
An Adaptive Core-specific Runtime for Energy

Efficiency

Sridutt Bhalachandra∗, Allan Porterfield†, Stephen L. Olivier‡, Jan F. Prins∗

∗Department of Computer Science, University of North Carolina at Chapel Hill

{sriduttb, prins}@cs.unc.edu
†RENCI, University of North Carolina at Chapel Hill

akp@renci.org
‡Center for Computing Research, Sandia National Laboratories

slolivi@sandia.gov

Abstract—Energy efficiency in high performance computing
(HPC) will be critical to limit operating costs and carbon
footprints in future supercomputing centers. Energy efficiency of
a computation can be improved by reducing time to completion
without a substantial increase in power drawn or by reducing
power with a little increase in time to completion. We present an
Adaptive Core-specific Runtime (ACR) that dynamically adapts
core frequencies to workload characteristics, and show examples
of both reductions in power and improvement in the average
performance. This improvement in energy efficiency is obtained
without changes to the application.

The adaptation policy embedded in the runtime uses existing
core-specific power controls like software-controlled clock modu-
lation and per-core Dynamic Voltage Frequency Scaling (DVFS)
introduced in Intel Haswell. Experiments on six standard MPI
benchmarks and a real world application show an overall 20%
improvement in energy efficiency with less than 1% increase in
execution time on 32 nodes (1024 cores) using per-core DVFS.

An improvement in energy efficiency of up to 42% is obtained
with the real world application ParaDis through a combination
of speedup and power reduction. For one configuration, ParaDis
achieves an average speedup of 11%, while the power is lowered
by about 31%. The average improvement in the performance
seen is a direct result of the reduction in run-to-run variation
and running at turbo frequencies.

I. INTRODUCTION

Performance has been and will continue to be the fundamen-
tal drive in supercomputing. However, in the push to achieve
exascale (1018 flops/sec) performance, a commensurate increase
in power is no longer feasible. Today’s top supercomputers
with petaflops performance (1015 flops/sec) already consume in
excess of 15MW [1]. With the Exascale Computing study [2]
specifying a definitive power budget of 20MW; the performance
needs to improve 10x, while power less than doubles.

With tighter power budgets likely in the near future, it is
imperative that each supercomputer component (hardware and
software) be energy efficient. Most research to regulate energy
and performance in software has revolved around Dynamic
Voltage and Frequency Scaling (DVFS) [3], [4], [5]. Because
of hardware limitations to date, DVFS research has impacted
all of the cores on a multi-core processor and potentially
slowed the critical path. Thus, the research has focused on
finding situations where the slowdown is greatly outweighed
by the energy savings. The chip-wide effect of DVFS also
made effective fine-grain control of performance difficult.

With the introduction of per-core specific voltage regulators
in Intel Haswell, new options for software energy control are
now available. Each physical core (or 2 logical cores if using
Hyper-Threading) can be independently controlled allowing
only non-critical threads to have their frequency reduced.

In addition to DVFS, core-specific Software Controlled
Clock Modulation has been supported by Intel since Pentium 4.
The effective core frequency is adjusted nearly instantaneously
by gating only a fraction of the clock cycles to that core. We
call this approach Dynamic Duty Cycle Modulation (DDCM),
given that the objective is to match duty cycle of the core to its
work dynamically. The fine-grained control allows DDCM
to save power effectively for unbalanced applications. As
voltage regulators are unaffected, changing clock frequency
with DDCM requires less work (and time) than with DVFS [6].

In this paper, we present a generic policy that uses a core-
specific power control like DDCM or per-core DVFS to throttle
the frequencies of cores not on the critical path. The goal is
to match a core’s duty cycle to its workload to eliminate idle
cycles. The duty cycle is given by,

Duty cycle =
T ime core (processor) in active state

Total time
×100

The amount of time a core is active can be changed either by
lowering its T-state (with DDCM) or by reducing frequency
(DVFS). By dynamically adapting core frequencies to workload
characteristics on that core, fewer idle clock ticks occur and less
power is wasted. Many HPC applications comprise multiple
phases of computation with each of the cores performing
disparate amounts of work leading to workload imbalance.
With the proposed policy, a core doing more work will have
a higher duty cycle (and run at higher T-state/frequency) than
the one doing less work. Ideally, all threads reach next phase
boundary at almost same time (Figure 1).

Many HPC researchers are exploring overprovisioning of
processor nodes [7], [8], [9] to improve performance within the
available power budgets. Many future exascale applications will
have heterogeneous processor load, and with power-limits, most
exascale systems will have heterogeneous performance. This
can lead to significant run-to-run variations in the execution
time and energy consumed. The adaptive runtime framework
saves energy by dynamically setting core-specific frequencies.
To the extent possible in the hardware, the power saved in
non-critical nodes can be allocated to the cores on the critical

SAND2017-2272C



0  0.2  0.4  0.6  0.8  1 

j 

j + 1 

j + 2 

j + 3 

t 

R
a
n
k
 

Phase i


0  0.2  0.4  0.6  0.8  1 

j 

j + 1 

j + 2 

j + 3 

t 

R
a
n
k
 

Phase i + 1


Fig. 1. (left) Each rank reaches the barrier the end of phase i at different times. The runtime computes an effective clock frequency to have all ranks reach the
barrier at the end of phase i+ 1 simultaneously. (right) If work is similar in phase i+ 1, completion times will be more nearly equal, while using less energy.

path. This results in execution time reductions, particularly
under a hardware power cap [10].

The major work and ideas presented in this paper are:

• A generic policy that effectively utilizes per-core
specific power controls to improve energy efficiency.
Our previous work [10] aimed only at showing the
efficacy of DDCM as an alternative to socket-wide
DVFS. However, the present work offers a context for
comparing DDCM (with its simple per-core hardware
implementation and fast switching capability) and
DVFS (more complex and costly to implement per-
core but with potential for greater savings), and for
showing how and when they can be used together.

• Implementation of an adaptive runtime framework
(library) that uses the duty cycle inspired policy to
throttle the frequencies of cores not on the critical
path of an MPI application. An important feature of
this implementation is that it allows the flexibility to
use multiple power policies to save energy - DDCM,
per-core DVFS or both. Use of this library does not
require any code changes to the underlying application.

• Validation of framework using six benchmarks (mini-
AMR, miniFE, CloverLeaf, HPCCG, AMG, miniGhost),
and real world application, ParaDis. The evaluation
shows an overall 20% improvement in energy efficiency
with an average 1% increase in execution time on 32
nodes (1024 cores) using per-core DVFS.

