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Uncertainty in engineering and science applications
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Uncertainty is everywhere

“Uncertainty is everywhere and you cannot escape from it.”

— Dennis Lindley

Uncertainty quantification (UQ) provides a systematic approach to:

characterize

incorporate

propagate

reduce

. . . uncertainty for computational and real-world applications
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Sequential Optimal Experimental Design

Some experiments are more useful than others

Experiments are:

Expensive

Time-consuming

Delicate to perform

Experimental design helps address:

Under what conditions to perform the experiment?

What to measure?

Where to measure?

When to measure?

Today’s talk: design of multiple experiments
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Sequential Optimal Experimental Design

Planning measurements: batch (non-sequential) design

Huan (Sandia) University of Notre Dame February 23, 2017 9 / 52



Sequential Optimal Experimental Design

Planning measurements: sequential design
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Sequential Optimal Experimental Design

Sequential experimental design is less developed

Batch experimental design:

Linear: Fisher information matrix (e.g., A-, D-optimal)

Nonlinear: advances beyond linearization and Gaussianization

Information-based experimental design [Lindley 56]

Greedy (myopic) design:

Repeated application of batch design [Solonen 12, Drovandi 14, Kim 14]

Not optimal

Dynamic programming:

Fully optimal description (has 1. feedback, 2. forward looking)

Thus far limited to discrete variables, special problem and solution
structures [Carlin, Bradley 98, Brockwell 03, Berry 02]

Only simple objectives
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Sequential Optimal Experimental Design

Contribution and scope

Contribution:

Develop a mathematical framework and numerical tools to find optimal
sequential experimental designs in a computationally feasible manner

Scope:

Finite number of experiments

Nonlinear and physically realistic models

Continuous parameter, design, and data spaces of multiple dimensions

Bayesian treatment of uncertainty

Non-Gaussian distributions

Information measure objective (design for parameter inference)
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Sequential Optimal Experimental Design Formulation

Outline

1 Sequential Optimal Experimental Design
Formulation
Numerical Methods
Results

2 Uncertainty Propagation in Scramjet Computations

3 Summary and Future Work

Huan (Sandia) University of Notre Dame February 23, 2017 13 / 52



Sequential Optimal Experimental Design Formulation

Core components of general sequential design formulation

Experiment: k = 0, . . . ,N − 1, total N experiments; N <∞

State: xk = [xk,b, xk,p] all information needed for optimal future designs

Belief state: xk,b current state of uncertainty

Physical state: xk,p deterministic design-relevant variables

Design: dk = µk(xk)
seek good policy π ≡ {µ0, µ1, . . . , µN−1}

Observations: yk distributed according to likelihood f (yk |θ, dk)
(e.g., yk = G (θ, dk) + ε, with ε Gaussian)

System dynamics: xk+1 = Fk(xk , yk , dk) state evolution
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Sequential Optimal Experimental Design Formulation

Sequential design exhibits a closed-loop behavior

System dynamics
xk+1 = Fk(xk, yk, dk)

Policy (controller)
µk

State xkDesign dk

Observations yk
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Sequential Optimal Experimental Design Formulation

The sOED problem: find optimal policy that maximizes
the expected total reward

Stage reward: gk(xk , yk , dk) Terminal reward: gN(xN)

The sequential optimal experimental design (sOED) problem:

Find π∗ where

π∗ = argmax
π={µ0,...,µN−1}

Ey0,...,yN−1|π

[
N−1∑
k=0

gk (xk , yk , µk(xk)) + gN (xN)

]

s.t. xk+1 = Fk(xk , yk , dk), ∀k
µk(xk) ∈ Dk , ∀xk , k

Difficult to solve directly, involves optimization of a functional
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Sequential Optimal Experimental Design Formulation

The sOED problem in dynamic programming (DP) form

Re-express using Bellman’s Principle of Optimality [Bellman 53]

Dynamic programming form (Bellman equations): (e.g., [Bertsekas 05])

Jk(xk) = max
dk∈Dk

Eyk |xk ,dk [gk(xk , dk , yk) + Jk+1 (Fk(xk , dk , yk))]

JN(xN) = gN(xN)

k = 0, . . . ,N − 1; Jk(xk) are value functions

A set of smaller tail subproblems

Optimal policy functions implicitly in argmax: d∗k = µ∗k(xk)

“Curse of dimensionality”: exponential scenario growth from recursion

Large body of approximate methods: approximate dynamic programming

(e.g., [Bertsekas 96, Kaelbling 96, Sutton 98, Powell 11])
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Sequential Optimal Experimental Design Formulation

Batch (non-sequential) design is a special case of the
sOED problem, and thus suboptimal

Has no feedback

Designs all experiments concurrently as a batch

Finds optimal designs (vectors) rather than a policy

Experiment 0

Experiment 1

...

