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ABSTRACT

The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar

model and comparing the predicted current profiles with those from two popular approx-

imations. The dependences of the bootstrap current profile on the plasma properties are
illustrated. The implications for steady state tokamaks are presented through two con-

straints; the pressure profie must be peaked and _p must be kept below a critical value.
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1 INTRODUCTION
0

The bootstrap current was initially predicted by Bickerton, Connor, and Taylor[l] and

has received considerable interest since the conclusion in TFTR[2] that the loop voltage
measurements in their high beta-poloidal, neutral beam heated discharges could only be

explained by including bootstrap current. Bootstrap currents have also been observed

on JET[3] and JT-6014]. It is now recognized that the bootstrap current is essential for
steady state tokamak reactors. Alternative methods for non-inductive current drive have

very low efficiencies, so that providing 100% of the plasma current with these techniques

would be prohibitively expensive. However, if the bootstrap current can provide 50% to
90% of the plasma current, the remainder can be provided by external sources to produce

a viable steady state reactor concept.

A great deal of theoretical work has been done in deriving expressions for the bootstrap
current within the scope of transport in toroidal plasmas ([5]-[11]). The most complete
treatment for tokamaks (a×isymmetric configurations) is that of Hirshman, et a1.([12]-

[17]), and subsequently the review paper by ttirshman and Sigmar[18]. More recently,
sorne work has been done to incorporate simple expressions for the bootstrap current in

equilibrium, transport, and systems studies([19]-[23]). A very interesting approach was

given by Lackner[24] where he calculated high-n ballooning stability simultaneously with
bootstrap current, albeit in the large aspect ratio approximation.

The present studies of bootstrap current have been motivated by the ARIES reactor

study[25], particularly by second stability configurations where a large fraction of the
plasma current is provided by the bootstrap effect. In this case we are interested in
accurate predictions of. the bootstrap current profile, how it can be maximized, how it

can be aligned with a desired current profile (compatible from MHD stability), and how
it limits the operating space for a tokamak reactor. In addition, a number of issues

have arisen concerning how the bootstrap current is calculated; calculation of the trapped

particle fraction, determination of the total toroidal current driven by the bootstrap effect,
and the differences in predictions between several popular bootstrap models which make

use of different approximations.
The fixed boundary, flux-coordinate equilibrium code JSOLVER[26] is used to gen-

erate the equilibrium and calculate the bootstrap current. The code can determine the
bootstrap current for three models presently in use; collisionless Itirshman[20], collisional

Harris[22], and the ttirshman-Sigmar[18] formulation. Only thermal species are consid-

ered here, although recent articles[27, 28] have addressed the alpha particle contribution.
There have also been extensions to nonaxisymmetric configurations[29], however, only the

axisymmetric case is considered here.

A particular configuration for the plasma equilibria will be used with plasma major
radius R = 5.6 m, minor radius a = 1.4 m, elongation n = 1.8, triangularity _ = 0.4,

vacuum toroidal field B$ = 8.0 T (at R = 5.6 m), plasma current Ip = 6.5 MA, and central

safety factor qo = 2.0, which corresponds to the ARIES-II reactor design parameters. An
impurity is included in the bootstrap calculations corresponding to 2% carbon, which gives

an average charge 2 = 1.10 and an effective charge Z_lf = 1.55. The parallel current,



pressure, and temperature profiles are taken to be of the form
6

<j'.
(_: V¢)(_b)= jo(1 - ¢)'_J , (1)

=po(1-  b.)op, (2)
T(¢) = To(1- _br)_r. (3)

Here the normalized poloidal flux is ¢ = (¢- ¢_:is)/(¢tim - _baxis). The bootstrap
calculations presented here are generally valid, and are not restricted to these profile forms.
Table 1 will show the bootstrap current fractions and equilibrium profile parameters for

each bootstrap current comparison.

2 OVERVIEW OF THE BOOTSTRAP CURRENT

The bootstrap current arises due to anisotropy in the electron pressure tensor. This is a

neoclassical (toroidal geometry) effect which is important in the weakly collisional regimes
(banana and plateau). This effect is due to the diffusion of particles that are barely trapped

and barely circulating, and is strongly reduced when collisions impede the formation of

banana orbits. The pressure anisotropy for the electrons leads to tangential forces within
a magnetic flux surface. In steady state these forces are balanced by friction forces. When

the momentum transfer between trapped and passing electrons is balanced with that
between passing electrons and ions, currents are generated by the passing electrons, and
this resulting current is the bootstrap current.

