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Abstract

With the advent of powerful workstations with windowing systems, the scientific
community has become interested in user friendly interfaces as a means of promoting the
distribution of scientific codes to colleagues. Distributing scientific codes to a wider
audience can, however, be problematic because scientists, who are familiar with the
problem being addressed but not aware of necessary operational details, are encouraged to
use the codes. A more friendly environment that not only guides user inputs, but also
helps catch errors is needed. This thesis presents a dynamic graphical user interface (GUI)
creation system with user controlled support for error detection and handling. The system
checks a series of constraints defining a valid input set whenever the state of the system
changes and notifies the user when an error has occurred. A naive checking scheme was
implemented that checks every constraint every time the system changes. However, this
method examines many constraints whose values have not changed. Therefore, a
minimum evaluation scheme that only checks those constraints that may have been violated
was implemented. This system was implemented in a prototype and user testing was used
to determine if it was a success. Users examined both the GUI creation system and the
end-user environment. The users found both to be easy to use and efficient enough for
practical use. Moreover, they concluded that the system would promote distribution.

Keywords: GUI, GUI creation system, constraint system, minimum evaluation scheme,
naive checking scheme.
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Chapter 1

Introduction

Historically, computational scientists have focused on the design and implementation of
state-of-the-art algorithms and methods while largely neglecting the user environment.
That is, many scientists have been interested in tiie speed and the results of their
applications but less interested in how intuitive their applications are to use. This has
resulted in “user-hostile” scientific codes, easily usable only by those who develop them.
Recently, with the advent of powerful workstations with windowing systems, the scientific
community has become more interested in user friendly interfaces as a means of promoting
the use of their scientific codes by colleagues.

Distributing scientific codes to a wider audience can, however, be problematic
because scientists, who are familiar with the problem being addressed but not aware of
necessary operational details, are encouraged to use the codes. For instance, a physicist
attempting to use a code that models a tokamak fusion reactor is probably an expert in
magnetic fusion. All tokamak experts know that a tokamak has a “major radius” and
“minor radius” and what they are. However, it is possible they might not know that the
variables within the code representing the major radius and minor radius are respectively
rmajor and rminor. This example illustrates a gap that may exist between developers
and users. This gap may make using the code much more difficult, if not impossible, and
thus, impede distribution.

Bridging the gap between developers and users requires a more friendly user
environment. Graphical user interfaces (GUI’s) can help provide this by furnishing many
helpful features. For example, an input window with entry fields that guide input relieves
the user from the necessity of knowing variable names. This GUI feature solves the
unknown variable name problem that confronted the physicist in the tokamak fusion reactor



code example. Other helpful features include dialog boxes for prompting users for
responses or input, popup boxes for presenting informational messages, check boxes for
making exclusive or non-exclusive selections, buttons and menus for easy action
execution, and help systems for additional guidance.

Although GUT's help create a friendlier user environment, a truly friendly code also
helps catch errors. Recall the physicist attempting to use the code that models a tokamak
fusion reactor. It is possible the physicist does not know that a model the code supports
becomes less accurate if the major radius is not twice the minor radius. Therefore, the user
may unknowingly commit an error that produces inaccurate results. Since placing a GUI
between the user and scientific codes promotes casual use, error detection and handling is
essential.

We are interested in scientific codes with certain characteristics:

* Complex. Many (100's) of inputs and outputs. Code can solve a variety of
different problems.

e Interactive. Users direct code calculations and query code for information in real-
time. As aresult, there is no clear flow of control.

e Programmable. Users can add to and modify the code at run-time.

Examples of this kind of scientific codes are SUPERCODE, a code for modeling and
optimizing designs of tokamak fusion reactors [1] and codes written using the Basis
System [2] such as CORSICA [3], a comprehensive tokamak simulation code.

Scientists use these codes as tools to define a model, simulate it, and analyze the
results. Because these codes can have hundreds of inputs, one static interface presenting
entry fields and menus for all possible settings would be too large to be usable.
Furthermore, when scientists use these codes, they usually focus on a particular problem of
interest dealing with a smaller subset of the inputs. Prcviding GUTI’s for every possible
subset problem a scientist may wish to examine is, if not impossible, too time consuming
and expensive. Current GUI creation systems have been quite successful for many
scientific applications, but they produce static GUI's and do not directly support the
necessary error detection and handling. A solution is a GUI creation system with user
controlled support for error detection and handling. Such a system aids the distribution of
scientific codes by providing a user environment that is both robust and easy to use.



1.1 The Prototype

We have created a prototype system allowing dynamic GUI creation and error handling for
initial use in SUPERCODE. Figure 1 displays a schematic representation of the
SUPERCODE architecture. Notice that SUPERCODE is a distributed application consisting
cof a front-end and a computational kernel. The front-end and kerne! communicate via a
high-speed network link. The front-end consists of a dynamic GUI with error handling
and graphics facilities, while the kernel consists of physics and engineering modules
coupled with a powerful, programmable shell. This shell understands a subset of C++.

The front-end is built using the OI tool kit, a GUI class library from Solbourne of
ParcPlace Boulder [4], and ag/X Toolmaster, a graphics library from UNIRAS [5]. The
GUI front-end is equipped with a terminal window that enables direct access to the shell.
The GUI creation system is implemented as part of the GUI front-end and the shell. This
system enables the front-end to dynamically display additional interfaces in response to
messages from the shell.

The shell controls all aspects of code operation. The shell operates in an interactive
mode sending results to the GUI terminal window in response to user inputs. The user
enters some text, the GUI sends the text to the shell, the shell processes the text executing
any physics and engineering modules necessary, the shell sends any output to the GUI,
and the GUI displays it in the terminal window. Within this flow of control, the shell and
the GUI must work together to provide GUI error handling.
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Figure 1: SUPERCODE architecture: modules, shell, graphical interface [1].

1.2 Approach

The GUI creation system and its error handling mechanism are integrated into the
SUPERCODE GUI front-end and shell to provide GUI's with error detection and handling
support. The error handling mechanism is called a constraint system because error
detection is accomplished by defining and examining constraints. A constraint has two
parts: a condition clause for error detection and an action routine for error handling. An
expert GUI designer/modeler creates an interface and defines appropriate constraints to



support the particular physical model the interface represents. The shell stores the error
condition and handler information and sends the GUI the necessary information to support
the system. The shell detects error conditions in the user’s input to the GUI and uses the
handler to respond with an appropriate action such as notifying the user.

A key requirement of the GUI error handling system is that users be notified as
soon as possitle when they commit an error. To support this, the error conditions defined
by the constraints are checked every time the execution state changes (i.e., the user has
entered a new value for a variable). Since there can be hundreds of constraints defined and
few, if any, related to a single change, checking every constraint every time can result in a
considerable time cost. Long delays affect the usability of the system. We call checking
every constraint every time a naive checking scheme. Since speed is an important usability
factor, a minimum evaluation scheme has been examined and implemented. We will show
that this minimum evaluation scheme significantly reduces the time the GUI spends trying
to detect errors.

1.3 Evaluation Metrics

Perhaps the most important metric is whether the constraint system aids users. The
constraint system is considered a success if the following statements hold true:

(1)  Creating a GUI for a code and defining constraints that enforce its model are
easily accomplished by the GUI designer.

(@) The casual user can use dynamically displayed GUI's to use SUPERCODE
safely without knowing the specifics of the complete model.

3) The constraint system is fast enough for efficient use.

Point (1) is an important issue. Before a casual user can use a dynamically configured
GUI, an expert GUI designer must create it. If this process is too difficult, the designers
won't bother. Point (2) addresses whether or not the error handling mechanism works. If
casual users unknowingly commit errors and produce invalid results, the system is useless.
Point (3) addresses another important metric: run-time performance. If the system is too
slow, no one will use it. What is the run-time performance of the naive checking scheme?
What is the run-time performance of the minimum evaluation scheme? Which is better, and
is either of them fast enough to satisfy Point (3)?



1.4 Organization

The thesis is presented in four parts: Chapter 2 addresses related work in the areas of GUI
creation systems and exception handling and shows why this previous work, although
related, is inappropriate for this environment. Chapter 3 shows how we implemented a
GUI definition language to provide a GUI creation system and how we extended it to
provide error handling by implementing a constraint system. It further describes the
language extensions needed to simplify the constraint system implementation. Finally, the
chapter details a minimum evaluation scheme. This optimization reduces the run-time that
the constraint system requires to detect errors. Chapter 4 discusses the success of the GUI
system -- specifically how easy it is to use. The success of the minimum evaluation
scheme is also evaluated. Execution times are presented for checking the constraints of
several GUI's for both a naive detection: scheme and the minimum evaluation scheme. A
comparison between the execution times of the two schemes demonstrates the utility of the
minimum evaluation scheme. Finally, the success of the end-user environment is evaluated
by presenting user feedback. Chapter 5 offers suggestions for enhancements and
directions for future work.




