
Neurogenesis Deep Learning
Extending deep networks to accommodate new classes

Timothy J. Draelos*, Nadine E. Miner*, Christopher C. Lamb*, Jonathan A. Cox*^, Craig M. Vineyard*, Kristofor D.

Carlson*, William M. Severa*, Conrad D. James*, and James B. Aimone*

*Sandia National Laboratories, Albuquerque NM, 87185 USA

{tjdrael, nrminer, cclamb, cmviney, kdcarls, wmsever, cdjame, jbaimon}@sandia.gov

^ Present Address: Qualcomm Corporation, San Diego, CA USA

joncox@alum.mit.edu

Abstract— Neural machine learning methods, such as deep

neural networks (DNN), have achieved remarkable success in a

number of complex data processing tasks. These methods have

arguably had their strongest impact on tasks such as image and

audio processing – data processing domains in which humans

have long held clear advantages over conventional algorithms. In

contrast to biological neural systems, which are capable of

learning continuously, deep artificial networks have a limited

ability for incorporating new information in an already trained

network. As a result, methods for continuous learning are

potentially highly impactful in enabling the application of deep

networks to dynamic data sets. Here, inspired by the process of

adult neurogenesis in the hippocampus, we explore the potential

for adding new neurons to deep layers of artificial neural

networks in order to facilitate their acquisition of novel

information while preserving previously trained data

representations. Our results on the MNIST handwritten digit

dataset and the NIST SD 19 dataset, which includes lower and

upper case letters and digits, demonstrate that neurogenesis is

well suited for addressing the stability-plasticity dilemma that

has long challenged adaptive machine learning algorithms.

Keywords—deep learning, autoencoder, class conditional

sampling, replay, hippocampus, deep neural networks

I. INTRODUCTION

Machine learning methods are powerful techniques for
statistically extracting useful information from “big data”
throughout modern society. In particular, deep learning (DL)
and other deep neural network (DNN) methods have proven
successful in part due to their ability to utilize large volumes of
unlabeled data to progressively form sophisticated hierarchical
abstractions of information [1][2]. While DL’s training and
processing mechanisms are quite distinct from biological
neural learning and behavior, the algorithmic structure is
somewhat analogous to the visual processing stream in
mammals in which progressively deeper layers of the cortex
appear to form more abstracted representations of raw sensory
information acquired by the retina [3].

DNNs are typically trained once, either with a large amount
of labelled data or with a large amount of unlabeled data
followed by a smaller amount of labeled data used to “fine-
tune” the network for some particular function, such as
handwritten digit classification. This training paradigm is often
very expensive, requiring several days on large computing
clusters [4], so ideally a fully trained network will continue to

prove useful for a long duration even if the application domain
changes. DNNs have found some successes in transfer
learning, due to their general-purpose feature detectors at
shallow layers of a network [5][6], but our focus is on
situations where that is not the case. DNNs’ features are known
to get more specialized at deeper layers of a network and
therefore presumably less robust to new classes of data. In this
work, we focus on inputs that a trained network finds difficult
to represent. In this regard, we are addressing the problem of
continuous learning (CL). In reality, DNNs may not be robust
to concept drift, where the data being processed changes
gradually over time (e.g., a movie viewer’s preferred genres as
they age), nor transfer learning, where a trained model is
repurposed to operate in a different domain. Unlike the
developing visual cortex, which is exposed to varying inputs
over many years, the data used to train DNNs is typically
limited in scope, thereby diminishing the applicability of
networks to encode information statistically distinct from the
training set. The impact of such training data limitations is a
relatively minor concern in cases where the application domain
does not change (or changes very slowly). However, in
domains where the sampled data is unpredictable or changes
quickly, such as what is seen by a cell phone camera, the value
of a static deep network may be quite limited.

One mechanism the brain has maintained in selective
regions such as the hippocampus is the permissive birth of new
neurons throughout one’s lifetime, a process known as adult
neurogenesis [7]. While the specific function of neurogenesis
in memory is still debated, it clearly provides the hippocampus
with a unique form of plasticity that is not present in other
regions less exposed to concept drift. The process of biological
neurogenesis is complex, but two key observations are that
new neurons are preferentially recruited in response to
behavioral novelty and that new neurons gradually learn to
encode information (e.g., they are not born with pre-
programmed representations, rather they learn to integrate over
inputs during their development) [8].

