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Abstract. Data visualizations are used to communicate information to people in a wide
variety of contexts, but few tools are available to help visualization designers evaluate
the effectiveness of their designs. Visual saliency maps that predict which regions of an
image are likely to draw the viewer’s attention could be a useful evaluation tool, but
existing models of visual saliency often make poor predictions for abstract data visuali-
zations. These models do not take into account the importance of features like text in
visualizations, which may lead to inaccurate saliency maps. In this paper we use data
from two eye tracking experiments to investigate attention to text in data visualizations.
The data sets were collected under two different task conditions: a memory task and a
free viewing task. Across both tasks, the text elements in the visualizations consistently
drew attention, especially during early stages of viewing. These findings highlight the
need to incorporate additional features into saliency models that will be applied to visu-
alizations.
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1 Introduction

Data visualizations are widely used to convey information, yet it is difficult to evaluate
whether or not they are effective. Previous work on graph comprehension has suggested
that the effectiveness of a graph depends on the relationships between the visual prop-
erties of the graph, the experience and expectations of the user, and the type of infor-
mation to be extracted from the graph (reviewed in [27]). As such, the recommenda-
tions for the “best” way to present as dataset may differ for every new visualization
created.

Eye tracking can provide insight into how people comprehend data visualizations. It
is a useful measure of where visual attention is being directed, as attention is typically
closely linked with gaze location (see [25] for review). Eye tracking measures are di-
vided into fixations (periods of relative stability) and saccades (ballistic movements,
during which effectively no new visual information is processed). In general, people
tend to spend more time looking at, and make more fixations on, areas of a display that
are difficult to process or important to their current task goals [25]. Graph comprehen-
sion researchers have devised various metrics to evaluate ease of processing infor-
mation from graphs. For example, the time to the first fixation in a region is taken as



an indicator of how easy the region was to find. The time from landing in a region to
making a decision about a graph is taken as an indicator of how easy the information
was to process after it was found (see [5] and [12] for discussions of other useful met-
rics). In this way, eye movement patterns can provide a window into the ongoing cog-
nitive processes taking place as people comprehend data visualizations.

Although eye tracking metrics have the potential to be useful in evaluating the ef-
fectiveness of a data visualization in conveying information to a viewer, they must be
evaluated within the context of many different factors that affect viewers’ eye move-
ment patterns. One factor is the viewer’s task, which has a large impact on his or her
eye movements. For example, Goldberg and Helfman [12] found more fixations to a
graph when viewers subtracted or added data than when they were tasked with simply
extracting values. Similarly, Strobel et al. [28] found more fixations to line graphs than
bar graphs when users were performing trend analyses. The type of visualization tech-
nique used also impacts how users take in the same information, with, for example,
more fixations for unfamiliar or difficult visualizations [10,11]. Characteristics of the
viewer also influence eye movement behaviors. More experienced users can extract
information in less time and may pay attention to different aspects of a visualization
than less experienced viewers [21].

To address the diversity of factors that can influence what aspects of a data visuali-
zation draw the viewer’s attention, it is useful to distinguish between top-down and
bottom-up visual attention. Top-down, or goal-oriented, visual attention is driven by
the viewer’s goals and expectations. Meanwhile, bottom-up visual attention is driven
by the physical characteristics of the image, such as color and contrast [9,23]. There are
existing models of bottom-up visual attention that use the visual properties of an image
to predict which parts of the image will draw a viewer’s attention (cf. [16]). These
models take an input image and generate a map of visual saliency, where the salient
regions are those that are more likely to attract bottom-up visual attention. To assess
the ability of the models to predict where people will look, the saliency maps are com-
pared to eye tracking data collected under free viewing conditions (i.e. the participants
view the images for a fixed amount of time with no specific task to complete; [2]).

In prior work, we developed evaluation approaches for data visualizations that in-
corporate eye tracking data, saliency maps, and sensor phenomenology [21]. We
demonstrated that comparing saliency maps to eye tracking data collected from experi-
enced and inexperienced viewers can highlight the differences between features that
are highly salient and features that are highly task-relevant. Using saliency maps and
eye tracking data in combination was informative for teasing apart which aspects of the
data drew viewers’ attention from both the bottom-up and top-down perspectives. This
information can then be applied to improving the visual representation of the data and
to assessing feature detection algorithms.