Chapter 2

Related Works

Current GUI creation systems can provide some, but not all, of the facilities required to
build a robust front-end to a scientific code. Error detection and handling mechanisms are
among these facilities. Error detection and handling mechanisms do exist and have been
implemented at the programming language level. However, these implementations do not
support the kind of error detection and handling needed for the scientific code environment.
We examine current GUI creation systems along with current error detection and handling
mechanisms and describe why these existing mechanisms do not suffice.

2.1 Current GUI Creation Systems

Examples of current GUI creation systems include DevGuide [6], the NeXTstep Interface
Builder [7], Garnet {8], and AVS [9]. DevGuide and NeXTstep Interface Builder are User
Interface Management Systems (UIMS's). UIMS's are fairly easy to use and allow the
quick development of static interfaces designed for particular applications by providing
graphical tools to aid the GUI development process. A designer creates GUI components
by selecting icons. For example, to create a window, the designer selects the icon that
represents a window. To put a button in the window, the designer first creates the button
then drags it into the window. Facilities exist for setting additional component attributes:
background color, size, border width, etc. Once the GUI designer has the desired interface
on the screen, it can be saved to a file, processed, or both. If it is saved to a file, the
designer can retrieve it for additions or modifications. When the GUI is processed, the



UIMS's produce code that implements the desired interface. However, before the
generated code can be compiled and used with an application, it must be modified. For
instance, UIMS's do not know the names of the functions defined within the application
for which the GUI was created. If a button is created to execute one of these functions,
appropriate modifications must be made to the generated code. The code that implements
the underlying application must be added as well. These additions and modifications are
called “hooks.” UIMS's only generate the code that displays the interface while a
programmer must provide the hooks into the underlying application. After the designer has
added the necessary code to the UIMS generated code, it is compiled, and a GUI that is
specifically tailored for that particular application is created.

Garnet is also a UIMS, but it has an additional feature. The GUI's created by
Garnet can be manipulated by the user (i.e., a user can change a button's position). The
resulting interface, however, is still static. Although these UIMS's are valuable tools, they
are inadequate for our needs because they are not dynamically configurable, nor do they
provide error detection and handling mechanisms.

AVS is not a UIMS. It is a framework application that can be used to develop
interactive scientific visualization applications. Flow networks of existing software
building blocks or modules are created by connecting them using a direct-manipulation user
interface. AVS can generate a simple user interface to each module as well as a simple user
interface for the flow network. Unfortunately, AVS is too limited for our needs. AVS
modules are restricted in the types of data they can support (i.e. graphical data such as
vectors), and these modules are limited to an insufficient six inputs. Also, the interfaces
AVS creates are too simple for our application, and error detection and handling
mechanisms are not supported.

2.2 Language Level Error Handling

Although user controlled error detection and handling is not supported by current GUI
systems, many programming languages systems do support it. Goodenough [10]} provided
the theoretical foundations for language level exception and error handling. Many of these
techniques have been used to implement language level exception handling. PL/I [11],
CLU [12], ADA [13], and Mesa [14] are examples of procedural languages with exception
handling features. Exception handling models have been proposed for the object-oriented
paradigm by Yemini [15] and Dony [16]. Some examples of object-oriented languages




with exception handling are C++ [17], SmallTalk [18], Eiffel [19], and Lore [20]. An
exception handling model emphasizing parallelism was proposed by Levin [21). We
examine Goodenough's theoretical foundations for language level exception and error
handling and describe how we apply these foundations to the prototype implementation.

2.21 Relative Language Level Error Handling
Concepts

Goodenough provided a methodical theoretical analysis of exception handling in
programming languages. He identified and defined the key components of exception
handling. He also detailed reasons why programmer controlled systems should support
exception handling and the requirements and issues the systems should address.
Goodenough defined exception conditions as those conditions detected while a function is
attempting to perform some operation which are brought the attention of the function’s
invoker. These conditions may or may not require some action by the operation's invoker
and therefore, must be brought to the invoker's attention. He called this raising an
exception. Once the exception is raised, the invoker responds in some manner (including
taking no action). This response is called handling the exception.

Goodenough defines three main reasons why a system should support programmer
controlled exception handling (the labels are this author's): [10]

[RESPONSE] to permit dealing with an operation's impending or actual
failure.

[INTERPRET] to indicate the significance of a valid result or the
circumstances under which it was obtained. In this case, the operation’s
result satisfies its output assertion, but the invoker needs additional
information describing the result before he can give it an appropriate
interpretation. For example, addition overflow on many computers
produces a valid result as long as the bits of the result are interpreted
appropriately.

[MONITOR] to permit the invoker to monitor an operation, (e.g., to
measure computational progress of a computation or to provide additional
information and guidance should certain conditions arise).

Goodenough also lists the four requirements and issues a programmer controlled
exception handling should address (the labels are this author's): [10]




[ASSOCIATION] Association of handlers with invocations of
operations. Since exceptions occur when attempting to perform some
operation, one basic issue is how to associate the proper handler with the
invocation of a given operation.

[CONTROL FLOW] Control flow issues. These issues concern how to
ensure that the user and the implementer of an operation agree on whether
termination or resumption of an operation is permitted when a particular
exception is raised, and how a programmer expresses which of these
possibilities is being chosen.

[DEFAULTS] Default exception handling. 1t is useful to provide
default handlers for exceptions raised by an operation but not handled by an
invoker of the operation.

[HIERARCHIES]  Hierarchies of operations and their exceptions.
Exception handling issues that arise from the interaction between an
exception raising operation and its immediate invoker are somewhat
different from those that arise when an exception is disposed of by an
indirect invoker.

2.2.2 Exception and Error Handling in the Prototype

Exception and error handling in the prototype parallels Goodenough's definitions and
theories. The difference is that Goodenough's model targets programming language
systems whereas the prototype is a user-controlled system.

In the prototype, exception conditions are defined for a GUI by a GUI designer.
Exception conditions are detected when the system performs a consistency check. Just as
in Goodenough's model, the prototype exception (error) may, or may not, require some
action on the part of the user and should be brought to the user's attention. However, there
is one area in which the prototype system differs from the Goodenough model.
Goodenough insists that the invoker, which is analogous to the prototype's user, should be
notified. This requirement is not enforced by the prototype because the GUI designer
provides the specific actions that occur when an exception condition is detected.

The GUI designer should, but does not have to, provide the user with an
opportunity to respond to the detected exception condition. We first examine the model that
notifies the user. An exception condition is detected, and the GUI designer provides
actions that notify the user by displaying a message. Displaying a message is analogous to
raising an exception in Goodenough's model. The user's response to the violation
message is handling the exception. The user has the option of either responding (i.e.,
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entering a different value in an entry field) or not responding (ignoring the error). The
prototype differs from Goodenough's model when the system does not notify the user
(invoker) of a detected exception condition. Suppose that the GUI designer provides an
entry field for the variable X and defines a constraint on X to be greater than 0. Suppose
also that the GUI designer defines exception handling actions that do not include notifying
the user. Instead, when the constraint is violated, X is set to 1, and the program continues.
Setting X to 1 is handling the exception, without the invoker ever being notified. Another
possible scenario is that the GUI designer provides action statements that execute additional
statements and also notify the user. We consider it bad technique if the GUI designer does
not notify the user, and discussiuns throughout the rest of this paper make the assumption
that the user is notified. This is how we applied the definitions presented by Goodenough
to the prototype system.

One of the reasons Goodenough presented in support of programmer controlled
exception handling applies to the prototype. The type of exceptions (or violated
constraints) that occur in the prototype is related to [RESPONSE]. The user is notified of a
condition that could render the results invalid and is permitted to deal with the situation.
For example, suppose the system defines an extended family in which the members are
given age values. Suppose further that grandpa and mother are members of this
family, and grandpa is mother's father. Given this relationship, a constraint is defined
requiring grandpa to be older than mother. If grandpa has an age value of 59, and
the user enters an age value of 60 for mother, the constraint is violated. In response, an
appropriate violation message is displayed directing the user to change one of the values for
mother or grandpa.