We consider the benefits of neurogenesis on DL by
exploring whether “new” artificial neurons can facilitate the
learning of novel information in deep networks while
preserving previously trained information. To accomplish this,
we consider a specific illustrative example with the MNIST
handwritten digit dataset [9] and the larger NIST SD19 dataset
[10] that includes handwritten digits as well as upper and lower
case letters. An autoencoder (AE) is initially trained with a

This work was supported by Sandia National Laboratories’ Laboratory Directed Research and Development (LDRD) Program under the Hardware Acceleration of
Adaptive Neural Algorithms (HAANA) Grand Challenge. Sandia is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

SAND2017-2174C

subset of a dataset’s classes and continuous adaptation occurs
by learning each remaining class. Our results demonstrate that
neurogenesis with hippocampus-inspired “intrinsic replay” (IR)
enables the learning of new classes with minimal impairment
of original representations, which is a challenge for
conventional approaches that continue to train an existing
network on novel data without structural changes.

A. Related Work

In the field of machine learning, transfer learning addresses
the problem of utilizing an existing trained system on a new
dataset containing objects of a different kind. Over the past few
years, researchers have examined different ways of transferring
classification capability from established networks to new
tasks. Recent approaches have taken a horizontal approach, by
transferring layers, rather than a more finely grained vertically
oriented approach of dynamically creating or eliminating
individual nodes in a layer. Neurogenesis has been proposed to
enable the acquisition of novel information while minimizing
the potential disruption of previously stored information [8].
Indeed, neurogenesis and similar processes have been shown to
have this benefit in a number of studies using shallow neural
networks [11]-[18], although these studies have typically
focused on more conventional transfer learning, as opposed to
the continuous adaptation to learning considered here.

An adaptive DNN architecture by Calandra, et al, shows
how DL can be applied to data unseen by a trained network
[19]. Their approach hinges on incrementally re-training deep
belief networks (DBNs) whenever concept drift emerges in a
monitored stream of data and operates within constant memory
bounds. They utilize the generative capability of DBNs to
provide training samples of previously learned classes. Class
conditional sampling from trained networks has biological
inspiration [21]-[24] as well as historical and artificial neural
network implementations [25]-[28].

Yosinski evaluated transfer capability via high-level layer
reuse in specific DNNs [6]. Transferring learning in this way
increased recipient network performance, though the closer the
target task was to the base task, the better the transfer.
Transferring more specific layers could actually cause
performance degradation however. Likewise, Kandaswamy, et
al, used layer transfer as a means to transfer capability in
Convolutional Neural Networks and Stacked Denoising AEs
[20]. Transferring capability in this way resulted in a reduction
in overall computation time and lower classification errors.
These papers use fixed-sized DNNs, except for additional
output nodes for new classes, and demonstrate that features in
early layers are more general than features in later layers and
thus, more transferable to new classes.

II. THE NEUROGENESIS DEEP LEARNING ALGORITHM

Neurogenesis in the brain provides a motivation for
creating DNNs that adapt to changing environments. Here, we
introduce the concept of neurogenesis deep learning (NDL), a
process of incorporating new nodes in any level of an existing
DNN (Figure 1) to enable the network to adapt as the
environment changes. We consider the specific case of adding
new nodes to pre-train a stacked deep AE, although the

approach should extend to other types of DNNs as well. An
AE is a type of neural network designed to encode data such
that they can be decoded to produce reconstructions with
minimal error. The goal of many DNN algorithms is to learn
filters or feature detectors (i.e., weights) where the complexity
or specialization of the features increases at deeper network
layers. Although successive layers of these feature detectors
could require an exponential expansion of nodes to guarantee
that all information is preserved as it progresses into more
sophisticated representations (“lossless encoding”), in
practice, deep AEs typically use a much more manageable
number of features by using the training process to select
those features that best describe the training data. However,
there is no guarantee that the representations of deeper layers
will be sufficient to losslessly encode novel information that is
not representative of the original training set. It is in this latter
case that we believe NDL to be most useful, as we have
previously suggested that biological neurogenesis addresses a
similar coding challenge in the brain [8].

The first step of the NDL algorithm occurs when a set of
new data points fail to be appropriately reconstructed by the
trained network. A reconstruction error (RE) is computed at
each level of a stacked AE (pair of encode/decode layers) to
determine when a level’s representational capacity is
considered insufficient for a given application. An AE
parameterized with weights, W, biases, b, and activation
function, s, is described from input, x, to output as N encode
layers followed by N decode layers.

Encoder: (1)

Decoder: (2)

Global RE is computed at level L of an AE by encoding an
input through L encode layers, then propagating through the
corresponding L decode layers to the output.