Experiment N − 1

Optimizer
(controller)

Observations y0

y1

yN−1

Design d0

d1

dN−1

{
d∗0 , . . . , d

∗
N−1

}
= argmax

d0,...,dN−1

Ey0,...,yN−1|d0:N−1

[
N−1∑
k=0

gk (xk , yk , dk) + gN (xN)

]
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Sequential Optimal Experimental Design Formulation

Greedy (myopic) design is a special case of the sOED
problem (DP form), and thus suboptimal

Uses feedback

Considers the next experiment only

Has no future effects

Jk(xk) = max
dk∈Dk

Eyk |xk ,dk

[
gk(xk , yk , dk) +

((((((((((
Jk+1 (Fk(xk , dk , yk))

]
JN(xN) = gN(xN)

subject to xk+1 = Fk(xk , yk , dk)
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Sequential Optimal Experimental Design Formulation

Sequential Bayesian inference

For the k-th experiment:

posterior︷ ︸︸ ︷
f (θ|yk , dk , Ik) =

likelihood︷ ︸︸ ︷
f (yk |θ, dk , Ik)

prior︷ ︸︸ ︷
f (θ|Ik)

f (yk |dk , Ik)︸ ︷︷ ︸
evidence

θ — parameters to infer
Ik — information from previous experiments, Ik ≡ {d0, y0, . . . , dk−1, yk−1}

Conceptually: belief state is posterior random variable xk,b = θ|Ik

θ

P
D
F d0, y0

θ

P
D
F d1, y1

θ

P
D
F
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Sequential Optimal Experimental Design Formulation

Information gain objective for parameter inference

We choose to use total information gain at end of all experiments
(Kullback-Leibler (KL) divergence from final posterior to prior)

gk(xk , dk , yk) = reflects experimental cost

gN(xN) = DKL(f (xN,b)||f (x0,b)) =

∫
H
f (xN,b) ln

[
f (xN,b)

f (x0,b)

]
dθ

Corresponding system dynamics:

Belief state: Bayes’ Theorem

f (xk+1,b) =
f (yk |θ, dk , Ik)f (xk,b)

f (yk |dk , Ik)

Physical state: physical process
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Sequential Optimal Experimental Design Numerical Methods
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Sequential Optimal Experimental Design Numerical Methods

Represent a policy using one-step lookahead form

One-step lookahead policy representation: (e.g., [Bertsekas 05])

µk(xk) = argmax
dk∈Dk

Eyk |xk ,dk

[
gk(xk , yk , dk) + J̃k+1 (Fk (xk , yk , dk))

]
Approximate value functions using linear architecture:

J̃k(xk) = r>k φk(xk)

φk features (selected from heuristics), rk weights

Approximate value iteration (backward induction with regression):

J̃k(xk) = P
{

max
dk∈Dk

Eyk |xk ,dk [gk(xk , dk , yk) + J̃k+1 (Fk(xk , dk , yk))]

}
Start with J̃N(xN) ≡ gN(xN), and proceed backwards k = N − 1, . . . , 1

P: regression operator, samples from exploration and exploitation
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Sequential Optimal Experimental Design Numerical Methods

Belief state representation

Conceptually: belief state is posterior random variable

How to numerically represent it . . .

for general non-Gaussian continuous random variables

in a finite-dimensional manner

to easily perform Bayesian inference repeatedly in evaluating

J̃k(xk) = P
{

max
dk∈Dk

Eyk |xk ,dk

[
gk(xk , dk , yk) + J̃k+1 (Fk(xk , dk , yk))

]}
Traditional approaches:

Gaussian approximation and model linearization

Gridding or functional approximation of its PDF or CDF

Non-parametrics (with particle filter, MCMC)

Often expensive and some do not scale well to multiple dimensions. We
seek an approach that can quickly perform many Bayesian inferences.
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Sequential Optimal Experimental Design Numerical Methods

Transport map transforms distributions (e.g., [Villani 08])

z

ξ

fz(z)

T (z)
fξ(ξ)

ξ ∼ reference distribution, z ∼ target distribution

Equivalence in distribution ξ
i .d .
= T (z)

