SAND2017-2085C

Programming Constructs
for Transparent Silent-Error
Mitigation in PDE Solvers

Maher Salloum, Jackson Mayo, and
Robert Armstrong

Sandia National Laboratories, Livermore, CA 94551
{mnsallo, jmayo, rob}@sandia.gov

February 27, 2017

\
U.S. DEPARTMENT OF el
@ENERGY bﬁe‘ﬁ Gr

ratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
ional I i ini i

7| Netora

Acknowledgment

= Karla Morris (Sandia National Laboratories) contributed to
Fortran implementation

Problem: Future platforms will face tradeoffs g e
imperiling correct hardware function

= Most HPC applications assume hardware that is reliable
except for occasional fail-stop faults
= For those faults, detection is simple, and generic recovery schemes
are possible
= Hardware correction already attempts to hide many “out-of-
nominal” behaviors from the application
= Error correction for bit flips in DRAM and caches is important and
largely effective
" |ncreasing scale and constrained power may push toward
exposing new kinds of hardware errors — e.g., silent data
corruption (SDC) that can cause wrong application results

= Undetected DRAM errors at exascale for one type of ECC memory
could be ~1 per day

= Low-voltage processors and accelerators will likely have increased
rates of arithmetic errors; ECC doesn’t protect data transformation

3

Objective: Enable practical SDC mitigation) s
targeted at physics simulation

= For Advanced Simulation & Computing (ASC) codes, we seek
better understanding of how to anticipate, mitigate, and/or
diagnose the effect of silent errors

= Ultimate goal is to contribute to a practical resilience toolbox
for production codes
= Leveraging existing PDE solvers and maintainable as they evolve
= Adaptable to respond to future hardware characteristics
= Flexible to unanticipated sources of silent errors

= There has been much study of SDC detection techniques,
including for PDEs, but the recovery mechanism is crucial

= Qur thesis: The dynamics of physical PDEs can support
efficient ultralocal (within cache) detection and recovery,
achieving stability to isolated occurrences of SDC

= Handling silent errors quickly and transparently (like standard

numerical errors) reduces the cost of a false positive .

Current error model describes =
memory bit flips

= |n extreme-scale scientific computing, floating-point data are
an obvious concern for SDC
= Floating-point data often constitute the bulk of memory usage
= Corruption in other places (control logic, pointers) is more likely to
cause outright crashes, which will be mitigated by other means
= Qur error-injection framework
for solvers: Asynchronously Solver
perform raw memory bit flips thread
in the solution array

= Corrupter injects random bit flips based on a probability parameter

Corrupter
thread

Memory

= Memory corruption is also a proxy for other silent-error
sources that ultimately affect values in memory —e.g.,
processor arithmetic errors

5

Outlier detection and interpolation can =
leverage smoothness properties of physics

= We have prototyped a simple, widely applicable SDC
mitigation technique for PDE solvers (FTXS'16)

= Current scope: SDC in memory affecting floating-point data in
structured meshes

= Aim is to correct accumulated bit flips in data values when
they are loaded from memory, just before they are used —so
that large corruptions will not propagate

= Corrupted values are detected via relative
deviation from neighbors and replaced
with an interpolation, as a computation
loop is sweeping the array
. . . i-2 -1 i i+1 i+2
= One-sided correction at array boundaries T | | —

= Detection/interpolation along the “fast” index
in multidimensional arrays for cache efficiency

247 Detected bit flips

f

Interpolation is effective in tolerating =
bit flips

= |nitially demonstrated on simple solvers, both explicit (1D
Burgers equation) and iterative (HPCCG conjugate gradient
mini-app for 3D elliptic equation)
= Runtime overhead as low as a few percent in the presence of local
source-term computations or intensive communication

= HPCCG example (FTXS'16)

= Modify CG to use interpolation-based e e K
robust linear algebra “building blocks” ; 300x
= Robust CG method can tolerate S'VTE.I‘Z""CZ'&";

10'8;

higher SDC rates that prevent
standard method from converging

per bit per standard iteration

-
<
©o

Maximum tolerated error probability

= Qur approach is helpful for systems)
with SDC rates between the blue and ol | | |
red curves — a potentially very wide o T urmber of dres o

range of scenarios for co-design or unexpected faults

|”

“Manual” SDC mitigation demonstrated in)
multiphysics solver

= SMCis a convenient example of production-like code
= DOE coupled fluid dynamics and combustion solver
= Representative of structured multiphysics simulation
= Linear algebra and stencils involve nested loops over spatial
directions and field variables

= Code modifications for robustness occur at the level of the inner loops

z-velocity field plots:

SMC simulation with 9 species and
27 reactions running on 4 cores
Robust solver tolerates 4.5x the error NMBE =00
rate tolerated by the standard solver >
20% runtime overhead

3% additional lines of code

NMSE = 0.0014

16 x 107

failed due to
invalid state

p

NMSE = 0.0015 8

Code maintainability is a key issue)=,

= How easy is it to incorporate SDC mitigation in the code for
low-level solver operations?

