
Dynamic Attack Surfaces in Nuclear Power Plants 
 

Christopher C. Lamb and Lon A. Dawson 
Sandia National Laboratories 

1515 Eubank SE 
Mail Stop 0933 

Albuquerque, NM 87123  
cclamb@sandia.gov; ladawso@sandia.gov 

 

ABSTRACT 

In this paper, we will summarize a group of architectural principles that inform the 
development of secure control system architectures, followed by a methodology that allows 
designers to understand the attack surface of components and subsystems in a way that supports the 
integration of these surfaces into a single attack surface. We will then show how this methodology 
can be used to analyze the control system attack surface from a variety of threats, including 
knowledgeable insiders. We close the paper with an overview of how this approach can be folded 
into a more rigorous mathematical analysis of the system to define the system’s security posture.  

Key Words: attack graphs, cyber security, control systems 

1  INTRODUCTION 

Over the past decade, cyber security has become much more important to digital systems, including 
control systems. While there has been a figurative flood of work with respect to securing enterprise 
computer systems, study of control system architectures is lagging. It becomes more and more important 
every day that we understand the security postures of these systems as they are increasingly under attack. 
With enterprise computer systems a breach may result in lost data, credit card information, or trade secrets. 
A breach in a safety critical system in a nuclear power plant can have much worse and longer-lived 
consequences.  

The primary contribution of this paper is the flexible attack surface derivation methodology and the 
mathematical analysis of that surface to provide a cyber security model of the control system. Attack surface 
analysis is not new, but the way in which the surface is created and analyzed is currently inconsistent. This 
work will demonstrate a way to describe these surfaces that is repeatable, composable, and supports analysis 
thus enabling secure control system design. 

We will first summarize relevant cyber security principles and their priority and application to nuclear 
power standards in Section 2. Then, in Section 3, we will begin to cover how define an attack surface, 
starting with a simple example to illustrate attack surface composition and definition. We will then define 
how attack surfaces can be aggregated more formally, leading into how specifically attack surfaces change 
based on the attacker’s access and attack progression. Then, we will describe some of the properties of 
attack surfaces, including their non-homogenous Markovian nature. Following that, we will show how we 
can predict how the system’s attack surface changes based on new environmental threats, and how 
engineers can use this model control system cyber security. 

2 CYBER SECURITY PRINCIPLES RELEVANT TO NPP 

Engineers have been researching cyber security principles for the past forty years. These principles 
have been published in a variety of forums, and most recently summarized in a group of technical reports[1, 

SAND2017-2257C



2]. The identified principles have stabilized over this time period, and today, we have an understanding of 
what these principles are, and when they should be applied. These principles provide guidance for security 
engineers and visibility into potential areas for security improvement. While most of these principles apply 
to control systems, some are particularly important considering cyber security. In this section, we will point 
out those specific principles that need focus and where they are outlined in current standards documents. 

2.1 Cyber security Priorities 

Prior to outlining important principles, we need to define the cyber security priorities. In a cyber 
security analysis, common priorities are confidentiality, integrity, and availability. Authentication is 
frequently included as well. But for control systems, confidentiality is not nearly as important as integrity. 
After all, we can always determine the content of a system directive based on actuator response, but we 
need to make sure that the directive gets where it needs to go first. It is vital that control systems are 
available, and that components only respond to authorized directives.  

Standard’s require that NPP control systems include segmentation of function and strong isolation 
from external or enterprise networks [3, 4]. This makes NPP control systems relatively robust to external 
cyber attacks but insider attacks are still a concern. As a result, authentication (and by extension, 
authorization) is a key NPP control system priority.  

From our perspective, key priorities for NPPs are integrity and availability, then authentication, 
followed by confidentiality. Control commands must be able to reach the actuator from the processing 
system, and sensor data must be able to reach the processing system from the sensor for the physical system 
to be controlled.  

2.2 Key Principles  
System availability is crucial for control systems. Systems are designed to be highly available, and 

standards codify approaches to availability and failure as well[3, 4]. Engineers have and continue to put 
much thought into the states devices can fail into as well as anticipating the failure response of nuclear 
power systems. Nuclear power systems work with hazardous materials and huge amounts of energy. If 
systems fail, it is vital that they fail into a safe state. Likewise, dependent systems should be able to handle 
component failure, and designs consider the implications of a component failure on a larger system. 

