
lilliLIIII--'-

iilli_IIIIl_iilii-_lull_
........

UCRL-LR-116004

Distribution Category UC-705

On the Implementation of Error Handling in

Dynamic Interfaces to Scientific Codes

Cynthia Jean Solomon

(M.S. Thesis)

Manuscript date: December 1993

LAWRENCE LIVERMORE NATIONAL LABORATORYUniversity of California • Livermore, California • 94551

............. THISI'IIICtl,)_E_RIS !/_t.lr_lll_

On the Implementation of Error Handling in Dynamic
Interfaces to Scientific Codes

By

Cynthia Jean Solomon
AA, Southwestern Oregon Community College, 1988

BS, Western Oregon State College, 1991

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

" Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSrrY OF CALIFORNIA

DAVIS

Approved:

Committee in Charge

1993

i

Cynthia Jean Solomon

December 1993

Computer Science

On the Implementation of

Error Handling in Dynamic Interfaces to Scientific Codes
t

Abstract

With the advent of powerful workstations with windowing systems, the scientific

community has become interested in user friendly interfaces as a means of promoting the

distribution of scientific codes to colleagues. Distributing scientific codes to a wider

audience can, however, be problematic because scientists, who are familiar with the

problem being addressed but not aware of necessary operational details, are encouraged to

use the codes. A more friendly environment that not only guides user inputs, but also

helps catch errors is needed. This thesis presents a dynamic graphical user interface (GUI)

creation system with user controlled support for error detection and handling. The system

checks a series of constraints defining a valid input set whene,ver the state of the system

changes and notifies the user when an error has occurred. A naive checking scheme was

implemented that checks every constraint ewery time the system changes. However, this

method examines many constraints whose values have not changed. Therefore, a

minimum evaluation scheme that only checks those constraints that may have been violated

was implemented. This system was implemented in a prototype and user testing was used

to determine if it was a success. Users examined both the GUI creation system and the

end-user environment. The users found both to be easy to use and efficient enough for

practical use. Moreover, they concluded that the system would promote distribution.

Keywords: GUI, GUI creation system, constraint system, minimum evaluation scheme,

naive checking scheme.

Acknowledgments

Among the many people who supported me along this extensive journey, I would like to

specifically thank the following:

My Husband: Bob, thank you for enduring the separations, the anxiety, and the stress

and for festooning me with your love and support (not to mention your outstanding

editing skills). You are a special man. I love you.

My Children: Adam and Nora, a special thanks to you two. Having no choice in the

situation you were placed, your kindness, support, and love demonstrate an

unselfishness beyond your years. My pride and love for you are immeasurable.

My Parents: I don't know how you did it, but somehow you managed to raise me

believing that I could achieve whatever I wanted to achieve. Thank you.

My Advisors: Thanks for everything. Scott, I can't tell you how much I appreciate

eve_:_'hing you have taught me and everything you have done for me. ! feel

extremely fortunate for having had the opportunity to work with you. Pat, thank

you for the enthusiasm you had for my project and thesis. It was there every time I

needed it.

The DOE: This work was supported by the U.S. Department of Energy, by Lawrence

Livermore National Laboratory under contract No. W-7405-ENG-48.

,,°

111

Contents

Acknowledgments ... iii

List of Tables ... vi

List of Figures ... vii

Chapter 1: Introduction ... 1

1.1 The Prototype .. 3

1.2 Approach ... 4

1.3 Evaluation Metrics .. 5

1.4 Organization .. 6

Chapter 2: Related Works .. 7

2.1 Current GUI Creation Systems .. 7

2.2 Language Level Error Handling ... 8

2.2.1 Relative Language Level Error Handling Concepts 9

2.2.2 Exception and Error Handling in the Prototype 10

Chapter 3: Design and Implementation .. 13

3.1 General Overview ... 14

3.2 The GUI Creation System ... 18

3.3 Constraint Language Syntax ... 19

3.4 The Preprocessor .. 21

3.5 Implementation .. 22

3.5.1 Constraint Creation .. 22

3.5.2 The Naive Checking Scheme 24
3.5.3 The Minimum Evaluation Scheme 24

iv

Chapter 4: Results ... 27

4.1 GUI Creation System Success .. 27

4.2 Effectiveness of the Minimum Evaluation Scheme 28

4.2.1 Common Experiment Factors 29

4.2.2 Best Case ... 30

4.2.3 Worst Case ... 34

4.2.4 MHD Equilibrium .. 37

4.2.5 Average SUPERCODE Systems Runs 49

4.3 End-User System Success ... 43

4.3.1 Total Response time ... 44

4.3.2 User Feedback ... 45

Chapter 5: Conclusions and Future Work ... 47
5.1 Conclusions .. 47

5.2 Future Work ... 48

5.2.1 Alternate Implementations to the Current Preprocessor 48
5.2.2 Generic Front-end Enhancement 48

5.2.3 User Feedback Suggestions .. 49

Bibliography .. 50

List of Tables

Table 1' MHD Equilibrium run-times results for a descriptive set of identifiers

(plascur,beansh, ctroy, nrho, andrmajor) when usingboth

static class variables and reference variables. Run-time for the naive

checking scheme is also presented .. 38

vi

List of Figures

Figure 1: SUPERCODEarchitecture: modules, shell, graphical interface [1]............ 4

Figure 2: Terminal window with connection menus displayed 14

Figure 3: Terminal window and GUI defined in file rahd. gui 15

Figure 4: Terminal window, GUI defined by file rahd. gui, and the Constraint

Violations window. The user clicked on the error mesuage which

automatically selected the offending entry field 16

Figure 5: Flow of control diagram depicting typical use 17

Figure 6: Code contained in GUI specification file fam.gui. Note that line

numbers are used only for reference purposes 18

Figure 7: The GUI the front-end displayed when the shell read and processes

file, f am. gui .. 19

Figure 8: Class definitions for classes Constr, ConstrNode, Table, and

TableEntry ... 23

Figure 9: Best case run-time results for the minimum evaluation scheme and the

naive checking scheme ... 32

Figure 10: Blowup of best case run-times data point for one constraint 33

Figure 11: Best case run-time results for the minimum evaluation scheme and the

naive checking scheme in a fully compiled system 34

Figure 12: Worst Case run-time results for the minimum evaluation scheme and

the run-time for the naive checking scheme 36

Figure 13: Blowup of worst case run-times for one and two constraints 36

Figure 14: Average run-times per system change for average SUPERCODE cases

with 150 defined constraints: 1%, 3%, and 5% of constraints

executed. Run-times for the naive checking scheme are also shown 41

vii

Figure 15: Average run-times per system change for average SUPERCODE cases

with 50 defined constraints: 1%, 3%, and 5% of constraints executed.

Run-times for the naive checking scheme are also shown 42

Figure 16: Average run-times per system change for average SUPERCODE cases

with 30 defined constraints: 1%, 3%, and 5% of constraints executed.

Run-times for the naive checking scheme are also shown 42

Figure 17: Minimum evaluation scheme run-times for the average SUPERCODE

case including cycle time with 150 constraints defined. The 0.15

second guideline is marked with an arrow....................................... 49

viii

Chapter 1

Introduction

Historically, computational scientists have focused on the design and implementation of

state-of-the-art algorithms and methods while largely neglecting the user environment.

That is, many scientists have been interested in tLe speed and the results of their

applications but less interested in how intuitive their applications are to use. This has

resulted in "user-hostile" scientific codes, easily usable only by those who develop them.

Recently, with the advent of powerful workstations with windowing systems, the scientific

community has become more interested in user friendly interfaces as a means of promoting

the use of their scientific codes by colleagues.

Distributing scientific codes to a wider audience can, however, be prob!ematic

because scientists, who are familiar with the problem being addressed but not aware of

necessary operational details, are encouraged to use the codes. For instance, a physicist

attempting to use a code that models a tokamak fusion reactor is probably an expert in

magnetic fusion. All tokamak experts know that a tokamak has a "major radius" and

"minor radius" and what they are. However, it is possible they might not know that the

variables within the code representing the major radius and minor radius are respectively

rmaj or and rrainor. This example illustrates a gap that may exist between developers

and users. This gap may make using the code much more difficult, if not impossible, and

thus, impede distribution.

Bridging the gap between developers and users requires a more friendly user

environment. Graphical user interfaces (GUI' s) can help provide this by furnishing many

helpful features. For example, an input window with entry fields that guide input relieves

the user from the necessity of knowing variable names. This GUI feature solves the

unknown variable name problem that confronted the physicist in the tokamak fusion reactor

code example. Other helpful features include dialog boxes for prompting users for

responses or input, popup boxes for presenting informational messages, check boxes for

making exclusive or non-exclusive selections, buttons and menus for easy action

execution, and help systems for additional guidance.

Although GUrs help create a friendlier user environment, a truly friendly code also

helps catch errors. Recall the physicist attempting to use the code that models a tokamak

fusion reactor. It is possible the physicist does not know that a model the code supports

becomes less accurate if the major radius is not twice the minor radius. Therefore, the user

may unknowingly commit an error that produces inaccurate results. Since placing a GUI

between the user and scientific codes promotes casual use, error detection and handling is

essential.

We are interested in scientific codes with certain characteristics:

• Complex. Many (100's) of inputs and outputs. Code can solve a variety of

different problems.

• Interactive. Users direct code calculations and query code for information in real-

time. As a result, there is no clear flow of control.

• Programmable. Users can add to and modify the code at run-time.

Examples of this kind of scientific codes are SUPERCODE, a code for modeling and

optimizing designs of tokamak fusion reactors [1] and codes written using the Basis

System [2] such as CORSICA[3], a comprehensive tokamak simulation code.

Scientists use these codes as tools to define a model, simulate it, and analyze the

results. Because these codes can have hundreds of inputs, one static interface presenting

entry fields and menus for all possible settings would be too large to be usable.

Furthermore, when scientists use these codes, they usually focus on a particular problem of

interest dealing with a smaller subset of the inputs. Providing GUI's for every possible

subset problem a scientist may wish to examine is, if not impossible, too time consuming

and expensive. Current GUI creation systems have been quite successful for many

scientific applications, but they produce static GUrs and do not directly support the

necessary error detection and handling. A solution is a GUI creation system with user

controlled support for error detection and handling. Such a system aids the distribution of

scientific codes by providing a user environment that is both robust and easy to use.

