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Abstract— Neural machine learning methods, such as deep 

neural networks (DNN), have achieved remarkable success in a 

number of complex data processing tasks. These methods have 

arguably had their strongest impact on tasks such as image and 

audio processing – data processing domains in which humans 

have long held clear advantages over conventional algorithms. In 

contrast to biological neural systems, which are capable of 

learning continuously, deep artificial networks have a limited 

ability for incorporating new information in an already trained 

network. As a result, methods for continuous learning are 

potentially highly impactful in enabling the application of deep 

networks to dynamic data sets. Here, inspired by the process of 

adult neurogenesis in the hippocampus, we explore the potential 

for adding new neurons to deep layers of artificial neural 

networks in order to facilitate their acquisition of novel 

information while preserving previously trained data 

representations. Our results on the MNIST handwritten digit 

dataset and the NIST SD 19 dataset, which includes lower and 

upper case letters and digits, demonstrate that neurogenesis is 

well suited for addressing the stability-plasticity dilemma that 

has long challenged adaptive machine learning algorithms. 

Keywords—deep learning, autoencoder, class conditional 
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I. INTRODUCTION 

Machine learning methods are powerful techniques for 
statistically extracting useful information from “big data” 
throughout modern society. In particular, deep learning (DL) 
and other deep neural network (DNN) methods have proven 
successful in part due to their ability to utilize large volumes of 
unlabeled data to progressively form sophisticated hierarchical 
abstractions of information [1][2]. While DL’s training and 
processing mechanisms are quite distinct from biological 
neural learning and behavior, the algorithmic structure is 
somewhat analogous to the visual processing stream in 
mammals in which progressively deeper layers of the cortex 
appear to form more abstracted representations of raw sensory 
information acquired by the retina [3].  

DNNs are typically trained once, either with a large amount 
of labelled data or with a large amount of unlabeled data 
followed by a smaller amount of labeled data used to “fine-
tune” the network for some particular function, such as 
handwritten digit classification. This training paradigm is often 
very expensive, requiring several days on large computing 
clusters [4], so ideally a fully trained network will continue to 

prove useful for a long duration even if the application domain 
changes. DNNs have found some successes in transfer 
learning, due to their general-purpose feature detectors at 
shallow layers of a network [5][6], but our focus is on 
situations where that is not the case. DNNs’ features are known 
to get more specialized at deeper layers of a network and 
therefore presumably less robust to new classes of data. In this 
work, we focus on inputs that a trained network finds difficult 
to represent. In this regard, we are addressing the problem of 
continuous learning (CL). In reality, DNNs may not be robust 
to concept drift, where the data being processed changes 
gradually over time (e.g., a movie viewer’s preferred genres as 
they age), nor transfer learning, where a trained model is 
repurposed to operate in a different domain. Unlike the 
developing visual cortex, which is exposed to varying inputs 
over many years, the data used to train DNNs is typically 
limited in scope, thereby diminishing the applicability of 
networks to encode information statistically distinct from the 
training set. The impact of such training data limitations is a 
relatively minor concern in cases where the application domain 
does not change (or changes very slowly). However, in 
domains where the sampled data is unpredictable or changes 
quickly, such as what is seen by a cell phone camera, the value 
of a static deep network may be quite limited.  

One mechanism the brain has maintained in selective 
regions such as the hippocampus is the permissive birth of new 
neurons throughout one’s lifetime, a process known as adult 
neurogenesis [7]. While the specific function of neurogenesis 
in memory is still debated, it clearly provides the hippocampus 
with a unique form of plasticity that is not present in other 
regions less exposed to concept drift. The process of biological 
neurogenesis is complex, but two key observations are that 
new neurons are preferentially recruited in response to 
behavioral novelty and that new neurons gradually learn to 
encode information (e.g., they are not born with pre-
programmed representations, rather they learn to integrate over 
inputs during their development) [8]. 