Authentication is addressed in relevant standards, as is defense in depth and deny by default 
approaches[3, 4]. Authentication is vital to securely operating any system, and references to authentication 
requirements are found throughout the relevant standards. Exception processes for authentication exist as 
well, though potential mitigations for attacks on unauthenticated command infrastructure are not 
specifically addressed beyond data logging and physical security. Defense in depth approaches are likewise 
stressed in standards, though not overly prescriptively. Some specific controls, like intrusion detection 
systems and data diodes, are specifically called out however. Finally, deny by default strategies are usually 
the cornerstone of effective firewall ruleset design, and the standards documents correctly address this 
approach. 

Nuclear power plants (NPPs) today manage sensitive data and maintain separate data and control 
networks via embedded data diodes and firewalls[3, 4]. These principles are currently recognized by 
specific technical controls in today’s fleet. Sensitive data can be protected via encryption in NPPs as well[3, 
4]. Standard guidance exists for establishing public key infrastructure, using encryption to protect network 
traffic, and the selection and use of various cryptographic modules. Least privilege and separation of duty 
are related controls that are also addressed in standards documents[3, 4]. The principle of least privilege 
restricts personnel and systems to the smallest set of capabilities needed to perform assigned duties or 
actions. Separation of duty is a common strategy used to allow for systemic checks and balances by 
restricting the responsibilities of users, engineering personnel, and collaborating systems. Separation of 
privilege is like separation of duty, but addresses providing checks and balances between different sets of 



authority. This approach, separating privilege into distinct sets, is a common security strategy used in 
distributed computer systems. It is addressed obliquely within standardization documents, but not nearly as 
strongly as either of the previous two principles. Both access controls and information flow controls are 
also addressed in standards documents[3, 4]. The former from the perspective of controlling access to 
sensitive systems and components, and the later from ensuring information is appropriately protected in 
transit. 

Compromise recording is a core part of the relevant cyber security standards as well[3, 4]. These 
standards describe how to implement defense in depth, the importance of intrusion detection, and how to 
guard information integrity. These standards guide engineers to configure logging and auditing systems to 
capture suspicious events and log them, acting on those events if appropriate. Compromise recording is key 
to detecting and responding to possible malicious activity. Furthermore, collected data can be analyzed 
offline to scan for resident persistent threats. 

The category Manage Your Assets has importance in NPP cyber security standards and practices, 
most notably the Validate Information principle. Validate Information ensures that transmitted data is 
well formed and will not compromise receivers.   

Keep It Simple as a category is always good guidance, but some systems are still complex even when 
they are as simple as possible. NPPs likely fall into this category[3-5]. Least Common Mechanism is an 
important principle to protect against common cause failure. The design basis for ensuring NPP reliability 
helps implement this principle. 

2.3 Design Principles and Attack Surfaces 

Design principles are important as they directly impact the exposed attack surface. In fact, many of 
the principles are designed to do just that – to shrink the surface visible to an attacker. For example, both 
Least Common Mechanism and Separation of Privilege were explicitly designed to shrink possible 
attack surfaces. Likewise, Minimize Secrets, Reduce Sensitivity and Reduce Exposure directly 
contribute to attack surface reduction as well. These principles when applied during system design or via 
security control application contribute to making systems more secure, often reducing the attack surface. 

3 ATTACK SURFACE MANGEMENT 

When designing a system, or refactoring a system to enhance security, we need a way to evaluate the 
security posture of that system both before and after the application of a technique or control. In this section, 
we will begin to outline such a method. Attack Surfaces are models of the vulnerabilities associated with a 
given system. They have been used extensively over the last decade to help highlight the attack vectors in 
systems[6-8]. They typically highlight possible routes of attacker ingress and ways attackers can exfiltrate 
stolen information (route of egress).  These can further be separated into host based surfaces, network-
centric surfaces, and at times, human or social surfaces. 

