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This review highlights state-of-the-art procedures for heterologous small-molecule biosyn-
thesis, the associated bottlenecks, and new strategies that have the potential to accelerate
future accomplishments in metabolic engineering. We emphasize that a combination of
different approaches over multiple time and size scales must be considered for successful
pathway engineering in a heterologous host. We have classified these optimization proce-
dures based on the “system” that is being manipulated: transcriptome, translatome, prote-
ome, or reactome. By bridging multiple disciplines, including molecular biology, biochem-
istry, biophysics, and computational sciences, we can create an integral framework for the
discovery and implementation of novel biosynthetic production routes.

CURRENT APPROACHES IN METABOLIC
ENGINEERING AND THEIR LIMITATIONS

Microbial organisms are able to package a set
of biocatalysts into “molecular factories”

for the energy-efficient generation of value-add-
ed compounds derived from simple sugars
(Keasling 2010). Making use of these molecular
factories is an attractive alternative to organic
syntheses that rely on petrochemical feedstocks,
finite resources, or environmentally unfriendly
production processes. However, microbial or-
ganisms have not evolved to meet the demands
of a scaled-up production process at the indus-
trial scale and tend to have a poor ratio of
achieved versus theoretical yield. Thus, one of

the main goals of metabolic engineering is to
transform organisms into efficient systems for
the production of active pharmaceutical ingre-
dients, commodity chemicals, and energy. Met-
abolic engineering has already provided sustain-
able access to a number of chemical classes. A
recent milestone of bio-based industrial pro-
duction is the engineered microbial biosynthesis
of artemisinic acid, a plant-derived precursor to
the antimalarial drug artemisinin (Paddon et al.
2013). Additional high-value compounds pro-
duced via sustainable processes include antibi-
otics, such as erythromycin A, daptomycin, and
penicillin, as well as precursors to pharmaceuti-
cals like taxadien-5a-acetoxy-10b-ol, which are
reviewed elsewhere (Lee et al. 2009). Industrial
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fermentation processes have also been estab-
lished for production of commodity chemicals
like 1,3-propanediol, 1,4-butanediol, farnesene,
and other terpenoids (for a review on this topic,
see Klein-Marcuschamer et al. 2007). Further
progress in metabolic engineering could facili-
tate industrial biosynthesis of the biofuels iso-
butanol, isopentenol, bisabolene, and pinene, as
well as other hydrocarbons (for a review on this
topic, see Lennen and Pfleger 2013). However,
some important classes of small molecules, such
as alkanes, alkenes, alkaloids, polyketides, and
peptides, remain accessible mostly from native
sources or through organic synthesis.

Why do we succeed in biomanufacturing
certain compound classes while others remain
recalcitrant? One limitation is the lack of inte-
grated approaches toward pathway optimiza-
tion. Most strategies deal with bottlenecks on
only one of multiple levels in pathway engineer-
ing, often addressing either gene expression
or enzyme engineering. This semirational ap-
proach is popular because quantitative behavior
remains difficult to predict for complex biolog-
ical systems. Inaccurate predictions in turn are
partly a result of unknown or unpredictable
cellular behavior most likely caused by addi-
tional undefined layers of control. Sometimes
this is compounded by limitations in genetic
accessibility of the host. Of the many micro-
bial species that have potential as efficient fac-
tories, only a small number are currently genet-
ically tractable. The recent discovery of the
CRISPR/Cas system has the potential to readily
engineer previously intractable species, but this
technique has yet to be implemented widely
among species (Jakočiūnas et al. 2015). In all
cases, metabolic engineering is limited by ana-
lytical methods, which require specific method
optimization for each compound class being
produced. Despite these shortcomings, there
are clear advancements in the development of
new -omics data acquisition and analysis tech-
niques that enable metabolic engineering on
various levels. These challenges and perspec-
tives highlight the need to implement a multi-
layer optimization framework to perfect the
“design–build–test– learn” engineering cycle
of synthetic biology.

THE NEED FOR INTEGRATED APPROACHES
IN METABOLIC ENGINEERING

The ideal design for maximal metabolite pro-
duction would generate active enzymes with
sufficient catalytic turnover in consideration
of timing and cellular location. This is a hard
goal to achieve because of the complexity of the
cell. Overlaid systems interact at different time
scales and a single manipulation may have a
positive impact at one metabolic or regulatory
layer and a negative or neutral impact at anoth-
er. Modifications at the transcriptome level ad-
just the timing and strength of gene expression,
whereas changes to the translatome (measured
by ribosome occupancy) influence protein syn-
thesis rates, local translational speed, as well
as protein solubility, activity, and specificity.
Changes to the sequence and structure of pro-
teins affect the catalytic efficiency of pathway
enzymes and allosteric regulation at the prote-
ome level. At the reactome level, balanced
enzyme activity, sufficient transfer of interme-
diates between enzymes, and cofactor balance
are all required for high flux through the engi-
neered pathway.