 (3)

When a data sample’s RE is too high, the assumption is
that the AE level under examination does not contain a rich
enough set of nodes (or features as determined by each node’s
weights) to accurately reconstruct the sample. Therefore, it
stands to reason that a sufficiently high RE warrants the
addition of a new feature detector (node).

The second step of the NDL algorithm is adding and
training new nodes, which occurs when a critical number of
input samples (outliers) fail to achieve adequate representation
at some level of the network. A new node is also added if the
previous level added one or more nodes. This process does not
require labels, relying entirely on the quality of a sample's
representation computed from its reconstruction. If the RE is
too high (greater than a user-specified threshold determined
from the statistics of reconstructing previously seen data
classes), then nodes are added at that level up to a user-
specified maximum number of new nodes. The new nodes are
trained using all nodes in the level for reconstruction on all
outliers. In other words, during training of the new nodes, the
reconstructions, errors, gradients, and weight updates are
calculated as a function of an AE that uses the entire set of
nodes in the current level within a single hidden layer AE
(SHL-AE). In order to not disturb the existing feature

detectors, only the encoder weights connected to the new
nodes are updated in the level under consideration. Decoder
weights connected to existing feature detectors (nodes) are
allowed to change slightly at the learning rate divided by 100.

Fig. 1. Illustration of NDL processing MNIST digits (orange/red circles

indicate accuracte/inaccurate feature representations of the input; green

indicate new nodes added via neurogenesis). (A) AE can faithfully reconstruct

originally trained digit (‘7’), but (B) fails at reconstructing novel digit (‘4').

(C) New nodes added to all levels enables AE to reconstruct ‘4’. Level 1-4

arrows show how inputs can be reconstructed at various depths.

The final step of the NDL algorithm is intended to stabilize
the network’s previous representations in the presence of
newly added nodes. It involves training all nodes in a level
with new data and replayed samples from previously seen
classes on which the network has been trained. Samples from
old classes, where original data no longer exists, are created
using the encoding and reconstruction capability of the current
network in a process we call “intrinsic replay” (IR) (Figure 2).

Fig. 2. Illustration of the intrinsic replay process used in NDL. Original data

presented to a trained network results in high-level representations in the “top-

most” layer of the encoder. The average entries and the Cholesky

decomposition of the covariance matrix of this hidden layer are stored for
each class (e.g., ‘1’s, ‘7’s, and ‘0’s). When “replayed” values are desired for a

given class, samples are drawn randomly from a normal distribution defined

by the class’s stored statistics. Then, using the AE’s reconstruction pathway,
new digits of the stored class are approximated.

This IR process is analogous to observed dynamics within
the brain’s hippocampus during memory consolidation [21]. It
appears that neural regions such as the hippocampus “replay”
neuronal sequences originally experienced during learned
behaviors or explorations in an effort to strengthen and

stabilize newly acquired information alongside previously
encoded information. Our method involves storing class-
conditional statistics (mean and Cholesky factorization of the
covariance) of the top layer of the encoding network, E.

µE = Mean(E), ChE = Chol(Cov(E)) (4)

The Cholesky decomposition requires n3/6 operations [29],
where n is the dimension of E, and is performed once for each
class on a trained network. High-level representations are
retrieved through sampling from a Normal distribution
described by these statistics and, leveraging the decoding
network, new data points from previously trained classes are
reconstructed.

 IR Images = Decode(µE + N(0,1) * ChE) (5)

Training samples from previously seen data classes, where
original data no longer exists, are generated using Equation 5,
which involves a single feed-forward pass through the
Decoder (Equation 2).

Algorithm Neurogenesis Deep Learning (NDL)

Input: 2N-layer AE trained on data classes D1-DU-1, new class of data
DU, vector of per-level RE thresholds Th, vector of per-level
maximum nodes allowed MaxNodes, maximum number of samples
allowed to have REGlobal,L > ThL, MaxOutliers, Learning Rate LR

Output: Autoencoder AE capable of representing classes D1-DU

// Create stabilization training data
AE_StableTrain  {DU | IntrinsicReplay(D1-DU-1)}

// Perform neurogenesis
for Level L  1 to N

 NewNodes  0

 Outliers  {d  DU | REGlobal,L(d) > ThL}

 NOut |Outliers|

 // Add new nodes to AEL and train
 while NOut > MaxOutliers and NewNodes < MaxNodesL