The trapped particle fraction is determined by the magnetic field structure in the

tokamak. Charged particles gyrate around magnetic field lines, the center of this gyration
being called the guiding center. For the majority of particles, this guiding center follows

the helical magnetic field lines that trace out magnetic flux surfaces. However, since the

magnetic field strength is not uniform on a magnetic surface, it follows from conservation
of energy and magnetic moment that a certain fraction of particles will be reflected or

"mirrored" when they enter a region of larger magnetic field. This causes them to become

trapped, and to a first approximation they bounce back and forth between turning points
along the magnetic field line[30]. In the large aspect ratio, circular cross-section, and low

press'are approximation, the trapped particle fraction is given by

f, -_ 1.46v_ (4)

which shows the toroidal geometry dependence through the inverse aspect ratio (e = r/R,
where r is the local minor radius of the flux surface). The larger the trapped particle

fraction, the larger the bootstrap current.Q

The collisionality is important in determining whether the bootstrap current is signif-

icant. When the plasma particles are highly collisional, even those that would normally
be mirrored cannot execute trapped orbits before bein_ scattered, and the neoclassical

effect is eliminated. Only when the collisionality is small is the bootstrap current impor-

tant. The collisionality is normally represented by the ratio of the bounce frequency for



a trapped particle to the frequency of collisions leading to a 90° deflection in momentum

space.
qR

v. - 3 (5)
Vth T"9OE2

where q is the safety factor for that flux surface, R is the major radius of the flux surface, V_h

is the thermal speed (_), and r90 is the 90 ° deflection time. There are three main
collisionality regimes; banana (coUisionless), plateau (transition), and Phirsch-Schluter

(collisional), and these are roughly delineated by the following relations,

_,. << 1 (banana)

1
1 < v. <_ _ (plateau)

t,,. >> 1 (collisional)

The bootstrap current is diminished as the plasma becomes more collisional (v. increases).
However, the plateau regime can sustain a large bootstrap current and strongly modulate

the current profile, and :;hould not be considered a collisional regime for bootstrap current
calculations.

3 EXPRESSIONS FOR THE BOOTSTRAP CURRENT
IN A TO KAMAK

3.1 Matrix Hirshman-Sigmar Model

The bootstrap curren: is defined as a parallel current density, by the sum over all species

of the product of dens ty, charge, and the parallel fluid flow (ullBI,

(_" B)bs = _ n_Z_,(U_llB) . (6)
a

The parallel fluid and heat flows can be determined in terms of the thermodynamic flows

by solving the parallel momentum and heat flux balance equations for each species. This
derivation is done in Appendix A. This yields two equations for each specie which form a

system that can be solved to determine the parallel fluid flows. This system of equations
can be cast in a vector-matrix form by defining the vectors,

[ 2 qal,B ) 2 qbllB ) ]T "'g(7 '""
and

[Vai ' Ubi, ..., Ua2, Yb2, ...IT . ,

Here 1/1and V2 are the thermodynamic flows defined in Appendix A, and the subscripts

"a" and "b" refer to species. In order to illustrate the application of this formalism, the

electron and single ion plasma will be used. Using the above defined vectors, the system



of equations relating the parallel fluid and heat flows to the thermodynamic flows is given

. by

' '" ii -.

ee "d qe- q:-_B

• " ii - 2l_l:t
l_ lZ2_+ Pi2 -li2e2 -122 + #i3 g\v, _'

o o1 ]_ 0 #il 0 #i2 ldaB
- o o V 2B " (7)

0 #i2 0 #13 _2B

The first matrix can be invelted on the RHS to give the parallel fluid flows that are

required to determine the parallel bootstrap current density. If the plasma contains N

species (N-1 ion species and electrons) there are 2N equations. It is clear how additional
species can be added to the above formalism. The problem is reduced to determining the

appropriate viscosity and friction coefficients to insert into the matrices. This model will
be referred to as the Hirshman-Sigmar model. From Appendix A it can be seen that the
parallel fluid flow depends on the pressure and temperature profiles, the collisionality, ion

charges, aspect ratio, and trapped particle fraction.

(ullB) = f (p(_/,),T(_,),v.,Z,e,£) . (8)

The interactions between different species are manifested through the friction coeffi-
cients. These coefficients are classical, that is they are independent of the magnetic field.

Expressions for these, which are valid for all neoclassical collisionality regimes, are given
in Appendix C. In contrast, the viscosity coefficients are determined by the collisional-

ity of the given species only, independent of the collisionality of all other species. They
are also sensitive functions of the magnetic field structure. Expressions for the viscosity

coefficients are given in Appendix B.

3.2 Single Ion, Collisionless Regime Model

The full matrix derivation given above is the most general treatment for determining

the bootstrap current density due to thermal species, and can be extended to include as

many species as required. A useful expression that is often used instead of the full matrix

form is the single ion model in tile collisionless (_,. --. 0) limit. It is derived[20] for a plasma
composed of electrons and a single ion species, with charge Zi. Rather than using the full
matrix formula, it starts from the balance equations for electrons and ions separately in

vector form. This system of equations can be solved analytically because the matrices

are 2x2. Terms of order (me/mi)½ or less are neglected, and x is the ratio of trapped to
circulating particles (ft/(1- re)). Using the quasi-neutrality condition (he = Zini) the

8

bootstrap current as a function of the thermodynamic flows, for a single ion plasma, is

(]" B)b_ _ Pe A1 + -- oq---- - A2 (9)

with

A1 = z(0,754 + 2.21Zi + Z]) + z2(0.347 + 1.24Zi + Z_)/D_



A2 = x(0.885 + 2.08Zi)/D_

_-[141,+ + + + + +
1.17

Oq --
1.0 + 0.46x

This model will be referred to as the Hirshman model.