[INTERPRET] and [MONITOR] do not present themselves in the prototype system
because of the nature of the user's data entry. [INTERPRET] involves raising an exception
for a valid result that, for some reason, needs additional interpretation. In the prototype,
exceptions are only raised when an invalid entry is made. If a valid entry is made, an
exception is not raised because no additional interpretation is necessary. [MONITOR]
exception conditions keep track of a computation’s progress possibly to provide a method
of supplying additional information at certain points. The prototype does not need
monitoring because it does not require additional information during the execution of its
operations.

Assuming that mother can not be older than grandpa, given their relationship,
the user should respond by changing one of the values. However, there are cases where
the user inputs may, or may not, result in an invalid system. For instance, suppose
grandpa has age value 59, and the user enters the age value 44 for mothexr. This makes

11



grandpa only 15 years older than mother. Although this is suspicious, it is not
impossible. The designer may wish to notify the user of these situations as well. We
consider constraints that define possible errors as warnings. Warning constraints define
possible error conditions while error constraints define definite error conditions. Also note
that the proposed exceptions may be forcibly ignored. Suppose that grandma remarried a
younger man. Then, grandpa may be younger than mother. The GUI design
prototype handles all three of these situations.

Finally, we examine how the four requirements and issues [ASSOCIATION],
[CONTROL FLOW], [DEFAULTS], and [HIERARCHIES] of programmer controlled
exception handling apply to the user-controlled prototype. [ASSOCIATION] deals with
how to associate the proper handler with the invocation of a given operation. In the
prototype, the GUI designer always pre defines the handler associating it with the
appropriate operation. Given this simplification, issues [CONTROL FLOW],
[DEFAULTS], and [HIERARCHIES] are also determined by the GUI designer.

12




Chapter 3

Design and Implementation

The GUI creation system enables expert GUI designers to create a GUI and define
constraints to impose appropriate restrictions on user inputs. As the system evolves (e.g.,
an end-user enters inputs that define a system), the constraints defined by the GUI designer
help prevent the end-user from defining an invalid system. There were two choices for
defining and creating the constraints: modifying the shell to add to the shell language or
creating a C++ class. A language extension implemented by modifying the shell would
allow the flexibility of choosing a favorable syntax but would not allow the constraint
system to be used in compiled code. Creating a C++ class would be easier to implement,
but it would require using the longer and more awkward C++ syntax. As a compromise,
we chose the C++ class implementation but gave it the flavor of a language extension by
using a preprocessor.

There were also two obvious methods for checking the constraints: a naive scheme
that checks every defined constraint each time the system changes and a minimum
evaluation scheme that only checks those constraints that may have been violated as the
system evolves. The first method is naive in that it examines many constraints whose
values have not changed each time a user enters an input. The minimum evaluation method
requires some overhead to determine which constraints must be examined but often
executes fewer constraints than the naive method. In this chapter we examine the design
and implementation of the GUI creation system. This system includes the GUI component
creation system, the constraint language syntax, the preprocessor, and both constraint
checking schemes.

13
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Figure 2: Terminal window with connection menus displayed.

3.1 General Overview

Before examining the detailed implementation of the GUI creation system, it is helpful to
understand the overall process. First, an end-user starts the distributed system. The GUI
front-end displays a terminal window that enables direct access to the SUPERCODE shell.
Using the main menu of the terminal window, the user establishes a connection with this
shell. Figure 2 shows the terminal window and its connection menus.

Once a connection is established, a prompt appears in the terminal window
signifying the system is waiting for user input. Next, the user asks to display the desired
GUI. To display a dynamically configurable interface, the shell must read and process a
GUI specification file. Expert GUI designers create the GUI specification files that contain
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In{1]:
include "mhd.gui*

Inf2]:
Initializing Window Values

o

Figure 3: Terminal window and GUI defined in file mhd. gui.!

the commands which create the GUI's and define the constraints that support error
detection and handling. The user uses an include command to direct the shell to read the
desired GUI specification file. The shell reads and processes the commands contained in
GUI the specification code, creating the defined interface and sending the appropriate
instructions to the front-end to display it as well as creating any defined constraints to
support error detection and handling. Figure 3 shows the terminal window and the
resulting interface defined in file mhd.gui. When the GUI is displayed, it is initialized
by querying the shell for and displaying current system values.

Whenever a user enters a new value into an entry field, the GUI sends this value to
the shell with its corresponding variable in the form of an assignment statement. This
assignment statement is also displayed in the terminal window as seen in Figure 4. The
shell processes the assignment statement which changes the state of the system and

1 Since the users did not like two adjacent prompts displayed without any indication of what occurred
between them, nor did they like displaying the many commands used to initialize the window in the
terminal window, the front-end displays the descriptive statement, Initializing Window Values.
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In(1]:

include "mhd.gui"”
Inf2]:
Initializing Window values

In{3]:
kappup = -2.22;
Inf4]:

O T s

Figure 4: Terminal window, GUI defined by file mhd.gui, and the Constraints Violations
window. The user clicked on the error message which automatically selected the
offending entry field.

possibly violates constraints. Since the user is to be notified as soon as possible when
errors occur, the GUI also sends the shell a command to check the constraints each time it
changes the state of the system. The shell checks the constraints and executes the
associated action routines for every constraint that is violated. In the prototype, the shell
sends the GUI a message whenever a violation occurs, and the GUI displays a message to
the user in a Constraint Violations window. Figure 4 shows a Constraint Violations
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Figure 5: Flow o control diagram depicting typical use.

window and also the window's highly desireable feature: the front-end automatically
selects the offending entry field when the user highlights an error message. The described
flow of control, as depicted in Figure 5, represents a typical interaction between a user and

the prototype system.




3.2 The GUI Creation System

Before a user can use SUPERCODE, an expert GUI designer must create the file that
dynamically configures and disp.ays the friendly interface. The GUI creation system
enables expert programmer/SUPERCODE designers to easily create GUI specification files.
Since the shell interpreter implements a large subset of C++, the GUI creation system is
also implemented in C++ with GUI component classes added to the shell class library.

The prototype currently provides the GUI developer with the ability to create and
display InputWindows. An InputWindow is a window that has a main menu for
executing actions that are common to all InputWindows. In addition, it contains an
arbitrary number of Pages. A Page is a box that resides within an InputWindow that
can contain other GUI components. One Page at a time is displayed in an
InputWindow. The GUI components include, for instance, a RealEntryField for
representing real variables, a But ton for executing actions, a Label for headings and
instructions, and a pull-down Menu for making selections. Some SUPERCODE-specific
GUI items were also created.

The GUI construction process proceeds as follows: A GUI developer creates a file
with the statements that produce a specific interface. This file, when read and processed by
the shell, creates a simple interface by sending the interface information to the front-end.
The front-end uses this information to generate and display the appropriate GUI. Figure 6
shows the contents of file fam.gui and the resulting simple interface is displayed in

Figure 7.
1 Real grandpa = 59, mother = 30;
2 InputWindow famWindow("Family Members"):;
3 Page pagel("Page 1", 1);
4 famWindow.addPage(pagel) ;
5 RealEntryField gramps("GrandPa", "grandpa",1l,1);
6 pagel.addRealEntryField(gramps);
7 RealEntryField ma("Mother", "mother",1,2);
8 pagel.addRealEntryField(ma) ;
9 famWindow.show () ;

Figure 6: Code contained in GUI specification file fam.gui. Note that
line numbers are used only for reference purposes.

Line 1 declares variables grandpa and mother of type Real, initializing them to 59 and
30 respectively. Line 2 creates an InputWindow object, famWindow, the title of which

is Family Members. Line 3 creates a Page object, pagel. Itstitleis Page 1 and its
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Figure 7: The GUI the front-end displayed when the shell read and processed file,

fam.gui.

page number is 1. The page number is used for identification purposes. Line 4 adds
pagel to famWindow. Line 5 creates a RealEntryField object, gramps, and its
label is GrandPa. The string parameter “grandpa” indicates the identifier to which an
entered value is assigned, and the last two parameters, 1 and 1, are the row and column
position where gramps will be displayed when it is added to a Page object. Line 6 adds
gramps to pagel. Lines 7 and 8§ repeats the process just described for lines 5 and 6 for
aRealEntryField labeled Mother. The shell builds GUI objects as it executes lines 1
through 8. When the shell executes line 9, it sends the interface information to the front-
end. The front-end uses the information received from the shell to build the appropriate
interface.

A major advantage of this system is that the GUI developer can write and save files
that create specific interfaces for use by new users. These interfaces can be much more
complicated than the simple example presented. InputWindows can consist of an
arbitrary number of Pages with arbitrary numbers of RealEntryFields, Buttons,
Menus, etc.