 AEL  ; from AE

 Plasticity: NodesNew = number of new nodes to add

 Add NodesNew to AEL and Train on Outliers

 Use LR to update encoder weights
 connected to new nodes only

 Use LR / 100 to update decoder weights

 Stability: Train AEL on AE_StableTrain
 using LR / 100 to update all weights

 ;  AEL

 Outliers  {d  D
U

 | REGlobal,L(d) > Th
L
}

 NOut  |Outliers|

 NewNodes  NewNodes + NodesNew

 // Add random weights from new nodes in level L
 to existing nodes in level L+1 and train AEL+1

 If NewNodes > 0 & L < N

Plasticity: Train AEL+1 on DU

 Stability: Train AEL+1 on AE_StableTrain

  AEL+1

III. EXPERIMENTS

We evaluated NDL on two datasets, the MNIST [9] and
NIST SD 19 [10] datasets. For the NIST dataset, we
downsampled the original 128x128 pixel images to be 28x28
(the MNIST image size). However, we did not otherwise
normalize the characters within classes, so the variation in
scale and location within the 28x28 frame is much greater than
the MNIST data.

For the MNIST dataset, a deep AE was pre-trained in a
stacked layered manner on a subset of the dataset classes, then
training with and without NDL and with and without IR was
conducted on new unseen data classes. The AE was initially
trained with two digits (1, 7) that are not statistically
representative of the other digits (as shown in the results).
Then, learning was incrementally performed with the
remaining digits. We used an 8-layer AE inspired by Hinton’s
network on MNIST [30], but reduced to 784-200-100-75-20-
75-100-200-784 since only a subset of digits (1, 7) were used
for initial training. For each experiment, all training samples in
a class were presented at once.

For the NIST SD 19 dataset, the AE was trained on the
digit classes alone (0-9), and then learning was performed
incrementally on all letters (upper and lower case; A-Z, a-z). In
order to evaluate the impact of NDL on the NIST dataset
without the potentially complicating factor of IR, training data
was used for replaying old classes. The initial AE used for the
NIST SD 19 dataset is also inspired by Hinton’s MNIST
network, where the only difference is the number of highest-
level features. We used 50 instead of 30 high-level features
since there is much more variation in scale and location in the
NIST digits. The trained NIST SD 19 ‘Digits’ network is 784-
1000-500-250-50-250-500-1000-784.

IV. RESULTS ON MNIST

A. Trained networks have limited ability to represent novel

information

To illustrate the process of NDL on MNIST data, we first
trained a deep AE (784-1000-500-250-30-250-500-1000-784)
to encode a subset of MNIST classes. Then, nodes were added
via neurogenesis to the trained AE network as needed to
encode each remaining digit.

The initial DNN size for our illustrative example was
determined as follows. In Calandra’s work, a 784-600-500-
400-10 DBN classifier was trained initially on digits 4, 6, and
8 and then presented with new digits for training together with
samples of 4, 6, and 8 generated from the DBN [19]. We
examined two subsets of digits for initial training of our AE
(4, 6, and 8, as in Calandra, et al [19], or 1 and 7. Figure 3A
illustrates that digits 4, 6, and 8 appear to contain a more
complete set of digit features as seen by the quality of the
reconstructions compared to training only on 1 and 7 (Figure
3B), although both limited training sets yield impaired
reconstructions of novel (untrained) digits. We chose to focus
initial training on digits 1 and 7, as these digits represent what
may be the smallest set of features in any pair of digits. Then,
continuous learning was simulated by progressively expanding
the number of encountered classes through adding samples
from the remaining digits in sequence one class at a time. The

Calandra network was shown to have overcapacity for just 3
digits by virtue of its subsequent ability to learn all 10 digits.
We suspect the same overcapacity for Hinton’s network and
therefore start with a network roughly 1/5 the size, under the
assumption that neurogenesis will grow a network sufficient to
learn the remaining digits as they are individually presented
for training. Thus the size of our initial DNN prior to
neurogenesis was: 784-200-100-75-20-75-100-200-784.

Accordingly, we trained a 1,7-network using all training
samples of 1’s and 7’s with a stacked denoising AE. After
training the 1,7-AE, it is ready to address drifting inputs
through NDL. New classes of digits are presented in the
following order: 0, 2, 3, 4, 5, 6, 8, and 9. Notably, this
procedure is not strictly concept drift (where classes are
changing over time) or transfer learning (where a trained
network is retrained to apply to a different domain), but rather
was designed to examine the capability of the network to learn
novel inputs while maintaining the stability of previous
information (i.e., address the stability-plasticity dilemma).

