
Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2017-XXXXC

Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Programming Constructs
for Transparent Silent-Error
Mitigation in PDE Solvers

Maher Salloum, Jackson Mayo, and
Robert Armstrong

Sandia National Laboratories, Livermore, CA 94551
{mnsallo, jmayo, rob}@sandia.gov

February 27, 2017

SAND2017-2085C

Acknowledgment

 Karla Morris (Sandia National Laboratories) contributed to
Fortran implementation

2

Problem: Future platforms will face tradeoffs
imperiling correct hardware function

 Most HPC applications assume hardware that is reliable
except for occasional fail-stop faults
 For those faults, detection is simple, and generic recovery schemes

are possible

 Hardware correction already attempts to hide many “out-of-
nominal” behaviors from the application
 Error correction for bit flips in DRAM and caches is important and

largely effective

 Increasing scale and constrained power may push toward
exposing new kinds of hardware errors – e.g., silent data
corruption (SDC) that can cause wrong application results
 Undetected DRAM errors at exascale for one type of ECC memory

could be ~1 per day

 Low-voltage processors and accelerators will likely have increased
rates of arithmetic errors; ECC doesn’t protect data transformation

3

Objective: Enable practical SDC mitigation
targeted at physics simulation

 For Advanced Simulation & Computing (ASC) codes, we seek
better understanding of how to anticipate, mitigate, and/or
diagnose the effect of silent errors

 Ultimate goal is to contribute to a practical resilience toolbox
for production codes
 Leveraging existing PDE solvers and maintainable as they evolve

 Adaptable to respond to future hardware characteristics

 Flexible to unanticipated sources of silent errors

 There has been much study of SDC detection techniques,
including for PDEs, but the recovery mechanism is crucial

 Our thesis: The dynamics of physical PDEs can support
efficient ultralocal (within cache) detection and recovery,
achieving stability to isolated occurrences of SDC
 Handling silent errors quickly and transparently (like standard

numerical errors) reduces the cost of a false positive
4

Current error model describes
memory bit flips

 In extreme-scale scientific computing, floating-point data are
an obvious concern for SDC
 Floating-point data often constitute the bulk of memory usage

 Corruption in other places (control logic, pointers) is more likely to
cause outright crashes, which will be mitigated by other means

 Our error-injection framework
for solvers: Asynchronously
perform raw memory bit flips
in the solution array
 Corrupter injects random bit flips based on a probability parameter

 Memory corruption is also a proxy for other silent-error
sources that ultimately affect values in memory – e.g.,
processor arithmetic errors

5

Outlier detection and interpolation can
leverage smoothness properties of physics

6

 We have prototyped a simple, widely applicable SDC
mitigation technique for PDE solvers (FTXS’16)

 Current scope: SDC in memory affecting floating-point data in
structured meshes

 Aim is to correct accumulated bit flips in data values when
they are loaded from memory, just before they are used – so
that large corruptions will not propagate

 Corrupted values are detected via relative
deviation from neighbors and replaced
with an interpolation, as a computation
loop is sweeping the array
 One-sided correction at array boundaries

 Detection/interpolation along the “fast” index
in multidimensional arrays for cache efficiency

Interpolation is effective in tolerating
bit flips

7

300×
(increasing
with scale)

 Initially demonstrated on simple solvers, both explicit (1D
Burgers equation) and iterative (HPCCG conjugate gradient
mini-app for 3D elliptic equation)
 Runtime overhead as low as a few percent in the presence of local

source-term computations or intensive communication

 HPCCG example (FTXS’16)
 Modify CG to use interpolation-based

robust linear algebra “building blocks”

 Robust CG method can tolerate
higher SDC rates that prevent
standard method from converging

 Our approach is helpful for systems
with SDC rates between the blue and
red curves – a potentially very wide
range of scenarios for co-design or unexpected faults

“Manual” SDC mitigation demonstrated in
multiphysics solver

 SMC is a convenient example of production-like code
 DOE coupled fluid dynamics and combustion solver

 Representative of structured multiphysics simulation

 Linear algebra and stencils involve nested loops over spatial
directions and field variables
 Code modifications for robustness occur at the level of the inner loops

8

z-velocity field plots:

 SMC simulation with 9 species and
27 reactions running on 4 cores

 Robust solver tolerates 4.5× the error
rate tolerated by the standard solver

 20% runtime overhead
 3% additional lines of code

Code maintainability is a key issue

 How easy is it to incorporate SDC mitigation in the code for
low-level solver operations?