In subsequent work, we have attempted to extend this general approach from the
realm of sensor data into the domain of abstract data visualizations. Predicting what
parts of a visualization will draw the user’s attention would be a useful first pass at
evaluation [26]. However, our work has found that existing saliency maps do not work
well for predicting where viewers will look in abstract data visualizations. In Haass et



al. [13], we evaluated the ability of multiple models of visual saliency to explain view-
ing behaviors in natural scenes as well as data visualizations. The models performed
well for natural scenes, but they were poor predictors of viewing patterns for abstract
data visualizations. Based on comparisons of the saliency maps and fixations, a large
part of the discrepancy seems to be due to people attending to text in the data visuali-
zations. The text elements received a high proportion of the viewers’ fixations, but were
generally not identified as salient in the saliency maps. The visual properties of text are
quite different from those of features in natural scenes, so models designed to predict
eye movement in scene viewing do not account for the text’s influence on the viewer’s
patterns of attention.

The findings of Haass and colleagues [13] highlight the point that abstract data vis-
ualizations are very different from natural scenes — each element was chosen by a de-
signer and is there for a reason. In this way, data visualizations share some commonal-
ities with print ads, which are also comprised of a combination of images and text to
convey a message. Eye-tracking techniques have been applied to the print ad literature
(see review in [14]), and their findings have largely echoed the graph comprehension
literature in showing that the viewer’s goals have a huge influence over eye movement
guidance. One robust finding is that when viewers are asked to learn about a product or
decide on a product to purchase, they tend to look at the text of an ad earlier and for
more time—roughly 70% of viewing time—than when they are evaluating an ad for its
likeability or effectiveness (in which case viewers show a preference for fixating the
images). Readers are also more likely to fixate, and spend more time viewing, ads with
large text relative to small text, although the same is not true for photo size. Importantly,
the characteristics of eye movements also change when people look at different ele-
ments of ads: readers make longer fixation durations and saccades on graphical ele-
ments compared to text.

It is worth noting that the graphical elements in ads and data visualizations serve
different purposes (display a product versus convey numeric information, respectively),
and so different mechanisms might influence viewing patterns for these two visualiza-
tion types. However, gaining an understanding of the features that drive eye movements
in a range of visualizations is an important first step in understanding how viewers
allocate their attention between text and graphics during successful comprehension.
Uncovering these basic features will help inform models of visual saliency. Our previ-
ous work has already shown that simple saliency maps are not sufficient to explain
viewing patterns in visualizations [13]. Updating these models to incorporate insights
regarding how users allocate their attention between text and graphics might help vis-
ualization designers to assess their designs more accurately than models that treat text
similarly to graphics.

In the present study, we take a closer look at viewers’ attention to text in data visu-
alizations. First, we analyzed eye tracking data collected by Borkin and colleagues [3]
in the context of a memory study. While their study included a wide range of visuali-
zations, we selected and analyzed a subset of the data that included frequently-used
graph types, such as bar charts and line graphs. We then assessed how much attention
participants devoted to different regions of the visualizations, paying particular atten-
tion to how attention was allocated to regions that contained text compared to those that



did not. The data collected by Borkin et al. [3], henceforth referred to as the MASSVIS
data, was collected during a memory study. The parameters of this task are somewhat
different from those used in the eye tracking datasets that are commonly used to eval-
uate visual saliency models. To address this, we collected eye tracking data from a new
group of participants who completed a free viewing task for the same subset of the
MASSVIS images and an additional set of newly created data visualizations.

2 Viewing Data Visualizations in a Memory Task

To study how viewers divide their attention between text and graphics in data visu-
alizations, we began with an analysis of a subset of the MASSVIS dataset
(http://massvis.mit.edu/). These data were collected during a memory study in which
participants viewed images for 10 seconds and were later tested on their memory for
the visualizations via recognition and recall tests [3].