In this analysis, we will limit the surfaces to network and host-based surfaces. We will not include 
social aspects in this analysis. Engineers could certainly extend this methodology to include human or social 
interactions, but at increased complexity that would not help outline our approach. 

We will begin by outlining the attack surface of a USB connected thermocouple (believe it or not, it 
does have one, and it can be exploited). We will use this example to inform our intuition as we begin to 
assemble an attack surface. This first attack surface analysis is typical, in that we are looking at host and 
communication-based ingress and egress vectors. This thermocouple does not attach to a network, so it 
does not have a network-centric attack surface, but it does communicate with the host system over the 
attached USB cable. So typically, using non-hardened COTS components, we would use something like 
Omega’s UTC USB thermocouple adapter[9] with, say, a J Type hollow tube thermocouple probe [9, 10]. 



Overall, this thermocouple and connector are very simple, and logically look something like Figure 1. 

 

 The thermocouple itself does not have much of an attack surface. We have wires that route into the 
thermocouple, but they do not transmit any data, nor do they attach to a system that can be digitally 
exploited. Moving along the chain from left to right, we then come to the UTC-USB device. This is more 
complex, contains digital assets, as well as analysis software. 

If you look at the spec sheet for the UTC-USB, you will notice that not only does it support a wide 
range of thermocouple types and connectors, it also “…includes Free Software for Display, Data Logging, 
and Chart Recording…” [9].  So, this connector not only connects to a PC via a USB cable, it will also 
attempt to install packaged software. Overall, we have two means of egress and ingress; the USB cable and 
the thermocouple wiring. And the connector itself uses one of these means of ingress to make software 
available to a PC host. 

Moving on, we have the PC that collects data from the USB connected probe. The PC has a much 
larger attack surface than either of the previous components. It is not attached to a network, though it is a 
fully featured general purpose PC. In this example, we will assume that the PC is only used for data 
collection, debugging, and data transfer. It does not have any running network applications, nor is it ever 
attached to a network. Data is transferred to and from the PC manually using a USB pen drive. This gives 
us two routes for data ingress and egress – the USB cable attached to the converter, and the pen drive used 
to transfer data files from the PC. 

Next, we will examine the host-based attack surface. The thermocouple really does not have a host-
based attack surface. We have a simple hollow tube thermocouple probe attached to wiring. There’s no 
digital host to examine. 

The USB converter is much more interesting. This device has input wiring on one side and a USB 
connecter on the other. Internally, it has a processor as well as storage for the packaged data analysis 
software. In this example, we have not been able to fully disassemble the device, we will make some 
educated assumptions about the internals of the device based on other, similar devices. 

For example, USB pen drives offer similar kinds of functionality, in that they provide storage services, 
data communication functions, and the like. Generally, a pen drive has a USB connector, acting as an 
intermediary between the flash memory in the pen drive and the computer the pen drive is attached to. It 
will also have a USB controller chip that manages writing/reading to/from onboard storage. Finally, the 
drive has a flash memory chip, an oscillator, various test points, and potentially expansion sockets for 
additional flash memory. Data flows into and out of the connector to the flash memory chip, managed by 
the controller. 

We are most interested in the USB controller. The UTC-USB converter is storing software internally 
that is then installed on the attached host to facilitate data collection. There is furthermore some kind of 
computational power within the converter, although it is low-power and computationally slow. 

 
Figure 1: Notional thermocouple and adapter configuration. 

Thermocouple UTC-USB PC
Thermocouple

Wiring

USB Cable



Finally, we have a PC and the USB drive used to pull data from the PC. The PC has all the typical host 
targets any PC would have, but since it is not attached to a network, some of the more common host 
applications will be difficult to access. General purpose PCs have large, complex attack surfaces with 
dedicated tooling to help you understand how that surface evolves[11], so we will not go into detail about 
how to undertake this kind of analysis. The USB drive on the other hand is simple, and has the same basic 
attack surface as the thermocouple converter. 