1.1 The Prototype

We have created a prototype system allowing dynamic GUI creation and error handling for

initial use in SUPERCODE. Figure 1 displays a schematic representation of the

SUPERCODE architecture. Notice that SUPERCODE is a distributed application consisting

of a front-end and a computational kernel. The front-end and kernel communicate via a

high-speed network link. The front-end consists of a dynamic GUI with error handling

and graphics facilities, while the kernel consists of physics and engineering modules

coupled with a powerful, programmable shell. This shell understands a subset of C++.

The front-end is built using the OI tool kit, a GUI class library from Solbourne of

ParcPlace Boulder [4], and ag/X Toolmaster, a graphics library from UNIRAS [5]. The

GUI front-end is equipped with a terminal window that enables direct access to the shell.

The GUI creation system is implemented as part of the GUI front-end and the shell. This

system enables the front-end to dynamically display additional interfaces in response to

messages from the shell.

The shell controls all aspects of code operation. The shell operates in an interactive

mode sending results to the GUI terminal window in response to user inputs. The user

enters some text, the GUI sends the text to the shell, the shell processes the text executing

any physics and engineering modules necessary, the shell sends any output to the GUI,

and the GUI displays it in the terminal window. Within this flow of control, the shell and

the GUI must work together to provide GUI error handling.

Remote Machine (e.g., CRAY)

Computational Kernel

Sh_Ol ModuOes

• C++ Interpreter • Physics
• Variable/Function _ • Engineering

Database • Math Utilities
• I/O Facilities

Front-End Machine
(e.g., Workstation)

Front-End

Gr_phio_OL_s_rgn_o_aoe

• GUI Creation System • Error Handling

• Visualization Facilities • Presentation Graphics

• I/O Facilities

ql I I I I -"

Figure 1: SUPERCODEarchitecture:modules, shell,graphical interface[1].

1.2 Approach

The GUI creation system and its error handling mechanism are integrated into the

SUPERCODEGUI front-end and shell to provide GUI's with error detection and handling

support. The error handling mechanism is called a constraint system because error

detection is accomplished by defining and examining constraints. A constraint has two

parts: a condition clause for error detection and an action routine for error handling. An

expert GUI designer/modeler creates an interface and defines appropriate constraints to

support the particular physical model the interface represents. The shell stores the error

condition and handler information and sends the GUI the necessary information to support

the system. The shell detects error conditions in the user's input to the GUI and uses the

handler to respond with an appropriate action such as notifying the user.

A key requirement of the GUI error handling system is that users be notified as

soon as possil:le when they commit an error. To support this, the error conditions defined

by the constraints are checked every time the execution state changes (i.e., the user has

entered a new value for a variable). Since there can be hundreds of constraints defined and

few, if any, related to a single change, checking every constraint every time can result in a

considerable time cost. Long delays affect the usability of the system. We call checking

every constraint every time a naive checking scheme. Since speed is an important usability

factor, a minimum evaluation scheme has been examined and implemented. We will show

that this minimum evaluation scheme significantly reduces the time the GUI spends trying
to detect errors.

1.3 Evaluation Metrics

Perhaps the most important metric is whether the constraint system aids users. The

constraint system is considered a success if the following statements hold true:

(1) Creating a GUI for a code and defining constraints that enforce its model are

easily accomplished by the GUI designer.

(2) The casual user can use dynamically displayed GUI's to use SUPERCODE

safely without knowing the specifics of the complete model.

(3) The constraint system is fast enough for efficient use.

Point (1) is an important issue. Before a casual user can use a dynamically configured

GUI, an expert GUI designer must create it. If this process is too difficult, the designers

won't bother. Point (2) addresses whether or not the error handling mechanism works. If

casual users unknowingly commit errors and produce invalid results, the system is useless.

Point (3) addresses another important metric: run-time performance. If the system is too

slow, no one will use it. What is the run-time performance of the naive checking scheme?

What is the run-time performance of the minimum evaluation scheme? Which is better, and

is either of them fast enough to satisfy Point (3)?

1.4 Organization

The thesis is presented in four parts: Chapter 2 addresses related work in the areas of GUI

creation systems and exception handling and shows why this previous work, although

related, is inappropriate for this environment. Chapter 3 shows how we implemented a

GUI definition language to provide a GUI creation system and how we extended it to

provide error handling by imp!.ementing a constraint system. It further describes the

language extensions needed to simplify the constraint system implementation. Finally, the

chapter details a minimum evaluation scheme. This optimization reduces the run-time that

the constraint system requires to detect errors. Chapter 4 discusses the success of the GUI

system -- specifically how easy it is to use. The success of the minimum evaluation

scheme is also evaluated. Execution times are presented for checking the constraints of

several GUI's for both a naive detection scheme and the minimum evaluation scheme. A

comparison between the execution times of the two schemes demonstrates the utiIity of the

minimum evaluation scheme. Finally, the success of the end-user environment is evaluated

by presenting user feedback. Chapter 5 offers suggestions for enhancements and

directions for future work.

Chapter 2

Related Works

Current GUI creation systems can provide some, but not all, of the facilities required to

build a robust front-end to a scientific code. Error detection and handling mechanisms are

among these facilities. Error detection and handling mechanisms do exist and have been

implemented at the programming language level. However, these implementations do not

support the kind of error detection and handling needed for the scientific code environment.

We examine current GUI creation systems along with current error detection and handling

mechanisms and describe why these existing mechanisms do not suffice.

2.1 Current GUI Creation Systems

Examples of current GUI creation systems include DevGuide [6], the NeXTstep Interface

Builder [7], Garnet [8], and AVS [9]. DevGuide and NeXTstep Interface Builder are User

Interface Management Systems (UIMS's). UIMS's are fairly easy to use and allow the

quick development of static interfaces designed for particular applications by providing

graphical tools to aid the GUI development process. A designer creates GUI components

by selecting icons. For example, to create a window, the designer selects the icon that

represents a window. To put a button in the window, the designer first creates the button

then drags it into the window. Facilities exist for setting additional component attributes:

background color, size, border width, etc. Once the GUI designer has the desired interface

on the screen, it can be saved to a file, processed, or both. If it is saved to a file, the

designer can retrieve it for additions or modifications. When the GUI is processed, the

UIMS's produce code that implements the desired interface. However, before the

generated code can be compiled and used with an application, it must be modified. For

instance, UIMS's do not know the names of the functions defined within the application

for which the GUI was created. If a button is created to execute one of these functions,

appropriate modifications must be made to the generated code. The code that implements

the underlying application must be added as well. These additions and modifications are

called "hooks." UIMS's only generate the code that displays the interface while a

programmer must provide the hooks into the underlying application. After the designer has

added the necessary code to the UIMS generated code, it is compiled, and a GUI that is

specifically tailored for that particular application is created.

Garnet is also a UIMS, but it has an additional feature. The GUI's created by

Garnet can be manipulated by the user (i.e., a user can change a button's position). The

resulting interface, however, is still static. Although these UIMS's are valuable tools, they

are inadequate for our needs because they are not dynamically configurable, nor do they

provide error detection and handling mechanisms.

AVS is not a UIMS. It is a framework application that can be used to develop

interactive scientific visualization applications. Flow networks of existing software

building blocks or modules are created by connecting them using a direct-manipulation user

interface. AVS can generate a simple user interface to each module as well as a simple user

interface for the flow network. Unfortunately, AVS is too limited for our needs. AVS

modules are restricted in the types of data they can support (i.e. graphical data such as

vectors), and these modules are limited to an insufficient six inputs. Also, the interfaces

AVS creates are too simple for our application, and error detection and handling

mechanisms are not supported.

2.2 Language Level Error Handling

Although user controlled error detection and handling is not supported by current GUI

systems, many programming languages systems do support it. Goodenough [10] provided

the theoretical foundations for language level exception and error handling. Many of these

techniques have been used to implement language level exception handling. PL/I [11],

CLU [12], ADA [13], and Mesa [14] are examples of procedural languages with exception

handling features. Exception handling models have been proposed for the object-oriented

paradigm by Yemini [15] and Dony [16]. Some examples of object-oriented languages

with exception handling are C++ [17], SmallTalk [18], Eiffel [19], and Lore [20]. An

exception handling model emphasizing parallelism was proposed by Levin [21]. We

examine Goodenough's theoretical foundations for language level exception and error

handling and describe how we apply these foundations to the prototype implementation.

2.2.1 Relative Language Level Error Handling
Concepts

Goodenough provided a methodical theoretical analysis of exception handling in

programming languages. He identified and defined the key components of exception

handling. He also detailed reasons why programmer controlled systems should support

exception handling and the requirements and issues the systems should address.

Goodenough defined exception conditions as those conditions detected while a function is

attempting to perform some operation which are brought the attention of the function's

invoker. These conditions may or may not require some action by the operation's invoker

and therefore, must be brought to the invoker's attention. He called this raising an

exception. Once the exception is raised, the invoker responds in some manner (including

taking no action). This response is called handling the exception.

Goodenough defines three main reasons why a system should support programmer

controlled exception handling (the labels are this author's): [10]

[RESPONSE] to permit dealing with an operation's impending or actual
failure.

[INTERPRET] to indicate the significance of a valid result or the
circumstances under which it was obtained. In this case, the operation's
result satisfies its output assertion, but the invoker needs additional
information describing the result before he can give it an appropriate
interpretation. For example, addition overflow on many computers
produces a valid result as long as the bits of the result are interpreted
appropriately.

[MONITOR] to permit the invoker to monitor an operation, (e.g., to
measure computational progress of a computation or to provide additional
information and guidance should certain conditions arise).

Goodenough also lists the four requirements and issues a programmer controlled

exception handling should address (the labels are this author's): [10]

10

[ASSOCIATION] Association of handlers with invocations of
operations. Since exceptions occur when attempting to perform some
operation, one basic issue is how to associate the proper handler with the
invocation of a given operation.

[CONTROL FLOW] Control flow issues. These issues concern how to
ensure that the user and the implementer of an operation agree on whether
termination or resumption of an operation is permitted when a particular
exception is raised, and how a programmer expresses which of these
possibilities is being chosen.

[DEFAULTS] Default exception handling. It is useful to provide
default handlers for exceptions raised by an operation but not handled by an
invoker of the operation.

[HIERARCHIES] Hierarchies of operations and their exceptions.
Exception handling issues that arise from the interaction between an
exception raising operation and its immediate invoker are somewhat
different from those that arise when an exception is disposed of by an
indirect invoker.

2.2.2 Exception and Error Handling in the Prototype

Exception and error handling in the prototype parallels Goodenough's definitions and

theories. The difference is that Goodenough's model targets programming language

systems whereas the prototype is a user-controlled system.