For the present analysis, we selected a subset of 35 images from the MASSVIS
study. These images represented a variety of commonly used types of data visualiza-
tions, all of which contained some combination of text and graphical representations of
data. The subset included four area plots, four bar charts, one bubble plot, four column
charts (including two double Y-axis plots in which a line graph was overlaid on the
column charts), three correlation plots, three line graphs, two map-based visualizations,
three network diagrams, three pie charts, and five scatter plots. In addition to these 32
images, we included the three visualizations that had the best match between the eye
tracking data and the saliency maps in our prior evaluation of saliency models [13].
These included two infographics and one line graph.

Regions of interest (ROIs) were defined for the stimulus set, dividing the visualiza-
tions into the following regions: Title, Data, Data Area, X-Axis, X-Axis Label, Y-Axis,
Y-Axis Label, Legend, Data Labels, and Text. For each visualization, the ROIs were
marked using GIMP software (www.gimp.org). The ROIs were tightly drawn to the
edges of each region.

Scan paths, representing the sequence of fixations across the ROIs for each partici-
pant and each visualization where constructed using MATLAB [20]. Fixations were
counted as falling within an ROI if their center, defined as the geometric median of all
points in the fixation, fell within a 1 degree viewing angle of the ROI, approximating
the participants’ useful field of view. If the same fixation could be assigned to multiple
ROIs, multiple variants of the scan path were generated. However, for the purpose of
this analysis, only the first variant was used. A total of 562 scan paths were analyzed,
with an average of 16 scan paths from different participants for each visualization.
There were an average of 36 fixations per scan path (range 6-51).

Analyses

For each visualization, the number of participants who fixated within each ROI in
the visualization at least once was calculated. The average proportion of participants
who fixated on an ROI (when present) across all of the visualizations is shown in Table



1. Unsurprisingly, participants nearly always fixated on the data in the visualizations.
They were also highly likely to fixate on the title, legend, and data labels, when those
ROIs were present.

To determine where the participants allocated their attention in the visualizations,
we calculated the proportion of each participant’s fixations that fell within each ROI
for each visualization. The average proportion of fixations in each ROI is also shown
in Table 1. The Data ROI received the highest average proportion of fixations, but this
proportion was relatively low. On average, only 27% of the participants’ fixations were
in the Data ROI, while the Title and Data Labels ROIs received similar proportions of
fixations (25% and 26%, respectively).

Table 1. Attention to each ROI in the analysis of the MASSVIS data, including average
proportions and (standard deviations).

ROI Name Number of | Average proportion | Average proportion
visualizations of participants of fixations to ROI
containing viewing ROI
ROI
Title 26 0.94 (0.10) 0.25 (0.10)
Data 35 0.98 (0.05) 0.27 (0.17)
Data Area 21 0.55 (0.26) 0.04 (0.03)
X-Axis 24 0.64 (0.20) 0.05 (0.03)
X-Axis Label 11 0.67 (0.14) 0.06 (0.05)
Y-Axis 24 0.70 (0.22) 0.12 (0.17)
Y-Axis Label 15 0.73 (0.25) 0.10 (0.08)
Legend 23 0.89 (0.15) 0.20 (0.11)
Data Label 15 0.88 (0.22) 0.26 (0.16)
Text 24 0.56 (0.28) 0.07 (0.10)

To test our hypothesis that participants disproportionately pay attention to text in
data visualizations, the ROIs were categorized based on whether or not they contained
text for each stimulus. For example, the X-Axis ROIs contained text in some visualiza-
tions but not in others. For each visualization, we then calculated the proportion of
fixations that fell in ROIs containing text, the proportion of fixations to the data and
data area, and the proportion of fixations that fell in other ROIs that did not contain text
(including graphics, symbols, numbers, etc.). On average across all of the visualiza-
tions, 59.9% (SD = 16.1%) of the participants’ fixations fell into ROIs containing text
relative to 30.0% (SD = 15.6%) of fixations in the data ROIs and 10.1% (SD = 6.6%)
of fixations in the other non-text ROIs.