= For operations that are widely reused and rarely modified,
robust versions can be written once and packaged in libraries;
but robust custom solver operations (e.g., stencil code) may
need to be written/modified by application experts rather
than resilience experts

= Even for packaged operations, we would like to ease the library
writer’s task

= Aim: Minimize additional programmer effort needed to
implement and maintain a robust solver vs. a non-robust one

Linear algebra building blocks facilitate =

robustness in iterative solvers

= HPCCG top-level code incorporates mitigation by simply using
overloaded BLAS functions with additional argument

= The robust BLAS must implement error detection and correction

Non-robust
pseudocode

std: :vector<double> x(N), p(N);
std: :vector<double> r(N), g(N);
HPC Sparse Matrix A;

// Loop until convergence

{
HPC sparsemv (A, p, q);

ddot (p, g, &alpha);

alpha = R / alpha;

waxpby (1.0, x, alpha, p, x);
waxpby (1.0, r, -alpha, g, r);
ddot (r, r, &beta):;

beta = beta / R;

Robust
pseudocode

std: :vector<double> x(N), p(N);
std::vector<double> r(N), g(N);
HPC Sparse Matrix A;

// Error detection threshold
double t = 100.0;

// Loop until convergence

{
HPC sparsemv (A, p, g, t);

ddot (p, g, &alpha, t);
alpha = R / alpha;
waxpby (1.0, x, alpha, p, x, t);
waxpby (1.0, r, -alpha, g, r, t):
ddot (r, r, &beta, t);
beta = beta / R;
/ 10

“Resilient view” class helps implement
interpolation-based mitigation transparently

= |n C++, preserves array syntax via overloaded operator(]

= Simplified code shown, for error detection and correction when

reading from the array

= Templating allows use on any existing random-access array type

= Extension: operator[] can return object with overloaded assignment
operator so resilient view can be used on left-hand side too

class ResilientViewlD {
public:
double operator([] (int index);
private:
double* begin;
int size;
double threshold;
I

double ResilientViewlD: :operator[] (int index) {

const double* it =

double val = it[0]

double diff = it[1l] -

double interp = 0.5 *

if(val !'= wval ||
std::fabs((val - interp) / diff) > threshold) {

val = interp;
}

return val;

begin + index;
itl[-1];
(1t[1] + 1it[-171);

11

Resilient view further improves code
maintainability for SDC mitigation

= Example: BLAS-like operation

= QOriginal implementation: additional function calls

= Must know and remember to insert in each loop for each array used

= New implementation: resilient views

= Simply require that all array reads occur through view objects

= Loops look very similar to the original code

Non-robust
pseudocode

std::vector<double> x(N), y(N);

h"""".."(.;-Iilr.]._.t"...j._.;.(.)..’:""j._.;ﬁ.;."":-Il_.:l:._;_.s."""".":
yli]l = a*x[i] + b*y[i];i

Robust pseudocode
using additional function calls

std::vector<double> x(N),

for (int 1=0; 1i<N; 1++) {
detect interp(x,i,t);
detect interp(y,i,t);

= a*x[i] + b*y[i];

yli]

y (N) ;

Robust pseudocode
using resilient views

std::vector<double> x(N), y(N);
// RView is Lhe resilient view
RView rx(x, t), ryl(y, t);
E¥§£mfIﬂ{"Eié?"Ezﬁ?"{llgm"m"m"f
y[i] = a*rx[i] + b*ry[i];i

Resilient view also facilitates custom =

stencil operations

Non-robust
pseudocode

std: :vector<double> f£(N), fn(N);

for (int 1i=1; 1i<N-1; 1i++)
fnl[i]=a*f[i-1]+b*f[i]+c*f[i+1];