A multilevel engineering approach can be
subdivided into manageable processes (Fig. 1).
At the transcriptome level, mRNA amounts are
controlled by promoter strength, gene copy
number, and mRNA stability. At the transla-
tome level, translational efficiency and protein
solubility are tuned by ribosome-binding site
(RBS) strength, mRNA secondary structure,
and codon usage. At the protein/proteome lev-
el, efficient catalysis is engineered by site-spe-
cific enzyme modifications and release of feed-
back inhibition. At the reactome level, enzyme
ratio balancing and protein colocalization af-
fect the efficient turnover of pathway interme-
diates. Robust and optimal calibration of all
of these nested and interlocked mechanisms
is necessary to achieve maximum flux through
an engineered pathway. We propose a multilay-
er framework for metabolic engineering by in-
tegrating design and control elements on mul-
tiple levels to accelerate the implementation
and optimization of novel biosynthetic pro-
duction routes.
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ENGINEERING AT THE TRANSCRIPTOME
AND TRANSLATOME LEVEL

The most straightforward way to achieve a de-
sired gene expression profile is to regulate the
transcription and translation processes, which
span a wide dynamic range (102–105-fold) for
mRNA and protein amounts (Salis et al. 2009;
Blazeck et al. 2012). Metabolic engineers would
like to temporally regulate the expression
strength of nonnative genes to minimize the
metabolic burden of protein synthesis because
nonoptimal expression may draw cellular re-
sources away from essential functions and lower
the overall fitness of the host (Poelwijk et al.
2011). This, in turn, can lead to decreased path-
way productivity, reducing the design space at
the reactome and proteome levels. Synthetic bi-
ology efforts have provided characterized native
and synthetic promoters to control mRNA ex-

pression levels (Leavitt and Alper 2015). How-
ever, our ability to forward engineer heterolo-
gous gene expression with a precise outcome
regarding protein amounts and activity is cur-
rently lacking (Figs. 2 and 3). To avoid unnec-
essary rounds of expression optimization, it is
advisable to identify common bottlenecks that
can be bypassed in advance. We will discuss a
few studies that have addressed these issues and
suggest an improved workflow.

Predictable and Reliable Gene Expression

It is well known that mRNA and protein levels
do not perfectly correlate in native or engi-
neered systems (Jayapal et al. 2008; Vogel and
Marcotte 2012; Payne 2015). This variation is
especially prevalent in prokaryotic expression,
but remained unaccounted for in genetic design
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Figure 1. Integrated approaches in metabolic engineering. To achieve high metabolite flux through a biosyn-
thetic pathway, it is essential to consider bottlenecks on the transcriptome, translatome, protein/proteome, and
reactome level. Integrated metabolic engineering approaches need to occur both on the molecular-scale and
system-scale level.
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principles until recently. Synthetic biology is
striving to establish a knowledge base for mod-
ular expression design based on a comprehen-
sive understanding of the relationship between
mRNA sequence and protein abundance. To-
ward this goal, Kosuri et al. (2013) analyzed a
library of .12,500 promoter and RBS combi-
nations in Escherichia coli. As a result of this
study, a short list of part combinations was cre-
ated to guide future expression constructs with
desired mRNA and protein level profiles. How-
ever, when predictions and measurements were
compared in this study, the correlation was
much lower for protein abundance (R2 ¼

0.82) than for mRNA abundance (R2 ¼ 0.96).

A small fraction of constructs displayed an
even greater discrepancy, which indicates the
presence of unknown variables in this com-
binatorial design. One significant contributor
to the context-dependent variation is se-
quence-dependent mRNA secondary structure
formation around the translation start site,
which greatly influences synthesized protein
amounts and complicates accurate predictions
(Fig. 2).