We consider the benefits of neurogenesis on DL by 
exploring whether “new” artificial neurons can facilitate the 
learning of novel information in deep networks while 
preserving previously trained information. To accomplish this, 
we consider a specific illustrative example with the MNIST 
handwritten digit dataset [9] and the larger NIST SD19 dataset 
[10] that includes handwritten digits as well as upper and lower 
case letters. An autoencoder (AE) is initially trained with a 

This work was supported by Sandia National Laboratories’ Laboratory Directed Research and Development (LDRD) Program under the Hardware Acceleration of 
Adaptive Neural Algorithms (HAANA) Grand Challenge. Sandia is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned 
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. 

SAND2017-2174C



subset of a dataset’s classes and continuous adaptation occurs 
by learning each remaining class. Our results demonstrate that 
neurogenesis with hippocampus-inspired “intrinsic replay” (IR) 
enables the learning of new classes with minimal impairment 
of original representations, which is a challenge for 
conventional approaches that continue to train an existing 
network on novel data without structural changes. 

A. Related Work 

In the field of machine learning, transfer learning addresses 
the problem of utilizing an existing trained system on a new 
dataset containing objects of a different kind. Over the past few 
years, researchers have examined different ways of transferring 
classification capability from established networks to new 
tasks. Recent approaches have taken a horizontal approach, by 
transferring layers, rather than a more finely grained vertically 
oriented approach of dynamically creating or eliminating 
individual nodes in a layer. Neurogenesis has been proposed to 
enable the acquisition of novel information while minimizing 
the potential disruption of previously stored information [8]. 
Indeed, neurogenesis and similar processes have been shown to 
have this benefit in a number of studies using shallow neural 
networks [11]-[18], although these studies have typically 
focused on more conventional transfer learning, as opposed to 
the continuous adaptation to learning considered here. 

An adaptive DNN architecture by Calandra, et al, shows 
how DL can be applied to data unseen by a trained network 
[19]. Their approach hinges on incrementally re-training deep 
belief networks (DBNs) whenever concept drift emerges in a 
monitored stream of data and operates within constant memory 
bounds. They utilize the generative capability of DBNs to 
provide training samples of previously learned classes. Class 
conditional sampling from trained networks has biological 
inspiration [21]-[24] as well as historical and artificial neural 
network implementations [25]-[28]. 

Yosinski evaluated transfer capability via high-level layer 
reuse in specific DNNs [6]. Transferring learning in this way 
increased recipient network performance, though the closer the 
target task was to the base task, the better the transfer. 
Transferring more specific layers could actually cause 
performance degradation however. Likewise, Kandaswamy, et 
al, used layer transfer as a means to transfer capability in 
Convolutional Neural Networks and Stacked Denoising AEs 
[20]. Transferring capability in this way resulted in a reduction 
in overall computation time and lower classification errors. 
These papers use fixed-sized DNNs, except for additional 
output nodes for new classes, and demonstrate that features in 
early layers are more general than features in later layers and 
thus, more transferable to new classes. 

II. THE NEUROGENESIS DEEP LEARNING ALGORITHM 

Neurogenesis in the brain provides a motivation for 
creating DNNs that adapt to changing environments. Here, we 
introduce the concept of neurogenesis deep learning (NDL), a 
process of incorporating new nodes in any level of an existing 
DNN (Figure 1) to enable the network to adapt as the 
environment changes. We consider the specific case of adding 
new nodes to pre-train a stacked deep AE, although the 

approach should extend to other types of DNNs as well. An 
AE is a type of neural network designed to encode data such 
that they can be decoded to produce reconstructions with 
minimal error. The goal of many DNN algorithms is to learn 
filters or feature detectors (i.e., weights) where the complexity 
or specialization of the features increases at deeper network 
layers. Although successive layers of these feature detectors 
could require an exponential expansion of nodes to guarantee 
that all information is preserved as it progresses into more 
sophisticated representations (“lossless encoding”), in 
practice, deep AEs typically use a much more manageable 
number of features by using the training process to select 
those features that best describe the training data. However, 
there is no guarantee that the representations of deeper layers 
will be sufficient to losslessly encode novel information that is 
not representative of the original training set. It is in this latter 
case that we believe NDL to be most useful, as we have 
previously suggested that biological neurogenesis addresses a 
similar coding challenge in the brain [8]. 