3.3 Single Ion, Harris Collisional Model

In order to maintain the simplicity of the collisionless single ion expression for the boot-

strap current but include collisional effects, Harris[22] presented a model that smoothly
connects the collisionless Hirshman[20] expression with the collisional model of Hinton and

Hazeltine[8]. The expression for the bootstrap current is nearly identical to that for the
collisionless plasma, but the coefficients multiplying the gradients in pressure and temper-
ature are modified to include factors that depend on u,. The expression for the bootstrap

current density in the Harris approximation is given by

<_.v_> <_> _ +- _," -( A_"- a_')- p_ pi de Ti de T_ dCJ
(10)

where,

1 1

A H = A1 (1.0 + al3P°_ 5 -_- b13I],e) (1.0 + C13P, eE1'5)

AH = (_A15 _ 1 1A_)(1.0 + a23u°_s + b23u,e) (1.0 + c23u, eex'5)

ai o 25u °5 ]

-- .v-- _i

aH -- 1.0 + 0.70v°_ 5 -- 2"10u*2ie3 1 1-- 2 3 V2eE3 "(1.0 + v, ie )(1.0 + )

The coefficients aij, hij, and cij are given in Ref[22] and the Hirshman collisionless coeffi-
cients are given in the preceeding section. It should be noted that the collisionalities used
in the Harris expression are those originally defined by Hinton and Hazeltine in Ref[8].
This model will be referred to as the Harris model.

3.4 Comparison of Bootstrap Current Models

There are several characteristics that separate the various bootstrap models: matrix or

single ion, collisionless or collisional, arbitrary aspect ratio or large aspect ratio, and the

expression for the trapped particle fraction. The expression for the bootstrap current given
by the Hirshman-Sigmar model is in the matrix form and can accomodate any number of

species. The expressions for the Harris and Hirshman models are single ion forms, and
only accomodate one ion specie. This ion is usually given the average characteristics of

all the actual ions present. For example, the Zi in the expressions for Aa and A2 is made

Ze.ff when multiple ions are present. However, there is some error in doing this, since the
interaction between the different ion species is being neglected. Thus one would expect
some differences between the single ion and matrix formulations when multiple ions are

being modelled.



It is generally clear whether a bootstrap model is collisionless or collisional, however the

, degree to which the three collisionality regimes are treated is what separates the various
collisional models. The Hirshman model is strictly valid only in the collisionless regime.

Refs.[8, 16, 17, 22] are examples of smooth fits for transport or viscosity coefficients over

all collisionality regimes by connecting expressions derived asymptotically in each regime.
The Harris model is an example of this, smoothly connecting the Hirshman collisionless

expressions with the Hinton-Hazeltine collisional expressions for the bootstrap coefficients,
A1 and A2. Efforts to generate expressions for these coefficients throughout all collision-

ality regimes by energy partitioning are reported in refs.[14, 15, 17, 31]. The Hirshman-

Sigmar model is an example of this approach. The differences among these models can
lead to discrepancies, particularly in transitions between collisionality regimes. In addi-
tion, it is very difficult to isolate the cause of the discrepancies among the different models

or which model is more or less correct, making comparisons confusing. The approach used

in the Hirshman-Sigmar model[17] is the most general, and calculates expressions for the
viscosity coefficients that are continuously valid throughout the three collisonality regimes

and peforms the actual velocity space integrals. This is described in Appendix B.
The aspect ratio assumptions are also important in bootstrap current calculations.

The Hirshman and Hirshman-Sigmar models are valid for arbitrary aspect ratio and flux

surface geometry. The ttarris model, as stated above, smoothly connects two models
to create an expression that can be used for all three collisionality regimes. However,
the collisionless model is valid for arbitrary flux surface shape and aspect ratio, while

the collisional model was derived for circular flux surfaces and large aspect ratio. These
inconsistencies can also lead to discrepancies among models and incorrect estimates of

the bootstrap current. It should be emphasized that the collisionality changes across the

plasma, so that the effects described here do not only influence the total bootstrap current
but also its profile.

The model used for the trapped particle fraction can also have a significant effect on

the predictions of a given bootstrap model. This is examined in Section 4.
The three models are compared with an equilibrium at high pressure where the boot-

strap current is close to 100% of the equilibrium current, and are shown in Fig.(1). All

use the full integral expression for the trapped particle fraction. The Hirshman-Sigmar
model is considered the most accurate avai!._,ble for thermal species. The other two mod-

els are those described in the previous section, the Hirshman and Itarris models. The

peak temperature is 30 keV for the first comparison, while the others are 15 and 7.5 keV,

respectively. Differences in the Hirshman-Sigmar and Harris models are apparent, the
former predicting more bootstrap current. The collisional models can be contrasted with
the collisionless model by the absense of bootstrap current at the plasma edge. The un-

derprediction of bootstrap current for the ttarris model is evident here, particularly as the
plasma becomes more collisional (temperature is lowered). The discrepancy between the

Hirshman-Sigmar and Harris models at higher temperature is mostly due to the single ion

approximation. As the temperature is lowered, the approximate model for collisionality in
the later is responsible. The resulting bootstrap fractions for the different cases are given

in Table 1 for the three temperatures and the various models.