Fig. 3. Networks initially trained on (A) ‘4,’ ‘6,’ and ‘8’s and (B) ‘1,’ and
‘7’s and not yet trained on any of the other MNIST digits reconstruct those

novel digits using features biased by their original training data.

NDL begins by presenting all samples of a new class to
Level 1 of the AE and identifying ‘outlier’ samples having
REs above a user-specified threshold. Then, one or more new
nodes are added to Level 1 and the entire level is pre-trained
in a SHL-AE. Initially, only the weights connected to the
newly added nodes are allowed to be updated at the full
learning rate. Encoder weights connected to old nodes are not
allowed to change at all (to preserve the feature detectors
trained on previous classes) and decoder weights from old
nodes are allowed to change at the learning rate divided by
100. This step relates to the notion of plasticity in biological
neurogenesis. After briefly training the new nodes, a
stabilization step takes place, where the entire level is trained
in a SHL-AE using training samples from all classes seen by
the network (samples from old classes are generated via
intrinsic replay). After again calculating the RE on samples
from the new class, additional nodes are added until either 1)
the RE for enough samples falls below the threshold or 2) a
user-specified maximum number of new nodes are reached for

the current level. Once neurogenesis is complete for a level,
weights connecting to the next level are trained using samples
from all classes. This process repeats for each succeeding
level of the AE using outputs from the previous encoding
layer. After NDL, the new AE should be capable of
reconstructing images from the new class (e.g., 0) in addition
to the current previous classes (e.g., 1 and 7).

B. Neurogenesis allows encoding of novel information

Results of NDL experiments on MNIST data showed that
an established network trained on just digits 1 and 7 can be
enlarged through neurogenesis to represent new digits as
guided by RE at each level of a stacked AE. We compared a
network created with NDL and IR (‘NDL+IR’) to three
control networks: Control 1 (‘CL’) – an AE the same size as
the enlarged NDL without IR network trained first on the
subset digits 1 and 7, and then retrained without intrinsic
replay on all samples from one new single digit at a time
(Figure 4A); Control 2 (‘NDL’) – continuous learning on the
original 1,7 network using NDL, but not using intrinsic replay
(Figure 4B), and Control 3 (‘CL+IR’) – an AE the same size
as the enlarged NDL+IR network trained first on the subset
digits 1 and 7, and then retrained with all samples from one
new single digit at a time, while using intrinsic replay to
generate samples of previously trained classes throughout the
experiment (Figure 4C). Figure 4D shows that the network
built upon NDL+IR slightly outperforms learning on a fixed
network (Figure 4C). Notably, NDL+IR outperforms straight
learning not only on reconstruction across all digits, but in
both the ability to represent the new data as well as preserving
the ability to represent previously trained digits (Figure 4E).
This latter point is important, because while getting a trained
network to learn new information is not particularly
challenging, getting it to preserve old information can be quite
difficult.

Note that the final DNN size is unknown prior to
neurogenesis. The network size is increased based on the RE
when the network is exposed to new information, so there is
possible value in using this method to determine an effective
DNN size. The original size of the 1,7-AE is 784-200-100-75-
20-75-100-200-784. Figure 4F shows how the DNN grows as
new classes are presented during neurogenesis, gaining more
representational capacity as new classes are learned.

The ‘CL+IR’ control network initially had the identical
size of the neurogenesis network ‘NDL+IR’, was initially
trained on digits 1 and 7, and then learned to represent the
remaining MNIST digits, one at a time in the same order as
presented during neurogenesis, but the network size was fixed.
Figure 5A shows reconstructed images after each new class
was learned on the ‘CL+IR’ AE and Figure 5B shows the
comparable images for the ‘NDL+IR’ network as it was
trained to accommodate all MNIST digits. One can see that
before being trained on new digits (to the right of the blocked
trained class shown in each row), both networks mis-
reconstructed digits from the unseen classes into digits that
appear to belong to a previously trained class as expected.
Notably in the ‘CL+IR’ reconstructions (Figure 5A), digits
from previously seen classes were often mis-reconstructed to
more recently seen classes. In contrast, the ‘NDL+IR’

networks (Figure 5B) were more stable in their representations
of previously encoded data, with only minimal disruption to
past classes as new information was acquired. This suggests
that adding neurons as a network is exposed to novel
information is advantageous in maintaining the stability of a
DNN’s previous representations.