To close the gap between designed and test-
ed gene-expression patterns, Mutalik et al. cre-
ated a new bicistronic expression cassette in
combination with a previously reported insu-
lated promoter design (Davis et al. 2011; Muta-
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Figure 2. Predictable and reliable gene expression. (A) To precisely predict translation initiation rates, the ideal
transcript would be depleted in secondary structures close to the ribosome-binding site (RBS). However, mRNA
secondary structures are crucial to overall transcript stability and translation speed control. (B) Secondary
structures present in most nascent mRNA molecules complicate accurate computational predictions of expres-
sion strength. Depending on the location of the hairpin, secondary structure formation can slow down trans-
lation initiation rates or completely prevent translation initiation in case of an occluded RBS. (C) The bicistronic
gene design developed by Mutalik and coworkers (Davis et al. 2011; Mutalik et al. 2013) allows for higher
predictability, because a constant short open reading frame is placed upstream of the target expression cassette
that allows for read-through despite the presence of downstream hairpins.
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lik et al. 2013). In this design, the RBS initiating
translation of the reporter gene was embedded
within an upstream open reading frame for a
short leader peptide (Fig. 2). The investigators
suggest that the intrinsic helicase activity of the
translation machinery is able to unwind any
secondary structures present in the target RBS
when reading through the upstream gene. Test-
ing a library of promoter and RBS combination
arranged as part of the bicistronic design, the
investigators were able to significantly reduce
the error rate in forward engineering. The bicis-

tronic design had a correlation rate of 93%
within a twofold window of expected expression
levels compared with 84% for the monocis-
tronic design. This allowed the characterization
of .500 composable parts over a wide dynamic
transcription and translation range to enable
predictable engineering in E. coli.

The existence of context-dependency has
also been described for eukaryotic gene expres-
sion. Dvir et al. (2013) measured a sevenfold
change in protein abundance when manipu-
lating a very small nucleotide sequence space
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Figure 3. Soluble and active protein biosynthesis. (A) Proteins expressed in their native host naturally assume a
soluble and catalytically active tertiary structure, whereas protein synthesis in nonnative hosts leads to misfolded
or aggregated proteins. (B) Relative synonymous codon usage plots (RSCUs) for a representative protein in
native and nonnative hosts correlated with structural motifs within the protein.
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surrounding the RBS of a reporter gene in
Saccharomyces cerevisiae. Based on these mea-
surements, a quantitative model was developed
to correctly predict 74% of the protein levels
considering a list of factors (i.e., mRNA second-
ary structure, in-frame and out-of-frame start
codons, predicted nucleosome occupancy, se-
quence composition statistics, and arbitrary k-
mer sequences). Translation efficiency has also
been correlated with mRNA secondary struc-
ture formation in the 50 coding region (Canna-
rozzi et al. 2010; Tuller et al. 2010; Goodman
et al. 2013). Importantly, these studies imply
that protein synthesis rates are affected by non-
coding and coding sequences in a context-de-
pendent manner, which may be disentangled
using computational approaches. Finally, to
test protein-specific influences on translation
efficiency and to drive these predictions toward
general design guidelines for expression of all
types of protein classes, additional studies
with proteins other than fluorescence reporters
are required. Additional and unknown layers of
transcriptional, translational, and posttransla-
tional control remain to be identified.

Soluble and Active Protein Biosynthesis

The successful implementation of a heterolo-
gous pathway also requires the production of
functional enzymes, whereas suboptimal trans-
lation of mRNA into misfolded proteins can
lead to low catalytic turnover (reviewed in Li
2015). The use of enzymes from hosts that are
distantly related to the expression host is one
well-known stumbling block for expression of
catalytically active proteins (Fig. 3). Certain bot-
tlenecks in heterologous expression can be at-
tributed to intrinsic host factors, such as trans-
lation speed, tRNA abundance, and chaperones.
For example, tRNA abundance and codon usage
bias is known to vary between and even within
organisms depending on the growth stage (Ike-
mura 1985; Dong et al. 1996; Kanaya et al. 1999).
Different temporal factors in recombinant pro-
tein expression are important, from the growth
stage of the host organism to the initiation and
elongation rate of nascent peptide chains (Niss-
ley and O’Brien 2014). Changing expression

timing and translation rates can affect not only
translational efficiency but also important pro-
tein properties, such as solubility, activity, and
specificity (Plotkin and Kudla 2011; Hunt et al.
2014). Other bottlenecks arise from the gene
coding sequence itself, such as mRNA folding,
transcript length, type of encoded amino acids,
codon context, and codon usage.