The first step of the NDL algorithm occurs when a set of 
new data points fail to be appropriately reconstructed by the 
trained network. A reconstruction error (RE) is computed at 
each level of a stacked AE (pair of encode/decode layers) to 
determine when a level’s representational capacity is 
considered insufficient for a given application. An AE 
parameterized with weights, W, biases, b, and activation 
function, s, is described from input, x, to output as N encode 
layers followed by N decode layers. 

Encoder:  (1) 

Decoder:  (2) 

Global RE is computed at level L of an AE by encoding an 
input through L encode layers, then propagating through the 
corresponding L decode layers to the output.  

 (3) 

When a data sample’s RE is too high, the assumption is 
that the AE level under examination does not contain a rich 
enough set of nodes (or features as determined by each node’s 
weights) to accurately reconstruct the sample. Therefore, it 
stands to reason that a sufficiently high RE warrants the 
addition of a new feature detector (node). 

The second step of the NDL algorithm is adding and 
training new nodes, which occurs when a critical number of 
input samples (outliers) fail to achieve adequate representation 
at some level of the network. A new node is also added if the 
previous level added one or more nodes. This process does not 
require labels, relying entirely on the quality of a sample's 
representation computed from its reconstruction. If the RE is 
too high (greater than a user-specified threshold determined 
from the statistics of reconstructing previously seen data 
classes), then nodes are added at that level up to a user-
specified maximum number of new nodes. The new nodes are 
trained using all nodes in the level for reconstruction on all 
outliers. In other words, during training of the new nodes, the 
reconstructions, errors, gradients, and weight updates are 
calculated as a function of an AE that uses the entire set of 
nodes in the current level within a single hidden layer AE 
(SHL-AE). In order to not disturb the existing feature 



detectors, only the encoder weights connected to the new 
nodes are updated in the level under consideration. Decoder 
weights connected to existing feature detectors (nodes) are 
allowed to change slightly at the learning rate divided by 100. 

 
Fig. 1. Illustration of NDL processing MNIST digits (orange/red circles 

indicate accuracte/inaccurate feature representations of the input; green 

indicate new nodes added via neurogenesis). (A) AE can faithfully reconstruct 

originally trained digit (‘7’), but (B) fails at reconstructing novel digit (‘4'). 

(C) New nodes added to all levels enables AE to reconstruct ‘4’. Level 1-4 

arrows show how inputs can be reconstructed at various depths. 

The final step of the NDL algorithm is intended to stabilize 
the network’s previous representations in the presence of 
newly added nodes. It involves training all nodes in a level 
with new data and replayed samples from previously seen 
classes on which the network has been trained. Samples from 
old classes, where original data no longer exists, are created 
using the encoding and reconstruction capability of the current 
network in a process we call “intrinsic replay” (IR) (Figure 2). 

 
Fig. 2. Illustration of the intrinsic replay process used in NDL. Original data 

presented to a trained network results in high-level representations in the “top-

most” layer of the encoder. The average entries and the Cholesky 

decomposition of the covariance matrix of this hidden layer are stored for 
each class (e.g., ‘1’s, ‘7’s, and ‘0’s). When “replayed” values are desired for a 

given class, samples are drawn randomly from a normal distribution defined 

by the class’s stored statistics. Then, using the AE’s reconstruction pathway, 
new digits of the stored class are approximated. 

This IR process is analogous to observed dynamics within 
the brain’s hippocampus during memory consolidation [21]. It 
appears that neural regions such as the hippocampus “replay” 
neuronal sequences originally experienced during learned 
behaviors or explorations in an effort to strengthen and 

stabilize newly acquired information alongside previously 
encoded information. Our method involves storing class-
conditional statistics (mean and Cholesky factorization of the 
covariance) of the top layer of the encoding network, E. 

