

Status of Waste Isolation Pilot Plant Compliance with 40 CFR 191B, December 1992

M.G. Marietta and D.R. Anderson
WIPP Performance Assessment Department 6342
Sandia National Laboratories
Albuquerque, NM 87185

ABSTRACT

Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the U.S. Department of Energy (DOE) must evaluate compliance with long-term regulations of the U.S. Environmental Protection Agency (EPA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper describes the 1992 preliminary comparison with Subpart B of the *Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes* (40 CFR 191), which regulates long-term releases of radioactive waste. Results of the 1992 PA are preliminary, and cannot be used to determine compliance or noncompliance with EPA regulations because portions of the modeling system and data base are incomplete. Results are consistent, however, with those of previous iterations of PA, and the SNL WIPP PA Department has high confidence that compliance with 40 CFR 191B can be demonstrated. Comparison of predicted radiation doses from the disposal system also gives high confidence that the disposal system is safe for long-term isolation.

MASTER *Se*
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ACKNOWLEDGMENTS

The authors wish to recognize the technical reviews of this report by David Gallegos and Andrew Peterson (6342) of Sandia National Laboratories.

PREFACE

This SAND report is a reproduction of the identically titled paper published in:

American Nuclear Society and American Society of Civil Engineers. *High-Level Waste Management: Proceedings of the Fourth Annual International Conference in Las Vegas, NV, April 26 - 30, 1993*. American Nuclear Society, La Grange, IL; American Society of Civil Engineers, New York, NY.

STATUS OF WIPP COMPLIANCE WITH EPA 40 CFR 191B

DECEMBER 1992

M.G. Marietta and D.R. Anderson
WIPP Performance Assessment Department 6342
Sandia National Laboratories
Albuquerque, New Mexico 87185
(505) 844 8038

ABSTRACT

Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper describes the 1992 preliminary comparison with Subpart B of the *Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes* (40 CFR 191), which regulates long-term releases of radioactive waste. Results of the 1992 PA are preliminary, and cannot be used to determine compliance or noncompliance with EPA regulations because portions of the modeling system and data base are incomplete. Results are consistent, however, with those of previous iterations of PA, and the SNL WIPP PA Department has high confidence that compliance with 40 CFR 191B can be demonstrated. Comparison of predicted radiation doses from the disposal system also gives high confidence that the disposal system is safe for long-term isolation.

INTRODUCTION

The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP), located in 255 million-year-old bedded salt in southeastern New Mexico, for disposal of transuranic wastes generated by defense programs. The DOE must first evaluate compliance with the Environmental Protection Agency's (EPA) *Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes* (40 CFR Part 191),¹ and with the *Land Disposal Restrictions* (40 CFR Part 268)² of the *Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act*. The *National Environmental Policy Act* (NEPA)³ requires all

agencies of the federal government to prepare a detailed statement on the environmental impacts of "proposed major federal actions affecting the quality of the human environment." In compliance with the NEPA, an additional supplemental environmental impact statement (SEIS) is planned prior to permanent disposal.⁴ This paper addresses the present status of WIPP compliance with Subpart B of 40 CFR 191 and an evaluation of long-term safety of the WIPP.

Subpart B of 40 CFR 191 was vacated by a Federal Court of Appeals in 1987 and is undergoing revision; by agreement with the State of New Mexico⁵ the DOE will continue to evaluate repository performance with respect to the standard as first promulgated until a new version is available. The *Waste Isolation Pilot Plant Land Withdrawal Act*,⁶ which mandates specific actions before the Test Phase for the WIPP can begin, requires the EPA to repropagate the regulation before May 1993. The approach to 40 CFR 191B and the resultant methodology reported here have not been modified to reflect the EPA's efforts to develop a new Subpart B. The Containment Requirements in Subpart B of 40 CFR 191 set limits on the probability that cumulative radionuclide releases to the accessible environment during the 10,000 years following decommissioning of the repository will exceed certain limits. As defined in the standard, the accessible environment is "(1) the atmosphere; (2) land surfaces; (3) surface waters; (4) oceans; and (5) all of the lithosphere that is beyond the controlled area" (191.12(k)).¹

To comply with the requirements of 40 CFR 191B, performance assessments (PAs) must construct a modeling system that can adequately simulate all realistic future states of the repository that might result in radionuclide releases. Because the regulatory limits are probabilistic, PAs must accurately reflect variability and uncertainty within all factors that contribute to the simulation, including

variability in material properties, probabilities of future human actions, and uncertainties inherent in the conceptual and numerical models that simulate reality. In keeping with the strategy of the WIPP Project Headquarters for achieving a compliance decision,⁴ the WIPP PA Department has completed three annual PAs evaluating preliminary compliance with 40 CFR Part 191, Subpart B.7-16

This paper summarizes the present status of WIPP PA.14-16. All PA results to date are preliminary and cannot be used to determine compliance or noncompliance with EPA regulations governing long-term performance. Only the long-term performance of the disposal system is addressed.

INADVERTENT HUMAN INTRUSION

PAs for 40 CFR 191B presently concentrate on inadvertent human intrusion during exploratory drilling for resources, which has been demonstrated by past analyses^{17,18,10-12,19} to be the only event likely to lead to radionuclide releases close to or in excess of regulatory limits. Future drilling technology is assumed for these analyses to be comparable to technology presently in use in the region around the WIPP.

If the waste-disposal panels are penetrated by an exploratory borehole, radionuclides may reach the accessible environment by two principal pathways. First, some radionuclides will be transported up the borehole directly to the ground surface. Second, additional radionuclides transported up the borehole will migrate into overlying strata and may be transported laterally in groundwater to the subsurface boundary of the accessible environment.

Most releases at the ground surface will be in the form of particulate waste entrained in the drilling fluid, including components from cuttings (material removed by the drill bit), cavings (material eroded from the borehole wall by the circulating drilling fluid), and spallings (material that enters the borehole as the repository depressurizes). For convenience, these particulate releases are collectively referred to in performance-assessment documentation as cuttings. For the 1992 calculations, results referred to as cuttings include cavings but do not include spallings. If important, spallings will be included in future PAs when models and data are available. Release of radionuclides dissolved in brine that may flow up the borehole to the ground surface both during drilling and after degradation of plugs has not been included either in past PAs or in the results presented in this volume. Preliminary analyses of releases by these mechanisms will be included in later PAs.

Subsurface releases of radionuclides following lateral transport in groundwater are believed most likely to occur in the Culebra Dolomite Member of the Rustler Formation overlying the repository. For analysis purposes, subsurface transport is assumed to occur only in the Culebra, maximizing the potential for releases by this pathway.

Figure 1 illustrates a representative intrusion scenario. In the scenario, a borehole penetrates the repository and a hypothetical pressurized brine reservoir in the underlying Castile Formation.

COMPUTATIONAL MODELS

The primary computer programs used in the computational models for the 1992 preliminary PA (Figure 2) reflect improvements in the conceptual and numerical models used in the 1991 and previous PAs and permit the replacement of simplifying assumptions with more realistic models. Three of the most significant improvements in 1992 are discussed here.

The 1992 calculations mark the first time the effects of salt creep have been explicitly included in PAs. Salt will deform over time by creep in response to a pressure gradient, and, if the repository remained at atmospheric pressure, lithostatic stresses would cause it to close almost completely within 100 years.²⁰⁻²² Gas will be generated within the repository by degradation of the waste, however, and pressure within the repository will rise to elevated levels that will retard complete creep closure and may perhaps partially reverse the process. In 1991 no model was available to describe the coupled interaction of creep closure and gas pressurization, and the performance-assessment calculations used a simplifying assumption that porosity within the disposal region would remain constant through time. The 1992 calculations use output from the geomechanical code SANCHO23 to define the porosity of the waste as a function of pressure. Although this method does not represent a full coupling of creep closure and gas generation, the modeling improvement allows the PA to evaluate the importance of changing void volume in the repository.