As another measure of how participants weighted the relative importance of each
ROI, we assessed how often each ROI was one of the first three ROIs visited by a
participant. This was calculated as the proportion of scan paths in which the ROI was
one of the first three fixated (for visualizations where that ROI was present). Note that
this does not necessarily mean that one of the first three fixations in the trial fell in that
ROL. For example, if a participant began a trial by fixating four times on the title, then



fixating three times on the data, and then fixating once on the legend, then the title,
data, and legend would be counted as the first three ROIs visited on that trial. In other
words, we assessed the order in which the ROIs were viewed irrespective of the number
of fixations in the sequence.

The Title ROI was the most likely to be one of the first three ROIs visited. When the
Title ROI was present in a visualization, it was one of the first three visited in 87.8% of
the scan paths. The Data ROI was a close second at 83.5%. The proportions were much
lower for the other ROIs (51.1% for Data Labels; 39.8% for Legend; 34.7% for the
combination of Y-Axis and Y-Axis Labels; 17.0% for the combination of X-Axis and
X-Axis Labels; 14.8% for Text). Some of the X- and Y-Axis ROIs contained words
(e.g. the names of countries or months) while others were numerical (e.g. years or val-
ues). The axis ROIs were subdivided into those that contained text (other than the axis
labels) and those that did not. When the X-Axis ROI contained text, it was one of the
first three ROIs visited in 48.5% of the scan paths.! When the X-Axis ROI did not
contain text, it was one of the first three ROIs visited in 12.4% of the scan paths. The
difference was even more dramatic for the Y-Axis ROI, which was in the first three
ROIs visited in 80.9% of the scan paths when the ROI included text, but only 13.0% of
the scan paths when it did not.

To explore the data further, we looked at correlations between the number of words
in an ROI and the proportion of fixations in the ROI. If a participant is spending time
reading the text in a particular ROI, we would expect to see a high correlation between
the number of words and the proportion of fixations. The correlations were significant
for the Title (R? = 0.73, p < 0.001), Text (R? = 0.82, p < 0.001), X-Axis Label (R’ =
0.69, p < 0.02), and Y-Axis Label (R’ = 0.83, p < 0.001) ROIs. For the Legend and
Data Label ROIs, which received relatively high proportions of fixations on average,
there was not a significant correlation between the number of words and the proportion
of fixations (Legend: R? = 0.39, p = 0.07; Data Labels: R = 0.41, p = 0.15).

The axes themselves provide an interesting opportunity for investigating the effect
of text on where viewers spend their time when studying a visualization. As mentioned
above, some of the X- and Y-Axis ROIs contained words and others contained only
numbers. When the axes contained words, there was a significant correlation between
the number of words and the proportion of fixations to the axis (X-Axis: R?=0.48, p <
0.02; Y-Axis: R = 0.90, p < 0.001). In contrast, when the X-Axis contained only nu-
merical values, there was no correlation between the number of numerical values and
the proportion of fixations (R = 0.09, p = 0.68). When the Y-Axis contained only nu-
merical values, there was a significant negative correlation (R’ = -0.46, p < 0.03).

Discussion

The results of our analyses indicate that participants disproportionately viewed re-
gions of the visualizations that contained text in the MASSVIS study. Although the
participants did spend time looking at the visualized data, the majority of their fixations

' However, there were only two visualizations in this category, with a total of 33 scan paths.
The other groupings contained much higher numbers of visualizations and scan paths.



were devoted to regions containing text. For some of those regions, including the Title,
Text and Axis Label ROIs, significant correlations between the number of fixations and
the number of words in the ROIs indicate that participants were spending time reading
the text. For other regions, namely the Legend and Data Label ROIs, there was not a
significant correlation between the number of fixations and the number of words. These
ROIs received relatively high proportions of fixations overall, so the absence of a cor-
relation between the number of words and the proportion of fixations in these regions
likely indicates that the participants read the text in those regions but also referred back
to them more than once as they studied the visualizations.

Interestingly, the axes of graphs seemed to attract participants’ attention when they
contained text but not when they contained numbers. Axes containing text were much
more likely to be one of the first three ROIs viewed than axes containing only numbers,
and for the Y-Axis ROI there was a significant negative correlation between the number
of fixations and the number of numerical values along the axis. There are several pos-
sible explanations for this pattern, but it seems plausible that numerical axes can be
comprehended at a glance, making repeated fixations and revisits unnecessary.

