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Infrared Detection

IEEE Aerospace Conference 2017 Lord, S. D., 1992, NASA Technical Memorandum 103957, Gemini Observatory



Type-II Superlattices
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•

• MCT

• Wafer uniformity

• Easily controllable bandgap

• Predicted lower predicted dark current 

than MCT.

• Lower absorption coefficient than MCT

• InAs/(In)GaSb

• InAs/InAsSb

• InGaAs/InAsSb
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E.H. Steenbergen, et al.,   10111, 1011104 (2017).



Type-II Superlattices
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Detector structure
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• Thick structures absorb more but have higher 
dark current.

• Enhance field in detector using resonant 
structures → increase QE.

• Important in low background applications.

• Enable higher operating temperature.

Air

Absorption ∝ e���

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).
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Detector structure
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M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).
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• Enhance field in detector using resonant 
structures → increase QE.
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Resonant detector: Fabry-Pérot
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M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).
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• Employ two coupled resonances: Fabry-

Pérot cavity with metal nanoresonator.

• Variable response in fixed detector 

through variation of nanoantenna only.

Coupled Resonances

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).



IEEE Aerospace Conference 2017

Fabry-Pérot 
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Loss Mechanisms
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1850 nm

750 nm

Majority of “lost” absorption is in the nanoantenna

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).
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• QE>55%: 4-5x improvement compared to non-
resonant detector.

• Temperature independent spectral response that 
matches with simulated response.2100 nm

1850 nm
750 nm

Measured Quantum Efficiency

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).
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2100 nm

1850 nm
750 nm

Measured Quantum Efficiency

• QE>55%: 4-5x improvement compared to non-
resonant detector.

• Temperature independent spectral response that 
matches with simulated response.

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).



IEEE Aerospace Conference 2017

Nanoantennas enable a fixed detector stack to be resonant at multiple 
wavelengths without changing detector itself.

2.25 µm

w

2.05 µm

Resonance Wavelength Modification
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Supercell: Broadened Resonance
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Broadened resonance
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Double FWHM of resonance.

Polarization dependent response.

Enables improved QE over a 
broader range of frequencies.



Two-Color Detection
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Electromagnetic Crosstalk Analysis
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Electromagnetic Crosstalk Analysis
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Conclusion

 Demonstrated significant gains in QE 

with reduction in absorbing volume.

 Control of detector response without 

changing detector itself.

 Broadband resonant response

 Examination of two color detectors
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