The method used to incorporate spatial variability in the transmissivity field in the Culebra has been modified significantly from that used in 1991. WIPP PA now uses an automated inverse approach to calibrate a two-dimensional model to both steady-state and transient pressure data, generating multiple realizations of the transmissivity field.^{15,24} Seventy calibrated fields were sampled for use in the 1992 PA.

Radionuclide transport in the Culebra Dolomite, which had been simulated using

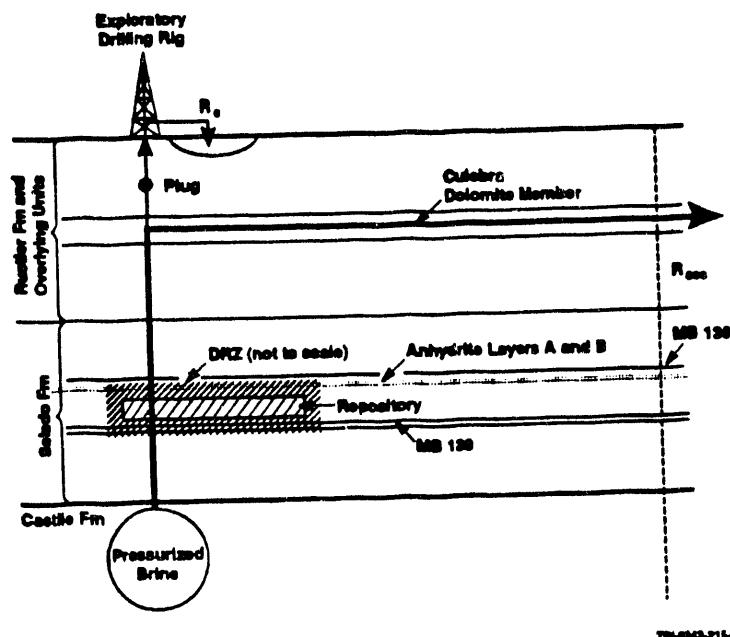


Figure 1 - Conceptual model for an intrusion scenario in which a borehole penetrates the repository and a hypothetical pressurized brine reservoir in the underlying Castile Formation. Arrows indicate assumed direction and relative magnitude of flow. R_c is the release of cuttings and eroded material. R_{acc} is the release at the subsurface boundary of the accessible environment. Illustrated plugs are assumed to remain intact for 10,000 years.

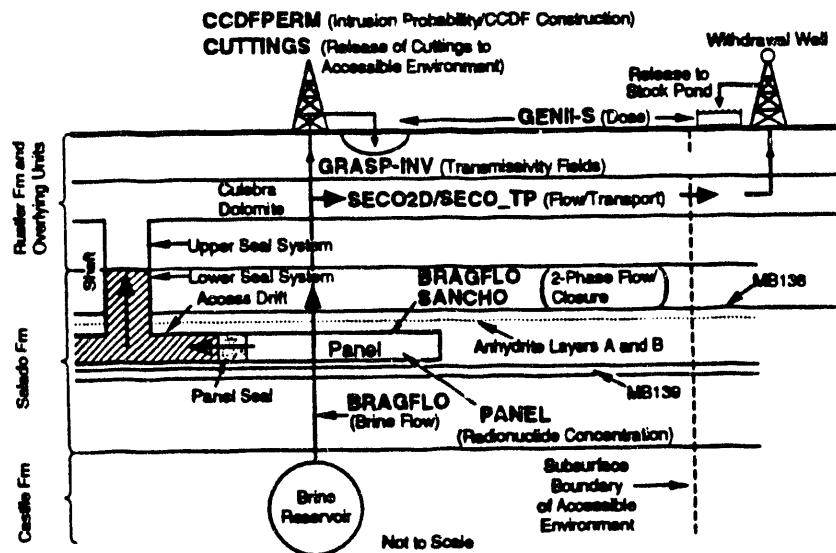


Figure 2 - Major codes used in the 1992 performance assessment.

STAFF2D²⁵ in the 1991 PA, is now simulated by the SECO-TP code.¹⁶ SECO-TP is a dual-porosity model in which advective transport is allowed only in fractures, and diffusion of solute occurs into the rock matrix surrounding the fracture. The fracture system is idealized as planar and parallel, and each fracture wall may be coated with a layer of clay of uniform thickness and porosity. The model is capable of simulating both physical retardation by diffusion and chemical retardation by sorption in both clay fracture linings and dolomite matrix.

PROBABILITIES OF SCENARIOS

Preliminary PAs for the WIPP prior to 1990 considered a fixed number of human intrusions with fixed and arbitrary probabilities.^{17,26} The 1990 preliminary assessment⁷ compared performance assuming fixed probabilities for intrusion events with performance estimated assuming that intrusion through the repository follows a Poisson process (i.e., intrusion events are random in time and space) with a rate constant, λ_0 . The 1991 assessment^{10,11} included a probability model based on the Poisson assumption and also included effects of variable activity loading within the waste-disposal panels with boreholes intersecting waste of five different levels of radioactivity.¹³ Based on guidance in Appendix B of 40 CFR 191, a maximum of 30 boreholes/km² were allowed in 10,000 years.

The 1992 preliminary PA marks the first use for the WIPP of external expert judgment to estimate the probability of future intrusion. Teams of experts from outside the WIPP Project were selected and organized into two panels to address (1) the nature of future societies and the possible modes of intrusion, and (2) types of markers and their potential effectiveness in deterring intrusion.¹⁶ The judgments elicited from these panels were used to construct an algorithm describing possible changes in the Poisson rate constant, λ_t , with time.¹⁶ The 1992 preliminary PA presents results calculated both using the 1991 time-invariant formulation and the time-dependent formulation based on external expert judgment. Both formulations used the same representation for variable activity loading within the waste-disposal panels used in the 1991 PA.¹³ The time-dependent formulation, which included the deterrence effect of markers, resulted in significantly fewer intrusions than the time-invariant formulation.

RESULTS OF THE 1992 PERFORMANCE ASSESSMENT

Results of the 1992 PA are consistent with the conclusion made in previous preliminary comparisons that performance estimates for the WIPP lie below the limits set by the Containment Requirements of Subpart B of 40 CFR 191.^{7,10} As illustrated in Figure 3, consideration of alternative models for the probability of human intrusion and radionuclide transport in the Culebra Dolomite provides insights into the

relative impacts on performance of specific components of the natural barrier system and institutional controls at the WIPP.

The uppermost CCDF in Figure 3, labeled "Total, Single Porosity + Cuttings, λ_0 " and calculated using the single-porosity (fracture only) and constant λ models, represents an estimate of the performance of the disposal system with very little contribution from the natural barrier provided by retardation in the Culebra Dolomite and no contribution from the potential institutional barrier that could be provided by passive markers, as required by the Assurance Requirements (191.14).¹ For the modeling system and data base used in 1992, the mean CCDF for this case lies below the EPA limits.

The segments of a CCDF shown with a dotted line and labeled "Total, Discharge from Borehole + Cuttings, λ_0 " display performance with no contribution whatsoever from retardation in the Culebra Dolomite. This CCDF is unlike others shown in this figure in that releases are not calculated at the accessible environment and therefore is not suitable for comparison, preliminary or otherwise, with the Containment Requirements. The curve displays releases directly into the Culebra Dolomite (with cuttings also included) from boreholes occurring at 1000 years and therefore provides an estimate of total releases if subsurface transport to the accessible environment were instantaneous and complete. Instantaneous and complete transport is physically unrealistic, and this curve is displayed only for the purpose of comparison with the curve described in the previous paragraph, which was calculated using the single-porosity and constant λ models. The two curves are identical for most of their lengths. The differences between the curves are caused by radioactive decay during transport, and the single-porosity transport model in effect allows all sufficiently long-lived radionuclides that enter the Culebra Dolomite to be transported to the accessible environment within the 9000 years following intrusion.