Robust pseudocode
using additional function calls

std: :vector<double> f£(N), fn(N);

for (int i=1; i<N-1; i++) {

detect interp(f,i-1,t);
detect interp(f,i,t);
detect interp(f,i+l,t);

fn{i]l=a*f[1i-1]+b*f[i]+c*f[1+1];

Non-robust
pseudocode

std: :vector<double> f£(N), fn(N);

t for (int i=1; 1<N-1; i++) 5
i fn[i]=a*f[i—l]+b*f[i]+c*f[i+l]@

Robust pseudocode
using resilient views

std::vector<double> f£(N), fn(N);

RvView rf(f, t);
i for (int i=1; i<N-1; i++) :
= fn[i]=a*rf[i-1]+b*rf[i]+c*rf[i+1];]

Fortran implementation of resilient view =
IS similar

= Requires type-bound procedure “%f” because array indexing
syntax cannot be overloaded

type :: resilientView4D
private
double precision, pointer :: begin(:,:,:,:)=>NULL()
double precision :: threshold
contains
procedure :: f
end type
contains
double precision function f(this,il,i2,13,14) result(val)
class(resilientView4D), intent(in) :: this
integer, intent(in) :: 11,1i2,13,1i4
double precision :: diff, interp

val = this%begin(il,i2,13,14)
diff = this%begin(il+1,i2,i3,1i4) - this%begin(il-1,12,13,14);
interp = 0.5d0 * (this%begin(il+1,i2,i3,i4) + this%begin(il-1,12,13,14))
if((val /= val) .or. (dabs((val - interp) / diff) > this%threshold)) then
val = interp
endif
end function

14
-

Our previous mitigation in SMC required 7 =
inserting function calls in each loop

Non-robust pseudocode

// Runge-Kutta explicit time-stepping
do m = 1, nc
do k = 1lo(3),hi(3)
do j = 1o(2),hi(2)
do i = lo(1),hi(1)
ulp(i,j,k,m) = a*ulp(i,j,k,m) + b*u2p(i,j,k,m) + c*upp(i,j,k,m)
end do
end do
end do
end do

Robust pseudocode using additional function calls

// Runge-Kutta explicit time-stepping
dom = 1, nc
do k = lo(3),hi(3)
do 7 = lo(2),hi(2)
do 1 = lo(l),hi(l) , Tests shown above
// Error detection and correction steps —] .
ulp(i,j,k,m) detect interp(ulp,i,j,k,m,t) Used thlS version
u2p(i,j,k,m) detectiinterp(u2p,i,j,k,m,t)
upp (i, j,k,m) detect:interp(upp,i,j,k,m,t)

ulp(i,j,k,m) = a*ulp(i,j,k,m) + b*uZp(i,Jj,k,m) + c*upp(i,j,k,m)
end do
end do
end do
end do 15

Resilient view being incorporated into SMC @ =

Non-robust pseudocode

// Runge—-Kutta explicit time-stepping
dom = 1, nc
do k = 1o(3),hi(3)
do 7 = lo(2),hi(2)
do i = lo(1),hi(1)
ulp(i,j,k,m) = a*ulp(i,j,k,m) + b*u2p(i,j,k,m) + c*upp(i,j,k,m)
end do
end do
end do
end do

Robust pseudocode using resilient views

RView ulpr (ulp, t)
RView u2pr (u2p, t)
RView uppr (upp, t)

// Runge-Kutta explicit time-stepping
dom =1, nc
do k = 1lo(3),hi(3)
do jJ = lo(2),hi(2)
do i = lo(l),hi(1)
ulp(i,j,k,m) = a*ulpr3f(i,j,k,m) + b*u2pr$f(i,j,k,m) + c*uppr$f(i,j, k,m)
end do
end do
end do
end do

16

Conclusion: Helping take SDC mitigation =
a step closer to routine use

= Resilient view can detect and correct SDC in structured PDE
solvers while keeping code understandable & maintainable
= Using mitigation technique previously found effective and efficient

= Reducing chance for programmer to mistype or omit a mitigation step

= Future directions can bring this work further into practice

= Evaluation at larger computational scale
= We are moving toward advanced technology platform (100,000s of cores)
= Broader error models

= While memory error mitigation can address other silent error sources,
more efficient targeted techniques are possible

= Long-term potential to inform hardware choices (co-design)

= Showing we can practically tolerate more errors could encourage vendors
to “break the logjam” and increase their offerings of more efficient, less
reliable hardware

17