4 TRAPPED PARTICLE FRACTION MODELS

There are several models for the trapped particle fraction, primarily because the full

two-dimensional ir.tegral is complicated to evaluate. The actual expression is given by[18]
1

3
--/ B-_';._ (11)ft -_-_'1

=_)4"B2"_o <_/1- _B>

where ,X= 1/B and Bmaa refers to the maximum value of B on a flux surface (assuming
only a single maximum), and the angular brackets refer to the flux surface average. A

common approximation is to assume the variation of the magnetic field around a flux
surface, typically the large aspect ratio and low pressure expression,

B = Bo (12)
(1+ _cose)"

The integral can be evaluated directly to give[19]

ft = 1 - (1 - e)2 (13)

However, since the magnetic field variation is assumed the expression can be in error for

lower aspect ratios, shaped flux surfaces, and higher pressures.
Another approach to approximate the actual integral was taken in Ref[32], by replacing

the integrand with A((1 - AB)-½}, and taking the surface average integration outside of

the A integration. The integral can then be performed analytically to give

ft= 1-(B2>(B -2)+ (B2>(B -2 (1 Bmax)}- (1 )_ >. (14)Bmax

This expression involves the flux-surface average of the magnetic field and so also requires

flux surface geometry. This is more accurate than Eqn.(13), and is faster to evaluate than
the full integral.

To see the impact of the trapped particle fraction model on the calculation of the boot-

strap current, the current profiles are shown in Fig.(2). The bootstrap current fractions
using the three expressions are given in Table 1. This also illustrates the impact of the

trapped particle expression on alignment of the bootstrap current with the equilibrium
current profile.

5 DETERMINING TOTAL TOROIDAL CURRENT FROM
PARALLEL BOOTSTRAP CURRENT

The expression for the bootstrap current density is given as a parallel current, while
the total plasma current refers to toroidally directed current only. Thus the expression

()"/_>b_ must be converted to a toroidally directed current in order to compare it to the
plasma current that is typically quoted.

The total toroidal current in the plasma can be written as

I¢ = /A, dRdZj¢( R, Z) = /Ap dlo .d_b_3¢(R, _b) . (15)



Here dlo is the arc length in the poloidal direction along a flux surface and Bo is the

' poloidal magnetic field. Using the standard definition for the flux surface average of a
quantity,

• (a) = f _°a (16)

Eqn.(15) can be rewritten as

z_=fA.d_'<j*-_)f aloB___i (17)

The goal is then to get an expression for (j¢/R) in terms of the parallel current density

()'. B)/(B. re). Using Eqn.(29) for the magnetic fieldin a tokamak, the corresponding
toroidal current density is,

dp 1 dg2 (lS)
J¢ = -R-d_ 2#oR de "

The expression for #o3'"/_ can be written as

Ito_ "_= dg"2 #og_ 1 g dg2 (19)- d_b1-'o- 2 R 2 d_ "

After dividing by (/_. V¢) = (B¢/R) = g(1/R 2) we get,

-_.B 1 B_ @2 1 dp 1 B_ dg2
o

"°<_.v¢) 2<B_>e_ _°(_>e_ 2(B_>_¢ (20)
It follows after flux surface averaging,

ldg2_ (B_)[_#o (-_.B, 1 dp] (21)2de - (B_---S (tT.v_) "°(_)7_

This expression can now be substituted into Eqn.(18). Rearranging, dividing by R, and
taking the flux surface average gives,

(j¢ dp ( (B_)) I-_) (_- V¢) (B2) "R> = d_ 1 (B2) + (_"/_> (B_) (22)

The first term represents the contribution from perpendicular current, that is the toroidal

component of the Pfirsch-Schluter current. Since the bootstrap current density is a parallel

current, only the second term is kept for determining a total bootstrap current, giving

• dv/_<j'B>bs, (23)

where q(_) is the safety factor.



6 DEPENDENCES OF THE BOOTSTRAP CURRENT
J

A simple global representation for the ratio of bootstrap current to total plasma current

is obtained by inserting Eqn.(9) into Eqn.(23) and expressing the result in the form,

Ib-A= CbsV_p (24)

where Cbs is a function of several quantities; density, temperature, and current profiles,

ion charge, collisionality, trapped particle fraction, and the aspect ratio (for higher order

terms). As 13pis increased the bootstrap current ratio will increase. Fig.(3) shows the
bootstrap current profiles for/_p values of 1.0, 2.0, 3.0, and 4.0. The corresponding boot-

strap fractions are given in Table 1. As can be seen in the last case, if/_p is high enough,
one can generate more bootstrap current than the desired total plasma current. The vari-

ations for the same value of/3p that are possible, due to the hidden dependences in Cbs, are
quite large. This is discussed in the context of zero-dimensional calculations in a recent

paper[23]. TILe dependence of tile bootstrap current ratio on inverse aspect ratio can only

be understood by replacing the product v_/3p by e/_p/vfe. This is necessary because e_p is
the appropriate quantity to hold constant when making a comparison at different aspect

ratios. It is then clear that larger bootstrap current fractions will be obtained at higher
aspect ratio. Since the bootstrap current profile and its alignment with a desired equilib-
rium current profile are of interest, the additional dependences will be discussed in terms

of full profiles, rather than a zero-dimensional model. The most important dependences
are the kinetic profiles, the coliisionality, and the trapped particle fraction.

A rough representation of the bootstr._) current density for large aspect ratio and low

pressure, in the collisionless limit can be obtained by using Eqn.(9) to solve for the parallel
current density

r 4T cln dT]j_s _ _V/_R [2" _-_ + 0.1n_-__ . (25)

This expression can be cast in another form by defining the parameter 7/= nT'/n'T[24],
where primes denote differentiation with respect to _.

j_s _ _v/_R____ 2.4(1__._ ) + 0.1(1___) (26)

This expression can help to understand the profile dependences that will be discussed in

the following.