• Energy optimization is shown to improve performance
in certain scenarios. With a real application ParaDis,
the runtime is seen to improve performance by lowering
run-to-run variation and facilitating running at turbo
frequencies. The performance improvement is achieved
in addition to reducing power.

II. ADAPTING CORE FREQUENCY TO WORKLOAD

CHARACTERISTICS

HPC applications have large varieties of CPU/memory usage
patterns that are input driven and dependent on executing
application phase. System noise from diverse factors like
hardware, OS, network further complicates any static attempt
to determine optimal core frequencies. These factors drove our
choice to create an adaptive policy driven by runtime inputs.

Slack reclamation by trying to slow down the non-critical
paths of computation is not new to energy-efficient HPC nor
is the idea of an adaptive runtime. Most previous research
has revolved around DVFS and its ability to obtain cubic
savings in energy. The previous chip-wide requirement made it
difficult to find applications where the savings did not result in
significant execution time increases. Some of the previous work
(see Section VI) used complex models requiring system-wide

introspection that are better suited for off-line analysis. Other
works required application level source code changes making
them tedious and difficult for production applications.

Our previously developed adaptive policy [10] examined
local system state and predicted proper duty cycle level to use
for next application region. It saved 13.5% processor energy on
one node and 20.8% on 16 nodes for several benchmarks. On a
production application, ADCIRC1 energy savings of 10% were
obtained with only a 1-3% increase in execution time [11].

In the current work, we offer a context for comparing
DDCM (with its simple per-core hardware implementation and
fast switching capability) and DVFS (more complex and costly
to implement per-core but with potential for greater savings).
This is done by showing how the previous policy [11] can be
made generic to work with per-core DVFS in current work,
and other core-specific power controls that the hardware might
provide in the future. Further, a novel approach to combine
per-core DVFS and DDCM is presented. The combination of
multiple power controls in complementary ways is shown to
achieve improved energy savings.

The new generic policy reduces power by applying retro-
spective information during an MPI collective to predict slack
at the next MPI collective. The idea is that if a core reaches the
collective earlier than others, then we should slow it down (or
speed up if it arrives late) so that on the next collective cores
will more likely reach the collective at the same time (Figure 1).
The policy depends on the amount of work performed between
MPI collectives to be relatively stable during execution. In
practice, this has not been found to be overly restrictive.

Only local timing and state information are used at each
core. No global communication or state is required. This allows
the policy to scale to any application size. The policy is
implemented within the MPI profiling interface (PMPI) and
requires no application code changes. Calls to MPI_init,
MPI_Finalize and most MPI collective calls are intercepted.
Data is computed or set in the prologue and used during the
epilogue to determine the next phase’s clock frequency. No
data from another rank is required, eliminating the need for any
communication. The application does need to link against our
MPI library in addition to the standard MPI library, and needs
to access protected machine-specific registers (MSRs) only
to control power using software-controlled clock modulation.
The access to MSRs can be obtained either by using libraries
like msr-safe [12] or by running the application as root. For
controlling power using DVFS, the acpi-cpufreq or other
applicable kernel modules need to be loaded.

1The storm surge, tidal and wind wave model ADCIRC+SWAN is used to
simulate and predict water inundation and wind wave impacts from coastal
storms.



A. Working of policy with DDCM

The policy’s goal is to detect and reduce imbalances. When
a core is running faster than needed, that core’s effective clock
frequency is reduced. The new frequency is chosen to be the
lowest such that core will not be the last one to arrive at the
next collective. If the last core to arrive at a collective is running
at full speed, the application should experience no slowdown.

The policy automates the process of selecting the clock
frequency for the next application region by comparing the
computing and waiting times of each core. If a core reaches
a synchronization point early, (e.g. has a significant fraction
of waiting time), it is assumed that the core will arrive at the
next synchronization point early and is a candidate to have
its clock frequency reduced. The clock frequency for the next
section is calibrated using the compute and waiting times for
the previous region. A core doing more work will run at a
higher effective frequency than the one doing less work.

Fig. 2. Working of the generic core-specific adaptive runtime policy

Figure 2 shows working of the generic core-specific adaptive
runtime policy. The policy uses two rules - one to decrease the
clock frequency of a core and the other to increase it. It first
attempts to decrease the clock frequency.

Ldown =
Tcompute

Ttotal

∗
Cmax

Ccurrent

(1)

• T∗ - time

• C∗ - clock frequency

• L∗ - levels/steps to change clock frequency

The next clock frequency is a function of the ratio of
computing time to total time between barriers and the previous
clock frequency. In practice not every clock frequency is
available, the one chosen is the lowest frequency such that
it would have made the core to wait least at the last barrier.

When the previous rule determines that duty cycle does not
need to be reduced, the policy then determines whether the
duty cycle needs to be increased to prevent the current core
from being the last to arrive at the next barrier, thus slowing the
application. The policy aggressively increases frequency when
it determines that this core may have been the last to arrive
a the next barrier. Increasing a core from the minimum clock
frequency to the maximum only takes a few policy invocations
rather than one for each effective clock rate level possible.

The equation to increase the duty cycle level is given by

Lup =
Tcompute

Ttotal

∗
Cmin

Ccurrent

(2)

The model estimates the next value for the duty cycle by
comparing wait time with how close to the minimum duty
cycle the last region was executed. Thus, the model again
assumes some predictability between successive phases.

B. Making the policy generic (per-core DVFS)

The approach to making the adaptive runtime policy generic
is straightforward. This is achieved by changing the maximum,
minimum and intermediate values to the ones supported by core-
specific power control that may be provided by the hardware
in the future.

For per-core DVFS, Cmax is the maximum non-turbo
frequency on a machine, and Cmin is the lowest frequency
supported by DVFS. The transitions (L∗) occur at frequencies
available in /sys/devices/system/cpu/cpu*/cpufreq/scaling avail-
able frequencies2.

C. Combined Policy

On an Intel Haswell machine, the cores can either use T-
state (DDCM) or P-state (DVFS) transitions to lower frequency.
DVFS can generally support frequencies only down to about
half the standard non-turbo frequency of the processor. The
power saved using DVFS is higher in comparison to DDCM
as both voltage and frequency is reduced. When the clock
frequency needs to be reduced beyond what DVFS allows,
DDCM can be used to further reduce the clock frequency.