Table I. Summary of Attack Surfaces 

Component Host Communication 
Thermocouple N/A (ingress/egress) Attached Wire 

Converter USB Controller 
Packaged Software 

(ingress/egress) Thermocouple Wire 
(ingress/egress) USB Cable 

PC Windows OS (ingress/egress) USB Cable 
(ingress/egress) Pen Drive 

Pen Drive USB Controller (ingress/egress) PC 
(ingress/egress) PC Receiving Data 

 

Now we have some idea of our attack surface. Not all of it is exposed though – individual components 
do have individual surfaces, as does the system. The system attack surface is not necessarily the sum of the 
surfaces of all the parts however. 

In this case, imagine that the PC and the converter are both physically secured, and the key to the room 
is controlled. Let’s furthermore assume that the converter is heavily vetted and the contained software has 
already been installed and analyzed to ensure security. 

 

With these assumptions in place, we can treat the converter and the PC as a single component. This 
component also has, as we can see from Figure 2, two ways of communication ingress/egress; the 
thermocouple wiring and the USB drive used to pull data from the PC. This has essentially shrunk our 
attack surface by over 30%, simply by eliminating the converter and PC as well as the USB cable vector. 
Furthermore, the thermocouple wiring is a very low risk attack vector, so by combining the converter and 
the PC we have also removed some of the most egregious attack vectors in the system (i.e. USB cable 
access and converter access). 

3.1 Evaluating Defenses Against Attackers 

To evaluate the effectiveness of attack surface reduction efforts, we need some way to categorize attack 
vectors. Specifically, we need to be able to organize the vectors we have defined, and to track the vectors 

 
Figure 2: Physically secured components. 

Locked Room

Thermocouple UTC-USB PC
Thermocouple

Wiring

USB Cable



themselves (even when they have been mitigated by a control or design strategy). We will examine how 
we can organize these vectors based on our new attack surface defined in Table II. 

Table II. Summary of New Attack Surfaces 

Component Host Communication 
Thermocouple N/A (ingress/egress) Attached Wire 

Converter/PC 
USB Controller 

Packaged Software 
Windows OS 

(ingress/egress) Thermocouple Wire 
(ingress/egress) Pen Drive 

Pen Drive USB Controller (ingress/egress) PC 
(ingress/egress) PC Receiving Data 

 

Table II lists a new aggregate attack surface for the system that is smaller than the combined surfaces 
of the components. With this in place, engineers need only deal with the new attack surface, in most cases. 
Unless, of course, the room is compromised. 

If the secure room is compromised, or one of the other assumptions are rendered invalid, the attack 
surface will change again, reverting to the original, larger form. This kind of attack surface dynamism is 
rarely reflected in attack surface analysis today, which is considered more of a one-and-done function. 
Today, we build the attack surface at some point during system development, perhaps attempt to shrink it 
via deliberate design decisions or security control placement, and then we shelve it. 

In the real world, where things change day-to-day and hour-to-hour, this just does not work. 

3.2 Combining Attack Graphs 

To effectively manage the attack surface of a system, we need to be able to manage the attack surface 
state in response to changing cyber conditions. And to do that, we need to understand what that attack 
surface is and how it transitions from state to state. 

So, first, let’s more formally describe what an attack surface is based on our previous example. 
Essentially, we can define an attack surface as a tuple containing four sets, as shown in Equation 1.  

 𝑆 = (𝐼%, 𝐸%, 𝐼(, 𝐸() (1) 

where 𝐼% is the set of host ingress vectors, 𝐸%is the set of host egress vectors, 𝐼( is the set of 
communications or network ingress vectors, and 𝐸( is the set of communications or network egress vectors. 

We will also define an aggregation of attack surfaces as the union of the various vectors, such that if 
we have some number of components C the composite attack surface is the compilation of all possible 
attack vectors of the system components. Note that this definition does not consider design techniques, 
security controls, or perspectives into the system. In the previous example, the initial attack surface was the 
composition of all the component attack vectors, while the second attack surface used design controls and 
the point of view of a possible attacker to limit the attack surface, as shown in e\Equation 2. 

 𝑆* = 𝑆+ 	⊔ 	𝑆.	 = ( 𝐼%
/0 	∪ 	 𝐼%

/2 , 𝐸%
/0 	∪ 	𝐸%

/2 , 𝐼(
/0 	∪ 	 𝐼(

/2 , 𝐸3
/0 	∪ 	𝐸(

/2 ) (2) 

We can extend this to define the combined attack surface of C components as the union of the 
contained sets of all C components. Note however that this is not invertible – if we have some attack surface 
defined by a set of subcomponents, it cannot be removed from the composite surface. 