Knothe-Rosenblatt (KR) maps: defined by conditional distributions, is
triangular and monotone, exists and is unique [Rosenblatt 52, Carlier 10]

Easy to construct from samples: convex optimization problem

Target joint distribution for fast approx Bayesian inference
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Sequential Optimal Experimental Design Numerical Methods

Final algorithm for sOED

1 Set parameters

2 Initial exploration

3 Make joint map

4 Iterate to refine . . .

(a) Exploration

(b) Exploitation

(c) Approximate value iteration

5 Extract final policy parameterization
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Sequential Optimal Experimental Design Results
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Sequential Optimal Experimental Design Results

Shock tube experiments for combustion kinetics
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Sequential Optimal Experimental Design Results

1D source inversion problem: problem settings

yk =
s√

2π2
√

(0.3 + Dt)
exp

(
−‖ θ + dw (t)− zk+1 ‖2

2(4) (0.3 + Dt)

)
+ εk

2 experiments

θ ∼ N (0, 22) starting location: 5.5

Strong wind blows to the right after first experiment

Quadratic movement penalty
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Sequential Optimal Experimental Design Results

1D source inversion problem: state and plume evolution

An example scenario:
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Sequential Optimal Experimental Design Results

1D source inversion problem: state and plume evolution

An example scenario:

−10−5 0 5 10 15 20 25 30
−2

0

2

4

6

8

10

z

y

Start position
Exp 1 data
Exp 1 plume
Exp 2 data
Exp 2 plume

−8 −6 −4 −2 0 2 4 6 80

0.1

0.2

0.3

0.4

θ
P
D
F

True θ
Prior
Posterior 1
Posterior 2

physical state and plume belief state

Huan (Sandia) University of Notre Dame February 23, 2017 30 / 52



Sequential Optimal Experimental Design Results

1D source inversion problem: case 1
advantages of sOED over greedy design

Greedy design does not account for future wind conditions

Expected reward: greedy (0.07), sOED (0.15)
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Sequential Optimal Experimental Design Results

1D source inversion problem: case 2
advantages of sOED over batch design

A more precise instrument available only if prior variance < 3

Batch design does not have feedback

Expected reward: batch (0.15), sOED (0.26)
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
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Sequential Optimal Experimental Design Results
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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Sequential Optimal Experimental Design Results

Summary

Formulated the sequential optimal experimental design (sOED)
problem rigorously (has 1. feedback, 2. forward looking)

Developed new numerical methods to solve the sOED problem in a
computationally-feasible manner, using

approximate dynamic programming
transport maps

Demonstrated computational effectiveness on realistic applications

References:
1. Huan & Marzouk, “Simulation-based optimal Bayesian experimental design for nonlinear systems,”

Journal of Computational Physics, 232(1):288-317, 2013.

2. Huan & Marzouk, “Gradient-Based Stochastic Optimization Methods in Bayesian Experimental Design,”
International Journal of Uncertainty Quantification, 4(6):479-510, 2014.

3. Huan & Marzouk, “Sequential Bayesian Optimal Experimental Design via Approximate Dynamic Programming,”
arXiv: 1604.08320, 2016.
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Uncertainty Propagation in Scramjet Computations

Outline

1 Sequential Optimal Experimental Design
Formulation
Numerical Methods
Results

2 Uncertainty Propagation in Scramjet Computations

3 Summary and Future Work
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Uncertainty Propagation in Scramjet Computations

HIFiRE-II Scramjet

Development of scramjet1 engine involves

flow simulations

uncertainty quantification (UQ)

design optimization

We focus on the HIFiRE-II2 configuration:

1supersonic combusting ramjet
2Hypersonic International Flight Research and Experimentation-II
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Uncertainty Propagation in Scramjet Computations

Direct UQ would be intractable

RAPTOR: LES solver by Oefelein et al. at Sandia [Oefelein 06]

Near linear scalability 
beyond 100,000 cores 

1 
1 

d/8 d/16 d/32

Grid Resolution

10
0
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2
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4
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6

C
P

U
 H

o
u
rs

2D

3D

Highly-scalable but still very expensive

Major challenges: for uncertainty quantification

Many uncertain parameters (high stochastic dimension)

Expensive simulations

⇒ direct exploration of parameter space intractable!
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Uncertainty Propagation in Scramjet Computations

Global sensitivity analysis: Sobol indices

Global sensitivity analysis (GSA) [Saltelli 04, Saltelli 08]

For a given quantify of interest (QoI) . . .