Fig. 3. Working of the Combined policy that uses both per-core DVFS and
DDCM

In the combined policy (Figure 3), a core starts by using
DVFS policy to lower frequency when its work corresponds to
a frequency greater than or equal to the minimum frequency
supported. Once the core is running at the minimum allowed
by DVFS, and if it is determined that the clock rate should be
further reduced, only then DDCM policy is applied. By using
DVFS and DDCM together, effective clock rates up to 20% of
maximum are possible before hardware glitches are seen.

Once a core uses DDCM policy, it continues to use it every
phase until duty cycle is increased back to 100%. Only then is
the DVFS policy used. During highly unbalanced code regions,
cores can have both DVFS and DDCM active, attempting to
reduce the effective clock frequency as much as possible.

D. Adaptive Core-specific Runtime

The Adaptive Core-specific Runtime (ACR) implements
the DVFS, DDCM and combined policies described above. It
provides the user with a choice to select one of the three policies
to control processor power usage, and in addition supports
system-wide introspection through data reported from hardware
counters. To avoid aggressive lowering of frequency/duty cycle

2The minimum, maximum and intermediate values for DVFS are machine-
dependent even for the same architecture, unlike DDCM.



that may cause unnecessary performance degradation a few
modifications have been made to the policies in the ACR. These
changes below can be easily overridden by the user to apply
the policies in their purest form.

• Frequency headroom aimed at minimizing execution
time penalties: The chosen clock-rate by default is
rounded up to the next highest clock-rate. If the chosen
value is too low the execution time penalty is seen to
be larger than the potential energy savings.

• Limit on the minimum permissible clock-rate: For
low clock-rates, observed performance degradation is
observed to be higher than predicted. The minimum
clock-rate is thus set to be at most 18.75% of the
maximum non-turbo frequency, a value that is obtained
empirically. This minimum is likely to be architecture
specific and can be changed by using a set of environ-
ment variables provided.

ACR provides support for user options to facilitate user
customization of the framework to fit specific use cases. The
options below may allow further improvement in energy savings
or limit performance degradation.

1) Introduction of a limit on minimum phase length: This
consideration is to avoid frequency change decisions
based on characteristics of smaller non-computational
phases (like startup). This limit also prevents decisions
from taking place too frequently, while the history is
carried forward from skipped phases.

2) Monitoring performance degradation at the end of
every phase: To minimize performance deterioration,
a maximum flexible slowdown factor is introduced.
It is expressed as a percentage value to monitor
performance degradation. When the phase degradation
in the last phase is greater than the specified value,
the policy is skipped in the current phase and the
frequency, as well as the duty cycle, are reset to
maximum. In the next phase, the policy is applied with
reset values. Additionally, this serves as a rudimentary
way to reset clock frequency when a phase change is
detected based on changes in total phase time.

3) Support for user-annotations: A user can easily over-
ride the preselected behavior of the runtime through
environment variables.

Effects of OS noise and performance jitter that cause some
applications to have irregular temporal patterns are somewhat
smoothed by these user options and in practice, more predictable
results have been observed.

ACR can be used directly by an application or embedded in
libraries (e.g., MPI) to control energy with no application code
changes. To measure energy, temperature and other execution
metrics like frequency, it requires access to MSRs in user
space through interfaces like “intel-rapl” kernel module and
/sys/class/powercap/intel-rapl or RCRdaemon [13].

The ACR interface for performance measurement is pinned
to the first core in a socket, avoiding any interruption to
other cores. Each call comprises only handful of straightline
instructions, limiting the overhead to be smaller than the run-
to-run variation in performance and are not detectable.

MPI_Init and MPI_Finalize calls are intercepted to
setup and clean the infrastructure. During program execution,
ACR uses one of three policies discussed earlier to set the best

effective clock rate between MPI calls. MPI_Barrier and
MPI_Allreduce are intercepted in the current experiments,
but other MPI collectives can be easily used as well.

III. INFRASTRUCTURE

A thirty-two blade partition of the Shepard Advanced
Systems Technology Test Bed at Sandia National Laboratories
is used for all experiments. This development partition exposes
at the user-level power and energy instrumentation as well as
grants user control of clock frequency and modulation through
msr-safe and other kernel modules.

A. System

All tests used a portion of Penguin blade cluster. Each
node has two Intel(R) Xeon(R) E5-2698 V3 CPUs, each with
16 cores, 128GB of memory at 2.3GHz with hyperthreading
enabled3 and connected with Mellanox Fourteen Data Rate
InfiniBand. The maximum turbo frequency for the CPU is
3.6GHz. The cluster runs Red Hat Enterprise Linux Server 6.8
(Santiago), is scheduled by Slurm 2.3.3-1.18chaos and runs a
Linux 3.17.8 kernel. MPI version used is Mpich 3.2.

B. Measurement Techniques

All reported power, energy and temperature numbers
are obtained with the Intel Running Average Power Limit
(RAPL) interface. To allow user-level access to the RAPL
values of interest, the Resource Centric Reflection (RCR)
daemon [13] is used. The RCRdaemon has been extended
to provide additional performance related metrics associated
with frequency, instructions retired and cache accesses.

Modern processors have enough internal heterogeneity that
execution times often vary by several percent run to run [14].
The average is taken over 12 test runs for each power and
software setting. To avoid energy variation with temperature,
each test script ignored results from the first several minutes
until the system temperature was stable.

IV. RESULTS

The evaluation of ACR uses a set of DOE mini-apps
that encompass a variety of computation/memory patterns.
Measurements are reported for the entire execution and not
restricted to single phases. The applications can be divided into
two groups.

• Benchmarks Mini-apps: Six Mini-applications - five
from the Mantevo Suite [15] (MiniFE, MiniGhost,
CloverLeaf, miniAMR, HPCCG) and one from the
NERSC-8/Trinity Benchmarks [16], AMG

• Production application: One production DOE ap-
plication, ParaDiS - a free large scale dislocation
dynamics simulation code to study the fundamental
mechanisms of plasticity. It was originally developed
at the Lawrence Livermore National Laboratory [17].

A. Standard benchmarks

ACR attempts to act where load imbalance exists and
remain dormant when work is evenly partitioned. The potential
gain realistically achievable with ACR should occur when
evaluating several HPC benchmarks with unbalanced workloads.

3The hyperthread enablement has no effect on our experiment as benchmarks
are run only on one thread per core and frequency is changed by same amounts
for both logical threads.



For evaluation, a number of DOE MPI mini-apps were selected
to simulate variety types of loads on HPC systems.