The most influential factor affecting trans-
lational efficiency in bacterial expression is be-
lieved to be codon usage bias (Lithwick and
Margalit 2003). This notion is an essential mo-
tivation for the common use of codon-adjusted
transgenes (Gustafsson et al. 2004; Gould et al.
2014). However, synonymous codon changes
pose the potential risk of disrupting important
characteristics of a nucleotide sequence, such as
mRNA stability and translation rates. It comes
as no surprise that idiosyncratic reports reveal
a poor correlation between codon “optimiza-
tion” and functional protein levels. There are a
myriad of variables affecting translation, such
as mRNA stability, translation speed and accu-
racy, cotranslational folding, and cotransla-
tional localization. However, the influence of
these factors in distinct organisms or even pro-
tein families might vary. For instance, transgen-
ic expression in eukaryotic systems is burdened
by gene-silencing issues or low expression levels
(Jackson et al. 2014). On the other hand, bacte-
rial host systems are known to commonly pro-
duce misfolded proteins (Sander et al. 2014).
There is a great need for synthetic codon
adaptation strategies that consider multiple pre-
vailing design parameters in a host- and time-
dependent manner.

Recently, Lanza et al. (2014) created a con-
dition-specific codon optimization approach,
which considers the dynamic character of pro-
tein translation. The investigators generated a
codon usage table based on a subset of highly
expressed genes at the target growth stage and
were able to improve heterologous protein levels
of a bacterial gene in yeast. Other studies have
used combinatorial libraries with synonymous
codon variants in the coding region to experi-
mentally disentangle the factors involved in
translational efficiency and protein integrity
(Goodman et al. 2013; Cheong et al. 2015).

A. Lechner et al.
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Such studies have established that synonymous
codons are translated at different rates affecting
cotranslational folding (Ciryam et al. 2013;
Chevance et al. 2014) and localization (Fig. 3)
(Fluman et al. 2014; Pechmann et al. 2014). In
summary, we emphasize that the interrelation
between codon usage, cotranslational folding,
and protein integrity can greatly affect the cat-
alytic activity of heterologous proteins (Kim-
chi-Sarfaty et al. 2007; Agashe et al. 2013;
Zhou et al. 2013).

ENGINEERING AT THE PROTEIN LEVEL

Increasing yields of desired compounds can fur-
ther be influenced by the capacity of the pro-
teins themselves to catalyze a desired reaction.
Native and nonnative enzymes commonly re-
quire further optimization to meet the demands
of biomanufacturing (Fig. 4). Recent advances
in enzyme engineering bring about significant
expansions in the catalytic repertoire of en-
zymes with respect to increased efficiencies, im-
proved selectivities, and novel substrate and co-
factor specificities. In addition, the de novo
engineering of enzymes has enabled the design
of novel catalysts in which natural enzymes are
not available (Bolon et al. 2002; Kaplan and
DeGrado 2004; Jiang et al. 2008; Röthlisberger
et al. 2008). Numerous engineering strategies
have been developed to tailor enzyme activities
for specific industrial purposes, which include
directed evolution and mutagenesis (Moore
and Arnold 1996; Arnold 1998; Brustad and
Arnold 2011; Illanes et al. 2012; Wang et al.
2012b), modular enzyme components (Dueber
et al. 2009; Good et al. 2011), and computer-
aided design techniques (Bornscheuer and Pohl
2001; Mandell and Kortemme 2009; Verma
et al. 2012; Hilvert 2013; Damborsky and Bre-
zovsky 2014) (for a recent review of the impact
of directed evolution on synthetic biology, see
Currin et al. 2015). The enzymatic characteris-
tics that are most often targeted by these tech-
niques include activity, stability, selectivity, sol-
ubility, and optimal pH (Fig. 4). For example,
engineered fungal endoglucanases operate at
optimal temperatures of 17˚C higher than the
wild-type enzyme and hydrolyze 1.5 times

as much cellulose over 60 h (Trudeau et al.
2014). Engineering stable enzymes such as these
has benefited the production of isobutanol at
elevated temperatures in thermophilic Geoba-
cillus thermoglucosidasius (Lin et al. 2014).
However, in contrast to the numerous success-
ful accounts of directly evolved single enzyme
catalysts, limited examples exist for directly
evolved enzymes that exist as catalysts within a
biosynthetic pathway. In general, this can be
explained by the fact that a coordinated im-
provement of performance of an entire pathway
of enzymes has typically not been discovered
through the optimization of a single gene.