Variance of QoI decomposed into contributions from each parameter

Sobol indices rank parameters by their contributions [Sobol 03]

Total effect STi
=

Eλ∼i
[Varλi (f (λ)|λi )]

Var (f (λ))

STi
small ⇒ low impact parameter ⇒ fix value (i.e. dim. eliminated)

How to compute?

Monte Carlo estimators [Saltelli 02, Saltelli 10] still prohibitive for LES

Our plan: construct affordable surrogate models via
polynomial chaos expansion (PCE)

Huan (Sandia) University of Notre Dame February 23, 2017 39 / 52



Uncertainty Propagation in Scramjet Computations

Polynomial chaos expansions

A QoI (output) random variable can be expanded as follows:

f (λ(ξ)) =
∑
β∈J

cβΨβ(ξ)

cβ: PCE coefficients

ξ: reference random vector (e.g., uniform, Gaussian)

Ψβ: multivariate orthonormal polynomial (e.g., Legendre, Hermite)

β: multi-index, reflects order of polynomial basis

Orthonormality property
⇒ extract Sobol indices analytically from coefficients (no Monte Carlo!):

STi
=

1

Var (f (λ))

∑
β∈J :βi>0

c2
β where Var (f (λ)) =

∑
0 6=β∈J

c2
β
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Uncertainty Propagation in Scramjet Computations

Sparse polynomial chaos expansions

Non-intrusive regression to compute expansion coefficients Gc = f : Ψβ1(ξ(1)) · · · ΨβN (ξ(1))
...

...

Ψβ1(ξ(M)) · · · ΨβN (ξ(M))


︸ ︷︷ ︸

G

 cβ1

...
cβN


︸ ︷︷ ︸

c

=

 f (λ(ξ(1)))
...

f (λ(ξ(M)))


︸ ︷︷ ︸

f

,

Challenges:

Few LES flow solves (data), many PCE basis
(e.g. total-order degree 3 in 24 dimensions: 2925 terms)

Extremely under-determined system (N � M)

Our approach: use compressed sensing to find sparse solution (LASSO)

min
c

1

2
‖ c ‖1 + τ ‖Gc − f ‖2

2

discover and retain only basis terms with high magnitude coefficients
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Uncertainty Propagation in Scramjet Computations

Multilevel and multifidelity forms

model A
grid 1

model B
grid 1

...

model Z
grid 1

model A
grid 2

model A
grid 3

. . . model A
grid G

..
.

. . . model Z
grid G

Increasing grid resolution level

In
cr

ea
si

n
g

m
o
d

el
fi

d
el

it
y

Telescopic sum: fL(λ) = f0(λ) +
L∑
`=1

f∆`
(λ)

` indicates different grid levels or fidelity of models
∆` indicates difference between models ` and `− 1

Function approximation: fL(λ) ≈ f̂L(λ) = f̂0(λ) +
L∑
`=1

f̂∆`
(λ)
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Uncertainty Propagation in Scramjet Computations

Unit problem: 24 parameters

Parameter Range Description
Inlet boundary conditions

p0 [1.406, 1.554] MPa Stagnation pressure
T0 [1472.5, 1627.5] K Stagnation temperature
M0 [2.259, 2.761] Mach number
δa [2, 6] mm Boundary layer thickness
Ii [0, 0.05] Turbulence intensity magnitude
Li [0, 8] mm Turbulence length scale

Fuel inflow boundary conditions

ṁf [6.633, 8.107] ×10−3 kg/s Mass flux
Tf [285, 315] K Static temperature
Mf [0.95, 1.05] Mach number
If [0, 0.05] Turbulence intensity magnitude
Lf [0, 1] mm Turbulence length scale

Turbulence model parameters
CR [0.01, 0.06] Modified Smagorinsky constant
Prt [0.5, 1.7] Turbulent Prandtl number
Sct [0.5, 1.7] Turbulent Schmidt number

Wall boundary conditions
Tw Expansion in 10 params Wall temperature represented via

of N (0, 1) Karhunen-Loève expansion

2D runs: 1939 (coarse grid), 79 (fine grid)

3D runs: 46 (coarse grid), 11 (fine grid)
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Uncertainty Propagation in Scramjet Computations

Unit problem: total sensitivity
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Multilevel expansion of:

f̂2D,d/16 = f̂2D,d/8 + f̂∆2D,d/16−2D,d/8

Multifidelity expansion of:

f̂3D,d/8 = f̂2D,d/8 + f̂∆3D,d/8−2D,d/8
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Uncertainty Propagation in Scramjet Computations