The pressure profile (more specifically the pressure gradient) determines the overall

shape of the bootstrap current profile; peaked pressure profiles cause the bootstrap current
to peak near the plasma center, and broad pressure profiles cause the bootstrap current

to peak near the plasma edge. This is illustrated in Fig.(4) for four different pressure
profiles. This can be understood by examining Eqn.(26). The pressure gradient in the

expression is dominant, while the term r/ is more slowly varying for changes in n(g,) and

T(¢). In fact, for profiles of the form (1- _)a, 7/becomes a constant and the shape ofj_ s
is determined solely by dp/d_b. Table 1 gives the corresponding pressure and temperature
profile parameters for each of these cases.
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The next most important profile is the density profile, which strongly modulates the

. overall magnitude of the bootstrap current. More peaked densities lead to l_rger boot-
strap currents, and visa versa. This is illustrated in Fig.(5), where four different density

profiles are used. Tile temperature profile is adjusted to keep the pressure profile fi:,:ed.

' Table 1 gives the values for the peak to average of the density profiles and the corre-

sponding bootstrap current fractions. The change in profile shape at the plasma edge is
due to collisionality, which will be discussed next. The density profile effects can be seen

by examining Eqn.(26). Tile first term in the square brackets provides for most of the
bootstrap current. For the limiting cases of n' going to zero and infinity, the first term

goes to zero and 2.4, respectively. Thus, having a higher density gradient leads to more
bootstrap current, and visa versa. The second term in the square brackets contributes,
but only significantly when the density gradient is small. The shape of the density profile

can also influence the shape of the bootstrap current profile, but is a weaker effect than

the pressure gradient.
The collisionality can have a strong impact on the magnitude and the shape of the boot-

strap profile. Since the collisicnality scales as p/T 3, and the bootstrap current decreases

as the collisionality increases, there is a strong temperature effect. This is illustrated in

Fig.(6), where the peak temperature is lowered from 30 to 7.5, and 3.75 keV. The profiles
are held fixed, and the density is increased by the same factor that the temperature is

reduced to keel) the pressure fixed. The region at the plasma edge is more collisional since

the temperature decreases there, and this region enlarges as the temperature is dropped.

An interesting effect can be seen in the bootstrap current profile when the collisionality
moves from the banana to the plateau regimes. The bootstrap current can actually be-

comes larger locally than the value for the banana regilne. This appears counterintuitive,
but arises from the temperature gradient terms. In the form for the bootstrap current

presented here (for example Eqn.(9)), typically the pressure gradient terms contribute i

to the bootstrap current and the temperature gradient terms subtract from it. As the

collisionality transitions from banana to plateau regimes, the coefficients multiplying the

tenlperature gradient ternls can locally become diminished, leading to a local increase in
the bootstrap current. This effect is best illustrated in Figs.(la) and (lb).

In summary, the primary plasma properties that imi)act the bootstrap current mag-

nitude and its protile shape are (i)/3 v (or total pressure) which determines the bootstrap

current magnitude, (ii) the plasma pressure profile which determines the bootstrap cur-
rent shape, (iii) the plasma density profile that effects the bootstrap current magnitude

and more weakly its shape, (iv) and collisionality (primarily plasma temperature and its

profile) that influences the bootstrap current magnitude and shape.

7 THE IMPLICATIONS OF BOOTSTRAP CURRENT

The dependences described in the previous section put severe constraints on tokamaks
in steady state, where the fully developed bootstrap current would be present. In steady

state the plasma current will be composed of a bootstrap and an external current drive

component. Non-inductive methods for external current drive have very low efficiencies. It

is therefore advantageous to generate as much bootstrap current as possible and minimize

the external drive component, ttowever, as shown earlier in this section, the bootstrap

11



current profile will depend on the plasma's density and temperature profiles. The resulting
combination of current and pressure profiles must then be MHD stable. Both the profile

of tile bootstrap current and its magnitude are equally important.
It should be noted that most present day experiments do not have fully developed

bootstrap currents because their discharge times are too short. The bootstrap current

requires significant/3p to be an important fraction of the total plasma current, and develops
temporally in the plasma according to the local value of the plasma resistivity. Since the

resistivity can be quite low in a hot plasma the bootstrap current can take a long time
to appear. In addition, since the temperature normally decreases from the plasma center

to the edge, the bootstrap current will appear at the plasma edge first and continue to
develop toward the center. Thus, many plasma configurations generated in experimental
tokamaks would not survive in steady state due to MHD unstable combinations of current

and pressure profile_:.

The constraints imposed by the bootstrap effect on tokamak configurations are on

the pressure profile for current profile alignment to keep (5". B)bs <_ (_" B)eq, _nd the

achievable /3p, to keep Ibs <_ Iv. The bootstrap limit on /3p can be more restrictive in
limiting/3 than MHD stability. This limit is primarily a function of the density profile. To

achieve a bootstrap fraction near unity,/3p can be larger for broad density profiles than for
peaked density profiles. Since the plasma/3 is proportional to/3p this becomes a limit on
the achievable pressure in the plasma. This leads to the conclusion that broad densities
profiles can lead to larger values of accessible fl, however, the extent of this benefit depends

on the bootstrap current alignment.

