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• Cray XC40/50 Platform with the high-performance Cray Aries 
DragonFly interconnect

• Architected by Los Alamos and Sandia National Laboratories for the 
production NNSA/ASC capability computing campaigns

• Split into two phases of deployment:
• Phase I (circa 2015) – approx. 9,000 nodes of dual socket, 16-

core Intel Haswell E5 series Xeon processors
• Phase II (circa 2017) – approx. 9,000 nodes of 68-core self-

booting single socket Intel Xeon Phi (Knights Landing) processors

NNSA/ASC Trinity ATS Platform

ATDM SPARC Thread Scaling Analysis
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ATDM-SPARC application is a hypersonic CFD modeling application developed from the 
ground up to be on-node parallel using the Kokkos C++ performance portability abstraction.

• Runs on Intel Xeon, Knights Landing, IBM POWER8 and NVIDIA GPUs from same source
• Can switch between “native” (in-house optimized) and Trilinos solvers
• Utilizes MPI communication between nodes but experimental work on multi-node tasking 

runtimes in development
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Kokkos Profiling Hooks and Tools

• http://www.github.com/kokkos/kokkos
• http://www.github.com/kokkos/kokkos-tools

void mykernel() {
..

Kokkos::parallel_for (N, KOKKOS_LAMBDA (const int i) {
printf ("Hello from i = %i\n", i);

});

..
}

User Application:

Kokkos::parallel_for (..) {
CALL_PROFILE_HOOK_START

PARALLEL BODY

CALL_PROFILE_HOOK_END
}

Kokkos Runtime:

START_KERNEL_PROFILER
(e.g. START_TIMER)

END_KERNEL_PROFILER
(e.g. END_TIMER)

Profiling Tool:

• Dynamically loaded at initialization and built directly into Kokkos
runtime by default (no special linking, no LD_PRELOAD)

• Standard tools include kernel timers, memory/data structure 
profiling, cache miss/hit rates, memory bandwidth etc

• Can be used to directly connect into vendor tools (e.g. Intel VTune, 
NVIDIA NSight, CrayPAT, IBM Performance Toolkit etc)

• Working with several DOE-ECP projects to extend profiling capabilities 
into new tools

ATDM SPARC Kernel Analysis (Knights Landing)
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