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Motivation
» Two-dimensional hole gases (2DHGs) in un-doped Ge/GeSi heterostructures

Experiment

Electrostatics
» A cross-over of equilibrium and non-equilibrium
» An unexpectedly low gate capacitance

Magneto-transport properties

» Scattering mechanisms

» Missing even minima of filling factors
» Higher-subband occupancy

Conclusions
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Motivation: Ge/GeSi 2DHGs
I B 2DHGs in Ge/GeSi heterostrucures
» High hole mobility enhanced by compressively strain
» Interesting physics such as
v Spin-orbit interaction (Rashba effect)
v Fractional quantum hall effect
Strained Ge QW
GeSi buffer
Ge virtual substrate
Si substrate
Frequency (T) Magnetic Field (T)
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Motivation: Doped/Undoped Structures

I Modulation-doped structure

< Boron doeinﬁ =
2DHG

GeSi buffer
Ge virtual substrate

Si substrate

* Simple implementation
» Ultra-high mobility of ~ 1,000,000 cm?/V-s by Warwick (2011, APL)
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Motivation: Doped/Undoped Structures
I Modulation-doped structure
B— Potential 3D Dielectric

= oron doeing - <= el ch |
parafiel channé GeSi top barrier
2DHG

S 2DHG
GeSi buffer
GeSi buffer

Ge virtual substrate

Ge virtual substrate

Si substrate :
Si substrate

* Easy device fabrication * Impurity-free

 Ultra-high mobility (2014, JIAP) * Low density regime

e Gate leakage  QDs and single hole transistors
* Potential 3D parallel channel * No 3D parallel channel
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Experiment

Gated Hall bar Al deposition

RTA to form Ohmic contact

~ ALO, (90 nm)

Geo.s5Si0.15 top barrier
(tbarrler 9,26,58, 116 nm)

contdct contact
GeossSioss relaxed buffer (3 pm )
two-step Ge buffer (200 nm)

Al203 by ALD

Ti/Au top gate by e-beam

Hall measurement at 0.3K
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Electrostatics: Density Saturation
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I _10 10 X0 B Two stages
‘\"E 8 Y8 nm | > Linear stages vs. Saturation
@) | ‘
> 6l N\, ] B Linear stage(Solid lines)
T _ 6 12 -08 -04 » Slope: effective gate capacitance
o 4+ : :
o | B Saturation stage(Dashed Lines)
% 2 '\ » Deep-channel: (Large t, . ic)(116 Nm,
T . 58nm)
o v" Low, independent with t, .
-30 -25-20-15-10 -5 0 5 e

» Shallow-channel: (Small t,_) (26 nm, 9
nm)

v' High, dependent with t__ i,

Gate voltage (V)
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Electrostatics: Density Saturation
I < 10" B Two regimes
12l » Equilibrium vs. Non-equilibrium
q‘E | Equilibrium by Poisson eq. _ : _ A= =F
§100 | L B Deep char.mell. Non-equilibrium
= ol max e b > reported in Si 2DEG system (Ref.
= 8 2011 APL)
S 61 » attributed to surface tunneling to
Q Non-equilibrium with surface capped quantum well
QO 4+ an upper limit
£ ol _ > r_ B Shallow-channel: Equilibrium
: » matched the calculated equilibrium
0 values well

0 20 40 60 80 100 120
GeSi Barrier Thickness (nm) I
Why crossover from equilibrium to

non-equilibrium?
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Electrostatics: Density Saturation
I e Deep-channel: low  Shallow-channel:
tunneling current tunneling current >> 0
80 80
> 407 \ > 40;
€ o ZA\I203 N € o AlLO,
40| 40/
> 80- S 80 Ge QW
g AN = g0 i
120 GeSi barrier Ge QW 1201 | Gesi barrier
0 50 100 150 0 50 100 150
Depth (nm) Depth (nm)

» Surface hole population: (1) Thermal generation (2) S/D injection
(3) surface tunneling
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Electrostatics: Density Saturation
e Deep-channel: low  Shallow-channel:
tunneling current tunneling current >> 0
80 80
> 40} \ > a0/
€ o ZA‘Izos e E o '_A|203
&-40| &-40/
o 80 0 80 Ge QW
;: AR g :
L GeSi barrier Ge QW '120_' GeSi barrier
0 50 100 150 0 50 100 150
Depth (nm) Depth (nm)

