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Can neural computing provide the e,

next Moore’s Law? #CCR
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Moore’s Law was based on scientific discovery =
[ ° ° m
and successive innovations *CCR
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Each successive advance made more S
computing feasible #CCR
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MECHANICAL VATCL;JBUEM TRANSISTOR INTEGRATED CIRCUIT
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Better devices made better computers, which M
allowed engineering new devices... #CCR
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Better devices made better computers, which M
allowed engineering new devices... #CCR
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If we extrapolate capabilities out, it is not Sone
obvious better devices is the answer... .L...CCR

Conventional
Computing

When Deep Nets
became efficient
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Cycle of computing scaling already has begun M
to influence neuroscience

e

Neurons =
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Even if Moore’s Law ends, computing will M
continue to scale to be smarter #CCR
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The reservoir of known neuroscience untapped M
for computing inspiration is enormous #CCR
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The brain has many mechanisms for adaptation; e

which are important for computing? 2CCR
months

hours
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There are different algorithmic -
approaches to neural learning *CCR
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" |n situ adaptation

" I[ncorporate “new” forms of known neural
plasticity into existing algorithms

= Fx situ adaptation

= Design entirely new algorithms or algorithmic
modules to provide cognitive learning abilities
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Neuro%enesis
Deep
/.
Learning

Neurogenesis Deep Learning

Extending deep networks to accommodate new classes

Timothy J. Draelos*, Nadine E. Miner*, Christopher C. Lamb*, Jonathan A. Cox**, Craig M. Vineyard*, Kristofor D.
Carlson*, William M. Severa*, Conrad D. James*, and James B. Aimone*
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Deep Networks are a function of  @g.
training sets +.CCR
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Deep Networks are a function of
training sets
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Deep networks often struggle to generalize e
outside of training domain #CCR
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Deep networks often struggle to generalize e
outside of training domain #CCR
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We want to adapt algorithms to adapt to new e
classes and information... 2CCR

Center for Computing Research




() =,

... While preserving old classes

+.CCR
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Neurogenesis can be used to capture new e
information without disrupting old information . ~cp
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= Brain incorporates new neurons in a select
number of regions

= Particularly critical for novelty detection and
encoding of new information

= “Young” hippocampal neurons exhibit increased
plasticity (learn more) and are dynamic in their
representations

= “Old” hippocampal neurons appear to have
reduced learning and maintain their

. A Immature neurons B Mature neurons
representatlons
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= Cortex does not have neurogenesis (or similar I /\ L
mechanisms) in adult-hood, but does during g 4t \ o N
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Aimone et al., Neuron 2011




Neurogenesis can be used to capture new e
information without disrupting old information #CCR
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= Brain incorporates new neurons in a select A~ Immatureneurons B Mature neurons
. Aa () o A a ¢ O +H
number of regions

A
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VAN

gay

Low information coding of all content High information coding of some content

= Hypothesis: Can new neurons be used to
facilitate adapting deep learning?

Tuning of immature neurons
|
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Neurogenesis can be used to capture new e
information without disrupting old information 2CCR
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= Brain incorporates new neurons in a select
number of regions

= Hypothesis: Can new neurons be used to
facilitate adapting deep learning?

= Neurogenesis Deep Learning Algorithm

= Stage 1: Check autoencoder reconstruction to
ensure appropriate representations




Neurogenesis can be used to capture new e
information without disrupting old information 2CCR
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= Brain incorporates new neurons in a select
number of regions

= Hypothesis: Can new neurons be used to
facilitate adapting deep learning?

= Neurogenesis Deep Learning Algorithm
= Stage 1: Check autoencoder reconstruction to
ensure appropriate representations
= Stage 2: If mismatch, add and train new neurons

* Train new nodes with novel inputs coming in
(reduced learning for existing nodes)




Neurogenesis can be used to capture new e
information without disrupting old information 2CCR
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= Brain incorporates new neurons in a select
number of regions

30 40 50

= Hypothesis: Can new neurons be used to -
facilitate adapting deep learning?

o X .
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7 o Sample from

E Class Statistics

and Decode
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= Neurogenesis Deep Learning Algorithm Encodings /\
= Stage 1: Check autoencoder reconstruction to _

!

ensure appropriate representations *
= Stage 2: If mismatch, add and train new neurons 75 00
= Train new nodes with novel inputs coming in 100
(reduced learning for existing nodes) 200 ©O00E
= Intrinsically replay “imagined” training samples
784 @O

from top-level statistics to fine tune
representations

= Stage 3: Repeat neurogenesis until

I ARRRAN

Samples Replay Data ,

reconstructions drop below error thresholds | -7, '} , i a




Neurogenesis algorithm effectively
balances stability and plasticity

A Learning with Intrinsic Replay
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Neurogenesis algorithm effectively S
balances stability and plasticity 2CCR

NDL with Intrinsic Replay
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NDL applied to NIST data set ="
#CCR
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A New View
of the
Hippocampus

William Severa, Kris Carlson,
Craig Vineyard, Frances Chance




Deep learning = Cortex L
What = Hippocampus? 2CCR
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' Entorhinal
il Cortex J
S




Canonical Hippocampus Algorithm (="
i CCR
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= EC has high level cortical representations S Entorhinal
» Learning: ¢ rl'tex
= DG performs pattern separation v
= DG drives new attractor in CA3 network (CA3->CA3 Dentate
recurrent conns) and EC->CA3 connections Gyrus

= CA1 does something...
= Retrieval:

* DG bypassed CA3
= EC activates CA3 neurons l
CA1

= CA3 -> CA3 connections auto-retrieve learned attractor

= CA1 reads out stable CA3 state

%




Canonical Hippocampus Algorithm (="
i CCR
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= Problems with canonical model S Entorhinal
= No clear function for CA1 (and CA3->CA1 plasticity is not Cortex
obviously used) I V
= EC->CA1 pathway not involved
Ik of | p' 'y'h' d hich i PR
Bulk of learning is within CA3->CA3 autoencoder, which is Gyrus

computationally difficult
= No good reason for DG plasticity
= DG only involved in encoding, what is it doing during

retrieval? CA3 J
CA1

%




New View of Hippocampus () i,
#CCR
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= EC has high level cortical representations

S Entorhinal
= DG provides decorrelated mapping of EC Corl’tex

= CA3is “static” dynamical system Dentate
* Limited recurrent plasticity Gyrus

= Recurrent dynamics provide a number of
path attractors (orbits) v

= EC->CA3 inputs are weak and modulatory CA3 6‘

= shift dynamical manifold

= CA3 Attractors are positioned in context-
dependent locations
= DG inputs “seed” CA3 network which propagates
to attractor basin CA1

= CA1l “learns” to read CA3 attractors
= Context dependent readout




Combinatorial model of DG coding
shows mixed coding advantages

= Formal model of DG designed for
“pattern separation” with no loss of
information

= Constraining EC inputs to have “grid
cell” structure sets DG size to
biological level of expansion (~10:1)

= Mixed code of broad-tuned
(immature) neurons and narrow
tuned (mature) neurons confirms
predicted ability to encode novel
information

William Severa, NICE 2016
Severa et al., Neural Computation, 2017
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Classic model of CA3 uses Hopfield-like .

recurrent network attractors 2CCR
feﬁ::fw Computing Research
Problems
Overlapping EC inputs are encoded separately by the DG = “Auto-associative” attractors make more
CA sense in frequency coding regime than in
LALAEA A AL A
[ ‘gﬂﬂ&% A ‘gﬂﬂﬁﬁﬂ%%% spiking networks
o 54
Fa¥ F o
DG g CA3
N _ | = Capacity of classic Hopfield networks is
Associative memories formed in CA3 do not
interfere with one another genera”y |OW
.
L]

= Quite difficult to perform stable one-shot
updates to recurrent networks

Deng et al., Nat Rev Neuro 2010




Moving away from the Hopfield e
“learned auto-association” function for CA3 2CCR
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____________ Spurious minima O L J
Hillar and Tran, 2014 Q | |

Hopfield dynamics are
discrete state transitions




Spiking dynamics are inconsistent with fixed M

point attractors in associative models #CCR
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Hopfield dynamics are

Biol f spiki ?
discrete state transitions iology uses sequence of spiking neurons



Spiking dynamics are inconsistent with fixed M

point attractors in associative models #CCR
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One can see how sequences can replace fixed populations



Path attractors, such as orbits, are consistent S
with spiking dynamics #CCR
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A new dynamical model of CA3 ="
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Problems

“Auto-associative” attractors make more

sense in frequency coding regime than in

spiking networks —__ —
Orbits of

Spiking Neurons

Capacity of classic Hopfield networks is
generally low

Quite difficult to perform stable one-shot
updates to recurrent networks




Neuromodulation can shift dynamics of i
recurrent networks

Carlson, Warrender, Severa and Aimone; in preparation

44
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Cortex and subcortical inputs can modulate e
CA3 attractor access *CCR
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= Modulation can be provided

mechanlstlca”y by Several sources b b S b b S & b W S S b B & & b
. _— R T N NN R P AR R
= EC->CA3 inputs will bias some neurons - \ - -
efy . i Wt Ul U B B W b B

more than others, thus shifting f

Bt b G b B B G B0 B B G B B B

dynamical structure - N i |
. Ut! U K\H]I{ bt Bd g B B B e e B b
= Metabotrophic modulators (e.g., o L JP
X . X G U B U k‘u‘) Bt U G G D Bt U B Ul Ut
serotonin, acetylcholine) can bias
neuronal timings and thresholds, which
in turn shifts dynamics in a potentially

reversible way
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=  Attractor network can thus have o @ @
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A new modulated, dynamical model of CA3 () s,
#:CCR
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R o e
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Peeeee spiking networks
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= Quite difficult to perform stable one-shot
updates to recurrent networks




CA1l encoding can integrate cortical A
input with transformed DG/CA3 input  #ccr
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= CA1 plasticity is dramatic

= Synapses appear to be structurally volatile 8 8 g 8 8 8 g 2
= Representations are temporally volatile

= Consistent with one-shot learning O O . @ O O O .
= Can consider EC-CA1-EC loosely as an Current \ :
. - [T &-—T( [SICINCIN V' ONCRN N
autoencoder, with DG / CA3 “guiding” State ~-- Tl
what representation is used within CA1 A’ S SN
Entorhinal | t :: o :
Cortex & o S ® \u - v
L Dentate Gyrus J | AVerage

State of

OO0 thgg{;w
; O000QLOO rbi
Combined
________________ Representation CLOOO0000

| across Time




A new modulated, dynamical model of CA3 () s,
#CCR

o1 1l | | Problems
g \IJM HJMMM | \I_Ilw | /IJlllmlll = “Auto-associative” attractors make more
@ 111111 sense in frequency coding regime than in
@1 | |
@ il 11 spiking networks
@ 1 2000
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1l M 350 Spiking Neurons
L S RETILY = Capacity of classic Hopfield networks is
/w« Mo generally low _
/aag g Context
S modulation

// = Quite difficult to perform stable one-shot
updates to recurrent networks

O Q Schaffer Collateral
(CA3-CA1) Learning
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