3.3 Constraint Language Syntax

In addition to creating the GUI, the designer may define constraints to provide error
detection and handling for the end-user. An easy-to-use constraint definition syntax is a
high priority issue with GUI designers. It is important that the syntax be both intuitive and
concise if we are to entice GUI designers to use the system. The syntax should be intuitive
so that GUI designers can easily understand how to define a constraint. Since it is
reasonable that over a hundred constraints may need to be defined, the syntax should be as
concise as possible. A syntax that reduces the required characters by only 20% per
definition can save the GUI designer hundreds of keystrokes in one GUI specification file.
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Standard C++ exception handling was initially considered but rejected because it
provides language-level, as opposed to user-controlled, exception handling, and it is
designed to deal with many situations that are not applicable to our system. We decided it
was better to design a system tailored to our project. Two of the syntactical forms
considered are presented:

require (<expr>)
{

<statement-list>

}

and

ifnot (<expr>)

{

<statement-list>

}

These forms were rejected because they have an if-statement like appearance. If-statements
only execute as program control passes through them. Our intention was to define
persistent constraints that act as guards against errors. Also, since the intent is to create a
constraint, a declarative syntax is more intuitive. We chose the following syntax for the

prototype:

Constr <identifier> (<expr>) {
<statement-list>

}

Constr is the name of a class within the shell that implements constraint checking and
error handling. The unique name of the constraint is <identifier>. The condition
clause used for error detection is (<expr>). It consists of C++ code that generates a
non-zero value if the constraint is satisfied and a zero value if a violation occurs. The
action statements used to handle the error if a violation occurs is <statement-1list>.
Note that although the constraint identifiers are unique, it is possible for multiple
constraints to have identical <expr>'s and/or <statement-1ist>'s. The prototype
has not been equipped to optimize this situation. If duplicate <expr>'s or
<statement-1list>'s exist, these duplicates are entered into the system.

Suppose a GUI designer wishes to require variable grandpa to be greater than
variable mother and, if violated, wants to user notified. The GUI designer would write
the following statement:
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Constr _grandpa (grandpa > mother) {
Violation("Grandpa should be older than mother.");
}

The constraint identifier is _grandpa, the boolean expression (grandpa > mother)
is the condition clause for detecting the error, and Violation ("Grandpa should be
older than mother.") is a subroutine call for handling the error. When
Violation executes, it sends the string parameter to the front-end to be displayed in the
Constraints Violation window.

3.4 The Preprocessor

Neither the C++ language nor the subset of C++ implemented by the shell supports class
object declarations with the chosen syntactical form and the kind of persistent action we
require. Therefore, we built a preprocessor to convert the constraint definition syntax to a
C++ form implemented by the shell.

Because of the characteristics of the shell and the preprocessor, there must be a
space between the constraint identifier and the condition clause. Moreover, the
preprocessor employs a naming convention such that the Constr identifer must be the
name of the variable constrained with a prepended underscore. This naming convention
enables the preprocessor to automatically add a necessary second parameter to the
Violation function call.! However, it is possible that a designer will place a constraint
on an array element. Because the shell implements arrays with the FORTRAN syntax and
the preprocessor was built using LEX [22] (which performs only lexical analysis), the
preprocessor needs the space to distinguish between Const r identifier and the condition
clause. Despite the imposed naming convention and necessary space, the syntax is concise
and easy to understand.

In addition, the preprocessor is effective in reducing the number of characters a
GUI designer must code to define a constraint. For example, the preprocessor converts

Constr _grandpa (grandpa > mother) {

Violation ("Grandpa should be older than mother.");
}

! When Violation sends an error message to the front-end to be displayed, the name of an identifier with
which it can be associated must also be sent. This is necessary to implement a highly desireable feature:
automatic selection of the offending entry field when the user clicks on the error message. This feature
requires the string representation of the identifier to be a parameter of the Violat ion function call.



to

Void c_grandpa()

{
Constr::returnValue = (grandpa > mother) 2 1 : 0;

}

Void a_grandpa()
{
Violation ("Grandpa should be older than mother.",
"grandpa");
}

Constr _grandpa(c_grandpa, a_grandpa);

Notice that for this simple example, the C++ form requires 174 characters of code
while the code the GUI designer must write and preprocess is only 84 characters. This
savings of over 50% is significant, especially when many constraints are defined. The
usability of the syntax and the potential reduction in coding for the GUI designer makes the
preprocessor a desirable tool.

3.5 Implementation

The Const r class definition and those for the related classes, ConstrNode, Table, and
TableEntry, are presented in Figure 8.

3.5.1 Constraint Creation

Notice in Figure 8 that the Constr constructor takes as parameters the pointers to the error
detector function and the error handler function previously defined. The constructor creates
a ConstrNode object setting its member variables Error and Handler to the pointers
to the error detector and the error handler functions respectively. The pointer to this
ConstrNode object is then assigned to the Constr member variable constrNodePtr.
It is also stored in a list called constraintList, a static member of class Constr. It
is used for the naive checking scheme.
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class Constr {
public:
Constr (void (*conditional) (), void (*action) ());
~Constr () ;
static Table hashTable;
static void check();
static void minCheck(String identifier);
private:
static int returnvalue;
static ConstrNode *constraintList;
ConstrNode *constrNodePtr;
void addToTable(String identifier);
}i

class ConstrNode {
friend class Constr;

public:
ConstrNode (void (*conditicnal) (), void (*action) ());
~ConstrNode () ;

private:

void (*Error) ();

void (*Handler) () ;

ConstrNode *nextNode;
}i

class Table ({
friend void Constr::minCheck (String identifier);
friend void Constr::addToTable(String identifier);
public:
Table():
~Table() ;
TableEntry *entry [MAXTABLESIZE];
}i

class TableEntry {
friend void Constr::minCheck(String identifier);
friend void Constr::addToTable(String identifier);
public:
TableEntry (String identifier, ConstrNode *node);
~TableEntry () :;
String id;
ConstrNode *constrlist;
}i

Figure 8: Class definitions for classes Constr, ConstrNode, Table, and
TableEntry.
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3.5.2 The Naive Checking Scheme

The naive checking scheme is straightforward; it simply checks every defined constraint.
Because every constraint is checked, it is very robust. Every InputWindow the GUI
displays is equipped with a Check Constraints button to allow the user the option of
checking all defined constraints at any time. This scheme requires no overhead to start the
checks, and all violations are detected as their constraints are evaluated. However, this
scheme makes no attempt to determine whether or not a constraint is related to the current
system change.

Recall that the Constr static class member, constraintList, is a list of
pointers to all of the Const rNode objects containing pointers to the error detector and
error handler functions. The Constr static member function, check, traverses this list in
the following manner: For each ConstrNode object pointed to in the list, starting at the
front, check executes the error detector function and, if an error is detected, executes the
error handler function.

The constraints are checked in this manner every time the shell receives the check
function call from the GUI. Specifically, the GUI sends the shell Constr: :check ().
Since the user must be notified of the error as soon as possible, the GUI sends the check
command every time a GUI user event results in a system change (i.e., the user enters a
new value for a variable). However, there can be hundreds of constraints defined and few,
if any, of the constraints may be related to a single change of value. Checking every
constraint can result in excessive overhead. A minimum evaluation scheme is implemented
to reduce the time spent trying to detect errors.

3.5.3 The Minimum Evaluation Scheme

The minimum evaluation scheme reduces the time spent trying to detect errors by checking
only those constraints related to a single value change. This requires some overhead to
decide what the appropriate set of constraints is. However, there are potential savings if
this decision cost is relatively low compared to the constraint evaluation time and the
number of constraints evaluated are reduced.

To check only those constraints related to a single value change, a method of
mapping an identifier to the set of related constraints is needed. The preprocessor scans the
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condition clause of the constraint declaration and generates a read set consisting of all the
identifiers in the conditional. For example, in the constraint declaration

Constr _grandpa (grandpa > mother)
Violation v ("Grandpa should be older than mother.");
)

grandpa and mother are the identifiers which constitute the read set of the condition
clause, (grandpa > mother). We use a hash table to store the identifiers with a list of
their relative constraints. The preprocessor automatically adds the command to the output
file that enters the information into the hash table. For this example, the preprocessor
would add the following commands:

_grandpa.addToTable("grandpa") ;
_grandpa.addToTable("mother") ;

The addToTable function call is a private member function of class Constr. This
function creates a TableEntry object whose String member, id, is assigned the
String parameter of the addToTable function call. In addition, it adds the calling
Constr object’s constrNodePtr to the TableEntry object’s list of ConstrNode
pointers, constrList. Next, addToTable enters the TableEntry object into the
hash table using Holub’s [23] hashing function.