The CCDF in Figure 3 labeled "Total, Dual Porosity + Cuttings, $K_d=0$, λ_0 " represents an estimate of the performance of the disposal system if physical retardation by diffusion into the pore volume of the Culebra Dolomite is included as a part of the natural barrier system. The area between the first and second CCDFs is a measure of the potential regulatory impact of including physical retardation. Similarly, the next CCDF in Figure 3, calculated using the dual-porosity, $K_d=0$, and constant λ models, represents an estimate of the performance of the disposal system if both physical and chemical retardation in the Culebra Dolomite are included in the natural barrier system. The location of this third curve is determined entirely by cuttings releases.

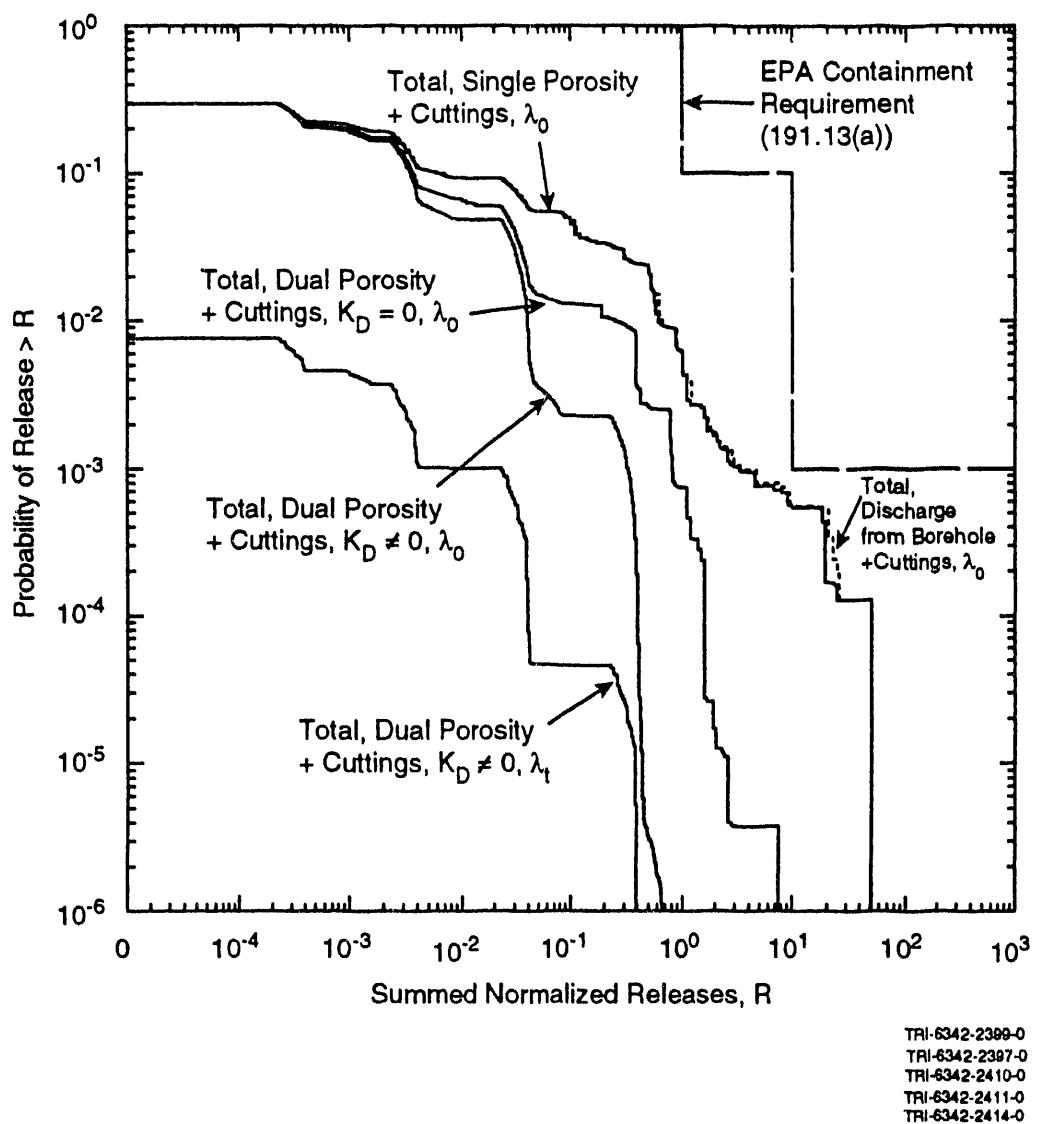


Figure 3 - Comparison of mean CCDFs for total (cuttings plus subsurface) releases from intrusions occurring at 1000 years showing the impact of including specific components of the natural and institutional barrier systems. Both curves shown for $K_D \neq 0$ are dominated completely by cuttings releases. Summed normalized releases are displayed using an inverse hyperbolic sine scale, which differs from a logarithmic scale only in the interval between 0 and 10^{-4} .

The final CCDF in Figure 3, calculated using the dual-porosity, $K_d=0$, and time-dependent λ models, shows the effect of including expert judgment on the efficacy of passive markers in reducing the probability of human intrusion. This final CCDF, also determined entirely by cuttings releases, was calculated using what the WIPP PA Department believes at this time to be the most realistic conceptual model for the disposal system, based on models and data available in 1992. As indicated previously, results are preliminary, and none of the curves shown in Figure 3 are believed sufficiently defensible for use in a final compliance evaluation.

CONCLUSIONS

Significant improvements in the 1992 PA modeling system over that used in previous years²⁶ were the simulation of waste-generated gas and two-phase (brine and gas) flow modeling in the repository; the use of geostatistically generated transmissivity fields in the Culebra Dolomite Member; the use of a Poisson model with time-varying drilling intensities to determine scenario probabilities; the inclusion of a preliminary analysis of potential effects of climate variability on flow in the Culebra Dolomite; and the inclusion of the effects of salt creep (closure and inflation of waste panels). Processes not included in the analyses reported in the set of documents comprising the 1992 PA that could have a significant effect on performance are fracturing in the anhydrite interbeds, and spalling into an intrusion borehole. Important uncertainties that have not been assessed and included in the 1992 PA¹⁴⁻¹⁶ are conceptual uncertainties in many parts of the system, both in non-Salado and Salado natural barrier systems and within the engineered barrier system. Effects of subsidence due to potash mining were not included in the scenario analyses. WIPP PA has a high level of confidence that the net effect of including these refinements will not change the overall conclusions (major conclusions 1 and 2 below) of the 1992 analysis but will provide additional confirmation for those conclusions.

Major conclusions that can be drawn from the 1992 preliminary PA for the WIPP are as follows:

1. PA analysts have high confidence that compliance with Subpart B of 40 CFR 191 can be demonstrated.
2. By comparison with doses from other common sources and ICRP recommendations, PA analysts have high confidence that the facility is safe for long-term isolation.

These two conclusions, and therefore demonstration of compliance with 40 CFR 191B and determination of the long-term safety of the disposal system, are conditional on completion of those portions of the WIPP Test Phase Plan²⁷

that are shown to be important for PA, to confirm that reality lies within the range of uncertainty used by PA.

Analyses supporting these conclusions indicate that, with regard to 40 CFR 191B, the direct release of radioactive material at the ground surface during borehole intrusions dominates the estimates of cumulative 10,000-year releases. Important uncertain parameters include the rate of future intrusion, the permeability of future borehole fill, and the diameter of future boreholes. An important assumption used in calculating these direct releases is that present-day drilling technology persists for 10,000 years. Other parameters for which uncertainty has a relatively large impact on cumulative radionuclide releases include permeabilities of the anhydrite and halite of the undisturbed Salado Formation, radionuclide solubilities in repository brine, radionuclide retardation in the Culebra Dolomite, and parameters used in the assumed dual-porosity model for radionuclide transport in the Culebra Dolomite.