Posterior predictives in model QoIs
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Reference:
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“Global Sensitivity Analysis and Quantification of Model Error for Large Eddy Simulation in Scramjet Design,”
AIAA paper 2017-1089, 2017.
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Summary and Future Work
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Summary and Future Work

Summary and vision

Mathematical
Model

Theory

Data

Prediction

Product, Decision

Experiment

Data Analysis
& Assimilation

Uncertainty
Propagation

Experimental
Design

Design/Optimization
Under Uncertainty
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Summary and Future Work

Summary and vision

Mathematical
Model

Theory

Data

Prediction

Product, Decision

Experiment

Data Analysis
& Assimilation

Uncertainty
Propagation

Experimental
Design

Design/Optimization
Under Uncertainty

Vision: develop comprehensive UQ capability to

1 design experiments for acquiring data

2 analyze and assimilate data for improving model and theory

3 propagate uncertainty for making predictions

4 optimize and design in the presence of uncertainty

for applications with complex and realistic physics-based models

Huan (Sandia) University of Notre Dame February 23, 2017 47 / 52



Summary and Future Work

Summary and vision

Focus on methodology development

Theory

Methodology

Application

Naturally interdisciplinary

Uncertainty
Quantification

Data Science
Machine
Learning

Computer
Science

Statistics Applied Math Engineering

Many collaboration opportunities
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Summary and Future Work

Ideas for future work

Adaptive numerical methods
Policy

Stoch. optimization

Objective
noise

Value function approx.

Regression

Features Measure

Value iteration

Transport map

UQ for expensive, high-dimensional models
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Multi-model management for experimental

design and statistical inference
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Hybrid frameworks for experimental design

Optimality

(problem approxima-

tion, theoretically-

achievable accuracy)

Numerical

accuracy

(solution approximation,

practically-achievable

accuracy given a budget)

Costs

(computational,

developmental, other

costs and risks)
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Summary and Future Work

Student education program

Strong foundational courses from multiple departments, for example:

V&V, machine learning, data science, data mining, statistical methods in

data mining, applied Bayesian statistics, statistical inference, optimization,

stochastic analysis, stochastic control theory, etc.

New course ideas:

uncertainty quantification

statistical data analysis

optimal experimental design / decision-making under uncertainty

model reduction

optimization under uncertainty

inverse problems
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Summary and Future Work

Thank You!

Huan (Sandia) University of Notre Dame February 23, 2017 52 / 52



Summary and Future Work

Supplement

Supplemental Slides
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Summary and Future Work

Optimal Experimental Design

open-loop design

classical linear design theory [Atkinson & Donev (1992)]

Bayesian experimental design [Chaloner & Verdinelli (1995)]

nonlinear models [Box & Lucas (1959), Lindley (1956, 1972),
Sebastiani & Wynn (1997, 2000), Ryan (2003), Müller & Parmigiani
(1993, 1995), Clyde et al. (1995), Loredo (2010)]

closed-loop design

greedy (rolling-horizon of 1 experiment) [Gautier & Pronzato (1998),
Negoescu et al. (2011), Solonen et al. (2012)]

dynamic programming approach [Müller (2006), Brockwell & Kadane
(2003), Lewis & Berry (1994), Christen & Nakamura (2003)]
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Summary and Future Work

Experiments are an integral part of learning

Theory

Practice
(experimental
observations)

Deduction Induction

“. . . science is a means whereby learning is achieved, not by mere
theoretical speculation on the one hand, nor by the undirected
accumulation of practical facts on the other, but rather by a
motivated iteration between theory and practice . . . ” [Box 76]

— George E. P. Box
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Summary and Future Work

Inference can be done by conditioning the joint map

Bayes’ theorem: posterior is simply conditioning the joint distribution

f (θ|y) =
f (y |θ)f (θ)

f (y)
=

f (y , θ)

f (y)

For one experiment: KR map from (d , y , θ) to ξ ∼ N (0, I ) is: ξ1

ξ2

ξ3

 =

 Td(d)
Ty |d(d , y)
Tθ|y ,d(d , y , θ)

 =

 Φ−1 (F (d))
Φ−1 (F (y |d))
Φ−1 (F (θ|y , d))


KR map of posterior given realizations d∗ and y∗ is:

Tθ|y∗,d∗(θ) = Φ−1 (F (θ|y∗, d∗))

This is precisely Tθ|y ,d conditioned on d∗ and y∗: Tθ|y ,d(d∗, y∗, θ)!

