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About me
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Research focus: uncertainty quantification
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Uncertainty in engineering and science applications

Next 48 Hours
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Uncertainty is everywhere

“Uncertainty is everywhere and you cannot escape from it.”

— Dennis Lindley

Uncertainty quantification (UQ) provides a systematic approach to:
@ characterize
@ incorporate
@ propagate
@ reduce

... uncertainty for computational and real-world applications
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UQ in engineering and science: big picture
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Model

Huan (Sandia) University of Notre Dame February 23, 2017 5/52



UQ in engineering and science: big picture

Theory
Uncertainty
) Propagation
Mathematical Prediction
— )
Model

Huan (Sandia) University of Notre Dame February 23, 2017 5/52



UQ in engineering and science: big picture

Theory Product, Decision
Design/Optimization
Uncertainty Under Uncertainty
. Propagation
Mathematical Prediction
— )
Model

Huan (Sandia) University of Notre Dame February 23, 2017 5/52



UQ in engineering and science: big picture

Theory Product, Decision

Design/Optimization
Under Uncertainty

Uncertainty
Propagation

Mathematical |________ Prediction

Model

Experimental
Design

Experiment

Huan (Sandia) University of Notre Dame February 23, 2017 5/52



UQ in engineering and science: big picture

Theory Product, Decision
Design/Optimization
Uncertainty Under Uncertainty
. Propagation
Mathematical Prediction
———— >
Model
Experimental
Design
Data Experiment

Huan (Sandia) University of Notre Dame February 23, 2017 5/52



UQ in engineering and science: big picture
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Outline

@ Sequential Optimal Experimental Design
@ Formulation
@ Numerical Methods
@ Results

© Uncertainty Propagation in Scramjet Computations

© Summary and Future Work
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Sequential Optimal Experimental Design
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Sequential Optimal Experimental Design

Some experiments are more useful than others

Experiments are:
@ Expensive
@ Time-consuming

@ Delicate to perform

Experimental design helps address:
@ Under what conditions to perform the experiment?
@ What to measure?
@ Where to measure?

@ When to measure?

Today's talk: design of multiple experiments
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Sequential Optimal Experimental Design

Planning measurements: batch (non-sequential) design

probability
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Sequential Optimal Experimental Design
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Sequential Optimal Experimental Design

Sequential experimental design is less developed

Batch experimental design:
@ Linear: Fisher information matrix (e.g., A-, D-optimal)
@ Nonlinear: advances beyond linearization and Gaussianization

@ Information-based experimental design [Lindley 56]

Greedy (myopic) design:
@ Repeated application of batch design [Solonen 12, Drovandi 14, Kim 14]

e Not optimal
Dynamic programming;:
o Fully optimal description (has 1. feedback, 2. forward looking)
@ Thus far limited to discrete variables, special problem and solution
structures [Carlin, Bradley 98, Brockwell 03, Berry 02]
@ Only simple objectives
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Sequential Optimal Experimental Design

Contribution and scope

Contribution:

Develop a mathematical framework and numerical tools to find optimal
sequential experimental designs in a computationally feasible manner

Scope:

Finite number of experiments

Nonlinear and physically realistic models

Continuous parameter, design, and data spaces of multiple dimensions
Bayesian treatment of uncertainty

Non-Gaussian distributions

Information measure objective (design for parameter inference)
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Sequential Optimal Experimental Design Formulation
Outline

@ Sequential Optimal Experimental Design
@ Formulation
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Sequential Optimal Experimental Design Formulation

Core components of general sequential design formulation

Experiment: Kk =0,..., N — 1, total N experiments; N < oo

State: xx = [Xk,b, Xk,p] all information needed for optimal future designs
o Belief state: xy p current state of uncertainty

@ Physical state: x , deterministic design-relevant variables

Design: dx = pk(xx)
seek good policy m = {uo, 1, .- un—1}

Observations: yj distributed according to likelihood f(y« |6, d)
(e.g., yk = G(0,dk) + €, with € Gaussian)

System dynamics: xx1 = Fi(x«, Yk, dk) state evolution
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Sequential Optimal Experimental Design Formulation

Sequential design exhibits a closed-loop behavior

10bservations Yk

Design dj, System dynamics
xk—f—l - fk(xk7yk7dk)

State xy,

Policy (controller)
M
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Sequential Optimal Experimental Design Formulation

The sOED problem: find optimal policy that maximizes
the expected total reward

Stage reward: gy (xk, y«, dk) Terminal reward: gy (xy)

The sequential optimal experimental design (sOED) problem:

Find 7* where

N—
= argmax E, NG Z (X Vi b (xk)) + gn (xwv)
T={p0,-..,ttN—1} k=0

s.t. Xk+1 = ]:k(Xk7yk7dk)7vk
Mk(xk) € Dy, Vxk, k

Difficult to solve directly, involves optimization of a functional
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Formuation
The sOED problem in dynamic programming (DP) form