The stability requirement for equilibria with significant bootstrap fractions leads to the

concept of alignment. In general, there are desirable combinations of current and pressure
profiles that yield ideal MHD stable equilibria. This alignment requires that the resulting
bootstrap current profile be less than or equal to the given equilibrium current profile

((j'/3}bs <_ {j'/3}_v) across the plasma. Where the bootstrap current is less, external
current drive must make up the difference. In general, plasma pressure profiles must be

relatively' peaked to keep the bootstrap current near the plasma center, and to avoid large
currents near the plasma edge which are known to be destabihzing to external kink modes.

Although ideal MHD stability analysis([33]-[35])indicates that broad pressure profiles can
be stabilizing for low-n external kink modes, the bootstrap current that would result in

steady state for these equilibria would be highly destabilizing. An interesting situation
results when the equilibrium current profile is made to take on the shape of the bootstrap

current profile. The bootstrap current profile is always hollow, producing safety factor
profiles that have an off-axis minimum. Assuming there was some source of current at the

plasma axis (seed current), one can produce stable equilibria with such current profiles[36].

An equilibrium of this type is illustrated in Fig.(7).

A technique we use to help find well aligned bootstrap current profiles is by inverting
the collisionless bootstrap expression. The expression for the bootstrap current in the

collisionless limit for the electron and single ion plasma is given by Eqn.(9). This equation
depends on the temperature and pressure profiles, the ion charge, and the trapped particle

fraction. However, this is independent of the collisionality, and therefore is independent
of the actual temperature. Since the bootstrap current calculation is typically done after

an equilibrium calculation, the profiles for the pressure p(_b) and the equilibrium current

(5""/_}_q/{/_" V0} are already specified. If we substitute the equilibrium current profile

12



on the LHS and the pressure profile on the RHS, the equation can be inverted to give the

, normalized temperature gradient. If we assume the electron and ion temperature profiles
are the same, this then gives the temperature profile that will cause the bootstrap current

profile to align with the equilibrium current profile, for the specified pressure profile.

Fig.(8) shows results for three cases where the temperature profile specified is made to
agree fairly closely with the one derived by the inversion. One curve in the temperature
and density plots are the derived profiles for alignment, while the other curves are the
actual profiles used. The results will not be meaningful if the plasma does not possess

enough pressure to obtain a ratio of bootstrap current to total plasma current of the
order unity, or if the pressure profile shape cannot place the bootstrap current in the
desired location. A bootstrap current model that includes collisionality would become

temperature dependent, however, the collisionless result can still be quite useful in getting

near alignment. For example, minor changes in the temperature and density profiles will
yield better alignment for the cases shown in Fig.(8).

8 CONCLUSIONS

Since there are several different models of the bootstrap current commonly being used,
the Itirshman-Sigmar model, which is considered the most accurate for thermal species,

was implimented and compared to two other popular approximations, the collisionless

ttirshman[20] and collisional Harris[22] models. The Hirshman-Sigmar model is a matrix
method and can accomodate any number of species, while the other two models are single
ion formulations, only accomodating electrons and a single "average" ion. The use of single

ion formulas leads to some discrepancies because the interaction between ions is neglected.

As the plasma becomes more collisional, the collisionless model is invalid, while the Harris
model consistently under-predicts the bootstrap current as compared to the Hirshman-

Sigmar model. This is attributed to the connection of two inconsistent models in the Harris
formulation to construct a model that can be used in all collisionality regimes. Although

the full Hirshman-Sigmar model is more complicated to evaluate, the author has sped
up the velocity space integrals required for the evaluation of the viscosity coefficients,

which makes the computational time only slightly longer than the other methods. The
less accurate models for the bootstrap current should only be used when computational

speed is critical.

A comparison of two trapped particle fraction approximations with the full integral
expression shows that additional discrepancies in the bootstrap current will arise from

using large aspect ratio expressions like Eqn.(13).
The dependences of the bootstrap current on the plasma properties have been illus-

trated, and can be used both for interpretation and development of tokamak configurations

with significant bootstrap fractions. The bootstrap current magnitude and its profile are

• primarily determined by/3p (or total pressure), the location of the pressure gradient, the
peakedness of the density profile, and collisionality (through the temperature and its pro-

file).
Since the bootstrap current has been experimentally observed, its implications for

steady state or long pulse tokamaks are important. When examining tokamak configura-
tions for ideal MHD stability and external current drive, the bootstrap current must be

13



included self-consistently. There are combinations of pressure and current profiles that

yield MHD stable equilibria, and the bootstrap current profile must align with an allowed

current profile ((_'. fi/bs <---()'' /_)eq) and at the same time be self-consistent with the
pressure profile and pepthat produce it. Any part of the equilibrium current profile not
provided by the bootstrap current is presumed to be supplied by the external current

drive. Due to the above requirements two constraints arise; the pressure profile must be

relatively peaked to place the bootstrap current near the plasma center and avoid large

currents near the plasma edge, and _p will be limited to lie below a critical value (for a
given density profile) to keep the bootstrap current below the desired plasma current.