µE = Mean(E),  ChE = Chol(Cov(E))                              (4) 

The Cholesky decomposition requires n3/6 operations [29], 
where n is the dimension of E, and is performed once for each 
class on a trained network. High-level representations are 
retrieved through sampling from a Normal distribution 
described by these statistics and, leveraging the decoding 
network, new data points from previously trained classes are 
reconstructed. 

 IR Images = Decode(µE + N(0,1) * ChE)                        (5) 

Training samples from previously seen data classes, where 
original data no longer exists, are generated using Equation 5, 
which involves a single feed-forward pass through the 
Decoder (Equation 2). 

 
Algorithm  Neurogenesis Deep Learning (NDL) 

Input: 2N-layer AE trained on data classes D1-DU-1, new class of data 
DU, vector of per-level RE thresholds Th, vector of per-level 
maximum nodes allowed MaxNodes, maximum number of samples 
allowed to have REGlobal,L > ThL, MaxOutliers, Learning Rate LR 

Output: Autoencoder AE capable of representing classes D1-DU 

// Create stabilization training data 
AE_StableTrain  {DU | IntrinsicReplay(D1-DU-1)} 

// Perform neurogenesis 
for Level L  1 to N 

 NewNodes  0 

 Outliers  {d  DU | REGlobal,L(d) > ThL} 

 NOut |Outliers| 

 // Add new nodes to AEL and train 
 while NOut > MaxOutliers  and  NewNodes < MaxNodesL                                          

  AEL  ;  from AE 

 Plasticity:  NodesNew = number of new nodes to add 

                                   Add NodesNew to AEL and Train on Outliers 

         Use LR to update encoder weights 
                                              connected to new nodes only 

         Use LR / 100 to update decoder weights 

 Stability:  Train AEL on AE_StableTrain 
                           using LR / 100 to update all weights 

 ;   AEL 

  Outliers  {d  D
U

 | REGlobal,L(d) > Th
L
} 

                NOut  |Outliers| 

 NewNodes  NewNodes + NodesNew 

  // Add random weights from new nodes in level L 
            to existing nodes in level L+1 and train AEL+1  

 If NewNodes > 0 & L < N 

Plasticity: Train AEL+1  on DU 

 Stability: Train AEL+1 on AE_StableTrain 

   AEL+1 



III. EXPERIMENTS 

We evaluated NDL on two datasets, the MNIST [9] and 
NIST SD 19 [10] datasets. For the NIST dataset, we 
downsampled the original 128x128 pixel images to be 28x28 
(the MNIST image size). However, we did not otherwise 
normalize the characters within classes, so the variation in 
scale and location within the 28x28 frame is much greater than 
the MNIST data. 

For the MNIST dataset, a deep AE was pre-trained in a 
stacked layered manner on a subset of the dataset classes, then 
training with and without NDL and with and without IR was 
conducted on new unseen data classes. The AE was initially 
trained with two digits (1, 7) that are not statistically 
representative of the other digits (as shown in the results). 
Then, learning was incrementally performed with the 
remaining digits. We used an 8-layer AE inspired by Hinton’s 
network on MNIST [30], but reduced to 784-200-100-75-20-
75-100-200-784 since only a subset of digits (1, 7) were used 
for initial training. For each experiment, all training samples in 
a class were presented at once.  

For the NIST SD 19 dataset, the AE was trained on the 
digit classes alone (0-9), and then learning was performed 
incrementally on all letters (upper and lower case; A-Z, a-z). In 
order to evaluate the impact of NDL on the NIST dataset 
without the potentially complicating factor of IR, training data 
was used for replaying old classes. The initial AE used for the 
NIST SD 19 dataset is also inspired by Hinton’s MNIST 
network, where the only difference is the number of highest-
level features. We used 50 instead of 30 high-level features 
since there is much more variation in scale and location in the 
NIST digits. The trained NIST SD 19 ‘Digits’ network is 784-
1000-500-250-50-250-500-1000-784. 