An important point to note is that the MASSVIS eye tracking dataset was collected
in the context of a memory study, which may have had a substantial influence on how
participants allocated their attention. For example, they may have devoted a lot of at-
tention to the titles of the graphs, thinking that the titles would be easier to remember
than the details of the visualized data. To explore the impact of the task on patterns of
attention to the visualizations, we conducted a study in which participants viewed data
visualizations in a free viewing task.

3 Viewing Data Visualizations in a Free Viewing Task

When eye tracking datasets are used to assess saliency maps, the participants in the
eye tracking studies are typically given a free viewing task. For example, in the widely
used MIT Saliency Benchmark eye tracking datasets (http://saliency.mit.edu), partici-
pants completed a free viewing task in which they viewed each image for 5 seconds [2,
6, 17]. In this study, we used the same task and presentation duration to examine eye
movement patterns on a larger set of data visualizations and a larger group of partici-
pants. Participants viewed the same subset of MASSVIS stimuli that were used in the
analysis described above and an additional 27 data visualizations in the context of a
larger free viewing experiment.

Method

Participants.

Thirty participants were recruited from students, faculty, and staff in the University
of Illinois community (10 males; mean age = 30.53 years, SD = 13.06) and compen-
sated $20 for their time. All participants were tested for color vision deficiencies (24
plate Ishihara Test [15]) and near vision acuity prior to completing the study. Data from
an additional five participants was discarded because: they failed the colorblindness



and/or acuity tests prior to beginning the experiment (2 participants); the eye tracker
failed to successfully capture their eye movements for a significant portion of the ex-
periment (1 participant); they fell asleep for any portion of the experiment (1 partici-
pant); or there was a problem with the experimental apparatus (1 participant).

Materials.

Four blocks of images were used in this study, consisting of a total of 108 images.
Each image was centered and gray padded to fill the dimensions of the screen.

Two of the blocks consisted of line drawings (30 images) and fractals (16 images)
drawn from the MIT Saliency Benchmark CAT2000 dataset [2]. Those blocks are not
analyzed in the present study. One block contained thirty-five data visualizations pulled
from the MASSVIS dataset [3, 4]. These were the same visualizations as those analyzed
in section 2. The final block contained twenty-seven data visualizations that were cre-
ated specifically for this experiment (3 bar charts, 3 boxplots, 3 bubble graphs, 3 col-
umn charts, 3 line plots, 3 parallel coordinates plots, 3 pie charts, 3 scatterplots, and 3
violin plots?). These stimuli were selected to represent a variety of common types of
data visualizations. To mirror the visualizations in the MASSVIS set, not all of the
visualizations contained all of the possible ROIs and the placement of specific ROIs
(such as the Legend) varied across visualizations. The newly generated visualizations
also differed from the MASSVIS set because they did not contain infographics or ad-
ditional text, such as text indicating the source of the data.

The order in which the four blocks of images were presented was counterbalanced
across participants. Within each block, the stimuli were shown in a random order.

Procedure.

The experiment was completed in a dark room at a nominal viewing distance of 0.8
meters. Stimuli were presented on a large monitor (0.932 x 0.523 meters; 1920 x 1080
pixels) while eye movements were recorded with two Smart Eye Pro cameras. Partici-
pants first underwent the standard Smart Eye camera setup procedure and 9-point cali-
bration.

Participants were instructed to view each image as it was presented. Each trial began
with a 2-second fixation cross in the center of the screen. The fixation cross was fol-
lowed by the presentation of an individual image, which was displayed on the screen
for 5 seconds.

Analysis.
In the resulting dataset, fixations were defined as samples for which the velocity over
the preceding 200 milliseconds (ms) was less than 15 degrees per second. The first

Due to a programming error, 11 of these images were dropped (leaving a total of 97 images in
this experiment). Because they were still of interest, the dropped images were included in a sub-
sequent data collection. The participants in that data collection were recruited in the same manner
as the initial group of participants. The group consisted of thirty participants (7 males; mean age
=29.57, stdev = 13.79). Two participants completed both data collection sessions.



fixation in each trial and any fixations with a duration less than 100 ms were dropped
from the analysis. For all of the analyses described below, the visualizations pulled
from the MASSVIS set and the visualizations created specifically for this experiment
are pooled together. A total of 1834 scan paths were included in the analysis. There
were an average of 11 fixations per scan path (range 1-19).