As user-inputs are made, if the value of grandpa or mother changes, instead of
sending the shell the command to execute the Constr static member function check, the
GUI sends the command to execute the Constr static member function minCheck.
Specifically, the GUI sends the shell Constr::minCheck ("grandpa") or
Constr::minCheck ("mother") if the value of grandpa or mother changed
respectively. When the minCheck function is called, it applies the hash function to its
String parameter to find the appropriate entry slot of the hash table. Next, it compares
its St ring parameter to the TableEntry object’s String member, id. If id does not
match the String parameter, the next TableEntry in Table: : entry is examined.
When the correct TableEnt ry object is found, minCheck executes the error detector
function and, if violated, the corresponding error handler function, for every
ConstrNode pointed to in the TableEntry object’s member, constrList. In this
manner, when the value of grandpa or mother changes, only the related condition
clause (grandpa > mother) is checked for possible violation. Other constraints that
do not involve grandpa or mother are not evaluated.
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The generated read sets help the minimum evaluation scheme determine which
constraints to execute when an identifier's value changes. However, what happens if the
expression contains a function call? Because a function call can contain hidden reads, the
read set of identifiers generated by scanning the condition clause may not be sufficient to
determine which constraints need to be checked. If the system always had access to the
source code of the functions used in the condition clauses, symbolic execution could be
used to generate the complete read sets. However, the source code of these functions may
reside within SUPERCODE's system, and some functions may be compiled. Either way,
the preprocessor that creates the read sets does not have access to the source code.

To handle this situation, a wild card list can be generated containing all of the
constraints for which the read set is indeterminate. When a function call is encountered in a
condition clause, the corresponding constraint is added to the list. The constraints in the
wild card list are checked every time in addition to the constraints known to be associated
with the system change. Although more constraints are checked than is probably
necessary, this is a simple solution to overlooking a constraint that should be checked.

However, functions often do not contain any hidden reads, and a method should be
provided to avoid adding constraints to the wild card list when this is the case. For
example, there are no hidden reads within the trigonometric functions: sin (x), cos (x),
tan(x),etc. A compiler directive can provide a tag indicating a function is “OK” when it
is known to produce no side effects. Expressions containing functions that are tagged as
OK may be processed in the original read set manner. This would reduce the number of
constraints contained in the wild card list that must be evaluated after every system change.

The prototype does not provide a wild card list when functions are part of the
expressions of the constraints. At this time, the prototype properly handles only those
constraints strictly involving identifiers. Extending the system to properly handle error
clauses containing function calls is a topic for future work.
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Chapter 4

Results

There are three areas in which the system can succeed or fail: usability of the GUI creation
system, run-time optimization of the minimum evaluation scheme, and the usability of the
end-user interface. GUI designer testing is used to determine the usability of the GUI
creation system. To determine if the minimum evaluation scheme is a success, run-time
comparisons between the minimum evaluation scheme and the naive checking scheme are
made for both extreme and representative cases. Finally, although human-computer
interaction guidelines are examined, we ultimately determine the success of the end-user
environment by analyzing end-user feedback.

4.1 GUI Creation System Success

Before an end-user can utilize one of these robust and helpful interfaces, an expert GUI
designer must design it. To persuade the GUI designer to use the GUI creation system, we
made the GUI creation process described in Chapter 3 as easy and succinct a process as
possible.

Whether or not the GUI creation process is easy and succinct enough to promote
use by GUI designers is difficult to determine. The GUI creation system environment is a
programming environment, and a good programming language is both readable and
writable [24]. A readable programming language is one whose meaning is easily extracted
from the syntax. A programming language is writable if it is concise and easy to generate.
A readable programming language that is verbose is not writable just as a writable
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programming language that is cryptic is not readable. We assessed the readability and
writability of the GUI creation system’s programmer interface by asking three expert GUI
designers to read the user’s manual, create a GUI, and define a constraint.

The designers found the constraint language syntax very usable. All of the
designers felt that more friendly GUT's created by designers would encourage distribution
to end-users. They also felt creating the GUI specification files is worth the extra effort to
promote this distribution. One designer stated, “People may want to customize the input,
etc. depending on the particular problems they are running. A GUI creation system will be
very useful.” One designer liked it so much that he requested porting it to work with codes
created using the Basis System. The designers found the GUI creation system to be a
valuable tool and would use it themselves.

The designers also had some useful comments concerning the system. One
designer said, “My first reaction was that the Constr should be executed if the specified
condition is True (opposite of the way it is set up now), but this is a small point.” The
logic is set up to execute the action routine if the condition clause evaluates to false. It was
done this way because we view defining a constraint as placing restrictions on user inputs,
and the present implementation follows that logic. As the user said, it is a small point, but
we will keep this in mind as more designers use the system. Another user commented, “It
is simple, so I like it in that sense. It doesn’t look like C++ and so it seems a bit unnatural.
I’ve often used preprocessors to hide “ugliness” of a C/C++/Mppl implementation,
though.” None of the designers could suggest a more appropriate syntax, and all of them
found it easy to use. Based on user testing we conclude that the GUI creation system was
successful.

4.2 Effectiveness of the Minimum
Evaluation Scheme

The end-user environment not only has to be easy to use, but it must also have a response
time that promotes use. The front-end is meant to augment the command line interface, and
although somewhat dependent on the skill of the GUI designer, the end-user GUI's
provide a much friendlier interface. However, the response time of the system can greatly
affect whether or not a casual user will indeed use the system. Aside from the complexity
of the error tests of the constraints defined, the GUI designer has no control over the
response time.
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To measure and optimize the response time, we are interested in how long it takes
to complete these steps:

Sending a system changing command from the front-end to the shell.
Processing the commands.

Checking the constraints.

Sending response from the shell to the front-end.

A S T S

Processing the shell's response.

To optimize this response time we must identify the parts of the process path that
significantly impact the response time and make them as efficient as possible. Because
there is little means to reduce the network communication time between the shell and front-
end,! parts (1) and (4) offer little opportunity for optimizing response time. Part (2)
depends on the efficiency of the shell and is beyond the scope of this prototype. Part (5)
requires the GUI to, at most, construct and display error messages in the Constraint
Violations window and a prompt in the terminal window. This is dependent on the OI
class library, so we can have little impact on this part. However, there is a potential for
optimizing part (3). This is why we implemented the minimum evaluation scheme.

421 Common Experiment Factors

There are some basic factors common to all of the following experiments. Times for the
minimum evaluation scheme were obtained using the following procedure. Recall that the
minimum evaluation scheme checks constraints by executing the class Constr static
member function minCheck. The minCheck function takes a string as an argument, and
its execution is timed for N (typically N = 1000) iterations. Because we are interested in
only the time required to execute minCheck, the time required to call minCheck (i.e.,
call to an empty function that with a string argument) is subtracted, and this difference is
normalized by dividing by N:

N * (minCheck(string) — emptyFunct(string))
N

1 minCheck execution =

! Reducing network communication time can be accomplished by having the front-end and the kernel
residing on the same local area network will reduce.
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Times for the naive checking were obtained using a similar procedure with one difference.
The class Constr static member function check which checks the constraint for the naive
checking scheme takes no arguments while the minCheck has a string argument.
Therefore the subtracted time is the time required to execute a N iteration loop containing a
call to an empty function that passes no arguments:

N * (check() — emptyFunct())
N

1 check execution =

These times reflect the average time required to execute their respective checking schemes.
Also, since the time required to execute the error handler functions is identical between the
minimum evaluation scheme and the naive checking scheme, and since we are only
interested in their relative run-times, the experiment assumes that constraints are always
satisfied (i.e., no action code is called). The experiments presented are the “Best Case,”
“Worst Case,” “MHD Equilibrium” example, and “Average SUPERCODE” example.

422 Best Case

The best possible case, in tenns of run-time, occurs when all of the constraints are
independent and there are no collisions in the hash table used to implement the minimum
evaluation scheme. No collisions in the hash table means there is at most one identifier
associated with any one hash table slot. This situation has the fastest possible lookup for
the minimum evaluation scheme. When the constraints are independent, changing any one
identifier requires that exactly one constraint needs to be checked. The naive scheme
requires no lookup time, but it has to check every constraint. We will show that the
minimum evaluation scheme ountperforms the naive scheme except for a very small number
of constraints.