ACKNOWLEDGMENT

This is Sandia National Laboratories report SAND93-0054C. Work was performed for the United States Department of Energy under Contract DE-AC04-76DP00789.

REFERENCES

1. United States Environmental Protection Agency, "40 CFR Part 191: Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes; Final Rule," *Federal Register* 50, 38066-38089 (1985).
2. United States Environmental Protection Agency, "40 CFR Part 268: Land Disposal Restrictions," as amended and published in the most recent *Code of Federal Regulations*, Office of the Federal Register, National Archives and Records Administration, Washington, DC (1986).
3. Public Law 91-190, "National Environmental Policy Act of 1969, as amended by Public Law 94-52 and Public Law 94-83 (1970).
4. United States Department of Energy, "Strategy for the Waste Isolation Pilot Plant Test Phase," *DOE/EM/48063-2*, Office of Waste Operations, US Department of Energy, Washington, DC (1991).
5. Public Law 102-579, "Waste Isolation Pilot Plant Land Withdrawal Act" (1992).
6. United States Department of Energy and State of New Mexico, "Agreement for Consultation and Cooperation" on the WIPP (1981, modified November 30, 1984; August 4, 1987; and March 22, 1988).
7. S.G. Bertram-Howery, M.G. Marietta, R.P. Rechard, P.N. Swift, D.R. Anderson, B.L. Baker, J.E. Bean, Jr., W. Beyeler, K.F. Brinster, R.V.

Guzowski, J.C. Helton, R.D. McCurley, D.K. Rudeen, J.D. Schreiber, and P. Vaughn, "Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1990, SAND90-2347, Sandia National Laboratories (1990).

8. R.P. Rechard, H. Iuzzolino, and J.S. Sandha, "Data Used in Preliminary Performance Assessment of the Waste Isolation Pilot Plant (1990)," SAND89-2408, Sandia National Laboratories (1990).

9. J.C. Helton, J.C., J.W. Garner, R.D. McCurley, and D.K. Rudeen, "Sensitivity Analysis Techniques and Results for Performance Assessment at the Waste Isolation Pilot Plant," SAND90-7103, Sandia National Laboratories (1991).

10. WIPP Performance Assessment Division, "Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991—Volume 1: Methodology and Results," SAND91-0893/1, Sandia National Laboratories (1991).

11. WIPP Performance Assessment Division, "Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991—Volume 2: Probability and Consequence Modeling," SAND91-0893/2, Sandia National Laboratories (1991).

12. WIPP Performance Assessment Division, "Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991—Volume 3: Reference Data," SAND91-0893/3, Sandia National Laboratories (1991).

13. J.C. Helton, J.W. Garner, R.P. Rechard, D.K. Rudeen, and P.N. Swift, "Preliminary Comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1991—Volume 4: Uncertainty and Sensitivity Analysis Results," SAND91-0893/4, Sandia National Laboratories (1992).

14. WIPP Performance Assessment Department, "Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992—Volume 1: Third Comparison with 40 CFR 191, Subpart B," SAND92-0700/1, Sandia National Laboratories (1992).

15. WIPP Performance Assessment Department, "Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992—Volume 2: Technical Basis," SAND92-0700/2, Sandia National Laboratories (1992).

16. Sandia WIPP Project, "Preliminary Performance Assessment for the Waste Isolation Pilot Plant, December 1992—Volume 3: Model Parameters," SAND92-0700/3, Sandia National Laboratories (1992).

17. M.G. Marietta, S.G. Bertram-Howery, D.R. Anderson, K. Brinster, R. Guzowski, H. Iuzzolino, and R.P. Rechard, "Performance Assessment Methodology Demonstration: Methodology Development for Purposes of Evaluating Compliance with EPA 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant," SAND89-2027, Sandia National Laboratories (1989).

18. S.G. Bertram-Howery, M.G. Marietta, D.R. Anderson, K.F. Brinster, L.S. Gomez, R.V. Guzowski, and R.P. Rechard, "Draft Forecast of the Final Report for the Comparison to 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant," SAND88-1452, Sandia National Laboratories (1989).

19. WIPP Performance Assessment Department, "Long-Term Gas and Brine Migration at the Waste Isolation Pilot Plant: Preliminary Sensitivity Analyses for Post-Closure 40 CFR 268 (RCRA), May 1992," SAND92-1933, Sandia National Laboratories (1992).

20. L.D. Tyler, R.V. Matalucci, M.A. Molecke, D.E. Munson, E.J. Nowak, and J.C. Stormont, "Summary Report for the WIPP Technology Development Program for Isolation of Radioactive Waste," SAND88-0844, Sandia National Laboratories (1988).

21. D.E. Munson, A.F. Fossum, and P.E. Senseny, "Advances in Resolution of Discrepancies Between Predicted and Measured In Situ WIPP Room Closures," SAND88-2948, Sandia National Laboratories (1989).

22. D.E. Munson, A.F. Fossum, and P.E. Senseny, "Approach to First Principles Model Prediction of Measured WIPP In Situ Room Closure in Salt," SAND88-2535, Sandia National Laboratories (1989).

23. C.M. Stone, R.D. Krieg, and Z.E. Beisinger, "SANCHO: A Finite Element Computer Program for the Quasistatic, Large Deformation, Inelastic Response of Two-Dimensional Solids," SAND84-2618, Sandia National Laboratories (1985).

24. A.M. LaVenue and B.S. RamaRao, "A Modeling Approach to Address Spatial Variability within the Culebra Dolomite Transmissivity Field," SAND89-7306, Sandia National Laboratories (1993).

25. P.S. Huyakorn, H.O. White, Jr., and S. Panday, STAFF2D Solute Transport and Fracture Flow in Two Dimensions, Hydrogeologic, Inc., Herndon, VA (1989).

26. M.G. Marietta, S.G. Bertram-Howery, R.P. Rechard, and D.R. Anderson, "Status of WIPP Compliance with EPA 40 CFR 191, December 1990," High Level Radioactive Waste Management Proceedings of the Second Annual International Conference, Las Vegas, April 28-May 3, 1991, 2, 1181-1188.

27. United States Department of Energy WIPP Project Integration Office, "WIPP Test Phase Plan," DOE/WIPP89-011, Rev. 1, Albuquerque, NM (1993).

DISTRIBUTION

(Send Distribution list changes to M.M. Gruebel, Dept. 6342, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-5800)

Federal Agencies

US Department of Energy (6)
Office of Civilian Radioactive Waste Management
Attn: Deputy Director, RW-2
Associate Director, RW-10/50
Office of Program and Resources Management
Office of Contract Business Management
Director, RW-22, Analysis and Verification Division
Associate Director, RW-30
Office of Systems and Compliance
Associate Director, RW-40
Office of Storage and Transportation
Director, RW-4/5
Office of Strategic Planning and International Programs
Office of External Relations
Forrestal Building
Washington, DC 20585

US Department of Energy
Albuquerque Operations Office
Attn: National Atomic Museum Library
PO Box 5400
Albuquerque, NM 87185

US Department of Energy (2)
Office of Environmental Restoration and Waste Management
Attn: EM-1
C. Frank, EM-50
Washington, DC 20585

US Department of Energy (3)
Office of Environmental Restoration and Waste Management
Attn: M. Frei, EM-34, Trevion II
Director, Waste Management Projects
Washington, DC 20585-0002

US Department of Energy
Office of Environmental Restoration and Waste Management
Attn: J. Lytle, EM-30, Trevion II
Washington, DC 20585-0002

US Department of Energy
Office of Environmental Restoration and Waste Management
Attn: S. Schneider, EM-342, Trevion II
Washington, DC 20585-0002

US Department of Energy (3)
WIPP Task Force
Attn: G.H. Daly
S. Fucigna
B. Bower
12800 Middlebrook Rd., Suite 400
Germantown, MD 20874

US Department of Energy (4)
Office of Environment, Safety and Health
Attn: R.P. Berube, EH-20
C. Borgstrum, EH-25
R. Pelletier, EH-231
K. Taimi, EH-232
Washington, DC 20585