The complexity of pathway design often-
times requires overcoming metabolic bottle-
necks, such as accumulation of toxic intermedi-
ates, cofactor imbalance, and inefficient enzyme
activities, which remains a significant challenge
for metabolic engineering and the focus of nu-
merous research studies (Fig. 4). Metabolic en-
gineering has traditionally integrated existing
enzymes from different organisms into the pro-
duction host to modify an existing pathway or
create a nonnatural pathway (e.g., a set of en-
zymes that are not normally found within the
host metabolism). This approach has generated
significant improvements in product yields. For
example, a 120% yield improvement was re-
ported for the isoprenoid-derived sesquiter-
pene, amorphadiene, which was produced by
an engineered strain of E. coli using the seven-
gene mevalonate pathway from S. cerevisiae (Ma
et al. 2011). However, the catalytic efficiencies
and selectivities of many naturally occurring
enzymes may require further optimization to
become highly optimized biocatalysts with
capacities to achieve higher rates, yields, and
product purities. This section reviews the ef-
ficiency of the individual enzyme components
themselves within existing or nonnatural
biosynthetic pathways and poses the follow-
ing question: “Can engineering individual en-
zymes transform and improve the performance
of biosynthetic routes?” Here, we focus on sev-
eral successful examples, in which engineered
characteristics of individual enzymes did im-
prove the efficiency of entire biosynthetic
pathways. The engineered characteristic enzyme
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properties that are highlighted in this sec-
tion include enzyme regulation and enzyme
specificity.

Reduced Feedback Inhibition

Heterologous proteins expressed in host organ-
isms can suffer from a number of design issues,

which include being tightly regulated via post-
translational modifications and/or allosteric
inhibition (Fig. 4). In cases such as these, di-
rected evolution of key enzymes within meta-
bolic pathways has shown to benefit product
yields (Lee et al. 2012; Brinkmann-Chen et
al. 2013) (for reviews on these topics, see
Johannes and Zhao 2006; Cobb et al. 2013;
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Figure 4. Proteome-level optimization. (A) Optimal versus nonoptimal enzyme-level activities in engineered
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modifications, incorrect protein–protein interactions, and many others. (B) Graphical representation of di-
rected evolution of enzyme that directly influences its stability and reactivity. (Adapted from Mollwitz et al.
2012.) (C) An in silico workflow to establish rational engineering through novel complementary computational
methods, such as machine learning, genetic algorithms, and molecular modeling.
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Renata et al. 2015). For example, an improved
variant of glucosamine synthase (GlmS) was
generated via an error-prone polymerase chain
reaction (PCR) and its overexpression in an
engineered strain of E. coli led production of
glucosamine at 17 GL21 (Deng et al. 2005).
The directed evolution of GlmS enabled in-
creased production, in part, by generating
variants that showed significantly reduced sen-
sitivity to product inhibition (Deng et al.
2005). Another example of enzyme engineering
that reduced feedback-inhibition mechanisms
is that of L-phenylalanine production. By per-
forming DNA shuffling on pheA, a chorismate
mutase-prephenate dehydratase enzyme, mu-
tations led to activation of enzymatic activities
at low phenylalanine concentrations and nearly
complete resistance to feedback inhibition of
prephenate dehydratase by phenylalanine con-
centrations up to 200 mM in certain variants
(Nelms et al. 1992). These variants were incor-
porated into an E. coli K12 strain to construct
a pathway producing S-mandelic acid via this
modified L-phenylalanine pathway (Sun et al.
2011). In addition to directed evolution tech-
niques, computational design strategies pro-
vide further possibilities for configuring novel
allosteric modulators (for a review of this sub-
ject, see Lu et al. 2014).

Increased Substrate Specificity

Enzyme engineering can also play a key role in
shaping enzyme specificity and, as a result, lim-
iting erroneous and potentially deleterious side
reactions and products. By using existing pro-
miscuous enzyme activities as a starting point
for directed evolution, the creation of new en-
zymatic functions, such as catalyzing reactions
on nonnative substrates, has been shown
(Broadwater et al. 2002). The knowledge of
the promiscuous activities catalyzed by an en-
zyme not only provides a starting point for en-
gineering novel functionalities, but it has shown
to guide the engineering of native activities with
increased specificity and higher activity (Yoshi-
kuni et al. 2006). For example, g-humulene syn-
thase, a sesquiterpene synthase from Abies gran-
dis (Steele et al. 1998; Little and Croteau 2002),