IV. RESULTS ON MNIST 

A. Trained networks have limited ability to represent novel 

information 

To illustrate the process of NDL on MNIST data, we first 
trained a deep AE (784-1000-500-250-30-250-500-1000-784) 
to encode a subset of MNIST classes. Then, nodes were added 
via neurogenesis to the trained AE network as needed to 
encode each remaining digit.  

The initial DNN size for our illustrative example was 
determined as follows. In Calandra’s work, a 784-600-500-
400-10 DBN classifier was trained initially on digits 4, 6, and 
8 and then presented with new digits for training together with 
samples of 4, 6, and 8 generated from the DBN [19]. We 
examined two subsets of digits for initial training of our AE 
(4, 6, and 8, as in Calandra, et al [19], or 1 and 7. Figure 3A 
illustrates that digits 4, 6, and 8 appear to contain a more 
complete set of digit features as seen by the quality of the 
reconstructions compared to training only on 1 and 7 (Figure 
3B), although both limited training sets yield impaired 
reconstructions of novel (untrained) digits. We chose to focus 
initial training on digits 1 and 7, as these digits represent what 
may be the smallest set of features in any pair of digits. Then, 
continuous learning was simulated by progressively expanding 
the number of encountered classes through adding samples 
from the remaining digits in sequence one class at a time. The 

Calandra network was shown to have overcapacity for just 3 
digits by virtue of its subsequent ability to learn all 10 digits. 
We suspect the same overcapacity for Hinton’s network and 
therefore start with a network roughly 1/5 the size, under the 
assumption that neurogenesis will grow a network sufficient to 
learn the remaining digits as they are individually presented 
for training. Thus the size of our initial DNN prior to 
neurogenesis was: 784-200-100-75-20-75-100-200-784.  

Accordingly, we trained a 1,7-network using all training 
samples of 1’s and 7’s with a stacked denoising AE. After 
training the 1,7-AE, it is ready to address drifting inputs 
through NDL. New classes of digits are presented in the 
following order: 0, 2, 3, 4, 5, 6, 8, and 9. Notably, this 
procedure is not strictly concept drift (where classes are 
changing over time) or transfer learning (where a trained 
network is retrained to apply to a different domain), but rather 
was designed to examine the capability of the network to learn 
novel inputs while maintaining the stability of previous 
information (i.e., address the stability-plasticity dilemma). 

 

Fig. 3. Networks initially trained on (A) ‘4,’ ‘6,’ and ‘8’s and (B) ‘1,’ and 
‘7’s and not yet trained on any of the other MNIST digits reconstruct those 

novel digits using features biased by their original training data. 

NDL begins by presenting all samples of a new class to 
Level 1 of the AE and identifying ‘outlier’ samples having 
REs above a user-specified threshold. Then, one or more new 
nodes are added to Level 1 and the entire level is pre-trained 
in a SHL-AE. Initially, only the weights connected to the 
newly added nodes are allowed to be updated at the full 
learning rate. Encoder weights connected to old nodes are not 
allowed to change at all (to preserve the feature detectors 
trained on previous classes) and decoder weights from old 
nodes are allowed to change at the learning rate divided by 
100. This step relates to the notion of plasticity in biological 
neurogenesis. After briefly training the new nodes, a 
stabilization step takes place, where the entire level is trained 
in a SHL-AE using training samples from all classes seen by 
the network (samples from old classes are generated via 
intrinsic replay). After again calculating the RE on samples 
from the new class, additional nodes are added until either 1) 
the RE for enough samples falls below the threshold or 2) a 
user-specified maximum number of new nodes are reached for 



the current level. Once neurogenesis is complete for a level, 
weights connecting to the next level are trained using samples 
from all classes. This process repeats for each succeeding 
level of the AE using outputs from the previous encoding 
layer. After NDL, the new AE should be capable of 
reconstructing images from the new class (e.g., 0) in addition 
to the current previous classes (e.g., 1 and 7). 