US Department of Energy (6)
WIPP Project Integration Office
Attn: S. Alcorn
W.J. Arthur III
J. Coffey
L.W. Gage
P.J. Higgins
D.A. Olona
PO Box 5400
Albuquerque, NM 87115-5400

US Department of Energy (2)
WIPP Project Integration Satellite Office
Attn: R. Batra
R. Becker
PO Box 3090, Mail Stop 525
Carlsbad, NM 88221-3090

US Department of Energy (10)
WIPP Project Site Office (Carlsbad)
Attn: A. Hunt (4)
V. Daub (4)
J. Lippis
K. Hunter
PO Box 3090
Carlsbad, NM 88221-3090

US Department of Energy
Research & Waste Management Division
Attn: Director
PO Box E
Oak Ridge, TN 37831

US Department of Energy (2)
Idaho Operations Office
Fuel Processing and Waste
Management Division
785 DOE Place
Idaho Falls, ID 83402

US Department of Energy
Savannah River Operations Office
Defense Waste Processing
Facility Project Office
Attn: W.D. Pearson
PO Box A
Aiken, SC 29802

US Department of Energy (2)
Richland Operations Office
Nuclear Fuel Cycle & Production
Division
Attn: R.E. Gerton
825 Jadwin Ave.
PO Box 500
Richland, WA 99352

US Department of Energy
Office of Geologic Disposal
Yucca Mountain Project Office
Attn: Associate Director, RW-20
PO Box 98608
Las Vegas, NV 89193-8608

US Department of Energy (3)
Nevada Operations Office
Attn: J.R. Boland
D. Livingston
P.K. Fitzsimmons
2753 S. Highland Drive
Las Vegas, NV 89183-8518

US Department of Energy (2)
Technical Information Center
PO Box 62
Oak Ridge, TN 37831

US Department of Energy
Los Alamos Area Office
528 35th Street
Los Alamos, NM 87544

US Department of Energy (2)
Chicago Operations Office
Attn: J.C. Haugen
9800 South Cass Avenue
Argonne, IL 60439

US Department of Energy (3)
Rocky Flats Area Office
Attn: W.C. Rask
G. Huffman
T. Lukow
PO Box 928
Golden, CO 80402-0928

US Department of Energy
Dayton Area Office
Attn: R. Grandfield
PO Box 66
Miamisburg, OH 45343-0066

US Department of Energy
Attn: E. Young
Room E-178
GAO/RCED/GTN
Washington, DC 20545

US Bureau of Land Management
Carlsbad Office
101 E. Mermod
Carlsbad, NM 88220

US Bureau of Land Management
New Mexico State Office
PO Box 1449
Santa Fe, NM 87507

US Environmental Protection
Agency (2)
Radiation Protection Programs
Attn: M. Oge
ANR-460
Washington, DC 20460

US Environmental Protection
Agency, Region 6
Attn: C. Byrum, 6T-ET
1445 Ross Ave.
Dallas, TX 75202

US Geological Survey (2)
Water Resources Division
Attn: C. Peters
4501 Indian School NE
Suite 200
Albuquerque, NM 87110

US Nuclear Regulatory Commission
Division of Waste Management
Attn: H. Marson
Mail Stop 4-H-3
Washington, DC 20555

US Nuclear Regulatory Commission (4)
Advisory Committee on Nuclear Waste
Attn: D. Moeller
M.J. Steindler
P.W. Pomeroy
W.J. Hinze
7920 Norfolk Ave.
Bethesda, MD 20814

Defense Nuclear Facilities Safety
Board
Attn: D. Winters
625 Indiana Ave. NW
Suite 700
Washington, DC 20004

Nuclear Waste Technical Review Board
Attn: Library (2)
1100 Wilson Blvd.
Suite 910
Arlington, VA 22209-2297

Energy and Science Division
Office of Management and Budget
Attn: K. Yuracko
725 17th Street NW
Washington, DC 20503

State Agencies

New Mexico Bureau of Mines
and Mineral Resources
Socorro, NM 87801

New Mexico Energy, Minerals and
Natural Resources Department
Attn: Librarian
2040 South Pacheco
Santa Fe, NM 87505

New Mexico Energy, Minerals and
Natural Resources Department
New Mexico Radioactive Task Force (2)
(Governor's WIPP Task Force)
Attn: A. Lockwood, Chairman
C. Wentz, Policy Analyst
2040 South Pacheco
Santa Fe, NM 87505

Bob Forrest
Mayor, City of Carlsbad
PO Box 1569
Carlsbad, NM 88221

Carlsbad Department of Development
Executive Director
Attn: C. Bernard
PO Box 1090
Carlsbad, NM 88221

New Mexico Environment Department
Secretary of the Environment (3)
Attn: J. Espinosa
PO Box 968
1190 St. Francis Drive
Santa Fe, NM 87503-0968

New Mexico Environment Department
Attn: P. McCasland
WIPP Project Site Office
PO Box 3090
Carlsbad, NM 88221-3090

New Mexico State Engineer's Office
Attn: M. Chudnoff
PO Box 25102
Santa Fe, NM 87504-5102

Environmental Evaluation Group (5)
Attn: R. Neill
7007 Wyoming Blvd. NE, Suite F-2
Albuquerque, NM 87109

Advisory Committee on Nuclear Facility Safety

John F. Ahearne
Executive Director, Sigma Xi
99 Alexander Drive
Research Triangle Park, NC 27709

James E. Martin
109 Observatory Road
Ann Arbor, MI 48109

WIPP Panel of National Research Council's Board on Radioactive Waste Management

Charles Fairhurst, Chairman
Department of Civil and
Mineral Engineering
University of Minnesota
500 Pillsbury Dr. SE
Minneapolis, MN 55455-0220

John O. Blomeke
3833 Sandy Shore Drive
Lenoir City, TN 37771-9803

John D. Bredehoeft
Western Region Hydrologist
Water Resources Division
US Geological Survey (M/S 439)
345 Middlefield Road
Menlo Park, CA 94025

Rodney C. Ewing
Department of Geology
University of New Mexico
Albuquerque, NM 87131

B. John Garrick
PLG, Inc.
4590 MacArthur Blvd.
Suite 400
Newport Beach, CA 92660-2027

Leonard F. Konikow
US Geological Survey
431 National Center
Reston, VA 22092

Jeremiah O'Driscoll
505 Valley Hill Drive
Atlanta, GA 30350

Chris G. Whipple
ICF Kaiser Engineers
1800 Harrison St.
Oakland, CA 94612-3430

National Research Council (3)
Board on Radioactive Waste Management
HA 456
Attn: C.A. Anderson
P.B. Myers
G.J. Grube
2101 Constitution Ave. NW
Washington, DC 20418

Performance Assessment Peer Review Panel

G. Ross Heath
College of Ocean and Fishery
Sciences, HN-15
583 Henderson Hall
University of Washington
Seattle, WA 98195

Thomas H. Pigford
Department of Nuclear Engineering
4159 Etcheverry Hall
University of California
Berkeley, CA 94720

Thomas A. Cotton
JK Research Associates, Inc.
4429 Butterworth Place NW
Washington, DC 20016

Robert J. Budnitz
President, Future Resources
Associates, Inc.
2000 Center Street, Suite 418
Berkeley, CA 94704

C. John Mann
Department of Geology
245 Natural History Bldg.
1301 West Green Street
University of Illinois
Urbana, IL 61801

Frank W. Schwartz
Department of Geology and Mineralogy
The Ohio State University
Scott Hall
1090 Carmack Rd.
Columbus, OH 43210

National Laboratories

Argonne National Laboratory (2)
Attn: A. Smith
D. Tomasko
9700 South Cass, Bldg. 201
Argonne, IL 60439

Battelle Pacific Northwest
Laboratory (2)
Attn: S. Bates
R.E. Westerman
MSIN P8-44
Battelle Boulevard
Richland, WA 99352