produces 52 different sesquiterpenes from a sole
substrate, farnesyl diphosphate, through a wide
variety of cyclization mechanisms (Lesburg
et al. 1997; Starks et al. 1997; Caruthers et al.
2000; Rynkiewicz et al. 2001). Yoshikuni et al.
(2006) showed that site-directed mutagenesis of
a set of previously identified plasticity residues
shifted the relative selectivity of one product
for another by 100- to 1000-fold. An additional
example of how directed evolution improved
enzyme specificity has been reported in xylose
isomerase-based pathways in S. cerevisiae,
which typically suffer from poor ethanol pro-
ductivity and low xylose consumption rates.
Improving the specific activity of a heterologous
enzyme, Piromyces sp. xylose isomerase, via
rounds of random mutagenesis and growth-
based screening has led to a variant that showed
a 77% increase in activity. When expressed in a
minimally engineered yeast host, the strain im-
proved its aerobic growth rate by 61-fold and
ethanol and xylose consumption rates by nearly
eightfold (Lee et al. 2012). Identifying poten-
tially promiscuous enzyme activities is a major
challenge and has been one of the main roles
of certain computational pathway prediction
algorithms, such as the Biochemical Network
Integrated Computational Explorer (BNICE)
framework (Hatzimanikatis et al. 2005). BNICE
uses existing enzyme chemistry as a ground-
work for novel enzyme mechanisms that can
be fine-tuned and tailored via minimal enzyme
reengineering. Several examples of in silico
strategies for the reengineering of naturally oc-
curring enzymes into novel biocatalysts are
shown by the work of (1) Cho et al. (2010),
who predicted novel enzyme activities on the
basis of physicochemical properties of sub-
strate/product pairs, (2) Brunk et al. (2012),
who predicted novel enzyme activity within a
biosynthetic pathway (Henry et al. 2010) on the
basis of 3D protein structural characteristics
and molecular dynamics simulations (Fig. 4),
and (3) Campodonico et al. (2014), who pre-
dicted enzyme similarity on the basis of enzyme
commission classification. In certain cases, a
comprehensive assessment was performed for
20 predicted heterologous pathways in E. coli
(Campodonico et al. 2014).

Integrated Approaches in Metabolic Engineering

Cite this article as Cold Spring Harb Perspect Biol 2016;8:a023903 9

 on September 5, 2017 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


ENGINEERING AT THE REACTOME LEVEL

In the previous sections, we have shown the
importance of engineering correctly folded
and catalytically active pathway enzymes. Here,
we address the significance of balanced metab-
olite fluxes. Achieving maximum protein abun-
dance does not necessarily give rise to highest
product titers (Jones et al. 2000). Simultane-
ously, an increase in Vmax (¼kcat � [E]) of a
heterologous enzyme can create a metabolic
sink causing nutrient limitation and growth in-
hibition (Fig. 5). Excessive catalytic turnover
can also lead to intermediate buildup causing
feedback inhibition or even toxicity (Ajikumar
et al. 2010). Therefore, it is important to balance
protein synthesis and activity levels to engineer
a pathway with stable steady-state behavior and

minimal metabolic burden (Fig. 5). In this sec-
tion, we review methods to assess the optimal
design space of metabolic pathways. Studies are
beginning to use multivariate statistical ap-
proaches to guide predictable forward engineer-
ing efforts. We will also present a putative work-
flow to guide the integration of a heterologous
pathway within the host metabolic and regula-
tory network.

Balanced Pathway Fluxes

Unlike other areas of engineering, biological
systems are extremely nonlinear, which makes
predicting how pathway networks function in
vivo a challenge. Often, engineered pathways
have been optimized through sampling of large
design spaces (Pfleger et al. 2006; Lütke-Ever-

Increase in kcat or enzyme amountB

A Equal enzyme levels,
different catalytic activities

E2 E3E1

E2 E3E1

Substrate Intermediates Product

Figure 5. Reactome-level optimization. (A) Nonoptimal metabolite flux limited by low turnover of one pathway
enzyme. (B) Optimal flux through the pathway can be achieved by engineering the bottleneck enzyme leading to
either higher enzyme levels or increased catalytic activity.
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sloh and Stephanopoulos 2008; Du et al. 2012;
Wang et al. 2012a; Xu et al. 2013; Nowroozi et al.
2014). Such combinatorial approaches are spe-
cifically valuable for organisms with less-de-
fined genetic and metabolic networks (Oliver et
al. 2014). However, combinatorial libraries are
limited by analytical capabilities and require
high-throughput screens or selection assays.
For a review on high-throughput library selec-
tion and screening strategies, the reader is re-
ferred to Dietrich et al. (2010).