14



9 Appendix A: DERIVATION OF THE BOOTSTRAP
' CURRENT RELATION FROM PARALLEL BALANCE

EQUATIONS

The parMlel momentum and heat flux balance equations for each species are given in

Ref[ 16] as,

<g. v ._o>= (to,B), (27)

(/_. V. 0a) = (Fa2B). (28)

Here fIa and Oa are tile viscous and viscous heat stress tensors for species a, and F_I
and F_2 are the friction forces. The angular brackets refer to flux surface averages. The

constant electric field that would appear in the first equation to represent ohmic current

drive is neglected, since only the bootstrap current is of interest here. These balance
equations apply on each flux surface in the plasma. Using the standard representation for
the magnetic field in a tokamak,/_ is given by,

/7 = V4) x V_ + g(_)V¢, (29)

where the toroidal field function is defined as g(_b) = RB¢. The tensor quantities are

defined in terms of poloidal fluid and heat flows (uo and qo) and viscosity coefficients

/Z1,2,3.

[ 2 q_o] (31)<5 v. 6o) =3<(_.VB)_>vo_uo0+ _vo_j

The unit vector h is parallel to the magnetic field and defined us BIB. The viscosity

coefficients are defined in Appendix B. Following Ref[16], we note that the first order

neoclassical particle and heat flows are strictly within a flux surface, which allows a simple
relation between the poloidal flows and parallel flows. The dot product of the poloidal

magnetic field is taken with the total particle and heat flows (ff_ = ffa± + ff_ll and q'a =

q'_± + q'_l[)" The poloidal flows can then be related to the parallel flows by,

u_ll = V,_I+ u,_oB (32)

2qaeB.2 q, ll = V,,2+ - (33)
5 p_ o Pa

Here V_I and 1,_ are the parallel flows whose poloidal component is equal to the diamag-

netic drift velocity, and are defined by

V_,, =- Z_,B de . T: _J

ltB¢Ta [1 dT.]v,,_= z_B _-_-j (35)
where T. is temperature, Z. is the charge of species a, and B4_ is the toroidal field. We
will refer to these as thermodynamic flows. The electric potential (I) gives rise to E × B

15



flow which is tile same for all species and thus does not produce any friction force in the
final expression.

The friction forces can also be related to the parallel flows in terms of the friction
coefficients,

(tffu ,,_ (36) "

= --/21Ubl[+
b 0 Pb /

where b represents all species, including species a, and the lij are the friction coefficients,
which are defined in Appendix C. There are additional terms called secondary flows[15]
that would appear in the definition of the friction forces, however, they represent correc-

tions of higher order and are neglected in the present work. Before substituting to get the
parallel balance equations strictly in terms of parallel flows and thermodynamic flows, the

product of B is taken with Eqns.(32) and (33), and the flux surface average is taken. The
viscosity coefficients are redefined to be,

3<(,_ • VB) 2)

P_i = (B2> #_i. (38)

Combining Eqns.(27-38) gives two equations for each specie in the plasma,

2_ ,q,_llB) (l_(Ubl B> - _l_b(qb--IIB)_ (39)b Pb /

-t2,< btiB>+ . (40)
#_2(U_llB>- fLa2Va,B + g_3< B>- ft_3V_2B= Z _b l_b(_b /b

These equationsform the systemto be solvedforobtainingthe parallelfluidand heat

flowsintermsofthethermodynamicflows.
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10 Appendix B: VISCOSITY COEFFICIENTS
t

The viscosity coefficients are defined with respect to viscosity matrix terms K ,_.by thet3

following,

" 12al = g_l (41)

5 _.o (42)

fz_3 = g_2- 5K_'2 + -_ g_l. (43)

The a is the species index. In the Hirshman-Sigmar[18] review paper, the coefficients

K_ are derived asymptotically in each collisionality regime; Phirsh-Schluter, plateau,
and banana. Each of these results are strictly valid only in the respective regime. The

paper then presents a prescription for the viscosity coefficients that is continuously valid

throughout the three regimes. This approach is used here. The coefficients Ki_ are defined
by

ft numa x2a(i+j_2)v_otraa
I(_- f_ r_ [ ] (44)

where ft and f_ are the trapped and circulating particle fractions, respectively, na is

the density, ma is the particle mass, and r_ is the self collision time for 900 deflections
in momentum space. The brackets refer to an integration of the enclosed quant'.'_y over

velocity,

[A(v)] = --/0_ dxx4e -x' A(xvt_).
(45)

x_ is the ratio of particle velocity to thermal velocity (v/vta), where vta = v/2Ta/ma.

v_ot(v) is the total collision frequency and is defined by,

v_°t(v) = (1 + 2.48v,_ _(')'"")_. (1 + 1.96v, a_(_""_"x. ] (46)

The various collision times and frequencies are defined below. The 90° self scattering time
is

12_rl.Se2° 2 3
maVta (47)

r,, = 4 n, Z4e41nA"

The 90° scattering time of species a from species b is

12_rI.5 2 2 3
e° maVta (48)

tab = 4 nbZ_ Z2e41nA "

The colhsionality parameter is given by

• Rq
v.. = 3 ' (49)