In the prototype, exception conditions are defined for a GUI by a GUI designer.

Exception conditions are detected when the system performs a consistency check. Just as

in Goodenough's model, the prototype exception (error) may, or may not, require some

action on the part of the user and should be brought to the user's attention. However, there

is one area in which the prototype system differs from the Goodenough model.

Goodenough insists that the invoker, which is analogous to the prototype's user, should be

notified. This requirement is not enforced by the prototype because the GUI designer

provides the specific actions that occur when an exception condition is detected.

The GUI designer should, but does not have to, provide the user with an

opportunity to respond to the detected exception condition. We first examine the model that

notifies the user. An exception condition is detected, and the GUI designer provides

actions that notify the user by displaying a message. Displaying a message is analogous to

raising an exception in Goodenough's model. The user's response to the violation

message is handling the exception. The user has the option of either responding (i.e.,

11

entering a different value in an entry field) or not responding (ignoring the error). The

prototype differs from Goodenough's model when the system does not notify the user

(invoker) of a detected exception condition. Suppose that the GUI designer provides an

entry field for the variable x and defines a constraint on x to be greater than 0. Suppose

also that the GUI designer defines exception handling actions that do not include notifying

the user. Instead, when the constraint is violated, x is set to 1, and the program continues.

Setting X to 1 is handling the exception, without the invoker ever being notified. Another

possible scenario is that the GUI designer provides action statements that execute additional

statements and also notify the user. We consider it bad technique if the GUI designer does

not notify the user, and discussl,.,ns throughout the rest of this paper make the assumption

that the user is notified. This is how we applied the definitions presented by Goodenough

to the prototype system.

One of the reasons Goodenough presented in support of programmer controlled

exception handling applies to the prototype. The type of exceptions (or violated

constraints) that occur in the prototype is related to [RESPONSE]. The user is notified of a

condition that could render the results invalid and is permitted to deal with the situation.

For example, suppose the system defines an extended family in which the members are

given age values. Suppose further that grandpa and mother are members of this

family, and grandpa is mother'sfather. Given this relationship, a constraint is defined

requiring grandpa to be older than mother. If grandpa has an age value of 59, and

the user enters an age value of 6 0 for mother, the constraint is violated. In response, an

appropriate violation message is displayed directing the user to change one of the values for

mother or grandpa.

[INTERPRET] and [MONITOR] do not present themselves in the prototype system

because of the nature of the user's data entry. [INTERPRET] involves raising an exception

for a valid result that, for some reason, needs additional interpretation. In the prototype,

exceptions are only raised when an invalid entry is made. If a valid entry is made, an

exception is not raised because no additional interpretation is necessary. [MONITOR]

exception conditions keep track of a computation's progress possibly to provide a method

of supplying additional information at certain points. The prototype does not need

monitoring because it does not require additional information during the execution of its

operations.

Assuming that mother can not be older than grandpa, given their relationship,

the user should respond by changing one of the values. However, there are cases where

the user inputs may, or may not, result in an invalid system. For instance, suppose

grandpa has age value 59, and the user enters the age value 44 for mother. This makes

12

grandpa only 15 years older than mother. Although this is suspicious, it is not

impossible. The designer may wish to notify the user of these situations as well. We

consider constraints that define possible errors as warnings. Warning constraints define

possible error conditions while error constraints define definite error conditions. Also note

that the proposed exceptions may be forcibly ignored. Suppose that grandma remarried a

younger man. Then, grandpa may be younger than mother. The GUI design

prototype handles all three of these situations.

Finally, we examine how the four requirements and issues [ASSOCIATION],

[CONTROL FLOW], [DEFAULTS], and [HIERARCHIES] of programmer controlled

exception handling apply to the user-controlled prototype. [ASSOCIATION] deals with

how to associate the proper handler with the invocation of a given operation. In the

prototype, the GUI designer always pre defines the handler associating it with the

appropriate operation. Given this simplification, issues [CONTROL FLOW],

[DEFAULTS], and [HIERARCHIES] are also determined by the GUI designer.

13

i

Chapter 3

Design and Implementation
The GUI creation system enables expert GUI designers to create a GUI and define

constraints to impose appropriate restrictions on user inputs. As the system evolves (e.g.,

an end-user enters inputs that define a system), the constraints def'med by the GUI designer

help prevent the end-user from defining an invalid system. There were two choices for

defining and creating the constraints: modifying the shell to add to the shell language or

creating a C++ class. A language extension implemented by modifying the shell would

allow the flexibility of choosing a favorable syntax but would not allow the constraint

system to be used in compiled code. Creating a C++ class would be easier to implement,

but it would require using the longer and more awkward C++ syntax. As a compromise,

we chose the C++ class implementation but gave it the flavor of a language extension by

using a preprocessor.

There were also two obvious methods for checking the constraints: a naive scheme

that checks every defined constraint each time the system changes and a minimum

evaluation scheme that only checks those constraints that may have been violated as the

system evolves. The first method is naive in that it examines many constraints whose

values have not changed each time a user enters an input. The minimum evaluation method

requires some overhead to determine which constraints must be examined but often

executes fewer constraints than the naive method. In this chapter we examine the design

and implementation of the GUI creation system. This system includes the GUI component

creation system, the constraint language syntax, the preprocessor, and both constraint

checking schemes.

14

Figure 2: Terminal window with connection menus displayed.

3.1 General Overview

Before examining the detailed implementation of the GUI creation system, it is helpful to

understand the overall process. First, an end-user starts the distributed system. The GUI

front-end displays a terminal window that enables direct access to the SUPERCODEshell.

Using the main menu of the terminal window, the user establishes a connection with this

shell. Figure 2 shows the terminal window and its connection menus.

Once a connection is established, a prompt appears in the terminal window

signifying the system is waiting for user input. Next, the user asks to display the desired

GUI. To display a dynamically configurable interface, the shell must read and process a

GUI specification file. Expert GUI designers create the GUI specification files that contain

15

zn[1]:
i ncludr "mhd.gui"
In [23:
Zniti ali zi ng WindowValues

In[3]:

Figure 3: Terminal window and GUI defined in file mhd.gui.I

the commands which create the GUI's and define the constraints that support error

detection and handling. The user uses an include command to direct the shell to read the

desired GUI specification file. The shell reads and processes the commands contained in

GUI the specification code, creating the defined interface and sending the appropriate

instructions to the front-end to display it as well as creating any defined constraints to

support error detection and handling. Figure 3 shows the terminal window and the

resulting interface defined in file mhd. gui. When the GUI is displayed, it is initialized

by querying the shell for and displaying current system values.

Whenever a user enters a new value into an entry field, the GUI sends this value to

the shell with its corresponding variable in the form of an assignment statement. This

assignment statement is also displayed in the terminal window as seen in Figure 4. The

shell processes the assignment statement which changes the state of the system and

1 Since the users did not like two adjacent prompts displayed without any indication of what occurred
between them, nor did they like displaying the many commands used to initialize the window in the
terminal window, the front-end displays the descriptive statement, Initializing Window Values.

16

In[i]: !

include"mhd.gui"

In[2]:
InitializingWindowValues

In[3]:

kappup= -2.22;

In[4]:

J Ignore

Figure 4: Terminal window, GUI defined by file mhd.gui, and the Constraints Violations
window. The user clicked on the error message which automatically selected the
offending entry field.

possibly violates constraints. Since the user is to be notified as soon as possible when

errors occur, the GUI also sends the shell a command to check the constraints each time it

changes the state of the system. The shell checks the constraints and executes the

associated action routines for every constraint that is violated. In the prototype, the shell

sends the GUI a message whenever a violation occurs, and the GUI displays a message to

the user in a Constraint Violations window. Figure 4 shows a Constraint Violations

17

r-

_[Check Constraints Command to

[C°mmand- Opti°nal] be pr°cessed I If messagelis "quit",

Make an End Session

entry into ---;
the GUI _

i

l 'Process command
received from GUI

Display prompt
in the terminal
window

.,, Prompt Quit
"_ Message Message

_r

Display any violation Check constraints
messages received if checking command
in the "Constraints was received
Violation" window

violation Prompt]
Messages Message

Front-end Shell

Figure 5: Flow oj cotttrol diagram depicting typical use.

window and also the window's highly desireable feature: the front-end automatically

selects the offending entry field when the user highlights an error message. The described

flow of control, as depicted in Figure 5, represents a typical interaction between a user and

the prototype system.

18

3.2 The GUI Creation System

Before a user can use SUPERCODE, an expert GUI designer must create the file that

dynamically configures and disp,ays the friendly interface. The GUI creation system

enables expert programmer/SUPERCODE designers to easily create GUI specification files.

Since the shell interpreter implements a large subset of C++, the GUI creation system is

also implemented in C++ with GUI component classes added to the shell class library.

The prototype currently provides the GUI developer with the ability to create and

display InputWindows. An InputWindow is a window that has a main menu for

executing actions that are common to all InputWindows. In addition, it contains an

arbitrary number of Pages. A Page is a box that resides within an InputWindow that

can contain other GUI components. One Page at a time is displayed in an

InputWindow. The GUI components include, for instance, a RealEntryField for

representing real variables, a Button for executing actions, a Label for headings and

instructions, and a pull-down Menu for making selections. Some SUPERCODE-specific

GUI items were also created.

The GUI construction process proceeds as follows: A GUI developer creates a file

with the statements that produce a specific interface. This file, when read and processed by

the shell, creates a simple interface by sending the interface information to the front-end.

The fi'ont-end uses this information to generate and display the appropriate GUI. Figure 6

shows the contents of file faro. gui and the resulting simple interface is displayed in

Figure 7.

1 Real grandpa : 59, mother = 30;
2 inputWindow famWindow("Family Members") ;

3 Page pagel("Page I", i) ;
4 famWindow, addPage (pagel) ;
5 RealEntryField gramps("GrandPa", "grandpa",l, I) ;

6 pagel.addRealEntryField(gramps) ;
7 ReaiEntryField ma("Mother","mother",l,2) ;

8 pagel, addRealEnt ryField (ma) ;
9 famWindow, show ();

Figure 6: Code contained in GUI specification file faro.gui. Note that
line numbers are used only for reference purposes.