Idaho National Engineering
Laboratory (2)
Attn: H. Loo
R. Klinger
Mail Stop 5108
Idaho Falls, ID 83403-4000

Los Alamos National Laboratory (5)
Attn: B. Erdal, INC-12
M. Ennis, HS-12
Mail Stop J900
S. Kosiewicz, EM-7
Mail Stop J595
L. Soholt, EM-13
Mail Stop M992
J. Wenzel, HS-12
Mail Stop K482
PO Box 1663
Los Alamos, NM 87545

Oak Ridge National Laboratory
Transuranic Waste Manager
Attn: D.W. Turner
Bldg. 3047
PO Box 2008
Oak Ridge, TN 37831-6060

Pacific Northwest Laboratory
Attn: B. Kennedy
PO Box 999
Richland, WA 99352

Westinghouse-Savannah River
Technology Center (4)
Attn: N. Bibler
J.R. Harbour
M.J. Plodinec
G.G. Wicks
Aiken, SC 29802

Corporations/Members of the Public

Battelle Memorial Institute
Attn: R. Root
J. Kircher
505 Marquette NW
Suite 1
Albuquerque, NM 87102

Benchmark Environmental Corp.
Attn: C. Frederickson
4501 Indian School NE
Suite 105
Albuquerque, NM 87110

Beta Corporation Int.
Attn: E. Bonano
6613 Esther NE
Albuquerque, NM 87109

City of Albuquerque
Public Works Department
Utility Planning Division
Attn: W.K. Summers
PO Box 1293
Albuquerque, NM 87103

Deuel and Associates, Inc.
Attn: R.W. Prindle
7208 Jefferson NE
Albuquerque, NM 87109

Disposal Safety, Inc.
Attn: B. Ross
1660 L Street NW, Suite 314
Washington, DC 20036

Ecodynamics (2)
Attn: P. Roache
R. Blaine
PO Box 9229
Albuquerque, NM 87119-9229

EG & G Idaho (3)
1955 Fremont Street
Attn: C. Atwood
C. Hertzler
T.I. Clements
Idaho Falls, ID 83415

Geomatrix
Attn: K. Coppersmith
100 Pine St., Suite 1000
San Francisco, CA 94111

Golder Associates, Inc.
Attn: R. Kossik
4104 148th Avenue NE
Redmond, WA 98052

INTERA, Inc.
Attn: A.M. LaVenue
1650 University Blvd. NE, Suite 300
Albuquerque, NM 87102

INTERA, Inc.
Attn: J.F. Pickens
6850 Austin Center Blvd., Suite 300
Austin, TX 78731

INTERA, Inc.
Attn: W. Stensrud
PO Box 2123
Carlsbad, NM 88221

INTERA, Inc.
Attn: W. Nelson
101 Convention Center Drive
Suite 540
Las Vegas, NV 89109

IT Corporation (2)
Attn: R.F. McKinney
J. Myers
Regional Office
Suite 700
5301 Central Avenue NE
Albuquerque, NM 87108

John Hart and Associates, P.A.
Attn: J.S. Hart
2815 Candelaria Road NW
Albuquerque, NM 87107

John Hart and Associates, P.A.
Attn: K. Lickliter
1009 North Washington
Tacoma, WA 98406

MAC Technical Services Co.
Attn: D.K. Duncan
8418 Zuni Road SE
Suite 200
Albuquerque, NM 87108

Newman and Holtzinger
Attn: C. Mallon
1615 L Street NW
Suite 1000
Washington, DC 20036

RE/SPEC, Inc. (2)
Attn: W. Coons
4775 Indian School NE
Suite 300
Albuquerque, NM 87110

RE/SPEC, Inc.
Attn: J.L. Ratigan
PO Box 725
Rapid City, SD 57709

Reynolds Electric and Engineering
Company, Inc.
Attn: E.W. Kendall
Building 790
Warehouse Row
PO Box 98521
Las Vegas, NV 89193-8521

Science Applications International
Corporation (SAIC)
Attn: H.R. Pratt
10260 Campus Point Drive
San Diego, CA 92121

Science Applications International
Corporation (2)
Attn: D.C. Royer
C.G. Pflum
101 Convention Center Dr.
Las Vegas, NV 89109

Science Applications International
Corporation (3)
Attn: M. Davis
R. Guzowski
J. Tollison
2109 Air Park Road SE
Albuquerque, NM 87106

Science Applications International
Corporation (2)
Attn: J. Young
D. Lester
18706 North Creek Parkway, Suite 110
Bothell, WA 98011

Southwest Research Institute
Center for Nuclear Waste Regulatory
Analysis (2)
Attn: P.K. Nair
6220 Culebra Road
San Antonio, TX 78228-0510

Systems, Science, and Software (2)
Attn: E. Peterson
P. Lagus
Box 1620
La Jolla, CA 92038

TASC
Attn: S.G. Oston
55 Walkers Brook Drive
Reading, MA 01867

Tech Reps, Inc. (6)
Attn: J. Chapman (2)
C. Crawford
D. Marchand
T. Peterson
J. Stikar
D. Scott
5000 Marble NE, Suite 222
Albuquerque, NM 87110

Tolan, Beeson & Associates
Attn: T.L. Tolan
2320 W. 15th Avenue
Kennewick, WA 99337

TRW Environmental Safety Systems (2)
Attn: I. Sacks, Suite 800
L. Wildman, Suite 1300
2650 Park Tower Drive
Vienna, VA 22180-7306

Sanford Cohen and Associates
Attn: J. Channell
7101 Carriage Rd NE
Albuquerque, NM 87109

Westinghouse Electric Corporation (5)
Attn: Library
C. Cox
L. Fitch
B.A. Howard
R.F. Kehrman
PO Box 2078
Carlsbad, NM 88221

Westinghouse Hanford Company
Attn: D.E. Wood, MSIN HO-32
PO Box 1970
Richland, WA 99352

Western Water Consultants
Attn: P.A. Rechard
PO Box 4128
Laramie, WY 82071

Western Water Consultants
Attn: D. Fritz
1949 Sugarland Drive #134
Sheridan, WY 82801-5720

P. Drez
8816 Cherry Hills Road NE
Albuquerque, NM 87111

David Lechel
9600 Allende Rd. NE
Albuquerque, NM 87109

C.A. Marchese
PO Box 21790
Albuquerque, NM 87154

Arend Meijer
3821 Anderson SE
Albuquerque, NM 87108

D.W. Powers
Star Route Box 87
Anthony, TX 79821

Shirley Thieda
PO Box 2109, RR1
Bernalillo, NM 87004

Jack Urich
c/o CARD
144 Harvard SE
Albuquerque, NM 87106

Universities

University of California
Mechanical, Aerospace, and
Nuclear Engineering Department (2)
Attn: W. Kastenberg
D. Browne
5532 Boelter Hall
Los Angeles, CA 90024

University of California
Engineering and Applied Science Attn:
D. Okrent
48-121A Engineering IV
Los Angeles, CA 90024-1597

University of California
Mine Engineering Department
Rock Mechanics Engineering
Attn: N. Cook
Berkeley, CA 94720

University of Hawaii at Hilo
Business Administration
Attn: S. Hora
Hilo, HI 96720-4091

University of New Mexico
Geology Department
Attn: Library
Albuquerque, NM 87131

University of New Mexico
Research Administration
Attn: H. Schreyer
102 Scholes Hall
Albuquerque, NM 87131

University of Wyoming
Department of Civil Engineering
Attn: V.R. Hasfurther
Laramie, WY 82071

University of Wyoming
Department of Geology
Attn: J.I. Drever
Laramie, WY 82071

University of Wyoming
Department of Mathematics
Attn: R.E. Ewing
Laramie, WY 82071