Application Default Time (s) Policy Min Phase Limit (ms) Max Phase Degradation(%)

miniFE 182 DDCM none none

DVFS 10 5

Combined none none

miniGhost 68 DDCM none none

DVFS none none

Combined none none

miniAMR 81 DDCM none none

DVFS none none

Combined none none

CloverLeaf 90 DDCM none 0

DVFS none none

Combined 50 10

HPCCG 125 DDCM 10 10

DVFS 100 10

Combined none 0

AMG 133 DDCM 10 10

DVFS none none

Combined none none

Paradis 123 DDCM none none

DVFS none none

Combined none none

TABLE I. EXECUTION TIME AND ACR PARAMETERS FOR ALL

APPLICATIONS ON 32 NODES

Table I gives the execution time for default run without
ACR for all applications. It also lists the ACR parameters used
for runs that use ACR on 32 nodes. It can be observed that
the policy works well without changing any ACR user options
in most cases (represented as “none” value). Better energy
efficiency while using ACR user options is obtained for some
cases either by enhancing power reduction or controlling per-
formance degradation as explained in Section IV-B. The values
chosen for the user options in our experiments, especially for
minimum phase length, is obtained empirically. We recommend
using user-annotations supported by ACR to skip startup or
non-computation phases in practice.

1) miniFE: miniFE is intended to be the best approximation
to an unstructured implicit finite that includes all important
computational phases. The problem size on 32 nodes is
225x375x525 with ‘load imbalance’ factor set at 100 to exploit
maximum load imbalance that the application can present.

2) miniGhost: miniGhost simulates highly structured stencil
operations. It executes the halo exchange pattern important in
structured and block-structured explicit applications. A problem
size of 30x30x30 is spread across 1024 cores with 16, 8 and 8
cores along the three axes.

3) miniAMR: miniAMR does a stencil calculation on a unit
cube computational domain and can emulate the interaction of
different bodies in space. It uses Adaptive Mesh Refinement to
better model the edges of the moving bodies. A test case of a
sphere moving diagonally along 1024 cores with 16, 8, 8 cores
along x, y and z directions is used. It runs for 10 time steps.

4) CloverLeaf: CloverLeaf investigates the behavior and
responses of materials when applied with varying levels of
stress using a two-dimensional Eulerian formulation. The input
used is the provided “clover bm512 short.in” and corresponds
to a rectangular geometry of dimension 5.0x2.0 consisting of
30720 and 15360 cells along x and y axes respectively.

5) HPCCG: HPCCG is another approximation to an un-
structured implicit finite but generates a synthetic linear system.
The focus is entirely on the sparse iterative solver. The chosen
problem size is 90x120x150.

6) AMG: AMG is a parallel algebraic multigrid solver for
linear systems arising from problems on unstructured grids.
The problem consists of a 27-point stencil on a cube with size
60x60x60. The processor topology is 16, 8, 8 cores along x,
y and z direction respectively, and uses PCG with diagonal
scaling as its solver.

B. Impact of ACR user options

The impact of the user options on the Clock-Frequency
policy is measurable. The performance impact on HPCCG as
the user options are added is demonstrated with per-core DVFS
policy in Figure 4. The base policy (A) results in a slight
improvement in performance of 0.5%. Power is marginally
reduced by 6.1%, to see an energy improvement of 6.5%.

Default	
HPCCG	(A)	=	

base	policy	

HPCCG	(B)	=	

(A)	+	min	

phase	length	

HPCCG	(C)	=	

(B)	+	monitor	

phase	

performance	

Time	 124.76	 124.17	 164.28	 126.38	

Energy	 12982.72	 12132.06	 13533.14	 10629.90	

0.00	

2000.00	

4000.00	

6000.00	

8000.00	

10000.00	

12000.00	

14000.00	

16000.00	

0.00	

20.00	

40.00	

60.00	

80.00	

100.00	

120.00	

140.00	

160.00	

180.00	

Jo
u
le
	

Se
co
n
d
	

Performance	and	Energy	for	HPCCG	with	ACR	enhancements	using	DVFS	on	

32	nodes	

Fig. 4. Execution metrics showing improved effectiveness of the policy
through options in ACR

By forcing minimum phase length to be equal or greater
than 100ms (B), power reduction is improved drastically to
20.8%. The increase in execution time though is extremely
large at 31.7% that the energy consumption increases by 4.2%.
For HPC applications high execution slowdown is problematic.

By limiting phase degradation (C) to 10%, performance
slowdown is reduced to 1.3%. The power reduction remains
very similar to (B) at 19.2%. With this option, the runtime
attempts to (over-)react quickly at a phase change to prevent
the critical core in the next phase from running at a clock
frequency below 100%. If ACR detects a phase to run greater
than 10% longer than the previous instance, it resets the core
clock frequency to 100%. Even with aggressive clock frequency
resets, the energy saved is still 18.1%.

C. Benchmark Results

The results for the mini-apps are in Figure 5. The best energy
savings obtained for each application with ACR using either
DDCM, DVFS or Combined is summarized in Table II. The
mini-apps fall into two broad categories. miniFE and miniGhost
have significant imbalanced phases with a large number of
memory references. DDCM reduces the clock frequency further
than DVFS resulting in greater power savings. The effect of
DVFS and DDCM on memory references was not studied.
The combined policy provides the best results by allowing
the voltage to also be lowered during the low clock frequency
phases. miniAMR does not have a large number of memory
references like the above two, yet it achieves highest energy
savings with Combined due to large imbalanced phases.



0.78	

0.69	

0.85	

0.96	

0.89	 0.93	

0.81	
0.78	

0.83	 0.82	 0.82	

0.72	

0.63	
0.67	

0.81	

0.88	 0.88	
0.93	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

miniFE	 miniGhost	 miniAMR	 CloverLeaf	 HPCCG	 AMG	

N
or
m
al
iz
ed

	E
ne

rg
y	
	

Normalized	Energy	and	Time	with	AdapKve	Core-specific	RunKme	on	32	Haswell	Nodes	(1024	cores)		

1.10	

1.02	 1.02	
1.08	

1.04	 1.05	
1.00	

1.05	

0.97	
1.00	 1.01	 1.00	

1.09	
1.04	 1.04	 1.03	 1.05	

1.07	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

miniFE	 miniGhost	 miniAMR	 CloverLeaf	 HPCCG	 AMG	

N
or
m
al
iz
ed

	T
im

e	
	

DDCM	 DVFS	 Combined	 Default	

Fig. 5. Energy consumption and execution times of ACR using DDCM, DVFS and both for standard benchmarks

No. Application Power % Energy % Time % Temperature diff Avg. Frequency % Policy

1 miniFE 58 63 109 -8 37 Combined

2 miniGhost 64 67 104 -6 45 Combined

3 miniAMR 78 81 104 -4 61 Combined

4 CloverLeaf 82 82 100 -4 84 DVFS

5 HPCCG 81 82 101 -4 79 DVFS

6 AMG 72 72 100 -1 72 DVFS

TABLE II. THE BEST ENERGY SAVINGS OBTAINED FOR EACH APPLICATION WITH ACR USING EITHER DDCM, DVFS OR COMBINED.