B. Neurogenesis allows encoding of novel information 

Results of NDL experiments on MNIST data showed that 
an established network trained on just digits 1 and 7 can be 
enlarged through neurogenesis to represent new digits as 
guided by RE at each level of a stacked AE. We compared a 
network created with NDL and IR (‘NDL+IR’) to three 
control networks: Control 1 (‘CL’) – an AE the same size as 
the enlarged NDL without IR network trained first on the 
subset digits 1 and 7, and then retrained without intrinsic 
replay on all samples from one new single digit at a time 
(Figure 4A); Control 2 (‘NDL’) – continuous learning on the 
original 1,7 network using NDL, but not using intrinsic replay 
(Figure 4B), and Control 3 (‘CL+IR’) – an AE the same size 
as the enlarged NDL+IR network trained first on the subset 
digits 1 and 7, and then retrained with all samples from one 
new single digit at a time, while using intrinsic replay to 
generate samples of previously trained classes throughout the 
experiment (Figure 4C). Figure 4D shows that the network 
built upon NDL+IR slightly outperforms learning on a fixed 
network (Figure 4C). Notably, NDL+IR outperforms straight 
learning not only on reconstruction across all digits, but in 
both the ability to represent the new data as well as preserving 
the ability to represent previously trained digits (Figure 4E). 
This latter point is important, because while getting a trained 
network to learn new information is not particularly 
challenging, getting it to preserve old information can be quite 
difficult. 

Note that the final DNN size is unknown prior to 
neurogenesis. The network size is increased based on the RE 
when the network is exposed to new information, so there is 
possible value in using this method to determine an effective 
DNN size. The original size of the 1,7-AE is 784-200-100-75-
20-75-100-200-784. Figure 4F shows how the DNN grows as 
new classes are presented during neurogenesis, gaining more 
representational capacity as new classes are learned.  

The ‘CL+IR’ control network initially had the identical 
size of the neurogenesis network ‘NDL+IR’, was initially 
trained on digits 1 and 7, and then learned to represent the 
remaining MNIST digits, one at a time in the same order as 
presented during neurogenesis, but the network size was fixed. 
Figure 5A shows reconstructed images after each new class 
was learned on the ‘CL+IR’ AE and Figure 5B shows the 
comparable images for the ‘NDL+IR’ network as it was 
trained to accommodate all MNIST digits. One can see that 
before being trained on new digits (to the right of the blocked 
trained class shown in each row), both networks mis-
reconstructed digits from the unseen classes into digits that 
appear to belong to a previously trained class as expected. 
Notably in the ‘CL+IR’ reconstructions (Figure 5A), digits 
from previously seen classes were often mis-reconstructed to 
more recently seen classes. In contrast, the ‘NDL+IR’ 

networks (Figure 5B) were more stable in their representations 
of previously encoded data, with only minimal disruption to 
past classes as new information was acquired. This suggests 
that adding neurons as a network is exposed to novel 
information is advantageous in maintaining the stability of a 
DNN’s previous representations. 

 
Fig. 4. Global reconstructions of trained MNIST digits after exposure to all 

10 digits. The legend in Plot D applies to Plots A, B, and C; the dotted line 

shows REs of the original AE trained just on 1 and 7. (A) CL without IR 
provides only marginal improvement in reconstruction ability after learning 

all 10 digits; (B) NDL without IR likewise fails to improve reconstruction, 

though NDL training makes reconstruction through partial networks more 
useful; (C) CL with IR improves overall reconstruction of previously trained 

digits; (D) NDL with IR further improves on CL with IR in (C) along with 

improved partial network reconstructions; (E) Full network reconstructions of 
all networks after progressive training through all digits; (F) Neurogenesis 

contribution to network size in NDL+IR networks. 