Huan (Sandia) University of Notre Dame February 23, 2017 56 / 52



Summary and Future Work

Map construction [Parno 15]

Approximate using linear parameterization ξ = T (z ; γ)
(we use a linear architecture of monomial polynomial basis functions)

Construct T (z ; γ) by minimizing KL using M samples from target

For i-th dimension of the multivariate map:

min
γi

M∑
m=1

[
0.5T 2

i (z(m); γi )− ln
∂Ti (z ; γi )

∂zi

∣∣∣∣
z(m)

]

s.t.
∂Ti (z ; γi )

∂zi

∣∣∣∣
z(m)

≥ λmin > 0,m = 1, . . . ,M

Numerically attractive properties:

Dimensions are separable

Convex optimization

Model-independent (only uses samples)
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Summary and Future Work

A good joint map also implies good posterior maps

Question: are the resulting posterior maps accurate?

Theorem: ([Huan 15])

If we construct a joint map that is optimal in an approximation
subspace

then the resulting posterior maps from conditioning on dk and yk are
also optimal on average

with respect to the probability measure of dk and yk

Huan (Sandia) University of Notre Dame February 23, 2017 58 / 52



Summary and Future Work

A good joint map also implies good posterior maps

Theorem

Let the optimal joint map be

T∗1:n = argmin
T1:n∈T1:n

DKL

(
f1:n(·)||f̃1:n(·;T1:n)

)
where f̃1:n is the target density induced by candidate map T1:n. Then, for any 0 < j ≤ n, the
dimension-truncated “head” map is also the optimal map for dimensions (1 : j), in the sense

T∗1:j = argmin
T1:j∈T1:j

DKL

(
f1:j (·)||f̃1:j (·;T1:j )

)
,

where T1:j ⊆ T1:n is its first j-dimensional truncation.

Corollary

For each j = 1, . . . , n, the component map is optimal in an expected sense:

T∗j = argmin
Tj∈Tj

Ez1:(j−1)

[
DKL

(
fj|1:(j−1)(·|z1:(j−1))||f̃j|1:(j−1)(·|z1:(j−1);Tj )

)]
.
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Summary and Future Work

Extension to multiple experiments

k = 0 1 2 · · ·
ξd0 = Td0(d0) ξd0 = Td0(d0) ξd0 = Td0(d0)
ξy0 = Ty0(d0, y0) ξy0 = Ty0(d0, y0) ξy0 = Ty0(d0, y0)
ξθ0 = Tθ0(d0, y0, θ) ξd1 = Td1(d0, y0, d1) ξd1 = Td1(d0, y0, d1)

ξy1 = Ty1(d0, y0, d1, y1) ξy1 = Ty1(d0, y0, d1, y1)
ξθ1 = Tθ1(d0, y0, d1, y1, θ) ξd2 = Td2(d0, y0, d1, y1, d2)

ξy2 = Ty2(d0, y0, d1, y1, d2, y2)
ξθ2 = Tθ2(d0, y0, d1, y1, d2, y2, θ)

Posterior map after Bayesian inference on k + 1 experiments is the
nθ-dimensional Tθk |d∗0 ,y∗0 ,...,d∗k ,y∗k (θ)

Components grouped by the red rectangular boxes are identical;
concatenate unique parts and construct overall map in one shot

Map constructed using samples of trajectory simulation (exploration
and exploitation)
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Summary and Future Work

Final algorithm for sOED

1 Set parameters: Select VFA features, exploration measure, L, R0, R, T

2 Initial exploration: Simulate R0 exploration trajectories, without inference

3 Make exploration joint map: Make Texplore from these samples

4 For ` = 1, . . . , L

(a) Exploration: Simulate R exploration trajectories, with inference using Texplore,

store states visited X `k,explore = {x rk}Rr=1

(b) Exploitation: If ` > 1, simulate T exploitation trajectories by evaluating

dk = argmaxd′
k
Eyk |xk ,d′k

[
gk (xk , yk , d

′
k ) + J̃`−1

k+1 (Fk (xk , yk , d
′
k ))
]
, with inference using

Texplore, store states visited X `k,exploit = {x tk}Tt=1

(c) Approximate value iteration: Update J̃`k functions from new regression

points x rtk ∈ {X `k,explore ∪ X `k,exploit} by evaluating

trtk (x rtk ) = maxd′
k
Eyk |xk ,d′k

[
gk (x rtk , yk , d

′
k ) + J̃`k+1(Fk (x rtk , yk , d

′
k ))
]

or terminal reward

at all regression points, with inference using Texplore

5 Extract final policy parameterization: J̃Lk , ∀k
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Summary and Future Work