Re-express using Bellman's Principle of Optimality [Bellman 53]

Dynamic programming form (Bellman equations): (e.., [Bertsekas 05])

J(xk) = max By, xe.de 18 (k5 dics i) + i (Fr(Xis dies i)
k k
In(xv) = gn(xn)
k=0,...,N—1; J(xx) are value functions

@ A set of smaller tail subproblems
e Optimal policy functions implicitly in argmax: d; = pj(xk)
@ “Curse of dimensionality”: exponential scenario growth from recursion

@ Large body of approximate methods: approximate dynamic programming
(e.g., [Bertsekas 96, Kaelbling 96, Sutton 98, Powell 11])
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Sequential Optimal Experimental Design Formulation

Batch (non-sequential) design is a special case of the
sOED problem, and thus suboptimal

@ Has no feedback

@ Designs all experiments concurrently as a batch

e Finds optimal designs (vectors) rather than a policy

Optimizer
(controller)

Design dp

dy

Experiment 0

dn_1

Experiment 1

Experiment N — 1

N-1

Observations yo

{dy,....dy_1} = argmax B, .\ ldows Z 8k (Xk; Yk, di) + &gn (xn)

05+ dn—1
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Sequential Optimal Experimental Design Formulation

Greedy (myopic) design is a special case of the sOED
problem (DP form), and thus suboptimal

@ Uses feedback
o Considers the next experiment only

@ Has no future effects

J(xk) = dTeangnyk,dk [gk(xkv}/kadk)‘i‘JkJr , ka)/k))]

In(xn) = gn(xn)

subject to xx11 = F(xk, Yk, dk)
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Sequential Optimal Experimental Design Formulation

Sequential Bayesian inference

For the k-th experiment:
likelihood prior

——f—
f(ykl0, di, k) £(6]1x)
f(ykldk, k)
——

evidence

posterior

——~—
f(0ly, di, Ix) =

0 — parameters to infer
Ix — information from previous experiments, Ik = {do, yo, ..., dk—1, Yk—1}

Conceptually: belief state is posterior random variable xk,» = 6|/x

do, Yo
—_—

di,
—_—

PDF
PDF
PDF

(4 0 0
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Sequential Optimal Experimental Design Formulation

Information gain objective for parameter inference

We choose to use total information gain at end of all experiments
(Kullback-Leibler (KL) divergence from final posterior to prior)

gk(xk, dk, yk) = reflects experimental cost
f(x
en(w) = Dia(FOms)l|F(x0)) = / f(XNﬁb)m[ (Xn.b)
H

f(Xo’b)

| as

Corresponding system dynamics:
@ Belief state: Bayes' Theorem
f(ykl®, di, I ) f (xk,b)
f(ykldk, Ik)

f(Xkt1,6) =

@ Physical state: physical process
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Sequential Optimal Experimental Design Numerical Methods
Outline
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Sequential Optimal Experimental Design Numerical Methods

Represent a policy using one-step lookahead form
One-step lookahead policy representation: (e.g., [Bertsekas 05])

Pk (xk) = argmax Ey, 1%, [gk(Xk,Yk, di) + i1 (F (ks i dk))]
k€D

Approximate value functions using linear architecture:

Jk(x) = r duc(xi)

¢k features (selected from heuristics), ryx weights

Approximate value iteration (backward induction with regression):
Je(x) = P{dmea% Ey, xi.di 8k (ks dies yie) + Tr1 (Fie(xk,s dka)/k))]}
k k

Start with Jy(xy) = gn(xn), and proceed backwards k = N —1,...,1

P: regression operator, samples from exploration and exploitation
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Sequential Optimal Experimental Design Numerical Methods

Belief state representation

Conceptually: belief state is posterior random variable

How to numerically represent it ...
o for general non-Gaussian continuous random variables
@ in a finite-dimensional manner
@ to easily perform Bayesian inference repeatedly in evaluating

Jk(xk) = 73{ max Ky, . q, [gk(Xk, dies yie) + 1 (Fr(xk, dk,)/k))”
deDk

Traditional approaches:
@ Gaussian approximation and model linearization
@ Gridding or functional approximation of its PDF or CDF
e Non-parametrics (with particle filter, MCMC)

Often expensive and some do not scale well to multiple dimensions. We
seek an approach that can quickly perform many Bayesian inferences.
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Sequential Optimal Experimental Design Numerical Methods

Transport map transforms distributions (e.g. [villani o8])

3
fe(§)
¢ T(z)
)
o ¢ ~ reference distribution, z ~ target distribution
o Equivalence in distribution ¢ 2 T(z)
@ Knothe-Rosenblatt (KR) maps: defined by conditional distributions, is
triangular and monotone, exists and is unique [Rosenblatt 52, Carlier 10]

@ Easy to construct from samples: convex optimization problem
o Target joint distribution for fast approx Bayesian inference
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Numerical Methods
Final algorithm for sOED

© Set parameters
@ Initial exploration

© Make joint map
Q lterate to refine ...