If we define the system to be the set C of system subcomponents, and the system attack surface as the 
composite surface of the attack surface defined in Equation 2, we can easily end up in a situation where the 
same attack vector is included in the attack surfaces of multiple subcomponents. In this case, we may 
remove a subcomponent with that vector, but because other subcomponents in C are affected by that vector, 
that vector still exists. Specifically, given 𝐶 = {𝐶+, 𝐶., … , 𝐶7} and 𝐶., where 𝑣 ∈ 𝐼%

;2, we don’t have enough 
information to also know that 𝑣 ∉ 𝐼%

;=, 𝑥 ≤ 𝑛. Because of this, we cannot define an operation ⊓ that easily 
inverts the ⊔ operation. Essentially, all we can do is define 𝑆* 	⊓ 	𝑆+ 	= 𝑆. 	⊔ 	𝑆B ⊔ …⊔	𝑆7 ∶ 		 𝑆* = 	 𝑆+ 	⊔
	𝑆. ⊔ …⊔	𝑆7. 

To be able to apply set algebra to these constructs, we assume that the universal set of possible vectors 
does exist for each subset I and E, and is countable, though it is not knowable. By that we mean that it does 
exist, but at any given time the definition of that set may be hidden. This way we can also say that all the 
above sets have complements, and therefore set algebraic operations still apply. 

3.3 Attacker Perspective 

The previous operations took more of a horizontal, inclusive perspective on attack surface definitions. 
We also need to consider what an attack surface looks like from a particular point of view in a system, and 
how that attack surface changes as an attacker changes position in a system. 

 

For example, in Figure 3, if we assume that host A is compromised, and that the system is self-
contained with no external access, and that the switch at D prohibits communication between hosts A and 
C, then the initial system attack surface the attacker at host A can access is the composite surface of the 
switch D and the host B. As C is initially inaccessible, its attack surface is inconsequential.  

Now, if switch D is compromised, then the attack surface at C is accessible and needs to be included 
in the current attack surface seen by the attacker. Note that while we are using a small LAN for simplicity, 
the approach still holds for host based analysis as well. This example has both topological restrictions (in 
that it is a standalone LAN) and controls (the switch blocks traffic between A and C) that limit the attack 
surface accessible to the attacker. 

The attacker is essentially traversing a Markov chain while moving through a system. Formally, if we 
assume an initial state of a given system where the system is uncompromised, and that the states of the 
system are countable, we can say that the state 𝑋7E+ is dependent only on the state 𝑋7, or that 𝑃 𝑋7E+ =
𝑃 𝑋7E+|	𝑋7, 𝑋7H+, … , 𝑋+ = 𝑃 𝑋7E+|	𝑋7 . After all, an attacker is only going to be able to extend an attack 
into a system from the previously compromised state of that system. If the system is uncompromised, the 
attacker needs to first gain a foothold. If the system is compromised, the attacker needs to pivot through the 
system using additional vulnerable elements. 

 
Figure 3: Simple notional networked system. 

A B C

D



While this model applies, the transition probabilities are not stationary. A given attacker may have a 
position in a system but not have the resources needed to take advantage of it until, one day, a new exploit 
is released that the attacker can use to further compromise that system. 

This Markovian property of the set of states in a system representation allows us to evaluate the 
meaning and implications of a single state in isolation. This way, in order to understand the active attack 
surface of a system, we only need to keep the current state in mind. We do not need to maintain a record of 
previous states. This, in turn, makes formalizing attack graph derivation from a dynamic system more 
tractable. 

3.4 Attacker’s Perspective, Graph Management, and Dynamic Attack Graphs 

We have described basic attributes of an attacker in a system. First, the process of an attacker 
transitioning a system is a non-homogenous Markov process with dynamic transition probabilities. We have 
also defined a way to aggregate and disaggregate attack graphs. Combining these capabilities, we can define 
a methodology to handle dynamic attack graph management. 