Linear-Gaussian problem: problem settings

yk = θdk + εk

θ ∼ N (0, 32) dk ∈ [0.1, 3]

εk
iid∼ N (0, 12) gk = 0

Conjugate family, all posteriors are Gaussian

N = 2 experiments

Additional terminal reward component (target variance)

gN = DKL(f (xN,b)||f (x0,b))− 2(lnσ2
N − ln 2)2

Compare state representations:

analytic (mean and variance)
PDF on a grid (50 grid points)
map (total order polynomial degree 3, made with 105 samples)
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Summary and Future Work

Linear-Gaussian problem: d0, d1 on exact expected utility
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Linear-Gaussian problem: expected total rewards

Expected rewards from 1000 simulated trajectories:

exact analytic grid map

0.7833 0.79 0.76 0.79

All values have standard error ±0.02

Optimal policy for linear-Gaussian problem with constant noise
variance is state-independent and non-unique
(“exchangeability” between d0 and d1)

Excellent agreement between analytic, grid, and map methods

In comparison, exploration policy expected reward is −8.5
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Linear-Gaussian problem: joint map
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Joint distribution even for a linear-Gaussian problem
is generally not Gaussian!
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1D source inversion problem: effects of `
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1D source inversion problem: effects of `
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2D source inversion problem: joint map (partial)
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Joint map does a good job in capturing some highly non-Gaussian,
possibly multi-modal, behavior!
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Overview

Challenges:

High number of uncertain model parameters (stochastic dimension),
requiring many expensive flow solves

Would like to...

use few runs

incorporate less expensive simulations from low-fidelity models

Objectives:

identify influential uncertain parameters via global sensitivity
analysis (GSA)

characterize uncertainty due to model error resulted from using
low-fidelity models
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RAPTOR solver

RAPTOR: code by Oefelein et al. at Sandia [Oefelein 06]

Fully-coupled, compressible conservation equations
High Reynolds number, high-pressure, wide range of Mach number
Real-fluid equation of state
Detailed thermodynamics, transport and chemistry
Non-dissipative, discretely conservative, staggered finite-volume
Complex geometry treatment

Fuel component—purple Turbulence—blue Mach number—cutting planes
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Summary and Future Work

Computational domain of initial unit problem

Final: simulation of full combustor domain, match experimental setup
—HIFiRE Direct Connect Rig (HDCR) [bottom-left figure]

Initial unit problem: primary injection section

omit cavity

no combustion

focus on interaction of fuel jet and supersonic air crossflow

4 
 

three dimensional view of the HDCR model and a close-up of the instrumentation package as installed in 
the AHSTF is given in Figure 3.  The model is instrumented with 144 pressure taps, 23 thermocouples, 
and 4 heat flux transducers along the flowpath.  The pressure taps were placed along the centerline of 
the flowpath and across several span wise locations.  Thirteen thermocouples and all heat flux 
transducers were offset by 0.75” from the centerline for either the cowl or the body side walls.  Six 
thermocouples (3 for the port side and 3 for the starboard side) were placed along the sidewalls and 4 
thermocouples were placed on the outer mold line (OML).  A complete summary of the sensor 
arrangement is found Appendix C.  To orient the reader (see Figure 4), the flowpath starts at axial station 
x=0.0” (which corresponds to the facility nozzle exit/isolator entrance), the base of the pilot cavity is at 
x=11.58”, the beginning of the ramp/cavity closeout is at x=14.15”, and the end of the ramp/cavity 
closeout is at x=15.79”.  Fueling can be provided at x=7.60”, 9.60”, 11.92”, 16.5”, and 19.75”. 

 

     
 

Figure 3. Three dimensional view of the HDCR instrumentation layout and a close-up view as 
installed in the AHSTF. 