(a) Exploration
(b) Exploitation

(c) Approximate value iteration

© Extract final policy parameterization
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Sequential Optimal Experimental Design Results
Outline

@ Sequential Optimal Experimental Design

@ Results
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Sequential Optimal Experimental Design Results

Shock tube experiments for combustion kinetics

10 310
25|
A ’
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§
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Sequential Optimal Experimental Design Results

1D source inversion problem: problem settings

e s (et d —nnl?)
T V2m2 /03 + DY) 2(4) (0.3 + Dt)

@ 2 experiments
e 0~ N(0,22) starting location: 5.5
@ Strong wind blows to the right after first experiment

@ Quadratic movement penalty
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Sequential Optimal Experimental Design Results

1D source inversion problem: state and plume evolution

An example scenario:

O
10 — o True 6
gl _-aI -OSI ‘10117 —Prior

0.3f 1
6,

- 0.2
2r 0.1
Or o
_ SR S 0 O
210-5 0 5 10 15 20 25 30 8 —6-4-20 2 4 G 8

% 0
physical state and plume belief state

Huan (Sandia) University of Notre Dame February 23, 2017 30 /52



Sequential Optimal Experimental Design Results

1D source inversion problem: state and plume evolution

An example scenario:

——————— [oTrue 6
o Start position — Prior
8 *Exp 1data 0.3} --- Posterior 1]]
6l —Exp 1 plume ||
_— 0.2
2 0.1
0 o Ky
ol 0 SO
210-5 0 5 10 15 20 25 30 8 -6-4-20 2 4 6 8
Z 0
physical state and plume belief state

Huan (Sandia) University of Notre Dame February 23, 2017 30 /52



Sequential Optimal Experimental Design Results

1D source inversion problem: state and plume evolution

An example scenario:

0.4 —
) a Start pbsition 3&}1&9
1 EXP % d?ta 03 --- Posterior 1]
{ [—Exp 1 plume stert
i |x Exp 2 data I Posterior 2
= i [ Exp 2 plume E 0.2f :
: 0.1}
‘x . . . . 0 e . . S
5 10 15 20 25 30 —8-6-4-20 2 4 6 8
z 0
physical state and plume belief state
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Sequential Optimal Experimental Design Results

1D source inversion problem: case 1
advantages of sOED over greedy design

Greedy design does not account for future wind conditions

Expected reward: greedy (0.07), sOED (0.15)

15 15
1 - i 1 *
= 05 !! = 05 '.' '
OF  « o e 0 PR
—0.5 - —0.5
217 0.75-05-0.25 0 0.25 0.5 21-0.75-05-0.25 0 0.25 0.5
dp do
greedy design sOED
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Sequential Optimal Experimental Design Results

1D source inversion problem: case 2
advantages of sOED over batch design

A more precise instrument available only if prior variance < 3

Batch design does not have feedback

Expected reward: batch (0.15), sOED (0.26)

3 3
2 2
1 1 .. ol .
S - 5 »
0 0 i,
~1 -1 g
—2 -2
215 -1 —05 0 05 215 -1 05 0 05
dp do
batch design sOED
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
102
L 8 6 ;
4
121 | 7.5 ) ;
10} 1F7 59 >
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
T T T T T T T T T T 8 m’lo
14 i ¢ 35
& 4
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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Sequential Optimal Experimental Design Results
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Sequential Optimal Experimental Design Results

2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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Sequential Optimal Experimental Design Results

Summary

e Formulated the sequential optimal experimental design (sOED)
problem rigorously (has 1. feedback, 2. forward looking)

@ Developed new numerical methods to solve the SOED problem in a
computationally-feasible manner, using

e approximate dynamic programming
e transport maps

o Demonstrated computational effectiveness on realistic applications

References:
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Uncertainty Propagation in Scramjet Computations
Outline

© Uncertainty Propagation in Scramjet Computations
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HIFIRE-Il Scramjet

Development of scramjet! engine involves
o flow simulations
@ uncertainty quantification (UQ)
@ design optimization

We focus on the HIFiRE-II? configuration:

Fuel System

Forebody/Inlet

ExhaustNozzle

Shroud Isolator/ Combustor

1supersonic combusting ramjet
2Hypersonic International Flight Research and Experimentation-II
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Uncertainty Propagation in Scramjet Computations

Direct UQ would be intractable

RAPTOR: LES solver by Oefelein et al. at Sandia [Oefelein 06]

150000 100
o ®
3 9%
& 100000 . g z
& g 3
2 - 0 £ z
£ - w =]
£ 50000 - 2 S
S 85 T
k=4 <
< Near linear scalability o
beyond 100,000 cores
4 80 0
1 50000 100000 150000 a8 16 a3
Number of Cores Grid Resolution

