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Can neural computing provide the 
next Moore’s Law?



Moore’s Law was based on scientific discovery 
and successive innovations

Adapted from Wikipedia



Each successive advance made more 
computing feasible

Adapted from Wikipedia



Better devices made better computers, which 
allowed engineering new devices…
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Better devices made better computers, which 
allowed engineering new devices…

Images from Wikipedia

Circa 2017



If we extrapolate capabilities out, it is not 
obvious better devices is the answer…
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What Comes Next?
Devices? or Neural Knowledge? 



Cycle of computing scaling already has begun 
to influence neuroscience



Even if Moore’s Law ends, computing will
continue to scale to be smarter

1950-2020

2010-???



The reservoir of known neuroscience untapped 
for computing inspiration is enormous

James, et al., BICA 2017



The brain has many mechanisms for adaptation; 
which are important for computing?

Current hardware 
focuses on synaptic 
plasticity, if anything

Current hardware 
focuses on synaptic 
plasticity, if anything



There are different algorithmic 
approaches to neural learning

 In situ adaptation

 Incorporate “new” forms of known neural 
plasticity into existing algorithms

 Ex situ adaptation

Design entirely new algorithms or algorithmic 
modules to provide cognitive learning abilities



Neurogenesis
Deep

Learning



Deep Networks are a function of 
training sets

1

7



Deep Networks are a function of 
training sets



Deep networks often struggle to generalize 
outside of training domain
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Deep networks often struggle to generalize 
outside of training domain



We want to adapt algorithms to adapt to new 
classes and information…
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… while preserving old classes
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Neurogenesis can be used to capture new 
information without disrupting old information

 Brain incorporates new neurons in a select 
number of regions

 Particularly critical for novelty detection and 
encoding of new information

 “Young” hippocampal neurons exhibit increased 
plasticity (learn more) and are dynamic in their 
representations

 “Old” hippocampal neurons appear to have 
reduced learning and maintain their 
representations

 Cortex does not have neurogenesis (or similar 
mechanisms) in adult-hood, but does during 
development

Aimone et al., Neuron 2011



Neurogenesis can be used to capture new 
information without disrupting old information

 Brain incorporates new neurons in a select 
number of regions

 Hypothesis: Can new neurons be used to 
facilitate adapting deep learning?
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Neurogenesis can be used to capture new 
information without disrupting old information

 Brain incorporates new neurons in a select 
number of regions

 Hypothesis: Can new neurons be used to 
facilitate adapting deep learning?

 Neurogenesis Deep Learning Algorithm

 Stage 1: Check autoencoder reconstruction to 
ensure appropriate representations

 Stage 2: If mismatch, add and train new neurons

 Train new nodes with novel inputs coming in 
(reduced learning for existing nodes)

 Intrinsically replay “imagined” training samples 
from top-level statistics to fine tune 
representations

 Stage 3: Repeat neurogenesis until 
reconstructions drop below error thresholds



Neurogenesis algorithm effectively 
balances stability and plasticity



Neurogenesis algorithm effectively 
balances stability and plasticity



NDL applied to NIST data set 



A New View 
of the 

Hippocampus

William Severa, Kris Carlson, 
Craig Vineyard, Frances Chance



Deep learning ≈ Cortex 
What ≈ Hippocampus?



Canonical Hippocampus Algorithm

 EC has high level cortical representations

 Learning:

 DG performs pattern separation

 DG drives new attractor in CA3 network (CA3->CA3 
recurrent conns) and EC->CA3 connections

 CA1 does something…

 Retrieval:

 DG bypassed

 EC activates CA3 neurons

 CA3 -> CA3 connections auto-retrieve learned attractor

 CA1 reads out stable CA3 state

Entorhinal 
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Canonical Hippocampus Algorithm

 Problems with canonical model

 No clear function for CA1 (and CA3->CA1 plasticity is not 
obviously used)

 EC -> CA1 pathway not involved 

 Bulk of learning is within CA3->CA3 autoencoder, which is 
computationally difficult