 
 
 

 
Figure 4.  Approximate axial locations for HDCR temperature or heat flux sensors. 
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Embedded representation of model error

Motivation: different models are available
⇒ to use them, need to quantify the error due to model structure

Traditional additive form: [Kennedy 01]

qi (s) = ρi fi (s, λ) + δi (s)

Flexible for fitting model discrepancy

Predictions do not obey governing equations

Difficult to distinguish uncertainty contributions between model error
and measurement noise

δi (s) not transferable for prediction of QoIs outside calibration set

Embedding approach: [Sargsyan 15]

qi (s) = fi (s, λ+ δi (s, αi , ξi ))

⇒ physically-meaningful predictions that satisfy governing equations
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Bayesian calibration of model error term

Represent the discrepancy term δ using a PCE:

λ+ δ(α, ξ) = λ+
∑
β 6=0

αβΨβ(ξ)

Calibrate by inferring all parameters α̃ ≡ (λ, α) via

Bayesian inference:
posterior︷ ︸︸ ︷
p(α̃|D) ∝

likelihood︷ ︸︸ ︷
p(D|α̃)

prior︷︸︸︷
p(α̃)

Posterior explored via adaptive Markov chain Monte Carlo (MCMC)

Through use of surrogate model and likelihood approximation, we can
attribute predictive variance to different sources:

Var [qk ] = Eα̃
[
σ2
k(λ, α)

]︸ ︷︷ ︸
model error

+ Varα̃ [µk(λ, α)]︸ ︷︷ ︸
posterior uncertainty

+ σ2
k,LOO︸ ︷︷ ︸

surrogate error
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Likelihood approximation, and breakdown of variance

MCMC requires likelihood evaluation p(D|α̃), no analytical form

Enable tractable likelihood evaluation via two approximations:
1. Polynomial surrogate for QoIs, built using regression

qk = fk(λ+ δ(α, ξ)) = f̂k(λ+ δ(α, ξ)) + εk

2. Gauss-marginal approximation to likelihood form

p(D|α̃) ≈ LG (α̃) =
1

(2π)
N
2

N∏
k=1

1

σk(α̃)
exp

[
−(µi (α̃)− gk)2

2σ2
k(α̃)

]
µk(α̃) ≈ f̂k,0(α̃) and σ2

k(α̃) ≈
∑
β 6=0

f̂ 2
k,β(α̃)

Also enables attribution of predictive variance to different sources:

Var [qk ] = Eα̃
[
σ2
k(λ, α)

]︸ ︷︷ ︸
model error

+ Varα̃ [µk(λ, α)]︸ ︷︷ ︸
posterior uncertainty

+ σ2
k,LOO︸ ︷︷ ︸

surrogate error
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Dynamic-vs-Static Smagorinsky turbulence model

Calibrate static Smagorinsky model with dynamic treatment simulations

Calibrate using TKE profile, λ = CR
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2D-vs-3D: choice of embedding parameters

Calibrate 2D model using 3D model simulations (using χ profile)

λ = (CR ,Pr
−1
t ,Sc−1

t , Ii , Ir , Li )

Choose to embed δ (1st-order PCE) in CR and Sc−1
t based on GSA
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2D-vs-3D: predictive quantities
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Ideas for future work

Goal-oriented adaptive numerical methods: automated refinements of

component numerical approximations; quantifiable and meaningful error bounds

UQ for high-dimensional and expensive models: model reduction

and surrogate modeling, dimension reduction, sparse representations

Multi-model management in experimental design and inference:
leverage and combine existing models of different fidelities and resolutions,

improve through selective experimental design and data acquisition

Model error with automated learning and improvement: quantify

and learn model error through experimental design, improve models through adding

sub-components while preserving governing equations and physical principles

Practical experimental design formulation choices: combine

low-cost sub-optimal design frameworks via value of feedback and coordination
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Future work: framework and methodology choices

What experimental design framework and methods to use?

Optimality

(problem approxima-

tion, theoretically-

achievable accuracy)

Numerical

accuracy

(solution approximation,

practically-achievable

accuracy given a budget)

Costs

(computational,

developmental, other

costs and risks)
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Future work: value of feedback and coordination

Feedback

Coordination

Coordinate-wise
OED

Open-loop

Greedy/Myopic

Dynamic
Programming

∆Uc,1

∆Uf,1

∆Uf,2?

∆Uc,2?

Estimate “value of feedback” and “value of coordination”: ∆Uc,2, ∆Uf ,2

Heuristics: use ∆Uc,1 and ∆Uf ,1 as guesses (cheaper to obtain)

Theoretical: stochastic bounds Uopenloop,Ugreedy ≤ U∗ ≤ Uhindsight

Ultimately: find appropriate degrees and combinations of feedback and
coordination for different subsets of experiments
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