysis is summarized in fig. 10, showing
the resulting x2/ndf for different truncation angular mo-
menta plotted ws. energy W. It is seen that in the low
energy region, up to W ~ 1300 MeV, a truncation at the
P-waves ({yax = 1) can already describe the data. How-
ever, going beyond 1300 MeV one has to truncate at least
at the D-waves (fmax = 2), while the inclusion of F-waves
(lmax = 3) can still make a small improvement to the fit
in a few bins. On the basis of these fits we conclude that
our dataset is dominated by S- and P-waves in the lower
energy region, while the higher region shows significant
modifications due to D-waves. For further interpretation
we consider the fitted Legendre coefficients and compare
with calculations from the Bonn-Gatchina group [27].

Figure 11 shows the results for the fitted Legendre co-
efficients. For truncations up to #max = 3 the angular dis-
tribution (eq. (3)) takes the shape

S(W,0) = % (a3 (W) P3(cos 0) + a3 (W) P2 (cos 0)

+ay (W) P} (cos 0) + az’ (W) P2 (cos 0)

+ ag (W)Pg(cos0)). (4)

! Interferences between dominant lower partial waves and
suppressed higher partial waves fmax > 3, which may still be
important for a full multipole analysis, can still provide contri-
butions to lower-order coefficients and, hence, remain hidden
from this analysis approach.
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Fig. 7. (Color online) Photon asymmetry (open blue circles) as a function of cos fcr,. The W range for each plot is shown on
the top right. Predictions from PWAs (MAID [5], SAID [26], Bonn-Gatchina [7]) are shown as colored lines and results from
previous experiments (BE(97) [28], BE(06) [29], BJ(69) [30], BL(83) [31], BL(92) [32], BL(01) [33], BP(70)P [34], DR(64) [35],
GB(78) [36], GB(77)1 [37]) see legend, are taken from the SAID database [23].
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Furthermore, the composition of the af in terms of mul-
tipoles can be written in a symbolic notation (described
in more detail in [24]) as [ollows:

ay = (S, D) + (P, P) + (P, F) + (D, D) + (F, F),  (5)
a3y = (S, )+ (P,D) + (D, I), (6)
ay = (P, F)+(D,D) + (F, F), (7)
az = (D, F), (®)
ag = (F,F). 9)

In this shorthand notation, each scalar product symbol
(—,—) denotes all occurring interference terms among
multipoles of definite £ quantum numbers. For instance,
(S, D) denotes a sum:

> > g Re MM

MM'={E,M} pp'={+}
(10)

To interpret the distribution plots we evaluated the Legen-
dre coefficients a(E2 6) using multipoles from the Bonn-

Gatchina solution BnGa 2014-02 [27]. Different lines in
the plots denote the Legendre coefficients, evaluated us-
ing BnGa predictions only up to and including P-, D-
and F-waves. Hence, the predictions have also been trun-
cated, in order to study the influence of different partial
wave interferences in the model.

Firstly, we note that there is good agreement between
the Legendre coefficients with the BnGa curves. This is en-
couraging, since the data analyzed in this work have not
yet been fitted by the Bonn-Gatchina group. Furthermore,
the Legendre coefficients coming in with the F-waves, i.e.
af and af, are consistent with zero when looking at the
fits extracted from the ¥ data, as well as the model pre-
dictions. Therefore everything is consistent with the in-
terpretation that in the energy regime considered here,
the F-waves themselves are quite small, (observe that in
a truncation at fmax = 3, the coefficient a,GE is a pure
(F, F)-term). However, they are not totally unimportant.
This can be seen by looking at a3 and aj’. Both coeffi-
cients should be zero (logically) for the model curve up to

(8,D) =
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P-waves. Including the D-wave multipoles into the eval-
uation of the model prediction brings the BnGa curves
closer to the measured data.

However, a further significant improvement of the
description can be reached by including the BnGa F-
waves. At first glance, this seems surprising since no well-
established (PDG three-star or higher rated) resonance is
known to exist in the energy region of this work. How-
ever, inspection of the multipole compositions eq. (6) and
eq. (7) shows that the F-waves enter both of them via in-
terference terms. For the coefficient a3, those are (S, I)-
and (D, I')-terms. Well-known S- and D-wave resonances

within the reach of our data are of course the N (1535)%_

and N (1520)3_. The improvement to the agreement be-
tween the model and the measurements when the trunca-
tion is extended to fi,ax = 3 strongly suggests that there
is interference between these two resonances with the very
small F-wave contribution. The quantity aj’ on the other
hand has a (P, F')-term. Therefore, it is sensible to as-
sume that some interference with the Roper resonance
N (1440)%+ also comes into play.

To summarize, the data for the beam asymmetry X
analyzed in this work show dominant contributions up to
lmax = 2 and are in good agreement with model predic-
tions. A small additional improvement at fy. = 3 indi-
cates the possibility of interference of the F-wave contri-
bution with the N(1520)3 ", N(1535)1 " and N(1440)%+
resonances.

5 Conclusion

We have presented new, high statistics, measurements of
the photon asymmetry X for the ¥p — 7% reaction in
the range W = 1214-1450 MeV, taken with the MAMI
A2 real photon beam and CrystalBall/TAPS detector sys-
tems. The results are compared with MAID, SAID, and
Bonn-Gatchina PWA predictions, together with the world
dataset. There is good agreement with previous Y mea-
surements from Mainz, GRAAL, and Yerevan in regions
where there is overlap. This study additionally provides
new high-statistics measurements in kinematic regions not
covered by these previous experiments. We have been able
to use this high-statistics data together with recently mea-
sured cross-sections to carry out a moment analysis, fit-
ting the angular distributions of the profile function of the
beam asymmetry, with associated Legendre polynomials.
A comparison with calculations from the Bonn-Gatchina
model shows that the precision of the data is good enough
to further constrain the higher partial waves, and there is
an indication of interference between the very small F-
waves and the N(1520)27, N(1535)37 and N(1440)1"
resonances.
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