Line 1 declares variables grandpa and mother of type Real, initializing them to 59 and

3 0 respectively. Line 2 creates an InputWindow object, famWindow, the title of which

is Family Members. Line 3 creates a Page object, pagel. Its title is Page 1and its

19

l:_:}_!_W_:_,;_:_::_t;::_,_._,_i_'.:_::._4:: .; ..;_;;1: _._.._.: ,.b4/,:!:_i:_._._,_r_;_{._.__:_:_,;:_: .:_.... :::_.:. :.... ;: _:._,.:<_:{_.::-,._1,_

: _T..'_,_:___:.:i':; :_ ::,: :,:!!::. i::_.,__',;:::::?d%=:;_:;_;.-:;_:_: .',::d_:Q:i:,.:__f:_.t_{_,b_:_.; :: _{::--:: ... i : :__!::!::_{ii; : ::::_:i:<:_.;_=..,_...!i_:_;:r,'.;I

Figure 7: The GUI the front-end displayed when the shell read and processed file,
f.am. gui.

page number is 1. The page number is used for identification purposes. Line 4 adds

pagel to famWindow. Line 5 creates a RealEntryField object, gramps, and its

label is GrandPa. The string parameter "grandpa" indicates the identifier to which an

entered value is assigned, and the last two parameters, 1 and 1, are the row and column

position where gramps will be displayed when it is added to a Page object. Line 6 adds

gramps to page1. Lines 7 and 8 repeats the process just described for lines 5 and 6 for

a RealEnt ryFi e id labeled Mother. The shell builds GUI objects as it executes lines 1

through 8. When the shell executes line 9, it sends the interface information to the front-

end. The front-end uses the information received from the shell to build the appropriate

interface.

A major advantage of this system is that the GUI developer can write and save files
I

that create specific interfaces for use by new users. These interfaces can be much more

complicated than the simple example presented. InputWindows can consist of an

arbitrary number of Pages with arbitrary numbers of RealEntryFields, Buttons,

Menus, etc.

3.3 Constraint Language Syntax

In addition to creating the GUI, the designer may define constraints to provide error

detection and handling for the end-user. An easy-to-use constraint definition syntax is a

high priority issue with GUI designers. It is important that the syntax be both intuitive and

concise if we are to entice GUI designers to use the system. The syntax should be intuitive

so that GUI designers can easily understand how to define a constraint. Since it is

reasonable that over a hundred constraints may need to be defined, the syntax should be as

concise as possible. A syntax that reduces the required characters by only 20% per

definition can save the GUI designer hundreds of keystrokes in one GUI specification file.

20

Standard C++ exception handling was initially considered but rejected because it

provides language-level, as opposed to user-controlled, exception handling, and it is

designed to deal with many situations that are not applicable to our system. We decided it

was better to design a system tailored to our project. Two of the syntactical forms

considered are presented:

require (<expr>)

{
<statement-list>

}

and

ifnot (<expr>)

{
<statement-list>

}

These forms were rejected because they have an if-statement like appearance. If-statements

only execute as program control passes through them. Our intention was to define

persistent constraints that act as guards against errors. Also, since the intent is to create a

constraint, a declarative syntax is more intuitive. We chose the following syntax for the

prototype:

Constr <identifier> (<expr>) {
<statement-list>

]

Constr is the name of a class within the shell that implements constraint checking and

error handling. The unique name of the constraint is < ident i f i er>. The condition

clause used for error detection is (<expr>). It consists of C++ code that generates a

non-zero value if the constraint is satisfied and a zero value if a violation occurs. The

action statements used to handle the error if a violation occurs is < statement-1 i st >.

Note that although the constraint identifiers are unique, it is possible for multiple

constraints to have identical <expr >'S and/or <s t a t ement - 1 i s t >'s. The prototype

has not been equipped to optimize this situation. If duplicate <expr>'s or

< s t at ement- 1i s t >'s exist, these duplicates are entered into the system.

Suppose a GUI designer wishes to require variable grandpa to be greater than

variable mother and, if violated, wants to user notified. The GUI designer would write

the following statement:

21

Constr _grandpa (grandpa > mother) {

Violation("Grandpa should be older than mother.");

]

The constraintidentifieris_grandpa, the boolean expression (grandpa > mother)

istheconditionclausefordetectingtheerror,and Violation ("Grandpa should be

older than mother.") is a subroutine call for handling the error. When

Viol at ion executes, it sends the string parameter to the front-end to be displayed in the
Constraints Violation window.

3.4 The Preprocessor

Neither the C++ language nor the subset of C++ implemented by the shell supports class

object declarations with the chosen syntactical form and the kind of persistent action we

require. Therefore, we built a preprocessor to convert the constraint definition syntax to a

C++ form implemented by the shell.

Because of the characteristics of the shell and the preprocessor, there must be a

space between the constraint identifier and the condition clause. Moreover, the

preprocessor employs a naming convention such that the Constr identifer must be the

name of the variable constrained with a prepended underscore. This naming convention

enables the preprocessor to automatically add a necessary second parameter to the

Violation function call. 1 However, it is possible that a designer will place a constraint

on an array element. Because the shell implements arrays with the FORTRAN syntax and

the preprocessor was built using LEX [22] (which performs only lexical analysis), the

preprocessor needs the space to distinguish between Cons t r identifier and the condition

clause. Despite the imposed naming convention and necessary space, the syntax is concise

and easy to understand.

In addition, the preprocessor is effective in reducing the number of characters a

GUI designer must code to define a constraint. For example, the preprocessor converts

Constr _grandpa (grandpa > mother) {

Violation("Grandpa should be older than mother.") ;
)

1When Violat ion sends an error message to the front-end to be displayed, the name of an identifier with
which it can be associated must also be sent. This is necessary to implement a highly desireable feature:
automatic selection of the offending entry field when the user clicks on the error message. This feature
requires the suing representation of the identifier to be a parameter of the Violat ion function call.

22

to

Void c_grandpa ()
{

Constr: :returnValue = (grandpa > mother) ? 1 : O;

}

Void a_grandpa ()
{

Violation ("Grandpa should be older than mother.",

"grandpa");

}

Constr _grandpa (c_grandpa, a_grandpa) ;

Notice that for this simple example, the C++ form requires 174 characters of code

while the code the GUI designer must write and preprocess is only 84 characters. This

savings of over 50% is significant, especially when many constraints are defined. The

usability of the syntax and the potential reduction in coding for the GUI designer makes the

preprocessor a desirable tool.

3.5 Implementation

The Constr class definition and those for the related classes, ConstrNode, Table, and

Tabl eEnt ry, are presented in Figure 8.

3.5.1 Constraint Creation

Notice in Figure 8 that the Constr constructor takes as parameters the pointers to the error

detector function and the error handler function previously defined. The constructor creates

a ConstrNode object setting its member variables Error and Handler to the pointers

to the error detector and the error handler functions respectively. The pointer to this

ConstrNode object is then assigned to the Constr member variable constrNodePtr.

It is also stored in a list called constraintList, a static member of class Constr. It

is used for the naive checking scheme.

23

class Constr {

public:
Constr(void (*conditional)(), void (*action)());

-Constr();

static Table hashTable;

static void check();

static void minCheck(String identifier);

private:
static int returnValue;

static ConstrNode *constraintList;

ConstrNode *constrNodePtr;

void addToTable(String identifier);

};

class ConstrNode {

friend class Constr;

publ ic :
ConstrNode(void (*conditional) (), void (*action) ()) ;

-ConstrNode ();

private :
void (*Error) ();

void (*Handler) () ;

ConstrNode *nextNode;

};

class Table {

friend void Constr::minCheck(String identifier);

friend void Constr::addToTable(String identifier);

public:
Table();

-Table();

TableEntry *entry[MAXTABLESIZE];

};

class TableEntry {
friend void Constr::minCheck(String identifier);

friend void Constr::addToTable(String identifier);

public:

TableEntry(String identifier, ConstrNode *node);

-TableEntry();

String id;
ConstrNode *constrList;

};

Figure 8: Class definitionsfor classesConstr,ConstrNode,Table,and
Tabl eEntry.

24

3.5.2 The Naive Checking Scheme

The naive checking scheme is straightforward; it simply checks every defined constraint.

Because every constraint is checked, it is very robust. Every InputWindow the GUI

displays is equipped with a Check Constraints button to allow the user the option of

checking all defined constraints at any time. This scheme requires no overhead to start the

checks, and all violations are detected as their constraints are evaluated. However, this

scheme makes no attempt to determine whether or not a constraint is related to the current

system change.

Recall that the Constr static class member, constraintList, is a list of

pointers to all of the ConstrNode objects containing pointers to the error detector and

error handler functions. The constr static member function, check, traverses this list in

the following manner: For each ConstrNode object pointed to in the list, starting at the

front, check executes the error detector function and, if an error is detected, executes the

error handler function.

The constraints are checked in this manner every time the shell receives the check

function call from the GUI. Specifically, the GUI sends the shell Constr : : check ().

Since the user must be notified of the error as soon as possible, the GUI sends the check

command every time a GUI user event results in a system change (i.e., the user enters a

new value for a variable). However, there can be hundreds of constraints defined and few,

if any, of the constraints may be related to a single change of value. Checking every

constraint can result in excessive overhead. A minimum evaluation scheme is implemented

to reduce the time spent trying to detect errors.

3.5.3 The Minimum Evaluation Scheme

The minimum evaluation scheme reduces the time spent trying to detect errors by checking

only those constraints related to a single value change. This requires some overhead to

decide what the appropriate set of constraints is. However, there are potential savings if

this decision cost is relatively low compared to the constraint evaluation time and the

number of constraints evaluated are reduced.

To check only those constraints related to a single value change, a method of

mapping an identifier to the set of related constraints is needed. The preprocessor scans the

25

condition clause of the constraint declaration and generates a read set consisting of all the

identifiers in the conditional. For example, in the constraint declaration

Constr _grandpa (grandpa > mother) {

Violation v("Grandpa should be older than mother.");

)

grandpa and mother are the identifiers which constitute the read set of the condition

clause, (grandpa > mother). We use a hash table to store the identifiers with a list of

their relative constraints. The preprocessor automatically adds the command to the output

file that enters the information into the hash table. For this example, the preprocessor

would add the following commands:

_grandpa. addToTable ("grandpa");

_grandpa. addToTable ("mother") ;

The addToTable function call is a private member function of class Cons tr. This

function creates a TableEntry object whose String member, id, is assigned the

string parameter of the addToTable function call. In addition, it adds the calling

Constr object's constrNodePtr to the TableEntry object's list of ConstrNode

pointers, constrList. Next, addToTable enters the TableEntry object into the

hash table using Holub's [23] hashing function.