Highly-scalable but still very expensive

Major challenges: for uncertainty quantification
@ Many uncertain parameters (high stochastic dimension)

@ Expensive simulations
= direct exploration of parameter space intractable!
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Uncertainty Propagation in Scramjet Computations

Global sensitivity analysis: Sobol indices

Global sensitivity analysis (GSA) [Saltelli 04, Saltelli 08]
e For a given quantify of interest (Qol) ...
@ Variance of Qol decomposed into contributions from each parameter
@ Sobol indices rank parameters by their contributions [Sobol 03]

Total effect Sy = Erui [\\//::/E,f((i\()/)\)!/\,)]

St, small = low impact parameter = fix value (i.e. dim. eliminated)

How to compute?
@ Monte Carlo estimators [Saltelli 02, Saltelli 10] still prohibitive for LES

@ Our plan: construct affordable surrogate models via
polynomial chaos expansion (PCE)

Huan (Sandia) University of Notre Dame February 23, 2017 39 /52



Uncertainty Propagation in Scramjet Computations

Polynomial chaos expansions

A Qol (output) random variable can be expanded as follows:

FAE)) = D esVs(€)

Beg
o cg: PCE coefficients
e &: reference random vector (e.g., uniform, Gaussian)
e Ws: multivariate orthonormal polynomial (e.g., Legendre, Hermite)

o (3: multi-index, reflects order of polynomial basis

Orthonormality property
= extract Sobol indices analytically from coefficients (no Monte Carlo!):

1 2 2
et I T TR o
BeT Bi>0 07peT
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Uncertainty Propagation in Scramjet Computations

Sparse polynomial chaos expansions

Non-intrusive regression to compute expansion coefficients Gc = f:

V(€M) o we(EW) a1 F(AEM))
U (€M) o (™) | | con FAEM))
G c f
Challenges:

e Few LES flow solves (data), many PCE basis
(e.g. total-order degree 3 in 24 dimensions: 2925 terms)

o Extremely under-determined system (N > M)

Our approach: use compressed sensing to find sparse solution (LASSO)
.1 2
min > llelly + 7 G~ £ |2

discover and retain only basis terms with high magnitude coefficients
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Uncertainty Propagation in Scramjet Computations

Multilevel and multifidelity forms

Increasing grid resolution level

model A

grid 1 grid G

model B
grid 1

model Z . model Z
grid 1 grid G

L
Telescopic sum: fL(A) = fo(N) + Z fa,(A)
=1

grid 2 grid 3

model A |

model A |

model A | .

Increasing model fidelity

o / indicates different grid levels or fidelity of models
@ /A, indicates difference between models £ and ¢ — 1

L
Function approximation: f.(\) ~ fi(\) = f(\) + Z fa,(\)
=1
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Uncertainty Propagation in Scramjet Computations

Unit problem: 24 parameters

Parameter

Range Description

Inlet boundary conditions

1.406, 1.554] MPa Stagnation pressure
1472.5, 1627.5] K Stagnation temperature

2.259, 2.761] Mach number

2, 6] mm Boundary layer thickness

0, 0.05] Turbulence intensity magnitude
0, 8] mm Turbulence length scale

Fuel inflow boundary conditions

6.633, 8.107] X103 kg/s  Mass flux

285, 315] K Static temperature

0.95, 1.05] Mach number

0, 0.05] Turbulence intensity magnitude
0, 1] mm Turbulence length scale

Turbulence model parameters

0.01, 0.06] Modified Smagorinsky constant
0.5, 1.7] Turbulent Prandtl number
0.5, 1.7] Turbulent Schmidt number

Wall boundary conditions

Expansion in 10 params Wall temperature represented via
of N(0,1) Karhunen-Loéve expansion

@ 2D runs: 1939 (coarse grid), 79 (fine grid)

@ 3D runs:

Huan (Sandia)
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Uncertainty Propagation in Scramjet Computations

Unit problem: total sensitivity

Multilevel expansion of:

fap.d/16 = f2D,d/8 + o0 41620478

Multifidelity expansion of:

f3D,d/8 = 12D,d/8 + Bap 4/s 20.as8

Huan (Sandia) University of Notre Dame February 23, 2017 44 / 52



ertainty Propagation in Scramjet Computations

Posterior predictives in model Qols

Reference:

++ Data from high-fid model
7 ) 20 due to low-fid model error
=2 due to posterior
6| w4 \ 20 due to surrogate for low-fid
N
5
w
¥ 4
L .
3
2
1 *
T P
=z =3 =2 -1
yld
4,065
* * .
3.8 { <,
3.6 . e
]
3.4 .
32| .
X S A
<+ Data from high-fid model
\ 20 due to low-fid model error
2.8 = 2 due to posterior
20 due to surrogate for low-fid
2 =7 =3 = B
uid