 For operations that are widely reused and rarely modified,
robust versions can be written once and packaged in libraries;
but robust custom solver operations (e.g., stencil code) may
need to be written/modified by application experts rather
than resilience experts
 Even for packaged operations, we would like to ease the library

writer’s task

 Aim: Minimize additional programmer effort needed to
implement and maintain a robust solver vs. a non-robust one

9

Linear algebra building blocks facilitate
robustness in iterative solvers

 HPCCG top-level code incorporates mitigation by simply using
overloaded BLAS functions with additional argument
 The robust BLAS must implement error detection and correction

10

“Resilient view” class helps implement
interpolation-based mitigation transparently

 In C++, preserves array syntax via overloaded operator[]
 Simplified code shown, for error detection and correction when

reading from the array

 Templating allows use on any existing random-access array type

 Extension: operator[] can return object with overloaded assignment
operator so resilient view can be used on left-hand side too

11

class ResilientView1D {
public:
double operator[](int index);

private:
double* begin;
int size;
double threshold;

};

double ResilientView1D::operator[](int index) {
const double* it = begin + index;
double val = it[0];
double diff = it[1] - it[-1];
double interp = 0.5 * (it[1] + it[-1]);
if(val != val ||

std::fabs((val - interp) / diff) > threshold) {
val = interp;

}
return val;

}

Resilient view further improves code
maintainability for SDC mitigation

 Example: BLAS-like operation

 Original implementation: additional function calls
 Must know and remember to insert in each loop for each array used

 New implementation: resilient views
 Simply require that all array reads occur through view objects

 Loops look very similar to the original code

12

Resilient view also facilitates custom
stencil operations

13

Fortran implementation of resilient view
is similar

 Requires type-bound procedure “%f” because array indexing
syntax cannot be overloaded

14

type :: resilientView4D
private

double precision, pointer :: begin(:,:,:,:)=>NULL()
double precision :: threshold

contains
procedure :: f

end type

contains
double precision function f(this,i1,i2,i3,i4) result(val)

class(resilientView4D), intent(in) :: this
integer, intent(in) :: i1,i2,i3,i4
double precision :: diff, interp
val = this%begin(i1,i2,i3,i4)
diff = this%begin(i1+1,i2,i3,i4) - this%begin(i1-1,i2,i3,i4);
interp = 0.5d0 * (this%begin(i1+1,i2,i3,i4) + this%begin(i1-1,i2,i3,i4))
if((val /= val) .or. (dabs((val - interp) / diff) > this%threshold)) then

val = interp
endif

end function

Our previous mitigation in SMC required
inserting function calls in each loop

15

Tests shown above
used this version

Resilient view being incorporated into SMC

16

Conclusion: Helping take SDC mitigation
a step closer to routine use

 Resilient view can detect and correct SDC in structured PDE
solvers while keeping code understandable & maintainable
 Using mitigation technique previously found effective and efficient

 Reducing chance for programmer to mistype or omit a mitigation step

 Future directions can bring this work further into practice
 Evaluation at larger computational scale

 We are moving toward advanced technology platform (100,000s of cores)

 Broader error models

 While memory error mitigation can address other silent error sources,
more efficient targeted techniques are possible

 Long-term potential to inform hardware choices (co-design)

 Showing we can practically tolerate more errors could encourage vendors
to “break the logjam” and increase their offerings of more efficient, less
reliable hardware

17