* Surface hole population- (1)Thermal generation (2) S/D.injection (3) surface tunneling

Low T Poor oxide/semiconductor interface

NTUEE QEL




7/
Electrostatics: Density Saturation
I e Deep-channel: low  Shallow-channel:
tunneling current tunneling current >> 0
80 80
> a0/ \ > a0
E AlLO, i £ A0
340/ > 40
o 20 ° : Ge QW
|_|=J ) * * Ev |_|=J -80- EV
ALy GeSi barrier Ge QW -120) GeSi barrier
0 50 100 150 0 50 100 150
Depth (nm) Depth (nm)

* Surface hole population- (1)Thermal generation (2) S/D-injection (3) surface tunneling
 Tunneled carriers will passivate high-density defects, and lead to surface conduction.
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Electrostatics: Unexpectedly Low Capacitance 8

I K=
10
N =60/
€ 8 £ |
A @ 50+
> al _
2 0 540
§ o | 2 30 C,o=(1/C, +1/C, )"
i © i Metal J_C
D 9l O 20 ALO,
£ I \ ' d>J GeSi
T 0 ............. ‘E | 0 . . s-Ge TG Si
-30 -25 -20 -15 -10 -5 0 5 Q o ' |
Gate voltage (V) & v 7" 40 60 80 100 120

GeSi Barrier Thickness (nm)

Unexpectedly low C
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Electrostatics: Unexpectedly Low Capacitance
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Effecitve Capcitance (nFlcm'z)

o

0 20 40 60 80 100120
GeSi Barrier Thickness (nm)

o O O

8oxide :

=15.6

8GeSi

_ K
Ceff - (1/Cox +1/CGeSi)
Metal
C

GeSi
s-Ge CGeSi

Unexpectedly low C_

Energy (meV)
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GeSi barrier

N._ Ge QW
1

0 10 20 30 40 50
Depth(nm)

High-density interface traps
Hole loss due to surface tunneling
only count mobile charges for C_¢s  ;uecom




Electrostatics: Unexpectedly Low Capacitance N
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Effecitve Capcitance (nFlcm'z)

30 Ceff = (1/Cox +1/CGeSi)-1 I
20! no. | C. '80_' \\\‘GeSi barrier
i GeSi I '1 20 B Ge Cap
10‘. . s-Ge —|EGeSi i . . | . | . | . |
0 20 40 60 80 100120 0 10 D20th30 40 50
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How to suppress surface tunneling?
* Ge,,Si, xup ->tunneling barrier up
 Gecap -> no energy alignment
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Mobility is sacrificed, gate
efficiency doesn’t improve
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Magnetotransport: Scattering Mechanisms
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0~0.31  ©~0.69
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Mobility (cm®*/V-s)
o

58 nm 9 nm

T
Hole Density (cm™)

",'|'012

as tbarrier l« MObIIIty l

» stronger remote impurity scattering

as t, 1 Mobility = Density ¢, a |

» Dbackground impurity scattering
dominates

9 nm device mobility still up to
~70,000 cm?/V-s

» high-quality material, interface not too
rough
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Magnetotransport: Shubnikov-de Hass oscillations

RO
-
o

t,=116 nm, p, =1.8x10"cm* V =-15V t,= 9 nm, p,, =8.0 x 10"em? V_=-31V

1. : 0.3 —
& V= =
) I V=5
= — G 0.2 -
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= c
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0 0 2 4 6 8
B(T) B(T)
Clear zeros & A fractional QH state Missing even minima:
-> High quality of our material * Large-g factor due to SOC

 Disordered Landau broadening
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Magnetotransport: Second Subband Occupancy
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B Low frequency peaks:
» second and higher subband occupancy due to high 2DHG density
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Conclusions

I B A cross-over of equilibrium and non-equilibrium 2DHG
density was reported for the first time, and attributed to the
surface tunneling.

B This surface tunneling also leads to much smaller effective
capacitance for the shallow-channel devices.

B High-quality 2DHG in un-doped Ge/GeSi structures was
achieved by CVD with shallow-channel (9 nm), high-
mobility(~70,000 cm?/V-s), missing even minima, and
second subband occupancy.
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