The other mini-apps have better load balance and use
DVFS’s ability to lower the voltage resulting in lower energy
usage than DDCM. The combined policy does not improve
over DVFS for these mini-apps. The most likely cause is the
overly aggressive use of DDCM during transition phases.

1) miniFE: For miniFE version using DDCM, the energy
saving is 22.4% and program execution time is increased by
10.1%. With DVFS the energy savings is only 18.9%, but the
slowdown is reduced to only 0.1%. When the combined policy
is used energy savings increases to 36.7%. The energy reduction
is achieved in spite of a 9.4% execution time increase through
a 42.1% power reduction.

2) miniGhost: DDCM reduces energy on miniGhost by
31.0% with a 2.5% execution slowdown. DVFS increases
execution time by 4.7% and lowers power by 25.9% resulting in
an energy reduction of 22.4%. By combining the two policies,
the performance penalty is only 3.8% and the energy savings
increases to 33.1%.

3) miniAMR: miniAMR is an interesting example. With
DVFS, execution actually speeds up slightly (2.7%). This
combined with a power reduction of 14.4% results in it using
16.7% less energy. The speedup is consistent over multiple
runs. It may result from the hardware moving power from the
core saving energy to the core with the critical section, or it
may be related to a better performance of the barrier when all
processes arrive at nearly the same time (no thread is swapped
out). The energy savings with DDCM and Combined are 15.3%

and 19.1% with an execution time increase of 2.1% and 3.9%
respectively.

4) CloverLeaf: This and the next two mini-apps with lower
amounts of extreme imbalance all perform best with the DVFS
policy. DVFS increases CloverLeaf execution by only 0.2%.
This allows the energy reduction (17.6%) to effectively be
equal to the power savings of 17.7%. In contrast, with DDCM
the performance degradation is 7.7% results in only a 4.8%
reduction in energy consumed. The combined policy does better
than DDCM but still suffers a 2.9% execution time penalty
and only reduces energy by 11.7

5) HPCCG: With DVFS, HPCCG is executed using 18.1%
less energy. This savings is obtained with a time increase of
only 1.3%. Both the DDCM and Combined policy see time
increases of 4.5% and 4.9% respectively. The increased time
results in energy savings of only 10.6% and 12.0% .

6) AMG: DVFS performs the best on AMG. Over a
quarter of the energy is saved (28.2%), while only increasing
execution time by 0.1%. The DVFS policy produced significant
power/energy savings with a performance impact less than
typical run-to-run variation in execution time. DDCM and
Combined policies were much less effective.

D. Production applications - ParaDis

With encouraging mini-app results, testing was expanded to
a small real world application (Figure 6) with parameters shown
in the last row of Table I. ParaDis does dislocation dynamics by
introducing dislocation lines into a computational volume that
interact and move in response to forces imposed by external



0.00	

2000.00	

4000.00	

6000.00	

8000.00	

10000.00	

12000.00	

14000.00	

0.00	

20.00	

40.00	

60.00	

80.00	

100.00	

120.00	

140.00	

Default	 DDCM	 DVFS	 Combined	

Jo
u
le
	

W
a)

	/
	S
e
co
n
d
	/
	C
e
ls
iu
s	

Power,	Energy,	Time	and	Temperature	for	ParaDis	

Power	 Time	 Temperature	 Energy	

Fig. 6. Execution metrics for ParaDis while using ACR with DDCM, DVFS and both on 32 nodes (1024 cores)

Configuration Power (W) Energy (J) Time (s) Average Frequency (MHz) Metrics compared with default

Default 94.2 11541.1 122.6 2272.8 Power % Energy % Time % Frequency %

DDCM 76.5 9865.5 129.0 1531.5 81 85 105 67

DVFS 76.3 9330.9 122.3 1837.7 81 81 100 81

Combined 65.0 7058.1 108.7 1321.7 69 61 89 58

TABLE III. EXECUTION METRICS FOR PARADIS WHILE USING ACR WITH DDCM, DVFS AND BOTH ON 32 NODES (1024 CORES)

stress and inter-dislocation interactions. The simulation run
is “form binaryjunc” with “fm-ctab.Ta.600K.0GPa.m2.t5.dat”
correction table demonstrating the formation of a binary
junction from two dislocation lines. There are 8x8x8 cells
spread across 16, 8, 8 cores along x, y and z axes on 32 nodes.
The discretization range is [5.000000e+01, 2.000e+02] and
re-mesh method used is 3, with maximum steps equal to 100.
With load balancing turned off, ParaDis provides an unbalanced
small real-world application where number of timesteps can
be adjusted to create short enough runs for extensive testing.

100	

105	

110	

115	

120	

125	

130	

135	

140	

Default	 DDCM	 DVFS	 Combined	

T
im

e
	(
s)
	

Fig. 7. Variation in execution time of Paradis across all cores for 12 runs on
32 nodes

Initial testing with ParaDis on 1024 cores yielded encour-
aging results (Table III). With the chosen number of time steps
default case on average executed in 122.6 seconds. DDCM
lowered power 19% but took on average 5% longer to execute,
while DVFS also reduced 19% power but ran in 122.3 seconds
showing no performance degradation. The Combined policy
takes only 108.7 seconds on average. The optimization meant
for power reduction, also decreased the execution time by 11%.
When combined with the 31% reduction in power the total
energy savings is a remarkable 42%.

Upon closer inspection, a large amount of run-to-run
variation is present in the 1024 core runs. Figure 7 graphs
the performance of 12 runs for each of the energy policies. The
default runs have a 30% run-to-run variation, from a low of
105 seconds to high of 136 seconds. When using the Combined
policy, variation was reduced to about 5%, and execution times
clustered around the fastest observed for default execution
(between 105 seconds and 111 seconds).