First, let us define a system 𝑆. This system is defined by a set of components 𝐶 related with a set of 
binary relations 𝑅 over 𝐶. This allows us to define 𝑆 as a graph where 𝑆 = (𝐶, 𝑅). A relation 𝑟 = (𝑐L, 𝑐7) ∈
𝑅 if 𝑐7 is visible from 𝑐L, where visible means that an action from 𝑐7 will have some effect on 𝑐L. If a 
component 𝑐7 is visible from another component 𝑐L, and component 𝑐L is compromised, then the attack 
surface of 𝑐7 is considered active. At any point in time, the active attack surface of 𝑆 is the culmination of 
all active component attack surfaces modified by any applied security controls. 

The system 𝑆 can be characterized by a set of system states 𝐸. We have an initial state 𝑒N ∈ 𝐸 that is 
the initial state of 𝑆. All states 𝑒 ∈ 𝐸	are associated with an attack surface 𝑢 ∈ 𝑈, including the initial state 
𝑒Q. All states in 𝐸 are related to other states in 𝐸 via a set of binary relations 𝐵 and a set of conditions 𝐴. 
This allows us to model the state space and associated transitions as a finite automaton, where 𝐸 is the set 
of states; 𝒫(𝐴), the powerset set of transition conditions, are the alphabet; 𝛿 ∶ 𝐸	×	𝒫 𝐴 ⟶ 𝐸 is the 
transition function; 𝑒Q is the start state; and the set of final states is empty. The current state of this 
automaton is the current state of the system, and is associated with the active attack surface 𝑢 of 𝑆. 

Overall, this model allows us to determine the current attack surface of a system at a point in time, 
based on our best understanding of the state of the system. As an attack surface of a system will change in 
time based on current threats, we can estimate the current possible attack surface of the system from the 
perspective of attackers with a variety of roles, including malicious insiders. 

Revisiting the system in Figure 2, we can define an initial attack surface for an external attacker as the 
Pen Drive or the thermocouple wire, as outlined in Table II. This is the initial state 𝑒Q. The system 𝑆 =
{𝑡ℎ𝑒𝑟𝑚𝑜𝑐𝑜𝑢𝑝𝑙𝑒, 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟, 𝑃𝐶, 𝑃𝑒𝑛	𝐷𝑟𝑖𝑣𝑒}	  and 𝑅 =
{ 𝑇ℎ𝑒𝑟𝑚𝑜𝑐𝑜𝑢𝑝𝑙𝑒, 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 , 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟, 𝑃𝐶 , 𝑃𝐶, 𝑃𝑒𝑛𝐷𝑟𝑖𝑣𝑒	 }. At 𝑒Q, the attack surface 𝑢 
associated with 𝑒Q is described by Table II. We have some set of conditions 𝐴 that model a threat 
information feed. The powerset, 𝒫 𝐴 , is the set of all combinations of threat information, and represents 
threat information that specifically informs the cyber security state of the system. The transition function 𝛿 
takes, as input, the current state 𝑒Q and the set of information from the threat feed, and outputs the new 
system state. The system is installed and we begin to monitor at time 𝑡N. At some time 𝑡7, we will assume 
that the threat feed informs us that the key to the locked room has been copied. With this information, the 
new system state output by the transition function is the state represented in Figure 1, as the room has been 
compromised, and the new attack surface is that described in Table I. 



4 PREVIOUS WORK 

Our proposed model for attack surface management differs from previous work in three areas. First, 
we are only interested in defining ingress and egress vectors; we make no attempt to evaluate the severity 
of a vector or the likelihood that the vector may be exposed. Rather, we are only interested in if a vector is 
exposed at all. Second, we do not model the system as an automaton, rather we model the system and its 
evolution as a Markov process with groups of related states. We model the process states and transitions as 
an automaton. We do define a system, but we are only interested in the structure of the system for our 
analysis. Finally, we are interested in evaluating how an attack surfaces changes based on external threat 
state rather than evaluating the likelihood of an attack or the risk of specific vectors. 

