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Problem: Future platforms will face tradeoffs 
imperiling correct hardware function

 Most HPC applications assume hardware that is reliable 
except for occasional fail-stop faults
 For those faults, detection is simple, and generic recovery schemes 

are possible

 Hardware correction already attempts to hide many “out-of-
nominal” behaviors from the application
 Error correction for bit flips in DRAM and caches is important and 

largely effective

 Increasing scale and constrained power may push toward 
exposing new kinds of hardware errors – e.g., silent data 
corruption (SDC) that can cause wrong application results
 Undetected DRAM errors at exascale for one type of ECC memory 

could be ~1 per day

 Low-voltage processors and accelerators will likely have increased 
rates of arithmetic errors; ECC doesn’t protect data transformation
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Objective: Enable practical SDC mitigation 
targeted at physics simulation

 For Advanced Simulation & Computing (ASC) codes, we seek 
better understanding of how to anticipate, mitigate, and/or 
diagnose the effect of silent errors

 Ultimate goal is to contribute to a practical resilience toolbox 
for production codes
 Leveraging existing PDE solvers and maintainable as they evolve

 Adaptable to respond to future hardware characteristics

 Flexible to unanticipated sources of silent errors

 There has been much study of SDC detection techniques, 
including for PDEs, but the recovery mechanism is crucial

 Our thesis: The dynamics of physical PDEs can support 
efficient ultralocal (within cache) detection and recovery, 
achieving stability to isolated occurrences of SDC
 Handling silent errors quickly and transparently (like standard 

numerical errors) reduces the cost of a false positive
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Current error model describes
memory bit flips

 In extreme-scale scientific computing, floating-point data are 
an obvious concern for SDC
 Floating-point data often constitute the bulk of memory usage

 Corruption in other places (control logic, pointers) is more likely to 
cause outright crashes, which will be mitigated by other means

 Our error-injection framework
for solvers: Asynchronously
perform raw memory bit flips
in the solution array
 Corrupter injects random bit flips based on a probability parameter

 Memory corruption is also a proxy for other silent-error 
sources that ultimately affect values in memory – e.g., 
processor arithmetic errors
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Outlier detection and interpolation can
leverage smoothness properties of physics
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 We have prototyped a simple, widely applicable SDC 
mitigation technique for PDE solvers (FTXS’16)

 Current scope: SDC in memory affecting floating-point data in 
structured meshes

 Aim is to correct accumulated bit flips in data values when 
they are loaded from memory, just before they are used – so 
that large corruptions will not propagate

 Corrupted values are detected via relative
deviation from neighbors and replaced
with an interpolation, as a computation
loop is sweeping the array
 One-sided correction at array boundaries

 Detection/interpolation along the “fast” index
in multidimensional arrays for cache efficiency



Interpolation is effective in tolerating
bit flips
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300×
(increasing
with scale)

 Initially demonstrated on simple solvers, both explicit (1D 
Burgers equation) and iterative (HPCCG conjugate gradient 
mini-app for 3D elliptic equation)
 Runtime overhead as low as a few percent in the presence of local 

source-term computations or intensive communication

 HPCCG example (FTXS’16)
 Modify CG to use interpolation-based

robust linear algebra “building blocks”

 Robust CG method can tolerate
higher SDC rates that prevent
standard method from converging

 Our approach is helpful for systems
with SDC rates between the blue and
red curves – a potentially very wide
range of scenarios for co-design or unexpected faults



“Manual” SDC mitigation demonstrated in
multiphysics solver

 SMC is a convenient example of production-like code
 DOE coupled fluid dynamics and combustion solver

 Representative of structured multiphysics simulation

 Linear algebra and stencils involve nested loops over spatial 
directions and field variables
 Code modifications for robustness occur at the level of the inner loops
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z-velocity field plots:

 SMC simulation with 9 species and 
27 reactions running on 4 cores

 Robust solver tolerates 4.5× the error 
rate tolerated by the standard solver

 20% runtime overhead
 3% additional lines of code



Code maintainability is a key issue

 How easy is it to incorporate SDC mitigation in the code for 
low-level solver operations?

 For operations that are widely reused and rarely modified, 
robust versions can be written once and packaged in libraries; 
but robust custom solver operations (e.g., stencil code) may 
need to be written/modified by application experts rather 
than resilience experts
 Even for packaged operations, we would like to ease the library 

writer’s task

 Aim: Minimize additional programmer effort needed to 
implement and maintain a robust solver vs. a non-robust one
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Linear algebra building blocks facilitate 
robustness in iterative solvers

 HPCCG top-level code incorporates mitigation by simply using 
overloaded BLAS functions with additional argument
 The robust BLAS must implement error detection and correction
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“Resilient view” class helps implement
interpolation-based mitigation transparently

 In C++, preserves array syntax via overloaded operator[]
 Simplified code shown, for error detection and correction when 

reading from the array

 Templating allows use on any existing random-access array type

 Extension: operator[] can return object with overloaded assignment 
operator so resilient view can be used on left-hand side too
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class ResilientView1D {
public:
double operator[](int index);

private:
double* begin;
int size;
double threshold;

};

double ResilientView1D::operator[](int index) {
const double* it = begin + index;
double val = it[0];
double diff = it[1] - it[-1];
double interp = 0.5 * (it[1] + it[-1]);
if(val != val ||

std::fabs((val - interp) / diff) > threshold) {
val = interp;

}
return val;

}



Resilient view further improves code 
maintainability for SDC mitigation

 Example: BLAS-like operation

 Original implementation: additional function calls
 Must know and remember to insert in each loop for each array used

 New implementation: resilient views
 Simply require that all array reads occur through view objects

 Loops look very similar to the original code
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Resilient view also facilitates custom
stencil operations
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Fortran implementation of resilient view
is similar

 Requires type-bound procedure “%f” because array indexing 
syntax cannot be overloaded
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type :: resilientView4D
private

double precision, pointer :: begin(:,:,:,:)=>NULL()
double precision :: threshold

contains
procedure :: f

end type

contains
double precision function f(this,i1,i2,i3,i4) result(val)

class(resilientView4D), intent(in) :: this
integer, intent(in) :: i1,i2,i3,i4
double precision :: diff, interp
val = this%begin(i1,i2,i3,i4)   
diff = this%begin(i1+1,i2,i3,i4) - this%begin(i1-1,i2,i3,i4);
interp = 0.5d0 * (this%begin(i1+1,i2,i3,i4) + this%begin(i1-1,i2,i3,i4))
if( (val /= val) .or. (dabs((val - interp) / diff) > this%threshold) ) then

val = interp
endif   

end function



Our previous mitigation in SMC required 
inserting function calls in each loop
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Tests shown above
used this version



Resilient view being incorporated into SMC
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Conclusion: Helping take SDC mitigation
a step closer to routine use

 Resilient view can detect and correct SDC in structured PDE 
solvers while keeping code understandable & maintainable
 Using mitigation technique previously found effective and efficient

 Reducing chance for programmer to mistype or omit a mitigation step

 Future directions can bring this work further into practice
 Evaluation at larger computational scale

 We are moving toward advanced technology platform (100,000s of cores)

 Broader error models

 While memory error mitigation can address other silent error sources, 
more efficient targeted techniques are possible

 Long-term potential to inform hardware choices (co-design)

 Showing we can practically tolerate more errors could encourage vendors 
to “break the logjam” and increase their offerings of more efficient, less 
reliable hardware
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