 
Fig. 5. Reconstructions of all digits by pre-trained ‘1/7’ networks after 

learning on progressive new classes. (A) Networks using conventional 
learning with IR are able to acquire new digits and show some ability to 

maintain representations of recently trained digits (e.g., ‘6’s after ‘8’ is 

learned). (B) Networks using NDL with IR are able to acquire new digits and 
show superior reconstructions of previously encountered digits, even for those 

digits trained far earlier (e.g., ‘0’s throughout the experiment). 



V. RESULTS ON NIST SD19 

Applying NDL to the NIST SD19 dataset presents 
challenges for evaluating neurogenesis performance because 
of the number of classes. Figure 6 shows the effect of learning 
on each class, comparing the initial RE of each class on the 
network trained on digits before any learning of letters and the 
final RE after all classes have been learned. A line segment 
with a downward (negative) slope indicates that the final RE is 
less than the initial RE.  

The clear observation is that learning new classes with 
NDL with intrinsic replay (NDL+IR) results in smaller RE 
than learning without neurogenesis (CL+IR) for all classes. In 
addition, the final REs for NDL+IR are all lower than the 
initial REs, even for classes (digits) used to train the original 
AE. This implies that the ultimate AE built via neurogenesis 
has a richer set of feature detectors, resulting in better 
representation of all classes. Another observation is that, in 
general, the initial REs of the CL+IR network are lower than 
the initial REs of the NDL+IR network. The reason is that the 

original NDL+IR network was smaller than the fixed CL+IR 
network. 

While Figure 6 shows the improvement in class 

representation at the beginning and end of NDL+IR, Figures 7 

and 8 show the progression in time of growing the final 

network. More new neurons are added earlier in the 

neurogenesis process than later. As novel classes are 

presented, new feature are learned and representation 

capability improves for all classes. Eventually, the need for 

additional neurons diminishes. Figure 7 reveals that the AE is 

particularly lacking feature detectors necessary for good 

representation of class ‘M’ in all levels. In Figure 6, it is clear 

that class ‘W’ is also lacking feature detectors, but by the time 

it is presented for learning, its need has been met by 

neurogenesis on previous classes. 

 

 

 

Fig. 6. Comparison of initial and final (left and right of each line segment, respectively) full AE (Level 4) REs on each class after learning of all classes. 

 

Fig. 7. Neurogenesis contribution to networks trained on digits only, where new classes are presented for NDL alphabetically, upper case first. 



 
Fig. 8. Neurogenesis contribution to networks trained on digits only. 20 experiments were conducted where newly presented classes (upper and lower case 
letters) were randomly ordered. The plot shows the average number of new neurons added progessively for each new class with standard deviation as error bars. 

VI. CHARACTERIZING THE VALUE OF ADAPTING DNNS 

The value of a model to continuously adapt to changing data 

is challenging to quantify.  Here, we notionally quantify the 

value of a machine learning algorithm at a given time as  

         ,                                                 (6) 
where the utility, U, of an algorithm is considered as a 

tradeoff between the benefit, B, that the computation 

provides the user, the costs of the algorithm generation or 

the model itself, CM, and the associated run-time costs, CP, 

of that computation. CP typically consists of the time and 

physical energy and space required for the computation to 

be performed. For machine learning applications, we must 

consider the lifetime, τ, of an algorithm for which it is 

appropriate to amortize a model's build costs. In algorithm 

design, it is desirable to minimize both of the cost terms; 

however, the dominant cost will differ depending on the 

extent to which the real-world data changes. Consider a 

DNN with N neurons and on the order of N2 synapses. In 

this example, the cost of building the model, CM, will scale 

as O(N4) due to performing O(N2) operations over N2 

training samples during training of a well-regularized, 

appropriately fit model. As a result, CM will dominate the 

algorithm's cost unless the lifetime of the model, τ, can 

offset the polynomial difference between CM and CP. This 

description illustrates the need to extend the model’s 

lifetime (e.g., via neurogenesis), and to do so in an 

inexpensive manner that minimizes the data required to 

adapt the model for future use. 