Fig. 4. Global reconstructions of trained MNIST digits after exposure to all

10 digits. The legend in Plot D applies to Plots A, B, and C; the dotted line

shows REs of the original AE trained just on 1 and 7. (A) CL without IR
provides only marginal improvement in reconstruction ability after learning

all 10 digits; (B) NDL without IR likewise fails to improve reconstruction,

though NDL training makes reconstruction through partial networks more
useful; (C) CL with IR improves overall reconstruction of previously trained

digits; (D) NDL with IR further improves on CL with IR in (C) along with

improved partial network reconstructions; (E) Full network reconstructions of
all networks after progressive training through all digits; (F) Neurogenesis

contribution to network size in NDL+IR networks.

Fig. 5. Reconstructions of all digits by pre-trained ‘1/7’ networks after

learning on progressive new classes. (A) Networks using conventional
learning with IR are able to acquire new digits and show some ability to

maintain representations of recently trained digits (e.g., ‘6’s after ‘8’ is

learned). (B) Networks using NDL with IR are able to acquire new digits and
show superior reconstructions of previously encountered digits, even for those

digits trained far earlier (e.g., ‘0’s throughout the experiment).

V. RESULTS ON NIST SD19

Applying NDL to the NIST SD19 dataset presents
challenges for evaluating neurogenesis performance because
of the number of classes. Figure 6 shows the effect of learning
on each class, comparing the initial RE of each class on the
network trained on digits before any learning of letters and the
final RE after all classes have been learned. A line segment
with a downward (negative) slope indicates that the final RE is
less than the initial RE.

The clear observation is that learning new classes with
NDL with intrinsic replay (NDL+IR) results in smaller RE
than learning without neurogenesis (CL+IR) for all classes. In
addition, the final REs for NDL+IR are all lower than the
initial REs, even for classes (digits) used to train the original
AE. This implies that the ultimate AE built via neurogenesis
has a richer set of feature detectors, resulting in better
representation of all classes. Another observation is that, in
general, the initial REs of the CL+IR network are lower than
the initial REs of the NDL+IR network. The reason is that the

original NDL+IR network was smaller than the fixed CL+IR
network.

While Figure 6 shows the improvement in class

representation at the beginning and end of NDL+IR, Figures 7

and 8 show the progression in time of growing the final

network. More new neurons are added earlier in the

neurogenesis process than later. As novel classes are

presented, new feature are learned and representation

capability improves for all classes. Eventually, the need for

additional neurons diminishes. Figure 7 reveals that the AE is

particularly lacking feature detectors necessary for good

representation of class ‘M’ in all levels. In Figure 6, it is clear

that class ‘W’ is also lacking feature detectors, but by the time

it is presented for learning, its need has been met by

neurogenesis on previous classes.

Fig. 6. Comparison of initial and final (left and right of each line segment, respectively) full AE (Level 4) REs on each class after learning of all classes.

Fig. 7. Neurogenesis contribution to networks trained on digits only, where new classes are presented for NDL alphabetically, upper case first.

Fig. 8. Neurogenesis contribution to networks trained on digits only. 20 experiments were conducted where newly presented classes (upper and lower case
letters) were randomly ordered. The plot shows the average number of new neurons added progessively for each new class with standard deviation as error bars.

VI. CHARACTERIZING THE VALUE OF ADAPTING DNNS

The value of a model to continuously adapt to changing data

is challenging to quantify. Here, we notionally quantify the

value of a machine learning algorithm at a given time as

 , (6)
where the utility, U, of an algorithm is considered as a

tradeoff between the benefit, B, that the computation

provides the user, the costs of the algorithm generation or

the model itself, CM, and the associated run-time costs, CP,

of that computation. CP typically consists of the time and

physical energy and space required for the computation to

be performed. For machine learning applications, we must

consider the lifetime, τ, of an algorithm for which it is

appropriate to amortize a model's build costs. In algorithm

design, it is desirable to minimize both of the cost terms;

however, the dominant cost will differ depending on the

extent to which the real-world data changes. Consider a

DNN with N neurons and on the order of N2 synapses. In

this example, the cost of building the model, CM, will scale

as O(N4) due to performing O(N2) operations over N2

training samples during training of a well-regularized,

appropriately fit model. As a result, CM will dominate the

algorithm's cost unless the lifetime of the model, τ, can

offset the polynomial difference between CM and CP. This

description illustrates the need to extend the model’s

lifetime (e.g., via neurogenesis), and to do so in an

inexpensive manner that minimizes the data required to

adapt the model for future use.