Libraries

Thomas Brannigan Library
Attn: D. Dresp
106 W. Hadley St.
Las Cruces, NM 88001

New Mexico State Library
Attn: N. McCallan
325 Don Gaspar
Santa Fe, NM 87503

New Mexico Tech
Martin Speere Memorial Library
Campus Street
Socorro, NM 87810

New Mexico Junior College
Pannell Library
Attn: R. Hill
Lovington Highway
Hobbs, NM 88240

Carlsbad Municipal Library
WIPP Public Reading Room
Attn: L. Hubbard
101 S. Halagueno St.
Carlsbad, NM 88220

University of New Mexico
Zimmerman Library
Government Publications Department
Albuquerque, NM 87131

NEA/Performance Assessment Advisory Group (PAAG)

P. Duerden
ANSTO
Lucas Heights Research Laboratories
Private Mail Bag No. 1
Menai, NSW 2234
AUSTRALIA

Gordon S. Linsley
Division of Nuclear Fuel Cycle and
Waste Management
International Atomic Energy Agency
PO Box 100
A-1400 Vienna, AUSTRIA

Nicolo Cadelli
Commission of the European
Communities
200, Rue de la Loi
B-1049 Brussels, BELGIUM

R. Heremans
Organisme Nationale des Déchets
Radioactifs et des Matières Fissiles
(ONDRAF)
Place Madou 1, Boitec 24/25
B-1030 Brussels, BELGIUM

J. Marivoet
Centre d'Etudes de l'Energie
Nucléaire (CEN/SCK)
Boeretang 200
B-2400 Mol, BELGIUM

P. Conlon
Waste Management Division
Atomic Energy Control Board (AECB)
PO Box 1046
Ottawa, Ontario K1P 559, CANADA

A.G. Wikjord
Manager, Environmental and Safety
Assessment Branch
Atomic Energy of Canada Limited
Whitehell Research Establishment
Pinewa, Manitoba ROE 1L0
CANADA

Teollisuuden Voima Oy (TVO) (2)
Attn: Timo Äikäs
Jukka-Pekka Salo
Annankatu 42 C
SF-00100 Helsinki Suomi
FINLAND

Timo Vieno
Technical Research Centre of Finland
(VTT)
Nuclear Energy Laboratory
PO Box 208
SF-02151 Espoo, FINLAND

Division de la Sécurité et de la
Protection de l'Environnement (DSPE)
Commissariat à l'Energie Atomique
Agence Nationale pour la Gestion des
Déchets Radioactifs (ANDRA) (2)
Attn: Gérald Ouzounian

M. Claude Ringeard
Route du Panorama Robert Schuman
B. P. No. 38
F-92266 Fontenay-aux-Roses Cedex
FRANCE

Claudio Pescatore
Division of Radiation Protection and
Waste Management
OECD Nuclear Energy Agency
38, Boulevard Suchet
F-75016 Paris, FRANCE

M. Dominique Grenache
Commissariat à l'Energie Atomique
IPSN/DAS/SASICC/SAED
B.P. No. 6
F-92265 Fontenay-aux-Roses Cedex
FRANCE

Robert Fabriol
Bureau de Recherches Géologiques et
Minières (BRGM)
B.P. 6009
45060 Orléans Cedex 2, FRANCE

P. Bogorinski
Gesellschaft für Reaktorsicherheit
(GRS) MBH
Schwertnergasse 1
D-5000 Köln 1, GERMANY

R. Storck
GSF - Institut für Tieflagerung
Theodor-Heuss-Strabe 4
D-3300 Braunschweig, GERMANY

Ferrucio Gera
ISMES S.p.A
Via del Crociferi 44
I-00187 Rome, ITALY

Hiroyuki Umeki
Isolation System Research Program
Radioactive Waste Management Project
Power Reactor and Nuclear Fuel
Development Corporation (PNC)
1-9-13, Akasaka, Minato-ku
Tokyo 107, JAPAN

Tönis Papp
Swedish Nuclear Fuel and Waste
Management Co.
Box 5864
S 102 48 Stockholm
SWEDEN

Conny Hägg
Swedish Radiation Protection
Institute (SSI)
Box 60204
S-104 01 Stockholm
SWEDEN

J. Hadermann
Paul Scherrer Institute
Waste Management Programme
CH-5232 Villigen PSI
SWITZERLAND

J. Vigfusson
HSK-Swiss Nuclear Safety Inspectorate
Federal Office of Energy
CH-5232 Villigen-HSK
SWITZERLAND

D.E. Billington
Departmental Manager-Assessment
Studies
Radwaste Disposal R&D Division
AEA Decommissioning & Radwaste
Harwell Laboratory, B60
Didcot Oxfordshire OX11 ORA
UNITED KINGDOM

P. Grimwood
Waste Management Unit
BNFL
Sellafield
Seascale, Cumbria CA20 1PG
UNITED KINGDOM

Alan J. Hooper
UK Nirex Ltd
Curie Avenue
Harwell, Didcot
Oxfordshire, OX11 ORH
UNITED KINGDOM

Jerry M. Boak
Yucca Mountain Project Office
US Department of Energy
PO Box 98608
Las Vegas, NV 89193

Seth M. Coplan (Chairman)
US Nuclear Regulatory Commission
Division of High-Level Waste
Management
Mail Stop 4-H-3
Washington, DC 20555

A.E. Van Luik
INTERA/M&O
The Valley Bank Center
101 Convention Center Dr.
Las Vegas, NV 89109

**NEA/Probabilistic System Assessment
Group (PSAG)**

Shaheed Hossain
Division of Nuclear Fuel Cycle and
Waste Management
International Atomic Energy Agency
Wagramerstrasse 5
PO Box 100
A-1400 Vienna, AUSTRIA

Alexander Nies (PSAC Chairman)
Gesellschaft für Strahlen- und
Institut für Tieflagerung
Abteilung für Endlagersicherheit
Theodor-Heuss-Strasse 4
D-3300 Braunschweig
GERMANY

Eduard Hofer
Gesellschaft für Reaktorsicherheit
(GRS) MBH
Forschungsgelände
D-8046 Garching, GERMANY

Andrea Saltelli
Commission of the European
Communities
Joint Research Centre of Ispra
I-21020 Ispra (Varese)
ITALY

Alejandro Alonso
Cátedra de Tecnología Nuclear
E.T.S. de Ingenieros Industriales
José Gutiérrez Abascal, 2
E-28006 Madrid, SPAIN

ENRESA (2)
Attn: M. A. Cuñado
F. J. Elorza
Calle Emilio Vargas, 7
E-28043 Madrid, SPAIN

Pedro Prado
CIEMAT
Instituto de Tecnología Nuclear
Avenida Complutense, 22
E-28040 Madrid, SPAIN

Nils A. Kjellbert
Swedish Nuclear Fuel and Waste
Management Company (SKB)
Box 5864
S-102 48 Stockholm, SWEDEN

Björn Cronhjort
Royal Institute of Technology
Automatic Control
S-100 44 Stockholm, SWEDEN

Richard A. Klos
Paul-Scherrer Institute (PSI)
CH-5232 Villingen PSI, SWITZERLAND

Nationale Genossenschaft für die
Lagerung Radioaktiver Abfälle (2)
Attn: C. McCombie
F. Van Dorp
Hardstrasse 73
CH-5430 Wettingen, SWITZERLAND

N. A. Chapman
Intera Information Technologies
Park View House
14B Burton Street
Melton Mowbray
Leicestershire LE13 1AE
UNITED KINGDOM

Daniel A. Galson
Galson Sciences Ltd.
35, Market Place
Oakham
Leicestershire LE15 6DT
UNITED KINGDOM

David P. Hodgkinson
Intera Information Technologies
45 Station Road, Chiltern House
Henley-on-Thames
Oxfordshire RG9 1AT
UNITED KINGDOM

Brian G.J. Thompson
Department of the Environment: Her
Majesty's Inspectorate of Pollution
Room A5.33, Romney House
43 Marsham Street
London SW1P 2PY, UNITED KINGDOM