X. Huan, C. Safta, K. Sargsyan, G. Geraci, M. S. Eldred, Z. P. Vane, G. Lacaze, J. C. Oefelein, and H. N. Najm,
“Global Sensitivity Analysis and Quantification of Model Error for Large Eddy Simulation in Scramjet Design,”

AIAA paper 2017-1089, 2017.
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© Summary and Future Work
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Summary and vision

Data Analysis
& Assimilation

Theory

Mathematical
Model

Data
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Product, Decision

Design/Optimization
Under Uncertainty

Prediction

Experimental
Design
Experiment
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Summary and Future Work

Summary and vision

e Theory Product, Decision

Design/Optimization
Under Uncertainty

Mathematical o
Model Prediction
Experimental
Design
Data Experiment

Vision: develop comprehensive UQ capability to

@ design experiments for acquiring data

@ analyze and assimilate data for improving model and theory
© propagate uncertainty for making predictions

@ optimize and design in the presence of uncertainty

for applications with complex and realistic physics-based models
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Summary and Future Work

Summary and vision
Focus on methodology development

'Methodology

y
£

Theory | Application

Naturally interdisciplinary

Uncertainty

Quantification Applied Math

Data Science q .
Learning Science

‘ Machine ‘ ‘ Computer

‘ Engineering

‘ ‘ Statistics ‘

Many collaboration opportunities
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mmary and Future Work

Ideas for future work

Adaptive numerical methods

(Stoch. optimization ) (Value function approx. )

Value iteration

Tramsport map

UQ for expensive, high-dimensional models

Multi-model management for experimental

design and statistical inference

Increasing grid resolution level

grid 1 grid 2 grid 3 grid G

model \‘ |modolA| |mudcl A| . _|mmlo A.l

Increasing

Huan (Sandia)

University of Notre Dame

Hybrid frameworks for experimental design

Optimality

(problem approxima.
tion, theoretically-

achicvable aceuracy)

Numerical

Costs
accuracy

(computational

(solution approximation, developmental, other

practically-achicvable costs and risks)

accuracy given a budget)
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Summary and Future Work

Student education program

Strong foundational courses from multiple departments, for example:

@ V&V, machine learning, data science, data mining, statistical methods in
data mining, applied Bayesian statistics, statistical inference, optimization,
stochastic analysis, stochastic control theory, etc.

New course ideas:

@ uncertainty quantification

o statistical data analysis
optimal experimental design / decision-making under uncertainty
model reduction

optimization under uncertainty

inverse problems
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Thank Youl
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Optimal Experimental Design

open-loop design
o classical linear design theory [Atkinson & Donev (1992)]
@ Bayesian experimental design [Chaloner & Verdinelli (1995)]

@ nonlinear models [Box & Lucas (1959), Lindley (1956, 1972),
Sebastiani & Wynn (1997, 2000), Ryan (2003), Miiller & Parmigiani
(1993, 1995), Clyde et al. (1995), Loredo (2010)]

closed-loop design

o greedy (rolling-horizon of 1 experiment) [Gautier & Pronzato (1998),
Negoescu et al. (2011), Solonen et al. (2012)]

e dynamic programming approach [Miiller (2006), Brockwell & Kadane
(2003), Lewis & Berry (1994), Christen & Nakamura (2003)]
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Summary and Future Work

Experiments are an integral part of learning

Deduction Induction

Practice
(experimental
observations)

“...science is a means whereby learning is achieved, not by mere
theoretical speculation on the one hand, nor by the undirected
accumulation of practical facts on the other, but rather by a
motivated iteration between theory and practice ..." [Box 76]

— George E. P. Box
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Summary and Future Work

Inference can be done by conditioning the joint map

Bayes' theorem: posterior is simply conditioning the joint distribution

HY0F6)  f(y.0)
O ="y = )

For one experiment: KR map from (d,y,0) to & ~ N (0, 1) is:

& Ta(d) o1 (F(d))
52 = Ty\d(d’y) = (Dil (F(y|d))
&3 T9|y,d(d7y7 0) o1 (F(6|y7 d))

KR map of posterior given realizations d* and y* is:
Tyly=a+(0) = ©7 (F(8ly*, d"))
This is precisely Ty, 4 conditioned on d* and y*: Ty, 4(d*, y*,0)!
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Map construction (parmo 15]
e Approximate using linear parameterization £ = T(z;7)

(we use a linear architecture of monomial polynomial basis functions)
e Construct T(z;) by minimizing KL using M samples from target

z(m):|

>Amin>0m=1....M

z(m)

For i-th dimension of the multivariate map:

M
i 0.5T2(z\™; ) =1
min 3 [05T2(i) ~ I

m=1

OTi(z;7i)

82,-

o0Ti(z;7i)
aZ,'

s.t.