Setup The experiment was set up in the following manner. Hash table collisions were
avoided by selecting appropriate value identifiers. To ensure that all constraint checks take
the same time, all constraint condition clauses were structurally of the form (identifier >=
0). This experiment measures the run-times for both the minimum evaluation scheme and
the naive checking scheme.
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The expected cost to run the naive checking scheme is

T (n)=n* CheckTime

naive

where n is the number of constraints defined, and CheckTime is the time it takes to run a
constraint function. This indicates that the naive checking scheme run-time will increase
linearly with the number of constraints defined. The expected cost of the minimum
evaluation scheme is

T

o= DecisionTime + CheckTime

where DecisionTime is the time required to find the check list associated with a particular
identifier, and CheckTime reflects the fact that there is always only one constraint checked.
Since we implemented the minimum evaluation scheme with a hash table (with overflow
chaining), we see the decision time can be further broken down into

DecisionTime = (Collisions + 1)* (ChainAccess + StringCompare)

where ChainAccess is the time required to access a hash table slot, and StringCompare is
the time required to determine if the slot contains the desired entry. Collisions is the
number of collisions occurring at the hash table slot, and its value is in the range [0, n - 1].
Note that one must he added to Collisions because one ChainAccess operation and one
StringCompare operation must be performed every time the minimum evaluation scheme
determines if it has the correct list of constraints to check. This is true even when there are
no collisions. However, for this experiment we have chosen identifiers that do not collide
in the hash table. Therefore, DecisionTime becomes

DecisionTime = ChainAccess + StringCompare

indicating a constant run-time for the minimum evaluation scheme. Because of this
constant run-time, the relationship

DecisionTime< (n—1) * CheckTime

is true for some n.
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Figure 9: Best case run-time results for the minimum evaluation scheme and the naive
checking scheme.

Evaluation Figure 9 details the run-times for this best case scenario. As expected, the
minimum evaluation scheme has an almost constant run-time regardless of the number of
constraints defined. Also, the naive checking scheme run-time grows linearly with the
number of defined constraints. Notice that both schemes appear to have identical run-times
for one constraint. Actually, the minimum evaluation scheme has a slightly higher run-time
than the naive checking scheme. This smail difference shows up in Figure 10. The
slightly higher run-time of the minimum evaluation scheme is consistent with the predicted
additional decision cost associated with the hash table implementation.

In the prototype, the decision cost was approximately 0.00003 seconds while the
single constraint cost was approximately 0.00284 seconds. So, the expected cost of the
naive scheme for n constraints is

T

naive

(n) = n *(0.00284 seconds)

and the expected best case time for the minimum evaluation scheme is

T

best

(n) = 0.00003 seconds + 0.00284 seconds

Therefore, the minimum evaluation scheme in the prototype breaks even at 1.011

constraints, outperforming the naive checking scheme when as few as two constraints are
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Figure 10: Blowup of best case run-times data point for one constraint.

defined. This is because the decision cost has a much lower execution time relative to the
constraint check even for very simple constraints. The ChainAccess and StringCompare
are executed in the shell by a compiled class List operation and a compiled class St ring
operation, respectively, while the constraint check is executed as an interpreted function.
The interpreted nature of the shell skews the results. If the chain access and string compare
cost was relatively higher (as it would be if the constraint checks were compiled functions),
then the break-even point would move higher. To find out how much higher, we added
functions required to check the constraints in the best case to the system and compiled it.
We found that the decision cost in the compiled version is actually higher than the time
required to execute the simple error test function. As a result, the minimum evaluation
scheme does not outperform the naive scheme until at least five constraints are defined (see
Figure 11). However, the prototype is not a compiled system, so we will not concern
ourselves with what happens in a compiled system any further. The rest of this paper will
address only the existing interpreted environment.

Significance In this best case, the minimum evaluation scheme maintains a near
constant run-time while the naive scheme run-time increases almost linearly with the
number of constraints. The minimum evaluation scheme is a success in the best case by
outperforming the naive checking scheme when two or more constraints are defined in the
interpreted system. This holds true in compiled systems as well. However, the break-even
point is quickly reached at only five constraints.
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Figure 11: Best case run-time results for the minimum evaluation scheme and the naive
checking scheme in a fully compiled system.

4.2.3 Worst Case

The worst possible case, in terms of run-time, for the minimum ¢ valuation scheme occurs
when all of the constraints are interdependent, when there is a 100% collision rate in the
hash table used to implement the minimum evaluation scheme, and when the last member in
the collision chain is the one that is accessed. When the constraints are interdependent,
changing any one identifier requires that all of the constraints need to be checked. In
addition, the error tests involve all of the identifiers and are both more complicated and
slower to execute. A 100% collision rate in the hash table means that all of the identifiers
associate with the same hash table slot. This situation has the slowest possible lookup for
the minimum evaluation scheme when accessing the last member in the collision chain. We
will show that the minimum evaluation scheme for this Worst Case is only slightly slower
than the naive checking scheme.

Setup Hash table collisions were produced by selecting appropriate value identifiers. To
ensure that all constraint checks take the same time, all constraint condition clauses were of
the form (identifier, + identifier, +...+ identifier, < 100) forn
value identifiers. This experiment measures the run-times for both the minimum evaluation

scheme and the naive checking scheme.
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Both the naive checking scheme and the minimum evaluation scheme must check
every constraint. However, the minimum evaluation scheme must also find the correct list
of constraints to check in the hash table collision chain. Therefore, the naive scheme is
expected to have the smaller run-time.

More specifically, the run-time for the naive checking scheme is

T aive(n) = CheckTime, + CheckTime, + ...+ CheckTime,,,

and the expected cost to run the minimum evaluation scheme is

T\orst(n) = DecisionTime + CheckTime, + CheckTime, + ...+ CheckTime,,.

In both of these equations, n is the number of constraints defined and CheckTime; +
CheckTime; + . . . + CheckTime, is the time it takes to check each of the n constraints. It
is important to realize that as the number of constraints defined increases, the complexity of
the condition clauses also increases. This means that CheckTime; when n = 1 is going to
execute faster than CheckTime; when n = 10. DecisionTime, found only in equation
Tworsti(n), is the time the minimum evaluation scheme requires to find the check list
associated with a particular identifier. Because DecisionTime is

DecisionTime = (Collisions+ 1) * (ChainAccess+ StringCompare)

and because the number of collisions increases with the number of constraints defined, the
decision cost also increases as the number of defined constraints increases.

Evaluation Figure 12 represents the run-times for this Worst Case scenario. The graph
indicates a slight curve as n increases. This is due to the previously stated fact that
condition clauses of each constraint increases in complexity, and therefore execution time
increases as n increases. The graph also indicates that the minimum evaluation scheme and
the naive checking scheme have the same performance. Actually, the minimum evaluation
scheme performs slightly worse. The difference between the two checking schemes did
not show up in Figure 12 because the additional decision cost that minimum evaluation
scheme incurs is very small relative to the cost of the constraint checking cost. A blowup
of Figure 12 (see Figure 13) of the run-times for one and two constraints reveals this very
small difference.
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Figure 12: Worst Case run-time results for the minimum evaluation scheme and the
run-time for the naive checking scheme.
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Figure 13: Blowup of worst case run-times for one and two constraints.
Significance In this worst case, the minimum evaluation scheme's run-time is only

slightly more than the naive scheme’s. Even though the minimum evaluation scheme did

not outperform the naive checking scheme in this case, this is a very extreme case and




simply will not occur in any SUPERCODE run. In addition, the small decision cost and the
experiment results presented demonstrate that it is not the chosen implementation (i.e.,
using a hash table) that will determine whether or not the minimum evaluation scheme
significantly outperforms the naive checking scheme, but rather the percentage of the total
number of constraints defined that the minimum evaluation scheme must check.

4.2.4 MHD Equilibrium

The results from the two previous experiments provide good lower and upper bounds for
the minimum evaluation scheme, but represent unrealistic scenarios. Analyzing the
SUPERCODE's MHD Equilibrium case shows the better performance of the minimum
evaluation scheme in an actual case.

Setup The system identifiers for the MHD Equilibrium case were used and appropriate
constraints were defined. Because of the nature of this case, the condition clauses are not
of the same structural form, and the number of constraints that are executed by the
minimum evaluation scheme varies from one to three. The hash function worked well for
this case, and all of the identifiers in this example have unique hash values. Therefore, to
obtain a representative set of data, run-times were gathered for a set of identifiers
(plascur, beansh, nrho, ctroy, rmajor) that represented each condition clause’s
structural form and each number of constraints executed. Run-times were measured for
both the minimum evaluation scheme and the checking scheme.