The main difficulty remains in understand-
ing how interactions among components of a
biochemical network within an organism give
rise to the function and behavior of the entire
system. In lieu of probing large design spaces
through traditional metabolite analysis, a few
studies have used smaller data sets with multi-
variate statistical analysis to predict behavior.
The resulting models can be used to forward-
engineer required enzyme levels for optimal
pathway flux. Lee et al. (2013), for example, cre-
ated a regression model to analyze a subset of a
combinatorial promoter library. To assess the
capacity of the generated model, they chose to
express the highly branched violacein pathway
and trained the model on only a small fraction
of the measured data (�100 random clones, 3%
of total library). The model was able to correctly
predict production levels of the violacein con-
geners under different expression conditions
with a correlation coefficient between 0.77 and
0.92, which was sufficient to guide further op-
timization efforts.

Alonso-Gutierrez et al. (2014) used princi-
pal component analysis of quantitative proteo-
mics data (PCAP) to correlate product titers in
E. coli. Gaining insight into optimal pathway
stoichiometry of limonene biosynthesis, the in-
vestigators were able to further improve yields
by �40%. Expression timing was also addressed
in this study, and there is an indication that dif-
ferent induction times lead to largely varied pro-
duction levels because of toxic intermediate ac-
cumulation. Altogether, this study revealed the
delicate balance between enzyme levels that is
required for optimal pathway performance. At
the same time, the holistic approach of PCAP
emphasized that multiple optima exist in the

combinatorial expression space of a mevalo-
nate-dependent pathway. These examples show
pathway-centric approaches by correlating pro-
tein synthesis and product flux. Such statistical
approaches can be further complemented with
constraint-based flux balance analysis (FBA) to
create an integrative approach, which also con-
siders the host metabolism (Brunk et al. 2016).

FUTURE DIRECTIONS TOWARD
INTEGRATED APPROACHES IN METABOLIC
ENGINEERING

To tackle the existing challenges in metabolic
engineering, strategies need to account for all
aspects of product synthesis in which control
can be exerted: the transcriptome, the transla-
tome, the proteome, and the reactome (Fig. 1).
First, engineering the transcriptome involves
manipulation of mRNA stability and expression
levels, which is commonly mastered through
promoter and terminator strength engineering.
Second, translatome engineering requires an
understanding of the factors involved in trans-
lational efficiency and cotranslational processes
such as folding and translocation. Third, the
design of chemical transformations and protein
engineering is controlled at the proteome level.
And last, reactome manipulations allow us to
address aspects of enzymes ratios and, therefore,
metabolite flux (Fig. 1). Inaccuracies at any of
these levels can prohibit successful implemen-
tation of an engineered pathway. Here, we em-
phasize the current potentials at the different
control levels.

Translatome Manipulations Toward Reliable
Enzyme Expression

Despite having made great strides in metabolic
engineering and synthetic biology (i.e., orthog-
onal design, parts characterization), there re-
mains a gap between designed and measured
enzyme activity. For example, protein solubility
and, therefore, activity is currently optimized
through a rather random approach (Batard
et al. 2000; Burgess-Brown et al. 2008; Cheong
et al. 2015). General optimization strategies for
heterologous enzyme synthesis that do not suf-
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fer losses of catalytic activity are currently lack-
ing. To narrow this gap between design and bi-
ology, a deeper characterization of the factors
involved in gene expression is desired (Latif
et al. 2014). Currently, computational models
only exist for the analysis and prediction of
translation initiation rates (for a review on this
topic, see Reeve et al. 2014). Beyond controlling
translational efficiency, there is a prevailing
need to establish design guidelines for robust
and specific codon optimization approaches.
For this goal, emerging methods to experimen-
tally assess ribosomal speed for different hosts
have the potential to provide a reliable founda-
tion for computational codon optimization
strategies (Ingolia et al. 2009; Chevance et al.
2014; Hockenberry et al. 2014; Latif et al. 2014).

Protein-Level Manipulations Toward Efficient
Enzyme Catalysis

Rational design will not move beyond its cur-
rent limitations until our understanding of the
underlying mechanisms of enzyme catalysis has
improved. A great deal of advancement has been
made in understanding structure–function–
activity relationships in enzyme chemistry
(Thornton et al. 2000). This is, in part, a result
of the ever-increasing number of high-resolu-
tion structures available through X-ray crystal-
lography (Berman et al. 2003) as well as the
insights on detailed enzyme catalytic mecha-
nisms from numerous theoretical-based studies
(Colombo et al. 2002; Brunk and Rothlisberger
2015). Understanding protein promiscuity and
its great potential for the design of novel cata-
lysts has been the subject of many recent reviews
(Nobeli et al. 2009; Humble and Berglund
2011). Synergistic efforts to couple computa-
tional enzyme design and metabolic pathway
engineering with directed evolution brings
promise of reengineering biosynthetic pathways
and, in particular, in secondary metabolism,
which offers a wider range of metabolic and
biosynthetic routes, an increased scope of sub-
strates and products, and has been shown to be
less shaped by natural selection pressures than
that of primary metabolism (Bar-Even and
Tawfik 2013).