Intera Information Technologies
Attn: M.J.Apted
3609 South Wadsworth Blvd.
Denver, CO 80235

US Nuclear Regulatory Commission (2)
Attn: R. Codell
N. Eisenberg
Mail Stop 4-H-3
Washington, DC 20555

Battelle Pacific Northwest
Laboratories
Attn: P.W. Eslinger
MS K2-32
PO Box 999
Richland, WA 99352

Center for Nuclear Waste Regulatory
Analysis (CNWRA)
Southwest Research Institute
Attn: B. Sagar
PO Drawer 28510
6220 Culebra Road
San Antonio, TX 78284

Geostatistics Expert Working Group (GXG)

Rafael L. Bras
R.L. Bras Consulting Engineers
44 Percy Road
Lexington, MA 02173

Jesus Carrera
Universidad Politécnica de Cataluña
E.T.S.I. Caminos
Jordi, Girona 31
E-08034 Barcelona
SPAIN

Gedeon Dagan
Department of Fluid Mechanics and
Heat Transfer
Tel Aviv University
PO Box 39040
Ramat Aviv, Tel Aviv 69978
ISRAEL

Ghislain de Marsily (GXG Chairman)
University Pierre et Marie Curie
Laboratoire de Géologie Appliquée
4, Place Jussieu
T.26 - 5^e étage
75252 Paris Cedex 05
FRANCE

Alain Galli
Centre de Géostatistique
Ecole des Mines de Paris
35 Rue St. Honore
77035 Fontainebleau, FRANCE

Christian Ravenne
Geology and Geochemistry Division
Institut Français du Pétrole
1 & 4, Av. de Bois-Préau B.P. 311
92506 Rueil Malmaison Cedex
FRANCE

Peter Grindrod
INTERA Information Technologies Ltd.
Chiltern House
45 Station Road
Henley-on-Thames
Oxfordshire, RG9 1AT, UNITED KINGDOM

Alan Gutjahr
Department of Mathematics
New Mexico Institute of Mining and
Technology
Socorro, NM 87801

C. Peter Jackson
Harwell Laboratory
Theoretical Studies Department
Radwaste Disposal Division
Bldg. 424.4
Oxfordshire Didcot Oxon OX11 ORA
UNITED KINGDOM

Rae Mackay
Department of Civil Engineering
University of Newcastle Upon Tyne
Newcastle Upon Tyne NE1 7RU
UNITED KINGDOM

Steve Gorelick
Department of Applied Earth Sciences
Stanford University
Stanford, CA 94305-2225

Peter Kitanidis
60 Peter Cottts Circle
Stanford, CA 94305

Dennis McLaughlin
Parsons Laboratory
Room 48-209
Department of Civil Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

Shlomo P. Neuman
College of Engineering and Mines
Department of Hydrology and Water
Resources
University of Arizona
Tucson, AZ 85721

Yoram Rubin
Department of Civil Engineering
University of California
Berkeley, CA 94720

Foreign Addresses

Studiecentrum Voor Kernenergie
Centre D'Energie Nucleaire
Attn: A. Bonne
SCK/CEN
Boeretang 200
B-2400 Mol
BELGIUM

Atomic Energy of Canada, Ltd. (3)
Whiteshell Research Establishment
Attn: M.E. Stevens
B.W. Goodwin
D. Wushke
Pinewa, Manitoba ROE 1L0, CANADA

Juhani Vira
Teollisuuden Voima Oy (TVO)
Annankatu 42 C
SF-00100 Helsinki Suomi
FINLAND

Jean-Pierre Olivier
OECD Nuclear Energy Agency (2)
38, Boulevard Suchet
F-75016 Paris
FRANCE

D. Alexandre, Deputy Director
ANDRA
31 Rue de la Federation
75015 Paris
FRANCE

Claude Sombret
Centre D'Etudes Nucleaires
De La Vallee Rhone
CEN/VALRHO
S.D.H.A. B.P. 171
30205 Bagnols-Sur-Ceze, FRANCE

Bundesministerium fur Forschung und
Technologie
Postfach 200 706
5300 Bonn 2, GERMANY

Bundesanalt fur Geowissenschaften
und Rohstoffe
Attn: M. Langer
Postfach 510 153
3000 Hanover 51, GERMANY

Gesellschaft fur Reaktorsicherheit
(GRS) (2)
Attn: B. Baltes
W. Muller
Schwertnergasse 1
D-5000 Cologne, GERMANY

Institut fur Tieflagerung (2)
Attn: K. Kuhn
Theodor-Heuss-Strasse 4
D-3300 Braunschweig, GERMANY

Physikalisch-Technische
Bundesanalt
Attn: P. Brenneke
Postfach 33 45
D-3300 Braunschweig, GERMANY

Shingo Tashiro
Japan Atomic Energy Research
Institute
Tokai-Mura, Ibaraki-Ken
319-11, JAPAN

Netherlands Energy Research
Foundation (ECN)
Attn: L.H. Vons
3 Westerduinweg
PO Box 1
1755 ZG Petten, THE NETHERLANDS

Johan Andersson
Swedish Nuclear Power Inspectorate
Statens Kärnkraftinspektion (SKI)
Box 27106
S-102 52 Stockholm, SWEDEN

Fred Karlsson
Svensk Kärnbränsleforsning AB
Project KBS
Box 5864
S-102 48 Stockholm, SWEDEN

Nationale Genossenschaft für die Lagerung Radioaktiver Abfälle (2)	6306	A.L. Stevens
Attn: S. Vomvoris	6312	F.W. Bingham
P. Zuiderma	6313	L.S. Costin
Hardstrasse 73	6331	P.A. Davis
CH-5430 Wettingen, SWITZERLAND	6341	Sandia WIPP Central Files (100)
AEA Technology	6342	D.R. Anderson
Attn: J.H. Rees	6342	Staff (30)
D5W/29 Culham Laboratory	6343	V. Harper-Slaboszewicz
Abington	6343	Staff (3)
Oxfordshire OX14 3DB, UNITED KINGDOM	6345	R.C. Lincoln
AEA Technology	6345	Staff (9)
Attn: W.R. Rodwell	6347	D.R. Schafer
O44/A31 Winfrith Technical Centre	6348	J.T. Holmes
Dorchester	6348	Staff (4)
Dorset DT2 8DH, UNITED KINGDOM	6351	R.E. Thompson
AEA Technology	6352	S.E. Sharpton
Attn: J.E. Tinson	6400	N.R. Ortiz
B4244 Harwell Laboratory	6613	R.M. Cranwell
Didcot, Oxfordshire OX11 ORA	6613	R.L. Iman
UNITED KINGDOM	6613	C. Leigh
D.R. Knowles	6622	M.S.Y. Chu
British Nuclear Fuels, plc	6641	R.E. Luna, Acting
Risley, Warrington	7141	Technical Library (5)
Cheshire WA3 6AS, 1002607	7151	Technical Publications
UNITED KINGDOM	7613-2	Document Processing for DOE/OSTI (10)
	8523-2	Central Technical Files

Internal

1	A. Narath
20	O.E. Jones
1502	J.C. Cummings
1511	D.K. Gartling
4511	D.P. Garber
6000	D.L. Hartley
6115	P.B. Davies
6115	R.L. Beauheim
6119	E.D. Gorham
6119	Staff (14)
6121	J.R. Tillerson
6121	Staff (7)
6233	J.C. Eichelberger
6300	D.E. Ellis
6302	L.E. Shephard
6303	S.Y. Pickering
6303	W.D. Weart
6305	S.A. Goldstein
6305	A.R. Lappin

The image is a high-contrast, black-and-white graphic. It features three horizontal bands of varying widths and patterns. The top band is composed of two thick, dark rectangles with a narrow white gap between them. The middle band is a single, thick, dark rectangle. The bottom band is a single, thick, dark rectangle with a white, semi-circular cutout on its left side. The overall effect is minimalist and abstract.

4-120194

四
五
六
七

DATA