Since the condition clauses are not necessarily of the same structural form, the run-
time for the naive checking scheme is

Taive(n) = CheckTime, + CheckTime,+ . . . + CheckTime,

where n = 30 constraints are defined in this example. The expected cost to run the
minimum evaluation scheme is

T upa(n) = DecisionTime+ CheckTime;+ CheckTime;+ . . . + CheckTime,

where CheckTime;, CheckTime;, . . ., CheckTime, are the times to check each of the
related constraints.
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% of Constraints
Case Changed Executed [%] Time [sec]

Naive L NA | 0.06024

Set 1
Minimum Evaluation Scheme plascur 3.33 0.01184
beansh 3.33 0.02478
nrho 3.33 0.02257
ctroy 6.67 0.02321
' 10| 008300
Set 2
Minimum Evaluation Scheme
using Reference Variables plascurRef 3.33 0.00287
beanshRef 3.33 0.00397
nrhoRef 3.33 0.00430
ctroyRef 6.67 0.00595
rmajorRef 10 0.01157

Table 1: MHD Equilibrium run-times results for a descriptive set of identifiers (plascur,
beansh, ctroy, nrho, and rmajor) when using both static class vairables
and reference variables. Run-time for the naive checking scheme is also
presented.

Evaluation Table 1 lists the run-times for this MHD Equilibrium case. It is obvious
that the naive checking scheme runs significantly slower than the minimum evaluation
scheme. Notice, however, that the first set of minimum evaluation scheme run-times are
higher than expected. Recall that the identifier, plascur, uniquely hashed into the hash
table and had a condition clause of the form (identifier >= 0). Knowing this, we expected a
run-time close to 0.00287. Yet, we got a run-time of 0.01184. Why is this run-time over
four times that of the expected value?

The difference in the run-times is due to the difference in the identifiers and how the
shell interpreter treats them. The identifiers used in the best case are global identifiers while
the identifiers used in the MHD Equilibrium example are static class identifiers. In C++, a
static class identifier must be referenced using a specific syntax: ClassName::identifier.
Otherwise, an undefined-identifier error occurs. To avoid referencing static class
identifiers by the longer syntax, the shell must perform a runtime search of all of the classes
for static class identifiers that match the referenced identifier before producing the
undefined identifier error. If the search finds a unique match, that static class identifier is
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assumed to be the identifier referenced. If a unique match is not found, an error is
produced. The increased time reflects this additional search time.

Fortunately, this extra time can be avoided without typing the longer syntax by
using reference identifiers. If a reference identifier is declared and set equal to a static class
variable, this reference variable can be used to access the static class variable with the
comparable speed of the global identifiers. The second set of minimum evaluation scheme
run-times in Table | list the run-times for the same set of identifiers when reference
variables are used. Notice that the run-times are close to the expected. The run-time of the
minimum evaluation scheme when the constraint for plascur is checked is 0.00287.
This is the expected run-time. The run-time of the minimum evaluation scheme when the
three constraints for rmajor are checked is 0.01157. This is more than 3 * 0.00287 =
0.00861, but this is reasonable due to the more complicated condition clauses that were
executed. The condition clauses for rmajor are ((rmajorRef > 0) &&
(rmajorRef >= rminorRef)), (rmajorRef > 2 * rminorRef), and
(rminorRef > 0). Using the reference identifiers greatly reduces the time required to
access the static class identifiers and therefore reduces the execution time of the minimum

evaluation scheme.

Significance In this MHD Equilibrium example, the run-times, when reference
identifiers are not used, are over four times greater than when reference variables are used.
The minimum evaluation scheme has a maximum run-time of approximately 0.08300
which is significantly reduced to approximately 0.01157 by using reference identifiers.
Because of this time reduction, reference identifiers should be used when defining
constraints on static class identifiers. Also, the run-time for the naive checking scheme for
the 30 constraints is approximately 0.60244 without reference identifiers and 0.1 with
reference identifiers. The results of this MHD Equilibrium experiment indicate the
minimum evaluation scheme is a success because it significantly outperforms the naive
checking scheme.

39



425 Average SUPERCODE Systems Runs

Although the MHD Equilibrium experiment represents a real-life scenario, it is a relatively
simple case. Larger SUPERCODE systems runs involve as many as 150 total constraints
defined, and the percentage of the constraints related to any system change can range
between 1%-5%. Analyzing cases with the average SUPERCODE systemns run
characteristics demonstrates the performance of the minimum evaluation scheme for the
average SUPERCODE case.

Setup Three cases with 150 defined constraints were set up to represent average
SUPERCODE systems runs as described above. For each of the three cases, the constraint
interdependencies were varied such that the minimum evaluation scheme would execute
between 1%-5% of the defined constraints per system change. Specifically, the three tests
executed on average 1%, 3%, and 5% of the defined constraints per system change. Run-
times are measured for both the naive checking scheme and the minimum evaluation
scheme for the three different cases.

The minimum evaluation scheme only checks those constraints related to a single
system change, but the number of constraints checked on average varies with each test.
The minimum evaluation scheme executes on average 1.5 constraints per system change for
the 1% case. For the 3% and 5% cases, the minimum evaluation scheme executes on
average 4.5 and 7.5 constraints respectively per system change. The average run-times
were gathered by timing the minimum evaluation scheme for each system change and
averaging over the total number of system changes.

TotalSystemChanges
Z MinimumEvaluationRuntime

AverageMinimumEvaluationRuntime =
TotalSystemChanges

We expect the run-time for the minimum evaluation scheme to increase as the percentage of
the executed constraints increases for two reasons: the number of constraints executed is
greater, and the condition clauses are more complex. The more interdependent the
condition clauses are, the more complex they are. Although the naive checking scheme will
always check 150 constraints, the more complex error detection expressions of the higher

percentage cases will increase its run-time as well.
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Figure 14: Average run-times per system change for average SUPERCODE cases with 150
defined constraints: 1%, 3%, and 5% of constraints executed. Run-times for
the naive checking scheme are also shown.

Evaluation Figure 14 shows the run-times for both the minimum evaluation scheme
and the naive checking scheme for the three average SUPERCODE cases. As expected, the
run-time for the minimum evaluation scheme increases as the percentage of the constraints
executed and the condition clause’s complexity increases. The additional time required to
execute the more complex error detection expressions is depicted in the increasing run-
times of the naive checking scheme.

The run-time behavior of both checking schemes is fairly predictable for cases of
varying sizes. The minimum evaluation scheme run-time will increase as the average
percentage of the total constraints executed and the condition clause’s complexity increases.
The naive checking scheme run-time will increase as both the total number of defined
constraints and the condition clause’s complexity increases. To demonstrate this, we
examined smaller cases with 30 and 50 defined constraints. For both numbers of
constraints (30 and 50), three cases were run such that the minimum evaluation scheme
executed on average 1%, 3%, and 5% of the defined constraints per system change. These
run-times and the run-times for the naive checking scheme for each of the six cases are
presented in Figures 15 and 16.
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Figure 15: Average run-times per system change for average SUPERCODE cases with 50
defined constraints: 1%, 3%, and 5% of constraints executed. Run-times for
the naive checking scheme are also shown.
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Figure 16: Average run-times per system change for average SUPERCODE cases with 30
defined constraints: 1%, 3%, and 5% of constraints executed. Run-times for
the naive checking scheme are also shown.




As predicted, Figures 15 and 16 show that the run-time of the minimum evaluation scheme
increases as the average percentage of the total constraints executed and the error detection
expression’s complexity increases. In addition to the longer run-times of the naive
checking caused by the more complex error detection expressions, a comparison of the
three different constraint sizes (30, 50, and 150 constraints defined) shows the significant
run-time impact that the total number of constraints has on the naive checking scheme.
This impact is much less for the minimum evaluation scheme.

Significance These cases show that the run-time nature of both checking schemes is
predictable and that the minimum evaluation scheme significantly outperforms the naive
checking scheme. Because both checking schemes are non chaotic, no further tests need to
be conducted. The minimum evaluation scheme significantly outperforms the naive
checking scheme for the average SUPERCODE cases and is, therefore, a success.

4.3 End-User System Success

The minimum evaluation scheme did significantly optimize the response time over the naive
checking scheme, but is the response time fast enough to encourage use? Remember that
the end-user response time includes these steps:

Sending a system changing command from the front-end to the shell.
Processing the commands.

Checking the constraints.

Sending response from the shell to the front-end.

v oA W=

Processing the shell's response.

