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Abstract

A process-structure-property modeling approach was developed to study texture evolution in
additively manufactured structures and the resulting effects on mechanical properties. Texture
evolution was modeled as a function of thermal gradients and solidification processes in the melt
pool, and the macroscale mechanical properties were determined through computational
homogenization of the resulting microstructures. The approach is used to investigate the effects
of processing parameters such as laser power and scan speed on both microscale and
macroscale behavior in FCC metals. The resulting macroscale properties can be used in
engineering-scale material models but also include some representation of the microscale
features. An a posteriori error-estimation framework is used to quantify modeling errors resulting
from the various material model approximations of the material texture. The predictions indicate
the resulting mechanical properties can have various degrees of anisotropy related to the
solidification textures present.

Additive manufacturing

NS Fe

Focused laser beam

3 ~ hatch width
Powder feed .

layer thickness

© CIMP-3D 2014

LENS® deposition
(T. Palmer, PSU)

scan direction (x)

Fundamental questions

1. How can we predict the macroscale mechanical response of AM materials given the
microstructural information? (grain morphology, texture)

2. What is the accuracy of homogenization theory for additive materials? (scale
separation, anisotropy)

3. How is microscale material variability manifested at the macroscale and what is the
relationship with processing parameters?

Unique Microstructures
. Highly process-dependent:

— Local thermal history
— Parent material system
— Scanning pattern, velocity

. Resulting microstructure:
— Grain morphology and texture = g4
— Variability along the scan length © #& "% *

(D. Adams, SNL)

Process-Microstructure-Property Modeling Approach
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Microstructure generation using Potts Kinetic Monte Carlo

(KMC)
(T. Rodgers "B 4ISPRARAS SHHE!IZ8@Y) 1419-1426)

» Predicts solidification considering melt pool velocity, shape of the hot-
zone trailing the melt pool’'s path

« When a voxel solidifies, its orientation is selected from one of the
neighboring grains based on the misorientation between the grain’s
{100} plane normals, n, and the direction of the maximum

temperature gradient, T:

( _AE

Po(OIM(T) exp (), if AE >0
Do (O)M(T), if AE<0

P =

Comparison with LENS 3.8 kW EBSD results
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Generate Representative Volume Elements
(RVE) including solidification texture

Computational Homogenization
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Error Estimation: Material Model Error

 What is error introduced by using an approximate material model?

High Fidelity Representation
at Local Scale

Simplified Representation at
Engineering Scale

Reduce Material
Model Complexity
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Upper Bound for Energy Norm of Displacement Error:
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 Approximate Model—contains known simplifications/lower fidelity

representation
— Example: Homogeneous Isotropic Properties

 Reference Model — Best representation of true material behavior
— Examples: Effective properties from RVE, Direct Numerical Simulation of
microstructure

Welded Structure: Error Estimation Example

Reference Weld Properties: Boundary Value Problem
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Approximate Model: Reference Model: Error Indicator
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Ongoing and future work

Comparison with experimental efforts: part build history, microstructure characterization,
mechanical testing

Explore effects of various processing parameters (eg., laser scan speed, laser power, scan
pattern) on microstructure and mechanical properties

3. Microscale variability: what is range of local mechanical properties in a single build?

4. Extend error-estimation framework to study plastic regime and other quantities of interest