Vta Taa £2

The pitch angle scattering frequency is

3v/'_ 3v/_l b_ nbZ_ [_(Xb)--G(xb)] (50)v_P(v) = _ E v_9b(v) = 4 r_a naZ2a x 3 "b
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The test particle scattering frequency is

u_'(v) = 3uS(v ) + u}(v). (51)

The energy exchange frequency is

u_(V) = 2u:(v)- 2ub(v ) - _;(v). (52)

The slowing down frequency is

u_(v) = ---_-___u2b(v) = 4 ra_ n_Z_ 2 "_b+ v-_b xa J "b

The parallel velocity scattering frequency is

3v/-n 3v/_l b_ nbZ_ [2G(xb)" (54)_;(_)= _ _;b(_)_ 4 _o_ _oz_ _ 'b

The functimls ¢(x) _nd G(x) are the error and Chandrasakar functions, respectively,
defined by,

¢(x) = -_ e-'_ du (55)

¢(x) _¢
-_ (56)6'(z) = 2x2 .

The coefficient 2.48 in the expression for u_ot(v ) is a large aspect ratio approximation to

that given in Ref[18]. In the collisionless limit (u._ --, 0) the velocity integrals can be
evaluated _malytically, giving for the bracketed term,

4 _ob+xobl_ 1+ @ + _b2 (57)

3v_ _ nbZ_ 1 (58)

[x_u;r_a] 3v/_b nbZ_ 2 (1 +_ (59)- 4 _oz_ (1+ _h)_
These can be used directly to derive the single ion expression for the collisionless bootstrap

current. Xab is defined as Vtb/Vta.
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11 Appendix C: FRICTION COEFFICIENTS

The friction coefficients are defined by

:T_--7"_ok --_,ob_'ob (60)

where n_ is the particle density, ma is the particle mass, and rib is the collision time for

species a. M_,b and Nab are given below.

)( _ (1+_h)-'Ma°_ = - 1+rob

)( _ (1 4- Xlb) -_ -- -Ma°_N _,(_ = 1 + mb

- _ (1 2 -7M m _3 1 + + x_b)ab -- 2 m b

i 2(_ = i_(_ (61)
N_O_ - -_bv-_N 10_ _,__o = __M_o

( )- -- _ (i 2 -_NI_ _ _MI_ 3 1+ +Xab )-- -- 2 mb

_ll_,ab ---- -- _ 4- 4X2ab + _-"ab) (1 + Xab) -_
5

N_ -- V2r_TbX=b2(l+X_b)-_

In the expression for the friction coefficients the summation is over all species, including

species a, however, the delta, function requires that the summation only be evaluated when

a=b. The quantity X,b is the ratio of thermal velocities Vtb/Vt=. There are symmetry
relations that help to understand these coefficients and their relationships. The self-

adjointness of the Coulomb collision operator gives,

ji (62)<i =Mo_

Nijb - NbJ; (63)T_v,_ Tbvtb

which imply that lff = l_, and from momentum conservation,

, jo (64)

There are additional terms in the expression for the friction forces that correspond to

higher order flows. These higher order flows must be expressed in terms of the fluid and
heat flows in order to be useful. This is done in detail in Ref[15].
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Figure Captions

FIG. 1. The bootstrap current profiles and the equilibrium current profile as a function
of poloidal flux _, for a high pressure equi(ibrium for the Hirshman-Sigmar model, the

Harris model, and the Hirshman model at 30 keV (a), 15 keV (b), and 7.5 keV (c).

FIG. 2. The bootstrap current profiles and the equilibrium current profile as a function

of poloidal flux ¢ for a high pressure equilibrium for the full integral trapped particle
fraction (a), Eqn.(14)(b), and Eqn.(13)(c).

FIG. 3. The bootstrap current profiles and the equilibrium current profile as a function

of poloidal flux _b for/3 v values of 1.0 (a), 2.0 (b), 3.0 (c), and 4.0 (d).

FIG. 4. The bootstrap current profiles and the equilibrium current profile as a function^

of poloidal flux g_ for various pressure profiles showing that the shape of the bootstrap
current profile shape is determined by the location of the pressure gradient. Table 1 shows

the plasma profile parameters for the cases (a)-(d).

FIG. 5. The bootstrap current profiles and the equilibrium current profile as a function
of poloidal flux g, for various density profiles showing that peaked density profiles lead to
larger bootstrap current and broad ones to less bootstrap current. Table 1 shows the

plasma profile parameters for cases (a)-(d).

FIG. 6. The bootstrap current profiles and the equilibrium current profile as a function
of the poloidal flux W for various peak temperature values to show the reduction in the

bootstrap current as the collisionality is increased. The peak temperatures are 30 keV (a),
7.5 keV (b), and 3.75 keV (c).

FIG. 7. An equilibrium with a non-monotonic safety factor profile that is typical of the
sort of equilibria that would be generated by a nearly 100% bootstrap driven tokamak.

The pressure (a), safety factor (b), parallel current density (c), temperature (d), and

density (e) profiles as a function of poloidal flux _,. The equilibrium is created by making
the current profile almost perfectly align with the bootstrap current profile.

FIG. 8. The bootstrap current profile ("B") and the equilibrium current profile as a

function of the poloidal flux ¢, when trying to align the bootstrap with the equilibrium

profile. The temperature and density curves show the actual profile assumed and the
desired profile ("B") from inverting the collisionless bootstrap equation.
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