
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Evaluating Production Engineering Application Performance on the NNSA 
Trinity Advanced Technology System

Sandia National Laboratories, NM
Courtenay Vaughan, Dennis Dinge, Paul Lin, Simon D. Hammond, Doug Pase, Christian R. Trott, Robert E. Benner, Jeanine Cook and Robert .J. Hoekstra

• Cray XC40/50 Platform with the high-performance Cray Aries 
DragonFly interconnect

• Architected by Los Alamos and Sandia National Laboratories for the 
production NNSA/ASC capability computing campaigns

• Split into two phases of deployment:
• Phase I (circa 2015) – approx. 9,000 nodes of dual socket, 16-

core Intel Haswell E5 series Xeon processors
• Phase II (circa 2017) – approx. 9,000 nodes of 68-core self-

booting single socket Intel Xeon Phi (Knights Landing) processors

NNSA/ASC Trinity ATS Platform

ATDM SPARC Thread Scaling Analysis

0

2000

4000

6000

8000

MPI Only OpenMP-2 OpenMP-4 OpenMP-8 OpenMP-16 OpenMP-32

Ti
m

e
 t

o
 S

o
lu

ti
o

n
 (

Se
co

n
d

s)

SPARC Time to Solution on Trinity Phase-I and Phase-II 
Processors (64 Node Test System Runs)

Haswell-Native KNL-Flat-Native Haswell-Tril KNL-Flat-Tril

ATDM-SPARC application is a hypersonic CFD modeling application developed from the 
ground up to be on-node parallel using the Kokkos C++ performance portability abstraction.

• Runs on Intel Xeon, Knights Landing, IBM POWER8 and NVIDIA GPUs from same source
• Can switch between “native” (in-house optimized) and Trilinos solvers
• Utilizes MPI communication between nodes but experimental work on multi-node tasking 

runtimes in development

0

250

500

750

MPI Only OpenMP-2 OpenMP-4 OpenMP-8 OpenMP-16 OpenMP-32

Ti
m

e
 (

Se
co

n
d

s)

Time Spent in MPI Operations on Trinity Phase-I and Phase-II 
Processors (64 Node Test System Runs)

Haswell-Native KNL-Flat-Native Haswell-Tril KNL-Flat-Tril

Kokkos Profiling Hooks and Tools

• http://www.github.com/kokkos/kokkos
• http://www.github.com/kokkos/kokkos-tools

void mykernel() {
..

Kokkos::parallel_for (N, KOKKOS_LAMBDA (const int i) {
printf ("Hello from i = %i\n", i);

});

..
}

User Application:

Kokkos::parallel_for (..) {
CALL_PROFILE_HOOK_START

PARALLEL BODY

CALL_PROFILE_HOOK_END
}

Kokkos Runtime:

START_KERNEL_PROFILER
(e.g. START_TIMER)

END_KERNEL_PROFILER
(e.g. END_TIMER)

Profiling Tool:

• Dynamically loaded at initialization and built directly into Kokkos
runtime by default (no special linking, no LD_PRELOAD)

• Standard tools include kernel timers, memory/data structure 
profiling, cache miss/hit rates, memory bandwidth etc

• Can be used to directly connect into vendor tools (e.g. Intel VTune, 
NVIDIA NSight, CrayPAT, IBM Performance Toolkit etc)

• Working with several DOE-ECP projects to extend profiling capabilities 
into new tools

ATDM SPARC Kernel Analysis (Knights Landing)

% of Time (Tril, OpenMP 16)

Non-Kokkos

BcrsApplyNoTran
s

BlockWiseMultipl
y

ComputeResidua
lVolume

V_Update

% of Time (Native, OpenMP 16)

Non-Kokkos

ComputeResidua
lVolume

ComputeViscLea
stSquares

ImplicitUpdate

ComputeLeastSq
uares

% of Time (Tril, OpenMP 1)

Non-Kokkos

BcrsApplyNoTran
s1Vec

BlockWiseMultip
ly

ComputeResidua
lVolume

V_Update_Funct
or

% of Time (Native, OpenMP 1)

Non-Kokkos

ComputeResidu
alVolume

ComputeViscLea
stSquares

ComputeResidu
alInterface

ImplicitUpdate

%of Time (Native, OpenMP 8)

Non-Kokkos

ComputeResidu
alVolume

ComputeViscLe
astSquares

ImplicitUpdate

ComputeLeastS
quares

% of Time (Tril, OpenMP 8) 

Non-Kokkos

BcrsApplyNoTra
ns

BlockWiseMulti
ply

ComputeResidu
alVolume

V_Update_Funct
or

SAND2017-2062C