As in our earlier analysis, the number of participants who fixated within each ROI
at least once was calculated for each visualization. The average proportion of partici-
pants who fixated on an ROI (when present) across all of the visualizations is shown in
Table 2. In addition, we calculated the proportion of each participant’s total fixations
that fell within each ROI for each visualization. The average proportion of fixations in
each ROI is also shown in Table 2. As before, the three ROIs receiving the highest
proportion of fixations were the Data (37%), Title (22%) and Data Label (19%) ROIs.

Table 2. Attention to each ROI for the visualizations in the second analysis, including average
proportions and (standard deviations).

ROI Name Number of | Average proportion | Average proportion
visualizations of participants of fixations to ROI
containing viewing ROI
ROI
Title 43 0.71 (0.21) 0.22 (0.14)
Data 62 0.91 (0.12) 0.37 (0.18)
Data Area 43 0.53 (0.23) 0.10 (0.06)
X-Axis 46 0.43 (0.18) 0.07 (0.04)
X-Axis Label 23 0.17 (0.11) 0.02 (0.02)
Y-Axis 47 0.52 (0.22) 0.10 (0.10)
Y-Axis Label 33 0.39 (0.23) 0.07 (0.07)
Legend 42 0.68 (0.21) 0.14 (0.08)
Data Label 17 0.70 (0.30) 0.19 (0.13)
Text 24 0.24 (0.29) 0.05 (0.08)

The ROIs were categorized based on whether or not they contained text for each
stimulus. For each visualization, we then calculated the proportion of fixations that fell
in ROIs containing text, the proportion of fixations to the data and data area, and the
proportion of fixations that fell in other ROIs that did not contain text (including
graphics, symbols, numbers, etc.). On average across all of the visualizations, 40.8%
(SD = 19.5%) of the participants’ fixations fell into ROIs containing text relative to
44.4% (SD = 18.3%) of fixations in the data ROIs and 14.8% (SD = 0.07%) of fixations
in the other non-text ROIs.

We assessed how often each ROI was one of the first three ROIs fixated by a partic-
ipant using the same procedure defined above. In this experiment, the Data ROI was
most often one of the first three ROIs fixated. It was one of the first three ROIs fixated
for 80.5% of the scan paths. The Title ROI was second at 67.5%. Once again, the pro-
portions were lower for the other ROIs (50.8% for Data Labels; 40.5% for Legend;
40.3% for the combination of Y-Axis and Y-Axis Labels; 18.7% for the combination



of X-Axis and X-Axis Labels; 13.8% for Text). The axis ROIs were subdivided into
those that contained text (other than the axis labels) and those that did not. When the
X-Axis ROI contained text, it was one of the first three ROIs viewed in 22.2% of the
scan paths. When the X-Axis ROI did not contain text, it was one of the first three ROIs
viewed in 14.4% of the scan paths. The Y-Axis ROI was one of the first three ROIs
viewed in 56.4% of the scan paths when the ROI included text and 22.0% of the scan
paths when it did not.

As before, we also assessed the correlations between the number of words in an ROI
and the proportion of fixations in the ROI. The correlations were significant for the
Title (R? = 0.90, p < 0.001), Text (R* = 0.81, p < 0.001), X-Axis Label (R’ =0.57, p <
0.01), Y-Axis Label (R? = 0.64, p <0.001), Legend (R’ = 0.39, p <0.02) and Data Label
(R?=0.60, p <0.02) ROIs.

As in the first analysis, some of the X- and Y-Axis ROIs contained words and others
contained only numbers. For the X-Axis, there was not a significant correlation between
the number of items and the proportion of fixations for axes consisting of words (R’ =
0.27, p=0.07) or numbers (R’ = 0.03, p = 0.86). For the Y-Axis, there was a significant
correlation between the proportion of fixations and the number of words (R’ = 0.89, p
<0.001), and, as in the first analysis, a significant negative correlation for numbers (R’
=-0.41,p<0.01).

