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Simulation-based Radiation Shield Design

 Shields enable use of commodity microelectronics in space 
systems, but consume precious weight budget

 Combined electron/proton shielding is non-intuitive; 
graded-Z (atomic number) shields can help

 Goal: Robust design to minimize shield mass, ensuring 
sufficiently low radiation dose to satellite microelectronics
 Explore advanced/composite materials, manufacturing processes
 Design optimal shield layer geometries
 Seek robustness to environment, 

manufacturing uncertainties
 Avoid overly conservative safety factors
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Radiation Transport Solver with
Adjoint-based Sensitivities

 Boltzmann transport for fluxes 𝜓𝜓, with derived response 𝑔𝑔

 SCEPTRE simulation of forward/adjoint radiation transport

 Post-process fluxes, adjoint fluxes to calculate, e.g.,
 Dose 𝑔𝑔(𝑝𝑝) in silicon-based microelectronics, 
 Sensitivities: form a Lagrangian, enforce forward and adjoint solution 

to get sensitivity 𝜕𝜕𝜕𝜕(𝑝𝑝)/𝜕𝜕𝜕𝜕 of dose to design and uncertain 
parameters 𝑝𝑝.
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Optimization Formulation

 Goal: What component materials, composite material fractions, and 
shield layer geometries yield the lightest, sufficiently protective shield? 

 Example: 1-D electron/proton shield design
 Structural aluminum facing space radiation
 3-layer designable shield protecting silicon;

 Thickness 𝒕𝒕𝒋𝒋 of layer 𝑗𝑗
 Fraction 𝝆𝝆𝒋𝒋 of material 𝑚𝑚 in layer 𝑗𝑗

 Transport-constrained nonlinear program

 Adjoint-based sensitivities 𝜕𝜕𝜕𝜕(𝑝𝑝)/𝜕𝜕𝑝𝑝 for gradient-based optimization; 
nearly constant cost per evaluation for any number parameters

 Solved with Dakota (NPSOL’s sequential quadratic programming)
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𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡,𝜌𝜌 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡, 𝜌𝜌
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0 ≤ 𝜌𝜌𝑗𝑗,𝑚𝑚 ≤ 1
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Single Layer Shield Optimization

 Demonstration: single layer shield for 3000km orbit; design
 Design fraction of UHMWPE (polyethylene), Al, Cu, Mo, Ta; thickness

 Solution cost (6 design parameters)

 Shift from UHMWPE to Ta yields a 4.4% lighter, thinner shield,
meeting same dose constraint. Al, Cu, Mo are not selected.
 Modest gain demonstrated, but significant vs. aluminum shielding
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thickness 
(cm)

UHMWPE 
fraction

Ta 
fraction

mass 
(g/cm2)

dose 
(krad)

initial 13.50 1.0000 0 12.55 10.01
final 12.81 0.9994 0.0006 12.02 10.00

Iterations
Forward
Solves

Adjoint
Solves

Adjoint 17 17 17

Finite difference 19 133 -

Adjoint costs roughly 
1.75x forward, for 
total 2.75x per eval



Proton/Electron 
Environment Varies By Altitude

 Differing requirements, e.g., for weather vs. GPS satellites
 Optimizer determines optimal shield for each altitude 

 Considered designs with any of 92 materials (H through U) 
 Explore potential options, without regard to manufacturability
 Required ~15 iterations using adjoints (FD impractical): scales well 

with number of parameters

 Running many trade studies (see Pautz, et al., ANS M&C 2017)
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Altitude (km) UHMWPE-Al-Cu-Mo-Ta mass 
(g/cm2)

Periodic table mass 
(g/cm2)

2000 UHMWPE 7.81, Ta 0.126 H 3.95, Ta 0.098
3000 UHMWPE 11.89, Ta 0.138 H 6.03, Ta 0.125
4000 UHMWPE 6.43, Ta 0.166 H 3.19, other 0.290

… … …
9000 UHMWPE 0.244, Ta 0.083 H 0.149, At 0.047, Pa trace



Uncertainty Quantification (UQ)

 Goal: with what probability will a proposed design meet dose 
requirements? Account for variability in 
 manufacturing (mixtures, layer geometry) 
 state of knowledge (transport cross sections)
 operating environment (source spectrum)

 Use adjoint-based derivatives with advanced UQ methods

 Demonstration: UQ for 
optimally-designed 3-layer shield,
assuming imperfect mixtures
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Layer: 
Mixture  

mean 𝝁𝝁
(g/cm2)

standard 
deviation 𝝈𝝈

(g/cm2)
L1: UHMWPE 3.4424e+00 1.7212e-01
L1: Ta 1.3198e-02 6.5992e-04
L2: UHMWPE 3.6750e+00 1.8375e-01
L2: Ta 6.1353e-03 3.0677e-04
L3: UHMWPE 4.8077e+00 2.4039e-01
L3: Ta 9.7317e-02 4.8658e-03



 Monte Carlo Sampling / LHS to propagate 
uncertainty in 𝑢𝑢 is robust, but slow to converge; 
can’t take advantage of adjoint information

 (Local) Reliability methods use derivatives:
 Mean value (MV): first- or second-order 

approximation at uncertain variable means
 Most-probable point (MPP): reformulate UQ as 

optimization; apply usual derivative-based 
methods

 Polynomial chaos expansions (PCE)
 Expand QOI in an uncertainty-optimal orthogonal 

polynomial basis 𝜑𝜑𝑖𝑖; calculate statistics analytically
 Can use function 𝑔𝑔 𝑢𝑢𝑖𝑖 and gradient 𝛻𝛻𝑔𝑔(𝑢𝑢𝑖𝑖) data at 

points 𝑖𝑖 in a regression approach to determine 𝑐𝑐𝑖𝑖

Use of Derivatives in UQ
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UQ for an Optimally Designed
3-layer Shield

 Advanced, gradient-informed UQ 
methods offer computational 
efficiency and accuracy advantages
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Method Rel. Wall Notes
MV 1.75 1 forward + 1 adjoint solve

MPP
4 * 1.75 4 * (fwd. + adj.), 1 prob. level
54 * 1.75 54 * (fwd. + adj.), 30 levels 

LHS_N;
PCEf_N N N * fwd.

PCEg_N N * 1.75 N * (fwd. + adj.)

poorer 
agreement 
in tails

Reasonable 
agreement 
near median



Convergence of UQ Methods

 Gradient-based MPP and PCE methods 
show promise in resolving statistics with 
lower cost

 Should offer accuracy advantages over 
MC/LHS for tail probabilities

 Details: Adams, et al., ANS M&C 2017
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mean

standard 
deviation

99th
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Work in Progress: 
Adjoint-enabled Radiation Shield Design

 Design with 2-D and 3-D geometries, allow spot shielding
 Multiple dose constraints for differing component requirements
 Uncertainties in source spectrum (how to parameterize?)
 Nested analysis to directly seek designs 𝑥𝑥 that satisfy statistical robustness 

or reliability constraints 𝑠𝑠(𝑥𝑥)
 Reliability, polynomial chaos take advantage 

of algebraic statistics form to propagate 
simulation adjoints to derivatives of statistics
without finite differences

 Also benefits bounding or interval analysis 
with aleatory + epistemic

Thanks for your attention!
briadam@sandia.gov
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Optimization

𝑥𝑥 𝑠𝑠(𝑥𝑥)
𝛻𝛻𝛻𝛻(𝑥𝑥)
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