As user-inputs are made, if the value of grandpa or mother changes, instead of

sending the shell the command to execute the Constr static member function check, the
GUI sends the command to execute the Constr static member function minCheck.

Specifically, the GUI sends the shell Constr: :minCheck("grandpa") or

Constr : :minCheck ("mother") if the value of grandpa or mother changed

respectively. When the minCheck function is called, it applies the hash function to its

String parameter to find the appropriate entry slot of the hash table. Next, it compares

its String parameter to the TableEntry object's String member, id. If id does not

match the String parameter, the next TableEntry in Table : : entry is examined.

When the correct Tabl eEnt ry object is found, minCheck executes the error detector

function and, if violated, the corresponding error handler function, for every

ConstrNode pointed to in the TableEntry object's member, constrList. In this

manner, when the value of grandpa or mother changes, only the related condition

clause (grandpa > mother) is checked for possible violation. Other constraints that

do not involve grandpa or mother are not evaluated.

26

The generated read sets help the minimum evaluation scheme determine which

constraints to execute when an identifier's value changes. However, what happens if the

expression contains a function call? Because a function call can contain hidden reads, the

read set of identifiers generated by scanning the condition clause may not be sufficient to

determine which constraints need to be checked. If the system always had access to the

source code of the functions used in the condition clauses, symbolic execution could be

used to generate the complete read sets. However, the source code of these functions may

reside within SUPERCODE's system, and some functions may be compiled. Either way,

the preprocessor that creates the read sets does not have access to the source code.

To handle this situation, a wild card list can be generated containing all of the

constraints for which the read set is indeterminate. When a function call is encountered in a

condition clause, the corresponding constraint is added to the list. The constraints in the

wild card list are checked every time in addition to the constraints known to be associated

with the system change. Although more constraints are checked than is probably

necessary, this is a simple solution to overlooking a constraint that should be checked.

However, functions often do not contain any hidden reads, and a method should be

provided to avoid adding constraints to the wild card list when this is the case. For

example, there are no hidden reads within the trigonometric functions: s in (x), cos (x),

tan (x), etc. A compiler directive can provide a tag indicating a function is "OK" when it

is known to produce no side effects. Expressions containing functions that are tagged as

OK may be processed in the original read set manner. This would reduce the number of

constraints contained in the wild card list that must be evaluated after every system change.

The prototype does not provide a wild card list when functions are part of the

expressions of the constraints. At this time, the prototype properly handles only those

constraints strictly involving identifiers. Extending the system to properly handle error

clauses containing function calls is a topic for future work.

27

Chapter 4

Results

There are three areas in which the system can succeed or fail: usability of the GUI creation

system, run-time optimization of the minimum evaluation scheme, and the usability of the

end-user interface. GUI designer testing is used to determine the usability of the GUI

creation system. To determine if the minimum evaluation scheme is a success, run-time

comparisons between the minimum evaluation scheme and the naive checking scheme are

made for both extreme and representative cases. Finally, although human-computer

interaction guidelines are examined, we ultimately determine the success of the end-user

environment by analyzing end-user feedback.

4.1 GUI Creation System Success

Before an end-user can utilize one of these robust and helpful interfaces, an expert GUI

designer must design it. To persuade the GUI designer to use the GUI creation system, we

made the GUI creation process described in Chapter 3 as easy and succinct a process as

possible.

Whether or not the GUI creation process is easy and succinct enough to promote

use by GUI designers is difficult to determine. The GUI creation system environment is a

programming environment, and a good programming language is both readable and

writable [24]. A readable programming language is one whose meaning is easily extracted

from the syntax. A programming language is writable if it is concise and easy to generate.

A readable programming language that is verbose is not writable just as a writable

28

programming language that is cryptic is not readable. We assessed the readability and

writability of the GUI creation system's programmer interface by asking three expert GUI

designers to read the user's manual, create a GUI, and define a constraint.

The designers found the constraint language syntax very usable. All of the

designers felt that more friendly GUrs created by designers would encourage distribution

to end-users. They also felt creating the GUI specification files is worth the extra effort to

promote this distribution. One designer stated, "People may want to customize the input,

etc. depending on the particular problems they are running. A GUI creation system will be

very useful." One designer liked it so much that he requested porting it to work with codes

created using the Basis System. The designers found the GUI creation system to be a
valuable tool and would use it themselves.

The designers also had some useful comments concerning the system. One

designer said, "My first reaction was that the Constr should be executed if the specified

condition is True (opposite of the way it is set up now), but this is a small point." The

logic is set up to execute the action routine if the condition clause evaluates to false. It was

done this way because we view defining a constraint as placing restrictions on user inputs,

and the present implementation follows that logic. As the user said, it is a small point, but

we will keep this in mind as more designers use the system. Another user commented, "It

is simple, so I like it in that sense. It doesn't look like C++ and so it seems a bit unnatural.

I've often used preprocessors to hide "ugliness" of a C/C++/Mppl implementation,

though." None of the designers could suggest a more appropriate syntax, and all of them

found it easy to use. Based on user testing we conclude that the GUI creation system was
successful.

4.2 Effectiveness of the Minimum
Evaluation Scheme

The end-user environment not only has to be easy to use, but it must also have a response

time that promotes use. The front-end is meant to augment the command line interface, and

although somewhat dependent on the skill of the GUI designer, the end-user GUI's

provide a much friendlier interface. However, the response time of the system can greatly

affect whether or not a casual user will indeed use the system. Aside from the complexity

of the error tests of the constraints defined, the GUI designer has no control over the

response time.

29

To measure and optimize the response time, we are interested in how long it takes

to complete these steps:

1. Sending a system changing command from the front-end to the shell.

2. Processing the commands.

3. Checking the constraints.

4. Sending response from the shell to the front-end.

5. Processing the shell's response.

To optimize this response time we must identify the parts of the process path that

significantly impact the response time and make them as efficient as possible. Because

there is little means to reduce the network communication time between the shell and front-

end, 1 parts (1) and (4) offer little opportunity for optimizing response time. Part (2)

depends on the efficiency of the shell and is beyond the scope of this prototype. Part (5)

requires the GUI to, at most, construct and display error messages in the Constraint

Violations window and a prompt in the terminal window. This is dependent on the OI

class library, so we can have little impact on this part. However, there is a potential for

optimizing part (3). This is why we implemented the minimum evaluation scheme.

4.2.1 Common Experiment Factors

There are some basic factors common to all of the following experiments. Times for the

minimum evaluation scheme were obtained using the following procedure. Recall that the

minimum evaluation scheme checks constraints by executing the class Con str static

member function minCheck. The minCheck function takes a string as an argument, and

its execution is timed for N (typically N = 1000) iterations. Because we are interested in

only the time required to execute minCheck, the time required to call minCheck (i.e.,

call to an empty function that with a string argument) is subtracted, and this difference is

normalized by dividing by N:

N * (minCheck(string) - emptyFunct(string))I minCheck execution =
N

1 Reducing network communication time can be accomplished by having the front-end and the kernel
residing on the same local area network will reduce.

30

Times for the naive checking were obtained using a similar procedure with one difference.

The class Constr static member function check which checks the constraint for the naive

checking scheme takes no arguments while the rainCheck has a string argument.

Therefore the subtracted time is the time required to execute a N iteration loop containing a

call to an empty function that passes no arguments:

N * (check() - emptyFunct())I check execution =
N

These times reflect the average time required to execute their respective checking schemes.

Also, since the time required to execute the error handler functions is identical between the

minimum evaluation scheme and the naive checking scheme, and since we are only

interested in their relative run-times, the experiment assumes that constraints are always

satisfied (i.e., no action code is called). The experiments presented are the "Best Case,"

"Worst Case," "MHD Equilibrium" example, and "Average SUPERCODE" example.

4.2.2 Best Case

The best possible case, in terms of run-time, occurs when all of the constraints are

independent and there are no collisions in the hash table used to implement the minimum

evaluation scheme. No collisions in the hash table means there is at most one identifier

associated with any one hash table slot. This situation has the fastest possible lookup for

the minimum evaluation scheme. When the constraints are independent, changing any one

identifier requires that exactly one constraint needs to be checked. The naive scheme

requires no lookup time, but it has to check every constraint. We will show that the

minimum evaluation scheme outperforms the naive scheme except for a very small number

of constraints.

Setup The experiment was set up in the following manner. Hash table collisions were

avoided by selecting appropriate value identifiers. To ensure that all constraint checks take

the same time, all constraint condition clauses were structurally of the form (identifier >=

0). This experiment measures the run-times for both the minimum evaluation scheme and

the naive checking scheme.

31

The expected cost to run the naive checking scheme is

T (n) = n * CheckTime

where n is the number of constraints defined, and CheckTime is the time it takes to run a

constraim function. This indicates that the naive checking scheme run-time will increase

linearly with the number of constraints defined. The expected cost of the minimum
evaluation scheme is

Tb_st(n)= DecisionTime + CheckTime

where Decision Time is the time required to find the check list associated with a particular

identifier, and CheckTime reflects the fact that there is always only one constraint checked.

Since we implemented the minimum evaluation scheme with a hash table (with overflow

chaining), we see the decision time can be further broken down into

DecisionTime = (Collisions + 1)* (ChainAccess + StringCompare)

where ChainAccess is the time required to access a hash table slot, and StringCompare is

the time required to determine if the slot contains the desired entry. Collisions is the

number of collisions occumng at the hash table slot, and its value is in the range [0, n - 1].

Note that one must be added to Collisions because one ChainAcces_" operation and one

StringCompare operation must be performed every time the minimum evaluation scheme

determines if it has the correct list of constraints to check. This is tree even when there are

no collisions. However, for this experiment we have chosen identifiers that do not collide

in the hash table. Therefore, DecisionTime becomes

Decision Time = ChainAccess + StringCompare

indicating a constant run-time for the minimum evaluation scheme. Because of this

constant run-time, the relationship

DecisionTime< (n- 1) * CheckTime

is true for some n.

32

0.03

-,,- Minimum0.025

= 0.02 -'//
Evaluation

"m / Schemet-
O 0.01 5 /

_ Naive
001

• _ CheckingScheme0.005

,,0

01 2345678910

Number of Constraints
Executed

Figure 9: Best case run-time results for the minimum evaluation scheme and the naive
checking scheme.