For a more detailed assessment of how participants allocated their attention to the
ROIs, plots were created to show the time course of attention to various parts of the
visualizations. Every trial was divided into 313 consecutive 16 ms time windows, from
trial onset until the five second trial cutoff time. For each time window, we calculated
whether a fixation was made, and if so, which ROI the fixation fell into. An ROI was
given a value of 1 for the time window if it received a fixation, and a 0 if it did not.
Time windows of 16 ms were chosen to coincide with the sampling rate of the eye-
tracker. Fixations were counted as occurring within a time bin if any part of the fixation
fell in the window (i.e., even if the fixation ended or started during the time window).
Only one fixation was allowed to occur in a single 16 ms time window; if multiple
fixations occurred during a time window, only the first ROI visited was counted, and
the fixation to the second ROI was assigned as starting in the next time window. How-
ever, given that it takes roughly 30-50ms to make a saccade, it is highly unlikely that
two separate fixations would have been possible in the small time window. The first
fixation of the trial was excluded, as it began with the disappearance of the fixation
cross and did not represent a volitional look to any ROI.

The data plotted in Figure 1 shows the viewing patterns collapsing across all visual-
izations. The x-axis represents time from trial start, the y-axis represents the probability
of fixating an ROI, and each line represents a different ROI. Note that the probabilities
do not necessarily sum to 1 at every time point, because not every participant made a
fixation during every time point (e.g., due to saccades or track loss). Overall, partici-
pants tended to look at the Title ROI early in the trial, with Title fixations peaking
between 750-1000 ms after trial onset and then quickly declining. Fixations to the Data
ROI surpassed looks to the Title beginning ~1500 ms after trial onset, and continued to
increase throughout the duration of the trial until peaking at ~4500 ms. The next most-



fixated ROI was the Legend region, which had a numerically higher probability of fix-
ation than the rest of the ROIs from ~750 ms after trial onset until the end of the trial.
However, the low probability of fixating the other ROIs could be due the fact that not
all ROIs were present in all visualizations, meaning that many ROIs had zeros for sev-
eral visualizations. This plot highlights that although users made more fixations to the
data ROI overall, this pattern was only true in the later part of the viewing period. Upon
first viewing a new visualization, users tended to look at the Title first, after which they
shifted their attention to other areas of the visualization.
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Fig. 1. Probability of fixating each ROI across time, collapsing across all visualizations.

The data plotted in Figure 2 shows viewing patterns to visualizations without text in
the y-axis (top panel) versus with text in the y-axis (bottom panel). In both cases, Title
fixations peaked early in the trial (~500 ms in vis without y-axis text and ~1000 ms in
vis with y-axis text).
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Fig. 2. Probability of fixating each ROI across time, plotted separately for visualizations without
y-axis text (top panel) and with y-axis text (bottom panel).

However, striking differences are apparent in the pattern of looks to the y-axis. In
visualizations with y-axis text, users showed clear preference for fixating the y-axis
over the data area after ~500 ms into the trial, and fixations to the y-axis exceeded Title
fixations after ~2250 ms. Conversely, in visualizations without y-axis text, participants
made very few looks to the y-axis, and instead focused most of their fixations on the
Title early in the trial, and to the Data ROI later in the trial (after ~1500 ms). There was
a small preference for fixating the Labels ROI, relative to the non-Data ROIs, from
~3000-4500 ms, suggesting the need to seek out text to understand the plots when it
was not present in the y-axis. This pattern clearly shows that users' viewing patterns to
the y-axis were strongly influenced by the presence of text. Users made many more y-
axis fixations when text was present compared to when it was not, and even made more
fixations to the y-axis than to the Data when text was present, highlighting the emphasis
that users place on text during visualization comprehension.



General Discussion

Overall, the results of these analyses suggest that viewers devote a great deal of atten-
tion to the text in data visualizations. For the eye tracking data collected as part of the
MASSVIS study, the majority of the participants’ fixations were devoted to ROIs that
contained text. In the second eye tracking dataset, collected using a larger set of data
visualizations and a larger group of participants along with a free view rather than
memory task, the proportion of fixations devoted to text was comparable to the propor-
tion of fixations devoted to the data.