VII. CONCLUSIONS AND FUTURE WORK 

We presented a new adaptive algorithm using the concept 
of neurogenesis to extend the learning of an established DNN 
when presented with new data classes. The algorithm adds 
new neurons at each level of an AE when new data samples 

are not accurately represented by the network as determined 
by a high RE. The focus of the paper is on a proof of concept 
of continuous learning for DNNs to adapt to changing 
application domains. Several elements of our NDL algorithm 
that we have not sought to optimize deserve further 
consideration. For instance, the optimal number of IR 
samples is unknown and will affect the computational cost 
associated with their use. Other elements that need to be 
considered are 1) better ways of establishing and using RE 
thresholds and 2) developing a method to determine the 
number of outliers to allow during neurogenesis. While we 
considered a network of growing size via neurogenesis, 
adaptation may be obtainable use of a larger network with a 
fixed size and restricting the learning rate on a subset of 
neurons until needed at a later time. We evaluated the NDL 
algorithm on two datasets having gray-scale objects on blank 
backgrounds and look forward to application on additional 
datasets, including natural, color imagery. 

Ultimately, we anticipate that there are several significant 
advantages of a neurogenesis-like method for adapting 
existing networks to incorporate new data, particularly given 
suitable IR capabilities. The first relates to the costs of DL in 
application domains. The ability to adapt to new information 
can extend a model’s useful lifetime in real-world situations, 
possibly by substantial amounts. Extending a model’s 
lifetime increases the duration over which one can amortize 
the costs of developing the model, and in the case of DL, the 
build cost often vastly outpaces the runtime operational costs 
of the trained feed-forward network. As a result, continuous 
adaptation can potentially make DL cost effective for 
domains with significant concept drift. Admittedly, the 
method we describe here has an added processing cost due to 
the neurogenesis process and the required intrinsic replay; 
however, this cost will most likely amount to a constant 
factor increase on the processing costs and still be 
significantly lower than those costs associated with 
repeatedly retraining with the original training data.  



The second advantage concerns the continuous learning 
nature of the NDL algorithm. The ability to train a large 
network without maintaining a growing repository of data 
can be valuable, particularly in cases where the bulk storage 
of data is not permitted due to costs or other restrictions. 
While much of the DL community has focused on cases 
where there is extensive unlabeled training data, our 
technique can provide solutions where training data at any 
time is limited and new data is expected to arrive 
continuously. Furthermore, we have considered a very stark 
change in the data landscape, with the network exposed 
exclusively to novel classes. In real-world applications, novel 
information may be encountered more gradually. This slower 
drift would likely require neurogenesis less often, but it 
would be equally useful when needed. 

Finally, it has not escaped us that the algorithm we 
present is emulating adult neurogenesis within a cortical-like 
circuit, whereas in adult mammals, substantial neurogenesis 
does not appear in sensory cortices [7]. In this way, our NDL 
networks are more similar to juvenile or developmental 
visual systems, where the network has only been exposed to 
a limited extent of the information it will eventually 
encounter. Presumably, if one takes a DNN with many more 
nodes per layer and trains it with a much larger and broader 
set of data, the requirement for neurogenesis will diminish. 
In this situation, we predict that the levels of neurogenesis 
will eventually diminish to zero early in the network because 
the DNN will have the ability to represent a broad set of low 
level features that prove sufficient for even the most novel 
data encountered, whereas neurogenesis may always remain 
useful at the deepest network layers that are more 
comparable to the medial temporal lobe and hippocampus 
areas of cortex. Indeed, this work illustrates that the 
incorporation of neural developmental and adult plasticity 
mechanisms, such as staggering network development by 
layer (e.g., “layergenesis”), into conventional DNNs will 
likely continue to offer considerable benefits. 
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