Numerically attractive properties:
@ Dimensions are separable
@ Convex optimization
@ Model-independent (only uses samples)
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Summary and Future Work

A good joint map also implies good posterior maps

Question: are the resulting posterior maps accurate?

Theorem: ([Huan 15])

@ If we construct a joint map that is optimal in an approximation
subspace

@ then the resulting posterior maps from conditioning on d, and yy are
also optimal on average

@ with respect to the probability measure of dy and yj
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Summary and Future Work

A good joint map also implies good posterior maps

Theorem

Let the optimal joint map be

Tl*:n = argmin Dy (fln()Hfln(v Tl:n))
T1:n€T1:n

where fi., is the target density induced by candidate map Ty.,. Then, for any 0 < j < n, the
dimension-truncated “head” map is also the optimal map for dimensions (1 : j), in the sense

T{:; = argmin D, fi f T
iy = (RO T))

where T1.j C T1.n is its first j-dimensional truncation.

For each j = 1,...,n, the component map is optimal in an expected sense:

T = argminE ; [DKL (75‘|1:U—1)('|Zl:(j—1))||7§‘|1:(j—1)('|21:(j—1); Tj))] .

T;€T;
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Extension to multiple experiments

k=0 1 2
&io = Tdo(do) gdo = Tdo (dO) fdo = Tdo( ) ]
& = T (do. Yo) &y = Ty (do. yo) &y = Ty (do, %o)
€00 = Too(do, 90, 9) [ €a, = Ta, (do, o, da) €a; = Ty (do, yo, do) ’
&y = Ty (do, yo, di, 1) &y = Ty, (dos Yo, du, 1)
591 = T€1(d07y07d17ylv ) [€d2 - sz(d077/07d17y17d2) ]
&/2 — T (d07 Yo, d] >, U1, d27 y2)
o, = Toz(do Yo, d1, Y1, da, Y2, 0)

@ Posterior map after Bayesian inference on k + 1 experiments is the
ng—dimensional T0k|dg,yg,...,d;,y:(9)

@ Components grouped by the red rectangular boxes are identical;
concatenate unique parts and construct overall map in one shot

@ Map constructed using samples of trajectory simulation (exploration
and exploitation)
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Final algorithm for sOED

© Set parameters: Select VFA features, exploration measure, L, Ry, R, T
Q Initial exploration: Simulate Ry exploration trajectories, without inference

e |V|ake exp|0|at|0" Olllt |"ap- Make 1ex lore TrO these sa ples
J P
°|0|€*17---7L

(a) Exploration: Simulate R exploration trajectories, with inference using Texplore
store states visited Xf’explore = {x}R;

(b) Exploitation: If ¢ > 1, simulate T exploitation trajectories by evaluating

7—1 . . .

dy = argmaxy EYHXk:dL [gk(xk, Yies dil) + I3 (Fre (x5 s d,:))] , with inference using
Texplore, Store states visited Xf,exploit = {Xi}g—:l

(c) Approximate value iteration: Update J! functions from new regression
points x[t € {X}

l .
explore U Xk,exploit} by evaluatlng

tH(xt) = max g EYk|Xk!dL [gk(x;ztv}’kv d,)+ Jf+1(fk(x,:t,yk7 d,’())] or terminal reward
at all regression points, with inference using Texplore

© Extract final policy parameterization: Ji, vk
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Summary and Future Work

Linear-Gaussian problem: problem settings

Yk = O0dk + €k
e 0~ N(0,3?%) dk € ]0.1,3]
ex S N(0,12) gk =0
o Conjugate family, all posteriors are Gaussian

N = 2 experiments

Additional terminal reward component (target variance)

8N = DKL(f(XN,b)Hf(XO,b)) — 2(|n 0',2\/ —1In 2)2

Compare state representations:

o analytic (mean and variance)
o PDF on a grid (50 grid points)
o map (total order polynomial degree 3, made with 10° samples)
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Summary and Future Work

Linear-Gaussian problem: dy, d; on exact expected utility

3 ~ 0
25 \\ .
2 ~10

< 1.5
—15

1
. —20

0.5] "
05 1 15 2 25 -5
dy
analytic grid

Huan (Sandia) University of Notre Dame

dq

[ R R )

\\0,5

05 1 15 2 25
dy

map
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Summary and Future Work

Linear-Gaussian problem: expected total rewards

Expected rewards from 1000 simulated trajectories:

exact | analytic grid map
0.7833 0.79 0.76 0.79

@ All values have standard error £0.02

@ Optimal policy for linear-Gaussian problem with constant noise
variance is state-independent and non-unique
(“exchangeability” between dy and di)

o Excellent agreement between analytic, grid, and map methods

@ In comparison, exploration policy expected reward is —8.5
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Linear-Gaussian problem: joint map

5]