E. Understanding performance improvement for ParaDis

To better understand performance improvement seen with
ParaDis its critical path behavior for the Default (no ACR),
DDCM and DVFS cases on 24 nodes (768 cores) is shown in
Figure 84. The single run chosen has the worst execution time
out of 12 runs for each of the three cases. The values in subtitles
denote average values across the entire execution of the run,
while the values in legend are average values taken only across
data shown in the plot. A core with the highest compute time
per phase is considered as the critical core. Critical cores with
compute times shorter than 0.1s are discarded to avoid large
average frequency values computed using Intel APERF and
MPERF counters. Only cores running at average frequencies
greater than 2200MHz are considered to ensure that the critical
cores run at the maximum possible frequency and do not
experience any undue slowdowns (due to policy mispredictions).
Consequently, a lower percentage (89%, 74%, and 70%) of the
actual critical execution is captured in Figure 8.

On 24 nodes ParaDis takes about four times longer to
complete in the default case and shows a lot higher workload
imbalance than on 32 nodes. As a result with DDCM, the
execution time for ParaDis is reduced from 405.0s to 265.2s,
a reduction of 34.5% (compared to 11% on 32 nodes). For the
Combined case (not shown in Figure 8), the execution time is
lowered by 35.4% (261.6s) and the power by 28.9% (65.5W)
for a total energy savings of 54.1% (17127.8J). The DVFS case,

4All 32 nodes in the partition were not available during profiling



0.
5

1.
5

2.
5

Phase

C
om

pu
te

 T
im

e 
(s

)

0 200 400 600 800 1000 1200

25
00

35
00

A
ve

ra
ge

 F
re

qu
en

cy
 (

M
H

z)

Default − Power: 92.1W, Energy: 37310.9J, Time: 405.0s, Inst. Retired (OS & User): 2.9E+13, Temp: 65.0ºC, Avg. Freq: 2294.9MHz

0.
5

1.
5

Phase

C
om

pu
te

 T
im

e 
(s

)

0 200 400 600 800 1000 1200

25
00

35
00

A
ve

ra
ge

 F
re

qu
en

cy
 (

M
H

z)

DDCM − Power: 72.4W, Energy: 19196.5J, Time: 265.2s, Inst. Retired (OS & User): 1.1E+13, Temp: 61.8ºC, Avg. Freq: 1429.7MHz

0.
5

1.
5

Phase

C
om

pu
te

 T
im

e 
(s

)

0 200 400 600 800 1000 1200

25
00

30
00

35
00

A
ve

ra
ge

 F
re

qu
en

cy
 (

M
H

z)

DVFS − Power: 77.9W, Energy: 31132.5J, Time: 399.7s, Inst. Retired (OS & User): 2.3E+13, Temp: 63.4ºC, Avg. Freq: 1934.5MHz

Compute Time (s) − 89%, 74%, 70%

Average Frequency (MHz) critical − 2507.4MHz, 2784.8MHz, 2467.3MHz

Low and High Compute Time TrendLines (< 1.0s & > 1.0s)

Fig. 8. Critical Path Behavior for ParaDis running on 24 nodes (768 cores).

though, shows only 1.3% performance improvement running
for 399.7s. This indicates that the performance improvement
for the Combined case is mainly due to DDCM, and not DVFS.
As in the case of 32 nodes, the run-to-run variation is seen to be
greatly reduced with ACR on 24 nodes to suggest conformity
between the two execution profiles.

By analyzing the critical path behavior in Figure 8 the
speedup for ParaDis can be explained using two key factors:

Reduction in run-to-run variation: The two dashed lines in
each plot trace the means of a bimodal distribution of critical
path times. In successive phases work appears to be similar,
with occasional jumps between short and long critical paths.
The consistency suits ACR as the frequency for the non-critical
cores can be lowered to very low values for prolonged periods.
Hence, non-critical cores do not compete with the critical
core for resources during a phase. This alleviates any existing
contentions to explain the reduced run-to-run variation. Further,
the regular work pattern reduces mispredictions in all ACR
policies.

Turbo mode: Lowering the frequency of non-critical cores
for prolonged periods increases the available thermal headroom
making critical cores with ACR using DDCM to run at
higher turbo frequencies (2784.8MHz) compared to default
(2507.4MHz). Because turbo frequencies are disabled when
DVFS is in operation, critical cores run at much lower frequen-
cies (2467.3MHz) resulting in low performance improvement,

if any. Critical cores running at turbo also reduce the impact
of policy mispredictions during phase transitions compared to
DVFS (E.g. 75% of 2.6GHz (turbo) with DDCM > 75% of
2.3GHz with DVFS). The average count of instructions retired
at OS and User level by each core using DDCM (1.1E+13) is
only one-third compared to default (2.9E+13) due to lowered
busy waiting. The reduction in busy waiting again can be mostly
attributed to critical cores running at turbo with DDCM as this
effect is not seen in the case of DVFS (2.3E+13). Finally, even
though the power is reduced substantially (21.4%) with DDCM
and average frequency across cores is only 1429.7MHz the
temperature is not reduced comparably (only 3.2◦C reduction).
This indicates work of turbo, as the heat dissipation is non-
linear.

V. DISCUSSION

Table IV summarizes the energy savings and other re-
lated metrics obtained by each of the policies with standard
benchmarks and real application ParaDis on 1024 cores. The
least performance degradation of 0.5% across all applications
is obtained with DVFS. It also reduces power by 20.5% to
achieve a commensurate average energy efficiency improvement
of 20.2%. The best energy savings overall is achieved with
Combined at 22.6% with a power reduction of 24.9%. However,
the execution time increases to 2.9%. The energy improvement
with DDCM is 15.1% with power reduction of 19.3% and
execution time penalty of 5.3%.



Policy Avg %Power Avg %Energy Avg %Time Avg Temp diff

DDCM -19.3 -15.1 5.3 -3.2

DVFS -20.5 -20.2 0.5 -3.3

Combined -24.9 -22.6 2.9 -4.2

TABLE IV. SUMMARY OF ENERGY SAVINGS AND OTHER METRICS

OBTAINED WITH EACH POLICY FOR STANDARD BENCHMARKS AND Paradis

The intent of the above comparison table is not to help the
decision of choosing one policy over the other, but only to
summarize the effectiveness of ACR with the three policies.
Figure 5 and Figure 6 show unique characteristics of each policy
depending on the nature of the application. For applications
that show extreme workload imbalances and/or high memory
references the Combined or DDCM policy work best. And
in some cases (ParaDis) with improved performance. For
applications showing more moderate imbalance, DVFS works
better. The higher average time penalty seen by Combined and
DDCM in Table IV is mostly due to the higher performance
deterioration observed with applications that are more stable.