The minimum evaluation scheme reduces the response time by greatly reducing step (3),
but steps (1), (2), (4), and (5) must be measured to obtain the total response time to which
the casual users are subjected. Shneiderman [25] has suggested guideline response times
for different tasks. Typing and cursor motion should range between 0.05 and 0.15
seconds, and simple frequent tasks should take less than one second. There is no guideline
established for our particular task, but we assess the task of using a dynamically configured
GUI to use SUPERCODE to fall somewhere between these tasks. Shneiderman also points
out that empirical testing can help set suitable response times. Therefore, empirical testing
is used to determine user group satisfaction and the success of the system.
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4.3.1 Total Response time

The total response time of interest is the response time after an error has occurred. This
user environment is unique in that it allows the user to continue entering data into the
interface while the underlying application is processing. This processing includes checking
the constraints and sending error messages to the front-end. If no errors have occurred, the
error detection system is transparent to the user. Therefore, we are interested in the
response time indicated by the previously listed five steps only when step (4) involves
sending the front-end an error message and step (5) displays the error message.
Additionally, since user interaction is interrupted when the first error message is displayed,
this response time is only relevant up to displaying the first error message. If the time
required to display any additional error messages was longer than it takes the user to deal
with the first error message (i.e., several seconds), this time would be relevant, but
fortunately, this is not the case.

We have already presented the time required to check the constraints [step (3)] for
various situations. ind now we present the times required by the other portions affecting
the end-user response time. These times are obtained by actual testing and should be
considered approximations.

[step (1)] The time required by the front-end to send a system changing command
and a check command to the shell is 0.01294 seconds.

[step (2)] Processing the commands (by the shell) takes 0.02003 seconds. The
time for step (2) includes parsing and executing the system-changing
command, parsing the check command, and calling the function that
checks the constraints. Including the function call time was necessary
because this time cost was not included in the times gathered for step (3).

[step (4)] Executing a typical action routine in the shell that sends an error message
to the front-end takes 0.00604 seconds.

[step (5)] Finally, the time it takes the GUI to receive and display a typical error
message is 0.02036.

Therefore, the total cycle time not including checking the constraints is 0.05937. The run-
times for the minimum evaluation scheme for the average SUPERCODE cases (150
constraints defined) with the rest of the cycle time added is depicted in Figure 17.
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Figure 17: Minimum evaluation scheme run-times for the average SUPERCODE case
including cvcle time with 150 constraints defined. The 0.15 second guideline
is marked with an arrow.

Recall that Shneiderman suggested a guideline response times between 0.05 and
0.15 seconds for tasks like typing, cursor motion, and mouse selection. We consider
using SUPERCODE with a GUI to be a more difficult task than simple typing or cursor
motion, but notice when the cycle time is added to average SUPERCODE cases, the
minimum evaluation scheme run-time still stays below 0.15 seconds. The maximum run-
time presented for the minimum evaluation scheme is approximately 0.1 seconds. These
results are very promising, but to determine whether the response time is indeed low
enough, user testing was used.

4.3.2 User Feedback

The next step is to present the system to the end-user group and to question them as to what
they liked and disliked. We are interested in overall satisfaction, whether or not they would
use it, etc. The users were given a GUI specification file to read into the shell and a set of
tasks to perform. After completing the test, the users filled out a questionnaire that
addressed usability and asked for criticisms, comments and, suggestions. There were
some criticisms and suggestions, but overall, the end-user environment was a solid
success.

The users found using the GUI very easy and preferred it to using the command-
line version. Some of their comments are presented:
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The fact that one doesn’t have to remember all the variable and constraint
names is very important. From my experience, I find that if I don’t run the
SUPERCODE for a while, I have a hard time remembering the names of
variables etc., and I have to look at the *.mod files. Most of us also run
several other transport/MHD codes with different names for the same
physical quantities, and this makes it even more confusing.

I liked it because it makes it much easier to run the SUPERCODE without
having to know much about the shell. The different choices of parameters
in the different menus and submenus were well chosen, and I believe that
anybody with a knowledge of the MHD would be able to run a case.

It makes tasks like this easy to do, and easy to learn from. Plus I can still
go up to the shell [terminal window] and do arbitrary programming tasks.
For example, now that I’ve seen what happens when I run an equilibrium, I
could try something more complex like setting up a for-loop to run
equilibria for a range of values of one of the variables.

It's much easier than activating/deactivating constraints, variables, and
calculators by hand. I never remember the names of all those thing and
constantly have to search for them.

When I haven’t used SUPERCODE for a month or so, I forget the variable
names. Sometimes it can take me MINUTES to find the correct one (there
are > 100 to choose from). Accordingly a GUI is an ESSENTIAL feature
in my opinion.

When asked whether or not the users felt the system would promote distribution to users
who don’t know the imiplementation specifics of SUPERCODE, all of them said yes and
cited the reasons why they themselves liked it. One user added, “This is probably the
biggest use for the GUIL”

The users offered very useful comments and suggestions. The front-end and
SUPERCODE are two separate applications, and to use the system, the user currently has to
open two x-terminals and start each application separately. One user felt that launching
SUPERCODE from within the front-end would be a good refinement. Also, the GUI
displays boih warning and error messages. It was suggested that if an error message is
displayed on a user input, displaying a warning message that is also defined for that input
is superfluous and should not be displayed. Other suggestions for enhancements were an
on-line help system, providing a menu of standard graphs that could be automatically
displayed when the equilibrium were recalculated, and enhancing the shell and the front-
end to enable them to display pertinent calculation feedback (i.e., the calculation failed
because . . .). Because the users found the end-user environment very usable and felt it

would promote distribution, the end-user environment is a success.
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Chapter 5

Conclusions and Future Work

The prototype has returned encouraging results. In this section, we summarize the issues,
discuss the success of the prototype, and indicate topics for future work.

5.1 Conclusions

To help promote distribution of codes, it is desirable to provide a friendly end-user
environment. Accordingly, we designed a GUI creation system to allow construction of
easy-to-use GUI's and a constraint system to provide error detection and handling. We
implemented a prototype of this system for SUPERCODE, a tokamak design code.

The end-user community’s comments in their surveys indicate that the system made
the SUPERCODE easier to use. The constraint checking system ensured that their answers
did not violate the appropriate system model, and the users especially liked the robust
quality of the system. The end-users also found the interface fast enough for the kinds of
problems they address. From all this, we can infer that the prototype’s interface style can
promote the accessibility and usability of scientific codes.

GUI designers found the GUI creation system easy to use and felt that any initial
extra effort involved in creating GUI's was worth the benefit of increased code
distribution. We believe that the system is powerful enough to be applicable to other
scientific codes.
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5.2 Future Work

A few modifications presented themselves that could enhance usability. One possibility is
building a smarter preprocessor or adding to the shell language to support the constraint
system instead of using the current preprocessor. This allows the system to handle read
sets over function calls. Other enhancements include adding a generic interface to the front-

end and responding to user suggestions. These are all areas for further work.

5.2.1 Alternate Implementations to the Current
Preprccessor

Building a smarter preprocessor using a parser generator like YACC [26] or modifying the
shell language to support the constraint system are improvements over the current
preprocessor. Both implementations would improve syntax and would be able to properly
deal with function calls within condition clauses. However, the smarter preprocessor could
be used to read code that is to be compiled while the modified shell version could not. On
the other hand, the modified shell version could automatically generate and use reference
variables for static class variables while the smarter preprocessor could not. These
tradeofts shiould be seriously considered before choosing an alternate implementation to the

current preprocessor.

2.2 Generic Front-end Enhancement

Once the constraint system is implemented in the shell language, it is possible to construct a
generic GUI for the front-end by accessing system information. Because the shell can
access all system information, the front-end can get this information by querying the shell.
The GUI can query the shell to determine how many variables there are and their associated
data (type, current value, etc.). The front-end could then create a window to display this
information. In addition, a GUI can be made so that the user can select a variable from this

window for modification and/or definition of a constraint.
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This generic GUI could be expanded to include access to SUPERCODE’s equation,
set includes figures of merit, physical constraints, and calculators. A generic GUT that
allows access and manipulation of the system equation set would be extremely beneficial.

5.2.3 User Feedback Suggestions

There were several suggestions made by the users that are considered topics for future
work: enabling the user to launch SUPERCODE from inside the front-end, modifying the
warning and error message display system so that warning messages are not displayed for
user inputs that also generated an error message, adding an on-line help system, providing
a menu of standard graphs that could be automatically displayed when equilibrium was
recalculated, and enhancing the shell and the front-end to enable a display of pertinent
calculation feedback.
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