95
o
E&

. elle]ln] «
=il ]l=]A] & =ll]l=]A] &
elllelldlal »  [=2]lz][2]l]lA] .
el ]le]l4lAla] [e]lzdle]l]l2]lAl
original samples samples from map

Joint distribution even for a linear-Gaussian problem
is generally not Gaussian!
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Summary and Future Work

1D source inversion problem: effects of /

3 3
2 2 k
1 - S 1 >
-1 -1
-2 -2
-3 -3
2 4 8 10 2 4 6 10
4 l
3 r 3
2 2
At 1 1.
<0 > =20 e e e e e e e
-1 -1
-2 -2
-3 -3
2 4 8 10 2 4 8 10
l l
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1D source inversion problem: effects of /
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Summary and Future Work

2D source inversion problem: joint map (partial)

|4
[d9
:[Jellg

- [Jlallall4
: [Jl9lellellg
DEEOIC
< lallal[dla)lalld
:[delelelell9
: [l aplpl4ele/

3
JEE
JEEE

e
SEEEE
JEEKEEE
JERRERAE
AL EEEEEE
S EREEEREE

samples from map

original samples

Joint map does a good job in capturing some highly non-Gaussian,

possibly multi-modal, behavior!
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Overview

Challenges:

High number of uncertain model parameters (stochastic dimension),
requiring many expensive flow solves

Would like to...

@ use few runs

@ incorporate less expensive simulations from low-fidelity models

Objectives:

@ identify influential uncertain parameters via global sensitivity
analysis (GSA)

@ characterize uncertainty due to model error resulted from using
low-fidelity models
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RAPTOR solver

RAPTOR: code by Oefelein et al. at Sandia [Oefelein 06]

Fully-coupled, compressible conservation equations

High Reynolds number, high-pressure, wide range of Mach number
Real-fluid equation of state

Detailed thermodynamics, transport and chemistry
Non-dissipative, discretely conservative, staggered finite-volume
Complex geometry treatment

ALA
RO O AW
\«L\"(f; ﬂ

Fuel component—purple Turbulence—blue Mach number—cutting planes
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Summary and Future Work

Computational domain of initial unit problem

Final: simulation of full combustor domain, match experimental setup
—HIFIiRE Direct Connect Rig (HDCR) [bottom-left figure]

Initial unit problem: primary injection section

@ omit cavity
@ no combustion

@ focus on interaction of fuel jet and supersonic air crossflow

244 295
+ +

Flow —> / \ ,
£ T_,
3 > . x
< £ \
& .
/ /‘ .
Computation Primary Secondary
domain injectors A)ems
15° [ e
£
E I T_;
<
& Isolator Combustion chamber
Cavity

359 401 419
+—+—+

711 mm
+

0

203
+
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Summary and Future Work

Computational domain of initial unit problem

Final: simulation of full combustor domain, match experimental setup
—HIFIiRE Direct Connect Rig (HDCR) [bottom-left figure]

Initial unit problem: primary injection section

@ omit cavity

@ no combustion
@ focus on interaction of fuel jet and supersonic air crossflow

Flow —> / \ R
E L
E > . x
o £ \
= | .
/ : .
Computation Primary Socondary
domain injectors /;ec ors
15 (I
13
€ I tx
< F<—— unit Problem Domain——— N
& Isolator - | Combustion chamber
Cavity

711 mm
+

244 295 359 401 419
+ + +—+—+

? Zﬂfi
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Summary and Future Work

Embedded representation of model error

Motivation: different models are available
= to use them, need to quantify the error due to model structure

Traditional additive form: [Kennedy 01]

qi(s) = pifi(s, A) + di(s)

Flexible for fitting model discrepancy

Predictions do not obey governing equations

Difficult to distinguish uncertainty contributions between model error
and measurement noise

@ 0;(s) not transferable for prediction of Qols outside calibration set
Embedding approach: [Sargsyan 15]
qi(s) = fi(s, A + di(s, @i, &)

= physically-meaningful predictions that satisfy governing equations
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Summary and Future Work

Bayesian calibration of model error term

Represent the discrepancy term ¢ using a PCE:

A+ 0(0,8) = A+ agWs(é)

B#0

Calibrate by inferring all parameters & = (A, ) via
posterior likelihood prior
TN TN
p(ID)  p(DI@) p(@)
Posterior explored via adaptive Markov chain Monte Carlo (MCMC)

Bayesian inference:

Through use of surrogate model and likelihood approximation, we can
attribute predictive variance to different sources:

Var[g] = Ea [07(\, 0)] + Vara [N 0)] + 0% Loo
N——

model error posterior uncertainty  surrogate error
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Summary and Future Work

Likelihood approximation, and breakdown of variance

MCMC requires likelihood evaluation p(D|&), no analytical form

Enable tractable likelihood evaluation via two approximations:
1. Polynomial surrogate for Qols, built using regression