By tailoring the frequency of each core to match its
work, slack as well as the power wasted is greatly reduced.
Reducing the clock frequency for hardware threads spending
significant time at software barriers results in valuable energy
savings and in most cases will be invisible to the users, as the
execution delay is well below the variance already observed
during execution. With the reduction in power, ACR shows
a corresponding reduction in the chip temperature for all
applications, reducing cooling requirements.

VI. RELATED WORK

Most power aware computing research centered around
DVFS that had a socket-wide effect used either inter-node [4],
[5] or intra-node methods [18], [19]. Computational workloads
have been analyzed to propose ways to save power [20], [21].
Models to amortize the effect of uneven work distribution
through slack reclamation have been proposed [3], [4], [22].
Green Queue [23] automates the process of finding phases and
optimal frequencies using power models. Automatic tuning
of applications based on software performance options and
processor clock frequency has also been explored [24]. The
empirical software policy proposed is similar to the intra-node
models but focuses on individual core (not socket) performance.
Also, the use of per-core DVFS and its combination with
DDCM is a departure from state of art solutions that previous
work have provided on architectures older than Haswell. There
has been work that surveys the new features targeting energy-
efficiency inherent to Haswell [25], and some that apply
these specifically to OpenMP [26]. We focus mainly on
applications using MPI, considered to be the de facto inter-
process communication interface for HPC.

Moving beyond DVFS, duty cycle modulation [14], power
capping [27] along with similar mechanisms on IBM Power 6
and 7 (capping) and AMD Bulldozer [28] (capping and thermal
design power limits) have been explored. These solutions have
focused specifically on a single power lever to improve energy-
efficiency. Our runtime provides the flexibility of use multiple
core-specific power policies to save energy.

Applications have been profiled to determine the best
configuration of nodes and power caps for overprovisioned
systems [7], [8]. Resource allocation schedulers that use

overprovisioning incorporating power-response characteristics
of each job along with power cap are being explored [9].
We show that use of core-specific power control may lead to
performance improvement with energy savings in heterogeneous
performing systems, or significantly reduce power (decreasing
energy) without a power cap.

There has been considerable work to design energy-efficient
runtimes oblivious to the running application [29]. These are
aimed at alleviating the problems caused by system factors
(OS noise, congestion) for runtimes that assume temporal
patterns, and also to handle dynamic workloads. Our runtime
does assume temporal patterns, but we show that an adaptive
solution is effective on par with preemptive methods in handling
dynamic conditions well.

A number of efforts use hardware performance coun-
ters [30], [31], [32] to compute optimal off-line settings. Several
projects estimate energy usage based on hardware counters with
direct correlation to cache access [33], MIPS [34] and CPU stall
cycles [35]. Our runtime does not make use of any hardware
performance counters and only makes lightweight dynamic
adjustments to each core’s individual clock frequency.

VII. CONCLUSION & FUTURE WORK

ACR uses hardware core-specific power control mechanisms
and an adaptive software policy to achieve significant energy
savings with minimal execution time penalties. It provides, for
a number of DOE mini-apps and small applications, 20+%
energy savings with performance within the normal run-to-
run variation. With no application code modifications, ACR
provides significant energy savings with no user-visible effects.
For one application case (ParaDis) a significant performance
improvement is observed due to the reduction in run-to-run
variation and execution of critical path cores at turbo frequencies
with DDCM.

As Exascale deploys over-provisioned systems that use per
core power-limits in day-to-day operations, energy optimiza-
tions will be more important. Runtimes such as ACR will either
allow more work to be run at one time by using less power or
allow single applications to be run faster by allowing a higher
power cap on critical cores than non-critical. On power-limited
systems, power (and energy) optimizations will be critical. ACR
demonstrates that adaptive dynamic control of power at runtime
is possible.

In the future, a better understanding of the advantages and
disadvantages of ACR is needed. At some scales, ACR results
in a significant performance improvement. As a downside, at
other configuration sizes (and user options) ACR results in
significant slowdowns. A better understanding of when the
chosen clock frequency is too low and how to correct it quickly
is required before a system such as ACR can be deployed in a
production environment.

VIII. ACKNOWLEDGEMENT

The authors will like to thank Rob Fowler, RENCI for his
valuable feedback and Nathan Gauntt, SNL for helping with
Shepard cluster. Sandia National Laboratories is a multi-mission
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000. This
work was also performed under the auspices of the U.S.
Department of Energy XPRESS project under Contract DE-



SC0008704 and Office of Science SciDAC SUPER Institute
on grant DE-SC0006925.

REFERENCES

[1] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue,
F. Liu, F. Qiao et al., “The Sunway TaihuLight supercomputer: System
and Applications,” Science China Information Sciences, vol. 59, no. 7,
p. 072001, 2016.

[2] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill et al., “Exascale Computing
Study: Technology Challenges in Achieving Exascale Systems,” 2008.

[3] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi, “Emprical
Study on Reducing Energy of Parallel Programs Using Slack Reclamation
by DVFS in a Power-scalable High Performance Cluster,” in CLUSTER

2006: Proc. of the 2006 IEEE Intl. Conference on Cluster Computing.
IEEE, 2006.

[4] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just in Time Dynamic
Voltage Scaling: Exploiting Inter-node Slack to Save Energy in MPI
Programs,” in Proceedings of the 2005 ACM/IEEE conference on

Supercomputing. IEEE Computer Society, 2005, p. 33.

[5] B. Rountree, D. K. Lowenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. K. Bletsch, “Adagio: Making DVS Practical for Complex
HPC Applications,” in ICS ’09: Proc. of the 23rd Intl. Conference on

Supercomputing, 2009.

[6] W. Wang, A. Porterfield, J. Cavazos, and S. Bhalachandra, “Using
Per-Loop CPU Clock Modulation for Energy Efficiency in OpenMP
Applications,” in Proceedings of the 2015 44th International Conference

on Parallel Processing (ICPP). IEEE Computer Society, 2015, pp.
629–638.

[7] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. de Supinski,
“Exploring Hardware Overprovisioning in Power-constrained, High
Performance Computing,” in Proceedings of the 27th international ACM

conference on International Conference on Supercomputing. ACM,
2013, pp. 173–182.

[8] O. Sarood, A. Langer, L. Kalé, B. Rountree, and B. De Supinski,
“Optimizing Power Allocation to CPU and Memory Subsystems in
Overprovisioned HPC Systems,” in IEEE International Conference on

Cluster Computing (CLUSTER). IEEE, 2013, pp. 1–8.