For both datasets, it was instructive to examine the participants’ attention to the axes,
which contained text in some visualizations and numbers in others. The axes were one
of the first three ROIs fixated more often when they contained text than when they did
not. Interestingly, for the Y-Axis ROI in both datasets, there was a significant correla-
tion between the proportion of fixations and the number of words in the ROI, and a
significant negative correlation between the proportion of fixations and the number of
numerical values. An analysis of the time course of fixations for the second dataset
indicated that when the Y-Axis ROI contained text, it had a high probability of being
visited throughout the trials, and was the most likely ROI to be viewed in the second
half of the trials, after participants had turned their attention away from the title of the
visualization. When the Y-Axis ROI did not contain text, it had a low probability of
visits throughout the trial, with participants devoting more attention to the Data and
Legend ROIs.

It is important to note that the two datasets are different in several ways. The
MASSVIS data was collected in the context of a memory study where the visualizations
were displayed for 10 seconds each. It consisted of visualizations that were found “in
the wild.” Although we selected a subset of the visualizations that represented common
types of data visualizations, these images often contained descriptive titles, annotations,
and text noting the source of the data. In other words, the data itself was contextualized
by the text in the visualizations. In the second study, we added an additional set of
visualizations that were generated in the lab rather than being found in the wild. These
visualizations tended to be simpler and had less contextual information. In addition, to
mirror the experimental parameters that have been used for assessing visual saliency
maps, participants were given a free viewing task® with only 5 seconds for examining
the visualizations. The simpler text and shorter viewing times in the second dataset may
have driven the difference in the overall proportions of fixations to the text versus the
data. However, even in the second dataset, the ROIs containing text were viewed almost
as often as the data ROIs, indicating that the text still draws viewers’ attention even
when they have little time and the text provides relatively little information.

3 It is worth noting that a free viewing task may be more representative of how people
interact with visualizations in the wild than a memory task. When a person encounters
a data visualization in The Economist, for example, they are essentially doing a free
viewing task.



Our finding that viewers focused on the text elements in data visualizations is con-
sistent with prior research. Some studies have found that users spend as much as 60-
70% of viewing time reading the title, data labels and axes of simple graphs [1, 8, 18].
Users are also more likely to re-fixate text-based areas, such as the legend [3, 22, 29].
In our current analysis, we investigated a wider variety of visualization types and com-
plexities, but the overall tendency to devote a large amount of viewing time to text-
based regions remained the same.

The analyses presented here have several limitations. First, the relatively small size
of the text in visualizations may necessitate more direct fixations due to the limits of
visual acuity [24]. This may have an impact on overall viewing time. Second, the par-
ticipants in these studies had no particular expertise with interpreting data visualiza-
tions, and their tasks did not require them to find specific information in the visualiza-
tions, or even to understand the gist of the data presented. While this approach may be
realistic for understanding how people process visualizations that they encounter in
daily life, such as an infographic presented in a magazine, patterns of attention are likely
to be quite different in cases where a viewer is using a visualization to obtain specific
information in the context of a larger task. Domain experience also plays an important
role in how people attend to data visualizations. Our own prior work found large dif-
ferences between professional imagery analysts and novice viewers looking at radar
imagery [21], and other researchers have found that even brief instructions on how to
interpret a plot can change how people allocate their attention [7]. Individual differ-
ences in information processing also play an important role. For example, dyslexic in-
dividuals spend disproportionately more time on text than typical readers [18]. None of
these factors operate in isolation, and taking their combination into account can result
in complex interactions between such factors as chart type, task difficulty, and the
user’s perceptual speed [29].

Despite these limitations, the general finding that text in data visualizations draws
the viewer’s attention has important implications for the development of visual saliency
models that apply to visualizations. As discussed above, the ability to make predictions
about where viewers will look in data visualizations could be a useful evaluation tool.
To make accurate predictions, these models must take attention to text into account. In
our future work, we plan to develop a new saliency model that incorporates text as a
visual feature. We will test how to weight this feature relative to the other visual fea-
tures that are commonly used in saliency models (color, contrast, and orientation). If
successful, this approach will provide an improved tool that will allow visualization
designers to evaluate their designs from the perspective of human visual processing.
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