 No good reason for DG plasticity

 DG only involved in encoding, what is it doing during 
retrieval?
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New View of Hippocampus

 EC has high level cortical representations

 DG provides decorrelated mapping of EC

 CA3 is “static” dynamical system

 Limited recurrent plasticity

 Recurrent dynamics provide a number of 
path attractors (orbits)

 EC->CA3 inputs are weak and modulatory

 shift dynamical manifold

 CA3 Attractors are positioned in context-
dependent locations

 DG inputs “seed” CA3 network which propagates 
to attractor basin

 CA1 “learns” to read CA3 attractors 

 Context dependent readout
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Combinatorial model of DG coding 
shows mixed coding advantages

 Formal model of DG designed for 
“pattern separation” with no loss of 
information

 Constraining EC inputs to have “grid 
cell” structure sets DG size to 
biological level of expansion (~10:1)

 Mixed code of broad-tuned 
(immature) neurons and narrow 
tuned (mature) neurons confirms 
predicted ability to encode novel 
information

35

William Severa, NICE 2016
Severa et al., Neural Computation, 2017



Classic model of CA3 uses Hopfield-like 
recurrent network attractors

Problems

 “Auto-associative” attractors make more 
sense in frequency coding regime than in 
spiking networks

 Capacity of classic Hopfield networks is 
generally low

 Quite difficult to perform stable one-shot 
updates to recurrent networks

36

Deng et al., Nat Rev Neuro 2010



Moving away from the Hopfield 
“learned auto-association” function for CA3

Hopfield dynamics are 
discrete state transitions

time

Hillar and Tran, 2014



Spiking dynamics are inconsistent with fixed 
point attractors in associative models

Biology uses sequence of spiking neurons?
Hopfield dynamics are 
discrete state transitions

time time



Spiking dynamics are inconsistent with fixed 
point attractors in associative models

time time

One can see how sequences can replace fixed populations



Path attractors, such as orbits, are consistent 
with spiking dynamics



A new dynamical model of CA3

Problems

 “Auto-associative” attractors make more 
sense in frequency coding regime than in 
spiking networks

 Capacity of classic Hopfield networks is 
generally low

 Quite difficult to perform stable one-shot 
updates to recurrent networks

41

Orbits of 
Spiking Neurons



Neuromodulation can shift dynamics of 
recurrent networks

44

Carlson, Warrender, Severa and Aimone; in preparation



Cortex and subcortical inputs can modulate 
CA3 attractor access

 Modulation can be provided 
mechanistically by several sources

 EC->CA3 inputs will bias some neurons 
more than others, thus shifting 
dynamical structure

 Metabotrophic modulators (e.g., 
serotonin, acetylcholine) can bias 
neuronal timings and thresholds, which 
in turn shifts dynamics in a potentially 
reversible way

 Attractor network can thus have 
many “memories”, but only fraction 
are accessible within each context



A new modulated, dynamical model of CA3

Problems

 “Auto-associative” attractors make more 
sense in frequency coding regime than in 
spiking networks

 Capacity of classic Hopfield networks is 
generally low

 Quite difficult to perform stable one-shot 
updates to recurrent networks

47

Orbits of 
Spiking Neurons

Context 
modulation



CA1 encoding can integrate cortical 
input with transformed DG/CA3 input

 CA1 plasticity is dramatic

 Synapses appear to be structurally volatile

 Representations are temporally volatile

 Consistent with one-shot learning

 Can consider EC-CA1-EC loosely as an 
autoencoder, with DG / CA3 “guiding” 
what representation is used within CA1

48
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A new modulated, dynamical model of CA3

Problems

 “Auto-associative” attractors make more 
sense in frequency coding regime than in 
spiking networks

 Capacity of classic Hopfield networks is 
generally low

 Quite difficult to perform stable one-shot 
updates to recurrent networks

49

Orbits of 
Spiking Neurons

Context 
modulation

Schaffer Collateral 
(CA3-CA1) Learning
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