G = (A +0(er,€)) = Bi(A + 8(a, ) + ex
2. Gauss-marginal approximation to likelihood form

oo oo ()07

p(D|a) ~ Lg(a % kH_l p [ 207(4) ]

pi(d) =~ 1?,(70(54) and Ji(d) ~ Z 1‘1275(54)
B#0

Also enables attribution of predictive variance to different sources:

Var[qx] = Eg [aﬁ()\,a)] + Varg [uc(N, )] + U/%,Loo
v . .
model error posterior uncertainty

surrogate error
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Summary and Future Work

Dynamic-vs-Static Smagorinsky turbulence model

Calibrate static Smagorinsky model with dynamic treatment simulations
o Calibrate using TKE profile, A = Cr

gle— ole—
<+ Data from high-fid model =+ Data from high-fid model
7 . B 20 due to posterior 7 L
20 due to surrogate for low-fid
6| * 6| S N 20 due to surrogate for low-fid
5 5
Y4 Y4
¥ ¥
3 3
2 2
1 N 1
R b e UM e i I = R PSP
-7 -3 =2 -1 e -3 =2 -1
y/d y/d
4. — 4. T
3.8 N 3.8 .
3.6 e, 3.6 e
3.4 3.4
T32 » T2 N
3.0) J 300 . .
<+ Data from high-fid model
. '+ + Data from high-fid model e 20 due to low-fid model error
2.8 20 due to posterior 2.8 . 20 due to posterior
20 due to surrogate for low-fid 20 due to surrogate for low-fid
2 3 =3 =2 -1 2 =7 =3 ) -1

No model error treatment

Huan (Sandia)

u/d

University of Notre Dame

u/d

Embedded model error treatment
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Summary and Future Work

2D-vs-3D: choice of embedding parameters
Calibrate 2D model using 3D model simulations (using x profile)

o A= (Cg, Pr; %, Sc; b 1 Iy, L)
@ Choose to embed § (1st-order PCE) in Cg and Sc; ' based on GSA

2.0
<15
[
°
£
2
:g 1.00E
G
f=4
QU
wn

0.5

0.0 -4 -3 -2 -1 0

y/d
(emc, mmpr' wms O mmi, o=
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2D-vs-3D: predictive quantities

3.0 3.0
+ + Data from high-fid model + + Data from high-fid model
25 20 due to posterior 25 20 due to low-fid model error
) 20 due to surrogate for low-fid - W 25 due to posterior
20 due to surrogate for low-fid
2.0 2.0 .
15| 1|
- - / -
10f , 10,
. B
05 0.5
0.0) B 0.0 b e
-0 ) =3 =2 -1 -0 =4 =3 =2 -1
v/d y/d
2.8 2.
2 AR R AR R R PRI 26l e R RN
2.4 . 2.4 .
2.2) 22
20 o 200 .
1.8 1.8
++ Data from high-fid model
+ = Data from high-fid model 20 due to low-fid model error
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No model error treatment
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Summary and Future Work

Ideas for future work

o Goal-oriented adaptive numerical methods: automated refinements of

component numerical approximations; quantifiable and meaningful error bounds

e UQ for high-dimensional and expensive models: model reduction
and surrogate modeling, dimension reduction, sparse representations

o Multi-model management in experimental design and inference:
leverage and combine existing models of different fidelities and resolutions,

improve through selective experimental design and data acquisition

@ Model error with automated learning and improvement: quantify
and learn model error through experimental design, improve models through adding

sub-components while preserving governing equations and physical principles

o Practical experimental design formulation choices: combine

low-cost sub-optimal design frameworks via value of feedback and coordination
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Future work: framework and methodology choices

What experimental design framework and methods to use?

Optimality

(problem approxima-
tion, theoretically-

achievable accuracy)

Numerical

Costs

(computational,

accuracy

(solution approximation,
practically-achievable
accuracy given a budget)

<7

University of Notre Dame

developmental, other

costs and risks)
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Summary and Future Work

Future work: framework and methodology choices

What experimental design framework and methods to use?

Optimality

(problem approxima-
tion, theoretically-

achievable accuracy)

Numerical

Costs
accuracy

(solution approximation,

practically-achievable

(computational

developmental, other

costs and risks)
accuracy given a budget)

7

Huan (Sandia) University of Notre Dame
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Future work: value of feedback and coordination

i
AU}‘ 2 Dynamic
Open-loop ~ |p-----mmmcmnmmnnes > Programming
A

Ale PAU,9?

Coordination

Greedy/Myopic

Coordinate-wise
OED

Feedback

Estimate “value of feedback” and “value of coordination”: AU, >, AU
o Heuristics: use AU.1 and AUr; as guesses (cheaper to obtain)
@ Theoretical: stochastic bounds Ugpenloops Ugreedy < U™ < Unindsight

Ultimately: find appropriate degrees and combinations of feedback and
coordination for different subsets of experiments
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