Reactome Manipulations Toward Optimal
Production Fluxes

Typically, designing a new technical system re-
quires starting from scratch and testing various
potential prototypes, usually by means of trial
and error. Thus, designing a procedure of inter-
pretation or translation from biology to tech-
nology is a necessary goal to overcome the engi-
neering bottlenecks. Although databases, such
as KEGG (Kanehisa 2002) and BRENDA
(Schomburg et al. 2004; Chang et al. 2009), pro-
vide information mainly focused on primary
pathways in metabolism, categorization of novel
biosynthetic pathways, the enzymes involved in
biosynthesis, and the small molecules tailored to
desired tasks will also be needed. Computational
tools that can have access to resources such as
these will undoubtedly have the potential to pre-
dict pathways, identify variations in enzymes,
and model these changes in genome-scale met-
abolic networks of candidate host systems. Being
able to model, understand, and predict complex
metabolic networks has been made possible by
recent developments of genome-scale metabolic
models (GEMs), which have been reconstructed
for .60 organisms (Reed and Palsson 2003;
Monk et al. 2013; Bordbar et al. 2014). These
reconstructions are converted into constraint-
based models (Becker et al. 2007), allowing
useful calculations like FBA (Orth et al. 2010)
to be performed. Methods such as these are
complementary and amenable to pathway de-
sign and offer great promise for advancing the
field of synthetic pathway engineering and the
design of microbial biofactories (Monk et al.
2014; Brunk et al. 2016).

CONCLUSIONS

Recent developments in the field of metabolic
engineering bring promise to the design of bio-
synthetic pathways, in which entire metabolic
pathways can be (re)designed and expressed in
host organisms. We attempt to give the reader a
comprehensive view on the aspects pertinent to
successful pathway engineering. Additionally,
we emphasize that there remains a gap between
optimization efforts at the molecular level and
those at the systems level. One important con-
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sideration is to address the different complica-
tions or bottlenecks that may occur on vastly
different chemical and biological scales. Feasi-
bility of engineered components can be assessed
using molecular-scale analyses, which typically
evaluate feasibility in terms of the ability of en-
zymes to catalyze a desired transformation on a
substrate, and systems-level analyses, which
generally assess feasibility on the basis of
changes in the range of intracellular metabolites
and enzyme concentrations (e.g., proteome al-
locations, pathway ratios). At the same time,
these remaining challenges reveal many oppor-
tunities to fill knowledge gaps and develop more
sophisticated design tools in metabolic engi-
neering. First, we emphasize that computational
predictions of pathway performance will only be
as accurate as our models that heavily rely on
existing omics data sets. Within the context of
the design–build–test– learn cycle, we are suc-
cessfully designing and building production
strains; however, there is a delay in the learning
process because “testing” is highly limited by the
capabilities of existing high-throughput analyt-
ical methods. Additional omics data sets of ra-
tionally engineered microbes are required to
build accurate prediction models and to facili-
tate the de novo design of constructs. Second,
there remains a need to create an open access
knowledge database to organize and analyze
large data sets. And last, “learning” is informed
by our basic understanding of cellular processes.
Yet, there remain multiple control levels that are
not well understood on a cellular scale such as
allosteric regulation exerted through interaction
between proteins and metabolites. Posttransla-
tional regulation is an additional control layer
that has recently attracted much attention be-
cause of novel methods assessing posttransla-
tional modifications on an organism scale. Fu-
ture milestones in “test and learn” will
transform the field of metabolic engineering
from a semirational to a fully rational forward
engineering discipline.
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Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen
M, Pedersen LE, Jensen MK, Keasling JD. 2015. Multiplex
metabolic pathway engineering using CRISPR/Cas9 in
Saccharomyces cerevisiae. Metab Eng 28: 213–222.

Jayapal KP, Philp RJ, Kok YJ, Yap MGS, Sherman DH, Griffin
TJ, Hu WS. 2008. Uncovering genes with divergent
mRNA-protein dynamics in Streptomyces coelicolor.
PLoS ONE 3: e2097.

Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D,
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