VII. CONCLUSIONS AND FUTURE WORK

We presented a new adaptive algorithm using the concept
of neurogenesis to extend the learning of an established DNN
when presented with new data classes. The algorithm adds
new neurons at each level of an AE when new data samples

are not accurately represented by the network as determined
by a high RE. The focus of the paper is on a proof of concept
of continuous learning for DNNs to adapt to changing
application domains. Several elements of our NDL algorithm
that we have not sought to optimize deserve further
consideration. For instance, the optimal number of IR
samples is unknown and will affect the computational cost
associated with their use. Other elements that need to be
considered are 1) better ways of establishing and using RE
thresholds and 2) developing a method to determine the
number of outliers to allow during neurogenesis. While we
considered a network of growing size via neurogenesis,
adaptation may be obtainable use of a larger network with a
fixed size and restricting the learning rate on a subset of
neurons until needed at a later time. We evaluated the NDL
algorithm on two datasets having gray-scale objects on blank
backgrounds and look forward to application on additional
datasets, including natural, color imagery.

Ultimately, we anticipate that there are several significant
advantages of a neurogenesis-like method for adapting
existing networks to incorporate new data, particularly given
suitable IR capabilities. The first relates to the costs of DL in
application domains. The ability to adapt to new information
can extend a model’s useful lifetime in real-world situations,
possibly by substantial amounts. Extending a model’s
lifetime increases the duration over which one can amortize
the costs of developing the model, and in the case of DL, the
build cost often vastly outpaces the runtime operational costs
of the trained feed-forward network. As a result, continuous
adaptation can potentially make DL cost effective for
domains with significant concept drift. Admittedly, the
method we describe here has an added processing cost due to
the neurogenesis process and the required intrinsic replay;
however, this cost will most likely amount to a constant
factor increase on the processing costs and still be
significantly lower than those costs associated with
repeatedly retraining with the original training data.

The second advantage concerns the continuous learning
nature of the NDL algorithm. The ability to train a large
network without maintaining a growing repository of data
can be valuable, particularly in cases where the bulk storage
of data is not permitted due to costs or other restrictions.
While much of the DL community has focused on cases
where there is extensive unlabeled training data, our
technique can provide solutions where training data at any
time is limited and new data is expected to arrive
continuously. Furthermore, we have considered a very stark
change in the data landscape, with the network exposed
exclusively to novel classes. In real-world applications, novel
information may be encountered more gradually. This slower
drift would likely require neurogenesis less often, but it
would be equally useful when needed.

Finally, it has not escaped us that the algorithm we
present is emulating adult neurogenesis within a cortical-like
circuit, whereas in adult mammals, substantial neurogenesis
does not appear in sensory cortices [7]. In this way, our NDL
networks are more similar to juvenile or developmental
visual systems, where the network has only been exposed to
a limited extent of the information it will eventually
encounter. Presumably, if one takes a DNN with many more
nodes per layer and trains it with a much larger and broader
set of data, the requirement for neurogenesis will diminish.
In this situation, we predict that the levels of neurogenesis
will eventually diminish to zero early in the network because
the DNN will have the ability to represent a broad set of low
level features that prove sufficient for even the most novel
data encountered, whereas neurogenesis may always remain
useful at the deepest network layers that are more
comparable to the medial temporal lobe and hippocampus
areas of cortex. Indeed, this work illustrates that the
incorporation of neural developmental and adult plasticity
mechanisms, such as staggering network development by
layer (e.g., “layergenesis”), into conventional DNNs will
likely continue to offer considerable benefits.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G.E. Hinton, “Deep learning,” Nature 521,
436-444 (2015).

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks 61, 85-117 (2015).

[3] D.C. Van Essen, C. Anderson, D. Felleman, “Information processing
in the primate visual system: An integrated systems perspective,”
Science, 1992. Jan 24;255(5043): pp. 419-423.

[4] Q.V. Le, in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. 8595-8598 (IEEE).

[5] D.C. Cireşan, U. Meier, and J. Schmidhuber, “Transfer learning for
Latin and Chinese characters with Deep Neural Networks,” The 2012
Intl. Joint Conference on Neural Networks (IJCNN). 1-6 (IEEE).

[6] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?,” in Advances in Neural
Information Processing Systems 2014: pp. 3320-3328.

[7] J.B. Aimone, et al. “Regulation and function of adult neurogenesis:
from genes to cognition,” Physiological reviews 94, 991-1026,
doi:10.1152/physrev.00004.2014 (2014).