Evaluation Figure 9 details the run-times for this best case scenario. As expected, the

minimum evaluation scheme has an almost constant run-time regardless of the number of

constraints defined. Also, the naive checking scheme run-time grows linearly with the

number of defined constraints. Notice that both schemes appear to have identical run-times

for one constraint. Actually, the minimum evaluation scheme has a slightly higher run-time

than the naive checking scheme. This small difference shows up in Figure 10. The

slightly higher run-time of the minimum evaluation scheme is consistent with the predicted

additional decision cost associated with the hash table implementation.

In the prototype, the decision cost was approximately 0.00003 seconds while the

single constraint cost was approximately 0.00284 seconds. So, the expected cost of the

naive scheme for n constraints is

Znaive(n) = n * (0.00284 seconds)

and the expected best case time for the minimum evaluation scheme is

The,(n) = 0.00003 seconds + 0.00284 seconds

Therefore, the minimum evaluation scheme in the prototype breaks even at 1.011

constraints, outperforming the naive checking scheme when as few as two constraints are

33

0.00287 _)
0.002865

• Minimum0.00286
EvaluationScheme

"a 0 002855_, •
O

o 0.00285 [] NaiveChecking
t_ 0.002845 Scheme

0.00284
0.002835

0 0.5 1 1.5

Number of Constraints
Executed

Figure 10: Blowup of best case run-times data point for one constraint.

defined. This is because the decision cost has a much lower execution time relative to the

constraint check even for very simple constraints. The ChainAccess and StringCompare

are executed in the shell by a compiled class Li st operation and a compiled class st ring

operation, respectively, while the constraint check is executed as an interpreted function.

The interpreted nature of the shell skews the results. If the chain access and string compare

cost was relatively higher (as it would be if the constraint checks were compiled functions),

then the break-even point would move higher. To find out how much higher, we added

functions required to check the constraints in the best case to the system and compiled it.

We found that the decision cost in the compiled version is actually higher than the time

required to execute the simple error test function. As a result, the minimum evaluation

scheme does not outperform the naive scheme until at least five constraints are defined (see

Figure 11). However, the prototype is not a compiled system, so we will not concern

ourselves with what happens in a compiled system any further. The rest of this paper will

address only the existing interpreted environment.

Significance In this best case, the minimum evaluation scheme maintains a near

constant run-time while the naive scheme run-time increases almost linearly with the

number of constraints. The minimum evaluation scheme is a success in the best case by

outperforming the naive checking scheme when two or more constraints are defined in the

interpreted system. This holds true in compiled systems as well. However, the break-even

point is quickly reached at only five constraints.

34

0.00012

0.0001 i pl_,,43,_

0.00008 [_']_ -i ¢ Minimum
•e Evaluation_" 0.00006O
o Scheme
G) 0.00004(/)

0.00002 _ Naive

0 Checking
0 1 2 3 4 5 6 7 8 9 10 Scheme

Number of Constraints
Executed

Figure l l" Best case run-time results for the minimum evaluation scheme and the naive
checking scheme in a fully compiled system.

4.2.3 Worst Case

The worst possible case, in terms of run-time, for the minimum e ,'aluation scheme occurs

when all of the constraints are interdependent, when there is a 100% collision rate in the

hash table used to implement the minimum evaluation scheme, and when the last member in

the collision chain is the one that is accessed. When the constraints are interdependent,

changing any one identifier requires that all of the constraints need to be checked. In

addition, the error tests involve all of the identifiers and are both more complicated and

slower to execute. A 100% collision rate in the hash table means that all of the identifiers

associate with the same hash table slot. This situation has the slowest possible lookup for

the minimum evaluation scheme when accessing the last member in the collision chain. We

will show that the minimum evaluation scheme for this Worst Case is only slightly slower

than the naive checking scheme.

Setup Hash table collisions were produced by selecting appropriate value identifiers. To

ensure that all constraint checks take the same time, all constraint condition clauses were of

theform (identifierl + identifier2 +...+ identifier n < i00) forn

value identifiers. This experiment measures the run-times for both the minimum evaluation

scheme and the naive checking scheme.

35

Both the naive checking scheme and the minimum evaluation scheme must check

every constraint. However, the minimum evaluation scheme must also find the correct list

of constraints to check in the hash table collision chain. Therefore, the naive scheme is

expected to have the smaller run-time.

More specifically, the run-time for the naive checking scheme is

Tnaive(rl) "- CheckTime I+ CheckTime 2 +... + CheckTime n,

and the expected cost to run the minimum evaluation scheme is

Tworst(n) = DecisionTime + CheckTime 1 + CheckTime 2 + ... + CheckTime n.

In both of these equations, n is the number of constraints defined and CheckTimel +

CheckTime2 +... + CheckTimen is the time it takes to check each of the n constraints. It

is important to realize that as the number of constraints defined increases, the complexity of

the condition clauses also increases. This means that CheckTimel when n = 1 is going to

execute faster than CheckTimel when n = 10. DecisionTime, found only in equation

Tworst(n), is the time the minimum evaluation scheme requires to find the check list

associated with a particular identifier. Because Decision Time is

DecisionTime = (Collisions + 1) * (ChainAccess + StringCompare)

and because the number of collisions increases with the number of constraints defined, the

decision cost also increases as the number of defined constraints increases.

Evaluation Figure 12 represents the run-times for this Worst Case scenario. The graph

indicates a slight curve as n increases. This is due to the previously stated fact that

condition clauses of each constraint increases in complexity, and therefore execution time

increases as n increases. The graph also indicates that the minimum evaluation scheme and

the naive checking scheme have the same performance. Actually, the minimum evaluation

scheme performs slightly worse. The difference between the two checking schemes did

not show up in Figure 12 because the additional decision cost that minimum evaluation

scheme recurs is very small relative to the cost of the constraint checking cost. A blowup

of Figure 12 (see Figure 13) of the run-times for one and two constraints reveals this very

small difference.

36

0.08

0.07 _"

0.06L y

/ ¢ Minimumm 0.05 ,,,
•m jr= 0 04 , Evaluationo . f
o j Scheme® 0.03

0.02 I:_"_ "L_I''I" _ Naive
0.01

0 Checking
Scheme

0 1 2 3 4 5 6 7 8 9 10

Number of Constraints

Executed

Figure 12: Worst Case run-time results for the minimum evaluation scheme and the
run-time for the naive checking scheme.

0.0075

0.007 •

0 .OO65 ,#'

0.006 ,f ----'0_ Minirn urn

Evaluation0.0055

"o= / Schemeo 0.005

,, j' ----13---- Naive
to 0.0045

/ Checking
0 004 J

• j Scheme
0.0035 I

0.003 /

0.0025 fr

0 0.5 1 1.5 2

Number of Constraints

Executed

Figure 13: Blowup of worst case run-times for one and two constraints.

Significance In this worst case, the minimum evaluation scheme's run-time is only

slightly more than the naive scheme's. Even though the minimum evaluation scheme did

not outperform the naive checking scheme in this case, this is a very extreme case and

!

37

simply will not occur in any SUPERCODE run. In addition, the small decision cost and the

experiment results presented demonstrate that it is not the chosen implementation (i.e.,

using a hash table) that will determine whether or not the minimum evaluation scheme

significantly outperforms the naive checking scheme, but rather the percentage of the total

number of constraints defined that the minimum evaluation scheme must check.

4.2.4 MHD Equilibrium

The results from the two previous experiments provide good lower and upper bounds for

the minimum evaluation scheme, but represent unrealistic scenarios. Analyzing the

SUPERCODE's MHD Equilibrium case shows the better performance of the minimum

evaluation scheme in an actual case.

Setup The system identifiers for the MHD Equilibrium case were used and appropriate

constraints were defined. Because of the nature of this case, the condition clauses are not

of the same structural form, and the number of constraints that are executed by the

minimum evaluation scheme varies from one to three. The hash function worked well for

this case, and all of the identifiers in this example have unique hash values. Therefore, to

obtain a representative set of data, run-times were gathered for a set of identifiers

(plascur, beansh, nrho, ctros,, rmaj or) that represented each condition clause's

structural form and each number of constraints executed. Run-times were measured for

both the minimum evaluation scheme and the checking scheme.

Since the condition clauses are not necessarily of the same structural form, the run-

time for the naive checking scheme is

Tnaive(n) = CheckTime I+ CheckTime 2 + . . . + CheckTime n

where n = 30 constraints are defined in this example. The expected cost to run the

minimum evaluation scheme is

Tmha(n) = DecisionTime+ CheckTimei+ CheckTimej + . . . + CheckTime r

where CheckTimei, CheckTimej,..., CheckTimer are the times to check each of the
related constraints.

38

,,, , ,,,,,..,

% of Constraints

Case, Changed [Executed [%][Time (see]III I III I II I [1111 I I

Naive N/A 100 0.06024
iiii i i ,_1 -r- r, ! _ !1111 !1,, I I iI_11, I [_l:r.

Set 1

Minimum Evaluation Scheme plascur 3.33 0.01184

beansh 3.33 0.02478

nrho 3.33 0.02257

ctroy 6.67 0.02321

rmaj or 10 0.08300
_" ' _l l' I l "' ' I I''_'Ji'' [i i i [rl- i II

Set 2

Minimum Evaluation Scheme

using Reference Variables plascurRef 3.33 0.00287

beanshRe f 3.33 0.00397

nrhoRef 3.33 0.00430

ctroyRef 6.67 0.00595

rmajorRef 10 0.01157

Table 1: MHD Equilibrium run-times results for a descriptive set of identifiers (p 1ascur,
beansh, ctroy, nrho, and rmaj or) when using both static class vairables
and reference variables. Run-time for the naive checking scheme is also
presented.

Evaluation Table 1 lists the run-times for this MHD Equilibrium case. It is obvious

that the naive checking scheme runs significantly slower than the minimum evaluation

scheme. Notice, however, that the first set of minimum evaluation scheme run-times are

higher than expected. Recall that the identifier, plascur, uniquely hashed into the hash

table and had a condition clause of the form (identifier >= 0). Knowing this, we expected a

run-time close to 0.00287. Yet, we got a run-time of 0.01184. Why is this run-time over

four times that of the expected value?

The difference in the run-times is due to the difference in the identifiers and how the

shell interpreter treats them. The identifiers used in the best case are global identifiers while

the identifiers used in the MHD Equilibrium example are static class identifiers. In C++, a

static class identifier must be referenced using a specific syntax: ClassName::identifier.