[9] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing throughput
of overprovisioned hpc data centers under a strict power budget,” in
Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE Press, 2014, pp.
807–818.

[10] S. Bhalachandra, A. Porterfield, and J. F. Prins, “Using Dynamic Duty
Cycle Modulation to Improve Energy Efficiency in High Performance
Computing,” in Parallel and Distributed Processing Symposium Work-

shop (IPDPSW), 2015 IEEE International. IEEE, 2015, pp. 911–918.

[11] A. Porterfield, R. Fowler, S. Bhalachandra, B. Rountree, D. Deb, and
R. Lewis, “Application Runtime Variability and Power Optimization for
Exascale Computers,” in Proceedings of the 5th International Workshop

on Runtime and Operating Systems for Supercomputers. ACM, 2015,
p. 3.

[12] K. Shoga, B. Rountree, M. Schulz, and J. Shafer, “Whitelisting MSRs
with msr-safe,” in 3rd Workshop on Exascale Systems Programming

Tools, in conjunction with SC14, 2014.

[13] A. Porterfield, R. Fowler, and M. Y. Lim, “RCRTool: Design Document
Version 0.1,” Tech. Rep. RENCI Technical Report TR-10-01, Tech. Rep.,
2010.

[14] A. Porterfield, R. Fowler, S. Bhalachandra, and W. Wang, “OpenMP
and MPI Application Energy Measurement Variation,” in Proceedings

of the 1st International Workshop on Energy Efficient Supercomputing.
ACM, 2013, p. 7.

[15] M. Heroux and R. Barrett, “Mantevo Project Homepage,” 2012.

[16] “NERSC-8/Trinity Benchmarks,” http://www.nersc.gov/users/computational-
systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-
benchmarks/.

[17] V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang,
M. Rhee, K. Yates, and T. Arsenlis, “Scalable Line Dynamics in ParaDiS,”
in Proceedings of the 2004 ACM/IEEE conference on Supercomputing.
IEEE Computer Society, 2004, p. 19.

[18] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained
Distributed DVS Scheduling for Scientific Applications on Power-aware
Clusters,” in SC05: Proc. of the 2005 ACM/IEEE Conference on High

Performance Networking and Computing. IEEE Computer Society,
2005.

[19] V. W. Freeh and D. K. Lowenthal, “Using Multiple Energy Gears in
MPI Programs on a Power-scalable Cluster,” in PPoPP 2005: Proc. of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, 2005.

[20] X. Feng, R. Ge, and K. W. Cameron, “Power and Energy Profiling
of Scientific Applications on Distributed Systems,” in Parallel and

Distributed Processing Symposium, 2005. Proceedings. 19th IEEE

International. IEEE, 2005, pp. 34–34.

[21] S. Kamil, J. Shalf, and E. Strohmaier, “Power Efficiency in High
Performance Computing,” in IEEE International Symposium on Parallel

and Distributed Processing. IEEE, 2008, pp. 1–8.

[22] J. Kang and S. Ranka, “Dynamic Slack Allocation Algorithms for Energy
Minimization on Parallel Machines,” Journal of Parallel and Distributed

Computing, vol. 70, no. 5, 2010.

[23] A. Tiwari, M. Laurenzano, J. Peraza, L. Carrington, and A. Snavely,
“Green Queue: Customized Large-scale Clock Frequency Scaling,” in
CGC ’12: Proc. of the 2nd Intl. Conference on Cloud and Green

Computing, Nov. 2012.

[24] S. M. F. Rahman, J. Guo, A. Bhat, C. Garcia, M. H. Sujon, Q. Yi,
C. Liao, and D. Quinlan, “Studying the Impact of Application-level
Optimizations on the Power Consumption of Multi-core Architectures,”
in Proceedings of the 9th conference on Computing Frontiers, ser. CF
’12, 2012, pp. 123–132.

[25] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An Energy Efficiency Feature Survey of the Intel Haswell
Processor,” 2015.

[26] B. Wang, D. Schmidl, and M. S. Müller, “Evaluating the Energy
Consumption of OpenMP Applications on Haswell Processors,” in
OpenMP: Heterogenous Execution and Data Movements. Springer,
2015, pp. 233–246.

[27] B. Rountree, D. H. Ahn, B. de Supinski, D. K. Lowenthal, and M. Schulz,
“Beyond DVFS: A First Look at Performance Under a Hardware-Enforced
Power Bound,” in HP-PAC 2012: Proc. of the 8th Workshop on High

Performance, Power-Aware Computing, May 2012.

[28] “BIOS and Kernel Developers Guide (BKDG) for AMD Family 15h
Models 00h-0Fh Processors,” AMD, Tech. Rep., 2012.

[29] A. Venkatesh, A. Vishnu, K. Hamidouche, N. Tallent, D. D. Panda,
D. Kerbyson, and A. Hoisie, “A Case for Application-oblivious Energy-
efficient MPI Runtime,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis.
ACM, 2015, p. 29.

[30] D. C. Snowdon, E. L. Sueur, S. M. Petters, and G. Heiser, “Koala: A
Platform for OS-level Power Management,” in Proc. of the 2009 EuroSys

Conference, 2009.

[31] K. Choi, R. Soma, and M. Pedram, “Dynamic Voltage and Frequency
Scaling Based on Workload Decomposition,” in Proc. of the 2004 Intl.

Symposium on Low Power Electronics and Design, 2004.

[32] C. W. Lively, X. Wu, V. E. Taylor, S. Moore, H.-C. Chang, C.-Y.
Su, and K. W. Cameron, “Power-aware Predictive Models of Hybrid
(MPI/OpenMP) Scientific Applications on Multicore Systems,” Computer

Science - R&D, vol. 27, no. 4, 2012.

[33] R. Ge, X. Feng, W. Feng, and K. Cameron, “CPU Miser: A Performance-
directed, Run-time System for Power-aware Clusters,” in ICPP 2007:

36th Intl. Conference on Parallel Processing. IEEE, 2007.

[34] C. Hsu and W. Feng, “A Power-aware Run-time System for High-
performance Computing,” in SC05: Proc. of the 2005 ACM/IEEE

Conference on High Performance Networking and Computing. IEEE
Computer Society, 2005.

[35] S. Huang and W. Feng, “Energy-efficient Cluster Computing Via
Accurate Workload Characterization,” in CCGrid 2009: Proc. of the 9th

IEEE/ACM Intl. Symposium on Cluster Computing and the Grid. IEEE
Computer Society, 2009.