[8] J.B. Aimone, W. Deng, and J.H. Gage, “Resolving new memories: a
critical look at the dentate gyrus, adult neurogenesis, and pattern
separation,” Neuron 70, 589-596, 2011.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
86(11): pp.2278–2324, 1998.

[10] P.J. Grother, “NIST special database 19 - Handprinted forms and
characters database,” Technical report, National Institute of Standards
and Thechnology (NIST), 1995.

[11] P.A. Appleby, G. Kempermann, and L. Wiskott, “The role of additive
neurogenesis and synaptic plasticity in a hippocampal memory model
with grid-cell like input,” PLoS comput. biology 7, e1001063 (2011).

[12] P. A. Appleby and L. Wiskott, “Additive neurogenesis as a strategy
for avoiding interference in a sparsely-coding dentate gyrus,”
Network: Computation in Neural Systems 20, 137-161 (2009).

[13] G.A. Carpenter and S. Grossberg, “The ART of adaptive pattern
recognition by a self-organizing neural network,” Computer 21, 77-88
(1988).

[14] R.A. Chambers and S.K. Conroy, “Network modeling of adult
neurogenesis: Shifting rates of neuronal turnover optimally gears
network learning according to novelty gradient,” Journal of cognitive
neuroscience 19, 1-12 (2007).

[15] R.A. Chambers, M.N. Potenza, R.E. Hoffman, and W. Miranker,
“Simulated apoptosis/neurogenesis regulates learning and memory
capabilities of adaptive neural networks,”
Neuropsychopharmacology: official publication of the American
College of Neuropsychopharmacology 29, 747-758 (2004).

[16] C. Crick and W. Miranker, “Apoptosis, neurogenesis, and information
content in Hebbian networks,” Biol. cybernetics 94, 9-19 (2006).

[17] L. Wiskott, M.J. Rasch, Mand G. Kempermann, “A functional
hypothesis for adult hippocampal neurogenesis: avoidance of
catastrophic interference in the dentate gyrus,” Hippocampus 16, 329-
343, doi:10.1002/hipo.20167 (2006).

[18] J.B. Aimone, and F.H. Gage, “Modeling new neuron function: a
history of using computational neuroscience to study adult
neurogenesis,” The European journal of neuroscience 33, 1160-1169,
doi:10.1111/j.1460-9568.2011.07615.x (2011).

[19] R. Calandra, R. Tapani, M.P. Deisenroth, and M.F. Pouzols,
“Learning deep belief networks from non-stationary streams,” Artif.
Neural Networks and Machine Learning–ICANN 2012: pp. 379-386.

[20] C Kandaswamy, L.M. Silva, L.A. Alexandre, J.M. Santos, and J.M.
de Sá, “Improving deep neural network performance by reusing
features trained with transductive transference,” International
Conference on Artificial Neural Networks, pp. 265-272, 2014.

[21] M.F. Carr, S.P. Jadhav, and L.M. Frank, “Hippocampal replay in the
awake state: a potential substrate for memory consolidation and
retrieval,” Nature neuroscience 14(2): pp. 147-153, 2011.

[22] K. Louie and M.A. Wilson, “Temporally structured replay of awake
hippocampal ensemble activity during rapid eye movement sleep,”
Neuron, 2001. 29(1): pp. 145-156.

[23] R. Stickgold, “Sleep-dependent memory consolidation,” Nature,
2005. 437(7063): pp. 1272-1278.

[24] D.J. Felleman and D.C. Van Essen, “Distributed hierarchical
processing in the primate cerebral cortex,” Cerebral cortex, 1991.
1(1): pp. 1-47.

[25] G.E. Hinton, P. Dayan, B.J. Frey, and R. Neal, “The “Wake-Sleep”
algorithm for unsupervised neural networks. Science,” 1995 May26;
268(5214): pp. 1158-1161.

[26] R. Salakhutdinov, “Learning deep generative models,” PhD thesis,
University of Toronto, 2009.

[27] K. Gregor, I. Danihelka, A. Graves, D.J. Rezende, and D. Wierstra,
“DRAW: A recurrent neural network for image generation,” ICML,
2015.

[28] J. Rudy and G. Taylor, “Generative class-conditional autoencoders,”
ArXiv e-prints 1412.7009 (2015).

[29] A. Krishnamoorthy and D. Menon, "Matrix inversion using Cholesky
decomposition," 2013 Signal Processing: Algorithms, Architectures,
Arrangements, and Applications (SPA), Poznan, 2013, pp. 70-72.

[30] G.E. Hinton and R.R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, 2006. Jul 28;313(5786): pp.
504-507.