Otherwise, an undefined-identifier error occurs. To avoid referencing static class

identifiers by the longer syntax, the shell must perform a runtime search of all of the classes

for static class identifiers that match the referenced identifier before producing the

undefined identifier error. If the search finds a unique match, that static class identifier is

I

39

assumed to be the identifier referenced. If a unique match is not found, an error is

produced. The increased time reflects this additional search time.

Fortunately, this extra time can be avoided without typing the longer syntax by

using reference identifiers. If a reference identifier is declared and set eqt_al to a static class

variable, this reference variable can be used to access the static class variable with the

comparable speed of the global identifiers. The second set of minimum evaluation scheme

run-times in Table 1 list the run-times for the same set of identifiers when reference

variables are used. Notice that the run-times are close to the expected. The run-time of the

minimum evaluation scheme when the constraint for plascur is checked is 0.00287.

This is the expected run-time. The run-time of the minimum evaluation scheme when the

three constraints for rmaj or are checked is 0.01157. This is more than 3 * 0.00287 =

0.00861, but this is reasonable due to the more complicated condition clauses that were

executed. The condition clauses for rmajor are ((rmajorRef > 0) &&

(rmajorRef >= rminorRef)), (rmajorRef > 2 * rminorRef), and

(rminorRef > 0). Using the reference identifiers greatly reduces the time required to

access the static class identifiers and therefore reduces the execution time of the minimum

evaluation scheme.

Significance In this MHD Equilibrium example, the run-times, when reference

identifiers are not used, are over four times greater than when reference variables are used.

The minimum evaluation scheme has a maximum run-time of approximately 0.08300

which is significantly reduced to approximately 0.01157 by using reference identifiers.

Because of this time reduction, reference identifiers should be used when defining

constraints on static class identifiers. Also, the run-time for the naive checking scheme for

the 30 constraints is approximately 0.60244 without reference identifiers and 0.1 with

reference identifiers. The results of this MHD Equilibrium experiment indicate the

minimum evaluation scheme is a success because it significantly outperforms the naive

checking scheme.

40

4.2.5 Average SUPERCODE Systems Runs

Although the MHD Equilibrium experiment represents a real-life scenario, it is a relatively

simple case. Larger SUPERCODE systems runs involve as many as 150 total constraints

defined, and the percentage of the constraints related to any system change can range

between 1%-5%. Analyzing cases with the average SUPERCODE systems run

characteristics demonstrates the performance of the minimum evaluation scheme for the

average SUPERCODE case.

Setup Three cases with 150 defined constraints were set up to represent average

SUPERCODE systems runs as described above. For each of the three cases, the constraint

interdependencies were varied such that the minimum evaluation scheme would execute

between 1%-5% of the defined constraints per system change. Specifically, the three tests

executed on average 1%, 3%, and 5% of the defined constraints per system change. Run-

times are measured for both the naive checking scheme and the minimum evaluation

scheme for the three different cases.

The minimum evaluation scheme only checks those constraints related to a single

system change, but the number of constraints checked on average varies with each test.

The minimum evaluation scheme executes on average 1.5 constraints per system change for

the 1% case. For the 3% and 5% cases, the minimum evaluation scheme executes on

average 4.5 and 7.5 constraints respectively per system change. The average run-times

were gathered by timing the minimum evaluation scheme for each system change and

averaging over the total number of system changes.

TotalSystemChanges

2 MinimumEvaluationRuntime
AverageMinimumEvaluationRuntime =

TotalSystemChan ges

We expect the run-time for the minimum evaluation scheme to increase as the percentage of

the executed constraints increases for two reasons: the number of constraints executed is

greater, and the condition clauses are more complex. The more interdependent the

condition clauses are, the more complex they are. Although the naive checking scheme will

always check 150 constraints, the more complex error detection expressions of the higher

percentage cases will increase its run-time as well.

41

.8

0.75i-'0.7

0.65 _,/_r ¢ Minimum
o.6 /,.0.55 L Evaluation

¢_ 0.5'o Scheme= 0.45
o 0.40
a) 0.35 ' _ Naive
(/) O.3 Checking0.25

, Scheme0.2 I
0.15

0.1
0.05

0 "_r "

0% 1% 2% 3% 4% 5%

Average Percentage of
Constraints Executed

Figure 14: Average run-times per system change for average SUPERCODEcases with 150
defined constraints: 1%, 3%, and 5% of constraints executed. Run-times for
the naive checking scheme are also shown.

Evaluation Figure 14 shows the run-times for both the minimum evaluation scheme

and the naive checking scheme for the three average SUPERCODE cases. As expected, the

run-time for the minimum evaluation scheme increases as the percentage of the constraints

executed and the condition clause's complexity increases. The additional time required to

execute the more complex error detection expressions is depicted in the increasing run-

times of the naive checking scheme.

The run-time behavior of both checking schemes is fairly predictable for cases of

varying sizes. The minimum evaluation scheme run-time will increase as the average

percentage of the total constraints executed and the condition clause's complexity increases.

The naive checking scheme run-time will increase as both the total number of defined

constraints and the condition clause's complexity increases. To demonstrate this, we

examined smaller cases with 30 and 50 defined constraints. For both numbers of

constraints (30 and 50), three cases were run such that the minimum evaluation scheme

executed on average 1%, 3%, and 5% of the defined constraints per system change. These

run-times and the run-times for the naive checking scheme for each of the six cases are

presented in Figures 15 and 16.

42

018 !017 J
016
o 15 t
014

0 13 _ Minimum
i

0 12 Evaluation
_ 011
•o 0 1 Schemee-
o 0.0grj

0.08 _ Naive

u_ 0.07 Checking
0.06
0.05 Scheme
0.04
0.03
0.02
0.01

0 __"-"" "--_ ""-

0% 1% 2% 3% 4% 5%

Average Percentage of
Constraints Executed

Figure 15: Average run-times pet" system change for average SUPERCODE cases with 50
defined constraints: 1%, 3%, and 5% of constraints executed. Run-times for
the naive checking scheme are also shown.

o,, l I,0.1 p.._--" "
0.09 _ ¢ Minimum
0.08 , Evaluation

"o 0.07 Scheme
= 0.06
O
u 005

' _ Naive
u_ 0.04

0.03 Checking
0.02 Scheme
0.01

0

0% 1% 2% 3% 4% 5%

Average Percentage of
Constraints Executed

Figure 16: Average run-times per system change for average SUPERCODE cases with 30
defined constraints." 1%, 3%, and 5% of constraints executed. Run-times for
the naive checking scheme are also shown.

43

As predicted, Figures 15 and 16 show that the run-time of the minimum evaluation scheme

increases as the average percentage of the total constraints executed and the error detection

expression's complexity increases. In addition to the longer run-times of the naive

checking caused by the more complex error detection expressions, a comparison of the

three different constraint sizes (30, 50, and 150 constraints defined) shows the significant

run-time impact that the total number of constraints has on the naive checking scheme.

This impact is much less for the minimum evaluation scheme.

Significance These cases show that the run-time nature of both checking schemes is

predictable and that the minimum evaluation scheme significantly outperforms the naive

checking scheme. Because both checking schemes are non chaotic, no further tests need to

be conducted. The minimum evaluation scheme significantly outperforms the naive

checking scheme for the average SUPERCODE cases and is, therefore, a success.

4.3 End-User System Success

The minimum evaluation scheme did significantly optimize the response time over the naive

checking scheme, but is the response time fast enough to encourage use? Remember that

the end-user response time includes these steps:

1. Sending a system changing command from the front-end to the shell.

2. Processing the commands.

3. Checking the constraints.

4. Sending response from the shell to the front-end.

5. Processing the shell's response.

The minimum evaluation scheme reduces the response time by greatly reducing step (3),

but steps (1), (2), (4), and (5) must be measured to obtain the total response time to which

the casual users are subjected. Shneiderman [25] has suggested guideline response times

for different tasks. Typing and cursor motion should range between 0.05 and 0.15

seconds, and simple frequent tasks should take less than one second. There is no guideline

established for our particular task, but we assess the task of using a dynamically configured

GUI to use SUPERCODE to fall somewhere between these tasks. Shneiderman also points

out that empirical testing can help set suitable response times. Therefore, empirical testing

is used to determine user group satisfaction and the success of the system.

44

4.3.1 Total Response time

The total response time of interest is the response time after an error has occurred. This

user environment is unique in that it allows the user to continue entering data into the

interface while the underlying application is processing. This processing includes checking

the constraints and sending error messages to the front-end. If no errors have occurred, the

error detection system is transparent to the user. Therefore, we are interested in the

response time indicated by the previously listed five steps only when step (4) involves

sending the front-end an error message and step (5) displays the error message.

Additionally, since user interaction is interrupted when the first error message is displayed,

this response time is only relevant up to displaying the first error message. If the time

required to display any additional error messages was longer than it takes the user to deal

with the first error message (i.e., several seconds), this time would be relevant, but

fortunately, this is not the case.

We have already presented the time required to check the constraints [step (3)] for

various situations, and now we present the times required by the other portions affecting

the end-user response time. These times are obtained by actual testing and should be

considered approximations.

[step (1)] The time required by the front-end to send a system changing command

and a check command to the shell is 0.01294 seconds.

[step (2)] Processing the commands (by the shell) takes 0.02003 seconds. The

time for step (2) includes parsing and executing the system-changing

command, parsing the check command, and calling the function that
i

checks the constraints. Including the function call time was necessary

because this time cost was not included in the times gathered for step (3).

[step (4)] Executing a typical action routine in the shell that sends an error message

to the front-end takes 0.00604 seconds.

[step (5)] Finally, the time it takes the GUI to receive and display a typical error

message is 0.02036.

Therefore, the total cycle time not including checking the constraints is 0.05937. The run-

times for the minimum evaluation scheme for the average SUPERCODE cases (150

constraints defined) with the rest of the cycle time added is depicted in Figure 17.

45

0.15 Second Guideline

0.2

0.15 _r
'O
e.
O 0.1o

0.05

0 i

0% 1% 2% 3% 4% 5%

Percent of Constraints
Executed

Figure 17: Minimum evaluation scheme run-times for the average SUPERCODE case
including cycle time with 150 constraints defined. The 0.15 second guideline
is marked with an arrow.

Recall that Shneiderman suggested a guideline response times between 0.05 and

0.15 seconds for tasks like typing, cursor motion, and mouse selection. We',consider

using SUPERCODE with a GUI to be a more difficult task than simple typing or cursor

motion, but notice when the cycle time is added to average SUPERCODE ,cases, the

minimum evaluation scheme run-time still stays below 0.15 seconds. The maximum run-

time presented for the minimum evaluation scheme is approximately 0.1 seconds. These

results are very promising, but to determine whether the response time is indeed low

enough, user testing was used.