Manadhata et al. define an attack surface in a similar way – which is not surprising as this is an industry 
standard definition today. They have been focused on defining the sizes of attack surfaces and the risks 
thereof. We use a more general definition of an attack surface in this work, including data items and 
communication channels as routes of ingress and egress. Our work diverges from there, as Manadhata et 
al. focus on developing metrics for attack surface definition based on damage potential and effort while we 
are concerned with evaluating the current attack surface of a system based on known threats and attack 
surface dynamics [12-16]. 

Howard et al. uses a state machine to define attacks through an attack surface. This analysis is like 
ours, but we use a more formal automaton and have a different focus. Howard focuses on vulnerabilities 
associated with an attack surface to derive a notion of attack surface size. With this size metric in hand, he 
then derives a notion of “attackability” of a system, which can then be used to make a system more secure 
by making the system less attackable. Manadhata and Howard use the same definition of an attack surface. 
We are more concerned with attack surface dynamics than attack surface evaluation [17]. 

Other authors have focused on more static qualitative definitions of attack surfaces and less 
automatable ways of attack surfaces management. Overall, the primary approach is defining the attack 
surface once, during system development, and using that surface definition to enhance overall security via 
surface reduction[7, 8]. 

5 CONCLUSIONS AND FUTURE WORK 

Attack surface management has been a static exercise intended to highlight possible attack vectors in 
a system, and once defined, give developers a clear roadmap toward a more secure system. We extended 
this approach, showing how you can use the same basic guidelines in a more rigorous framework to 
dynamically evaluate the true attack surface of given system based on current system threats tied to potential 
attacker positioning in a system. 

With this more formal description of an approach to dynamic system attack surface management, our 
next steps will focus on automating this analysis. Specifically, we intend to use this approach on a deployed 
system to help us proactively manage potential security vulnerabilities based on current threat feeds. 

6 REFERENCES 

 

1. Lamb, C. and J. Hatcher, Attributes of Secureable Architectures. 2015, Sandia National 
Laboratories. 

2. Lamb, C., A Survey of Secure Architectural Principles. 2015, Sandia National Laboratories. 
3. Cyber Security Plan for Nuclear Power Reactors. 2009, Nuclear Energy Institute. 
4. Cyber Security Programs for Nuclear Facilities. 2010, Nuclear Regulatory Commission. 



5. Protection of Digital Computer and Communication Systems and Networks. 2009, Nuclear 
Regulatory Commission. 

6. OWASP. Attack Surface Analysis Cheat Sheet. 2015 07/18/2015 [cited 2017; Available from: 
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet. 

7. Olzak, T., Introduction to Enterprise Security: A Practitioner’s Guide. 2012: INFOSEC Institute. 
8. Northcutt, S. The Attack Surface Problem. 2017  [cited 2017; Available from: 

http://www.sans.edu/cyber-research/security-laboratory/article/did-attack-surface. 
9. Omega. Universal Thermocouple Connector Direct USB to PC Connection. 2017  [cited 2017; 

Available from: http://www.omega.com/pptst/UTC-USB.html. 
10. Omega. Hollow Tube Thermocouple Probe. 2017  [cited 2017; Available from: 

http://www.omega.com/pptst/HTTC36.html. 
11. Microsoft. Improving Security Using Attack Surface Analyzer. 2017  [cited 2017 February 17]; 

Available from: https://technet.microsoft.com/en-us/security/gg749821.aspx. 
12. Manadhata, P.K. and J.M. Wing, A formal model for a system’s attack surface, in Moving Target 

Defense. 2011, Springer. p. 1-28. 
13. Manadhata, P. and J.M. Wing, Measuring a system 's attack surface. 2004, DTIC Document. 
14. Manadhata, P.K., D.K. Kaynar, and J.M. Wing, A formal model for a system 's attack surface. 2007, 

DTIC Document. 
15. Manadhata, P.K. and J.M. Wing, An attack surface metric. IEEE Transactions on Software 

Engineering, 2011. 37(3): p. 371-386. 
16. Manadhata, P.K., et al., An approach to measuring a system 's attack surface. 2007, DTIC 

Document. 
17. Howard, M., J. Pincus, and J.M. Wing, Measuring relative attack surfaces, in Computer Security in 

the 21st Century. 2005, Springer. p. 109-137. 
 