4.3.2 User Feedback

The next step is to present the system to the end-user group and to question them as to what

they liked and disliked. We are interested in overall satisfaction, whether or not they would

use it, etc. The users were given a GUI specification file to read into the shell aaada set of

tasks to perform. After completing the test, the users filled out a questionnaire that

addressed usability and asked for criticisms, comments and, suggestions. There were

some criticisms and suggestions, but overall, the end-user environment was a solid

Success.

The users found using the GUI very easy and preferred it to using the command-

line version. Some of their comments are presented:

46

The fact that one doesn't have to remember all the variable and constraint
names is very important. From my experience, I find that if I don't run the
SUPERCODE for a while, I have a hard time remembering the names of
variables etc., and I have to look at the *.mod files. Most of us also run
several other transport/MHD codes with different names for the same
physical quantities, and this makes it even more confusing.

I liked it because it makes it much easier to run the SUPERCODE without
having to know much about the shell. The different choices of parameters
in the different menus and submenus were well chosen, and I believe that
anybody with a knowledge of the MHD would be able to run a case.

It makes tasks like this easy to do, and easy to learn from. Plus I can still
go up to the shell [terminal window] and do arbitrary programming tasks.
For example, now that I've seen what happens when I run an equilibrium, I
could t_' something more complex like setting up a for-loop to run
equilibria for a range of values of one of the variables.

It's much easier than activating/deactivating constraints, variables, and
calculators by hand. I never remember the names of all those thing and
constantly have to search for them.

When I haven't used SUPERCODEfor a month or so, I forget the variable
names. Sometimes it can take me MINUTES to find the correct one (there
are > 100 to choose from). Accordingly a GUI is an ESSENTIAL feature
in my opinion.

When asked whether or not the users felt the system would promote distribution to users

who don't know the implementation specifics of SUPERCODE, all of them said yes and

cited the reasons why they themselves liked it. One user added, "This is probably the

biggest use for the GUI."

The users offered very useful comments and suggestions. The front-end and

SUPERCODE are two separate applications, and to use the system, the user currently has to

open two x-terminals and start each application separately. One user felt that launching

SUPERCODE from within the front-end would be a good refinement. Also, the GUI

displays boih warning and error messages. It was suggested that if an error message is

displayed on a user input, displaying a warning message that is also defined for that input

is superfluous and should not be displayed. Other suggestions for enhancements were an

on-line help system, providing a menu of standard graphs that could be automatically

displayed when the equilibrium were recalculated, and enhancing the shell and the front-

end to enable them to display pertinent calculation feedback (i.e., the calculation failed

because...). Because the users found the end-user environment very usable and felt it

would promote distribution, the end-user environment is a success.

47

Chapter 5

Conclusions and Future Work

The prototype has returned encouraging results. In this section, we summarize the issues,

discuss the success of the prototype, and indicate topics for future work.

5.1 Conclusions

To help promote distribution of codes, it is desirable to provide a friendly end-user

environment. Accordingly, we designed a GUI creation system to allow construction of

easy-to-use GUI's and a constraint system to provide error detection and handling. We

implemented a prototype of this system for SUPERCODE, a tokamak design code.

The end-user community's comments in their surveys indicate that the system made

the SUPERCODE easier to use. The constraint checking system ensured that their answers

did not violate the appropriate system model, and the users especially liked the robust

quality of the system. The end-users also found the interface fast enough for the kinds of

problems they address. From all this, we can infer that the prototype's interface style can

promote the accessibility and usability of scientific codes.

GUI designers found the GUI creation system easy to use and felt that any initial

extra effort involved in creating GUI's was worth the benefit of increased code

distribution. We believe that the system is powerful enough to be applicable to other

scientific codes.

48

5.2 Future Work

A few modifications presented themselves that could enhance usability. One possibility is

building a smarter preprocessor or adding to the shell language to support the constraint

system instead of using the current preprocessor. This allows the system to handle read

sets over function calls. Other enhancements include adding a generic interface to the front-

end and responding to user suggestions. These are all areas for further work.

5.2.1 Alternate Implementations to the Current
Preprocessor

Building a smarter preprocessor using a parser generator like YACC [26] or modifying the

shell language to support the constraint system are improvements over the current

preprocessor. Both implementations would improve syntax and would be able to properly

deal with function calls within condition clauses. However, the smarter preprocessor could

be used to read code that is to be compiled while the modified shell version could not. On

thc other hand, the modified shell version could automatically generate and use reference

variz:ble._ for static class variables while the smarter preprocessor could not. These

tradeofls should be seriously considered before choosing an alternate implementation to the

current preprocessor.

5,2.2 Generic Front-end Enhancement

Once the constraint system is implemented in the shell language, it is possible to construct a

generic GUI for the front-end by accessing system information. Because the shell can

access all system information, the front-end can get this information by querying the shell.

The GUI can query the shell to determine how many variables there are and their associated

data (type, current value, etc.). The front-end could then create a window to display this

information. In addition, a GUI can be made so that the user can select a variable from this

window for modification and/or definition of a constraint.

49

This generic GUI could be expanded to include access to SUPERCODE's equation,

set includes figures of merit, physical constraints, and calculators. A generic GUI that

allows access and manipulation of the system equation set would be extremely beneficial.

5.2.3 User Feedback Suggestions

There were several suggestions made by the users that are considered topics for future

work: enabling the user to launch SUPERCODEfrom inside the front-end, modifying the

warning and error message display system so that warning messages are not displayed for

user inputs that also generated an error message, adding an on-line help system, providing

a menu of standard graphs that could be automatically displayed when equilibrium was

recalculated, and enhancing the shell and the front-end to enable a display of pertinent

calculation feedback.

50

Bibliography
[1] S.W. Haney, W.L. Barr, J.A. Crotinger, L.J. Perkins, C.J. Solomon, E.A.

Chanoitakis, J.P. Freidberg, J. Wei, J.C. Galambos, J. Mandrekas, "A
'SUPERCODE' for Systems Analysis of Tokamak Experiments and Reactors,"
Fusion TechnoI., 21, pp. 1749-1759 (1992).

[2] P.F. Dubois, Z.C. Motteler, P.A. Willmann, R.A. Allsman, C.M. Benedetti, S.M.
Hockett, D.S. Kershaw, A.B. Langdon, A.C. Springer, J. Takemoto, S.S.
Wilson, "The Basis System," Manual M-225, Lawrence Livermore National
Laboratory, Livermore, CA (1989).

[3] L.D. Pearlstein, J.A. Crotinger, S.W. Haney, L.L. Lodestro, "CORSICA 1.0: A
Free-Boundary 1-1/2 D Transport Code," Bulletin of the APS, 38:10, pp. 2077
(1993).

[4] A. Benson and G. Aitken, OI Programmer's Guide, Prentice Hall, Englewood
Cliffs, NJ (1992).

[5] agX/Toolmaster User's Guide, UNIRAS A/S, 2nd ed., Denmark (1991).

[6] Sun Microsystems, Inc., OpenWindows Developer's Guide 1.1 User's Manual,
Sun Microsystems, Inc., USA (1990).

[7] M.K. Mahoney, Tutorial Notes from the A CM Conference on Human Factors in
Computing Systems, Monterey, CA (1992).

[8] B.A. Meyers, D.A. Giuse, R.B. Dannenberg, B.V. Zanden, D.S. Kosbie, E.
Pervin, A. Mickish, P. Marchal, "Garnet: Comprehensive Support for Graphical,
Highly Interactive user Interfaces," Computer, 23, pp. 71-85 (1990).

[9] C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R.
Gurwitz, A. van Dam, "The Application Visualization System: A Computational
Environment for Scientific Visualization," IEEE Computer Graphics &
Applications, 9:4, pp. 30-42 (1989).

[10] J.B. Goodenough, CACM, 18:12, pp. 683-696 (1975).

[11] J.M. Noble, "The Control of Exceptional Conditions in PL/I Object Programs,"
Proceedings of the IFIP Congress 68, North-Holland Publishing Co., Amsterdam,
pp. C78-C83 (1968).

51

[12] B. Liskov and A. Snyder, "Structured Exception Handling," Computation
Structures Group Memo 155, Massachusetts Institute of Technology, Cambridge,
MA (1977).

[13] Reference Manual for the ADA Programming Language. United States Department
of Defense, ANSI/MIL-STD-1815A-1983, (1983).

[14] J.G. Mitchell, W. Maybury, and R. Sweet, "MESA Language Manual," Xerox
Research Center, Palo Alto, CA (1979).

[15] S. Yemini, "The Replacement Model for Modular, Verifiable Exception Handling,"
Ph.D thesis, University of California, Los Angeles, CA (1981).

[16] C. Dony, "An Exception Handling System for an Object-Oriented Language,
Proceedings of ECOOP'88, pp. 146-161 (1988).

[17] M.A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, Reading, MA (1991).

[18] A. Goldberg and D. Robson, SMALLTALK 80, the Language and its
Implementation, Addison-Wesley, Reading, MA (1983).

[19] B. Meyer, Eiffel The Language, Prentice Hall, London, England (1992).

[20] C. Dony, "Exception Handling and Object-Oriented Programming: towards a
synthesis,"Proceedings of ECOOP/OOPSLA '90, 322-330 (1990).

[21] R. Levin, "Program Structures for Exceptional Condition Handling," Ph.D thesis,
Carnegie Mellon University, Pittsburgh, PA (1977).

[22] M.E. Lesk and E. Schmidt, "Lex: A Lexical Analyzer Generator," in B.W.
Kernighan and M.D. Mcllroy, Unix Programmer's Manual, 7th ed., Bell
Laboratories (1978).

[23] A.I. Holub, Compiler Design in C, Prentice Hall, NJ (1990).

[24] M. Marcotty and H. Ledgard, Programming Language Landscape: Syntax,
Semantics, and Implementation, 2nd ed., Macmillan, New York, NY (1986).

[25] B. Shneiderman, Designing the User Interface Strategies for Effective Human-
Computer Interaction, 2nd ed., Addison-Wesley, Reading, MA (1992).

[26] S.C. Johnson, "Yacc: Yet Another Compiler-Compiler," in B. W. Kernighan and
M. D. Mcllroy, Unix Programmer's Manual, 7th ed., Bell Laboratories (1978).

Recyclable

f

4

o

