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Port Function Based Modeling and Control of an Autonomously
Variable Spring to Suppress Self-Excited Vibrations While Drilling
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Abstract— Self-excited vibrations are a major problem for
rotary drilling. They may be mitigated by introducing
adjustable compliance near the bottom of the drillstring, but it
is challenging to identify the appropriate stiffness, particularly
in situ and with limited available data on the rapidly-changing
overall system dynamics. We describe an approach to modeling
and simulating self-excited vibrations in drillstrings. Our
approach uses impedance and admittance port functions to
represent and systematically combine subsystems, and
integrates established models for drillstring vibrations and rock
/ bit interactions. Simulations predict that intermediate
stiffnesses provide better stability than either compliant or stiff
extremes, which aligns with results from earlier work. Results
also indicate that at least two different mechanisms limit
stability in different stiffness regimes, producing significant
differences in the relationship between vibration frequency and
controlled module stiffness. This suggests a potential means of
developing autonomous stiffness controllers that depend only
on measurements taken at the variable stiffness module,
without requiring a dynamic model of the rest of the drillstring.

I. INTRODUCTION

Drillstring vibrations can cause ineffective drilling and
equipment damage and are a leading cause of non-
productive time in the drilling industry [1,2]. As hole depth
increases, the drillstring becomes increasingly compliant and
interacts with the large mass near the bit to create multiple
modes of vibration across a wide range of frequencies. The
lower right pane of Fig. 1 depicts the root cause of self-
excited longitudinal vibrations. Cutter forces at the rock/bit
interface are modulated by the dynamic response of the bit
and drillstring, producing a variable cutting force that can
self-excite the modes of vibration of the drillstring.
Conceptually, successive periodic passes of the bit over the
uneven bottom-hole surface act as an effective delay,
introducing the possibility of instability [3].

Numerous approaches to suppressing vibrations have been
explored, including tailoring the bit design to specific
drilling conditions [4], monitoring and suppressing chatter
via machine learning and spindle speed control [5], and
impact dampers [6]. None of these approaches accommodate
highly variable drillstring dynamics.

Dynamic elements may be wused to limit the
transmissibility between the bit forces and the drillstring,
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Figure 1. Drilling instability is produced by periodic cutter forces self-
exciting drillstring modes of vibration.

reducing instability. However, the drillstring dynamics vary
dramatically as holes are drilled, as a result of: adding drill
pipe, frictional interaction and jamming between the drill
pipe and the wellbore, and other factors. Furthermore, the
rock-bit interaction characteristics change with different
drilling conditions, e.g. different layers of rock as shown in
Fig. 1 (left). Because of this variability, it is virtually
impossible to specify a single set of dynamic parameters to
prevent all unstable vibrations. Therefore, tunable dynamic
elements have been used. In prior work, variable dampers
were used to suppress vibrations. However, this work
revealed that varying the stiffness of an element close to the
bit also had a strong effect on vibration [7].

We are developing drillstring modules with controllable
stiffness to actively suppress drillstring vibrations [§8]. In
theory, by introducing compliance that is controllable over a
broad range, most or all unstable self-excited vibrations may
be suppressed. However, several factors make the control of
stiffness challenging. First, the overall drillstring dynamics
are very challenging to observe from any one location (e.g.
the surface). Second, given the challenges of drillstring
telemetry, variable stiffness modules must be autonomously
controlled based on local sensor measurements. Third, the
rock-bit interactions contribute not only excitation forces but
also coupled dynamics based on elastic and dissipative
behavior that depends on the drilling medium and the bit.
These dynamics are very difficult to characterize, making
some of the key system dynamics effectively unobservable.

Before autonomous downhole controllers may be
developed, it is necessary to establish a modeling and
simulation capability to understand and analyze drillstring
behavior. Fig. 1 illustrates a generic representation of
drillstring dynamics with an adjustable module. The



dynamics of the overall drilling system as it appears at the
bit may be represented by the Laplace domain transfer
function G(s). G(s) may be decomposed by dynamic
substructuring [9] into a controllable “actuator” portion (e.g.
a variable spring) A(s), and portions of the drillstring that are
below (Gi(s)) and above (G.(s)) the actuator. Forces F' and
velocities V at subsystem interfaces are indicated.
Partitioning the system in this manner enables analysis based
on the forces and motion exchanged between the
controllable actuator and the uncertain drillstring dynamics.
It also allows simulations to be rapidly iterated by changing
A(s) without needing to recalculate Gy(s) or G,(s).

In Section II we present a substructured modeling
approach for drillstrings with actively controlled elements
based on the use of port functions. This model combines
prior work in drillstring instability modeling with a widely
accepted model for rotary drag bit drilling. In Section III we
present the results of simulations that explore the stability
properties of the coupled system for a simplified drillstring
model with different series stiffness values. In Section IV we
explore the implications of these simulation results for local
autonomous stiffness control methods, sketching out a
potential approach that depends only on directly measured
local information. Section V provides discussion and
conclusions, including a description of key future work.

II. DYNAMIC MODELING

A novel model, suitable for study of the instability / self-
excited vibration problem, was developed by compiling four
key techniques: subsystems were modeled using finite
element representations, then combined using port functions,
the cutting force instability model of [3] was implemented,
and instantaneous rock/bit interaction forces were calculated
by applying a physics-based model [10,11]. This section
summarizes these elements.

A. Drillstring Subsystem Models

We have developed several means of representing
complex drillstring subsystems via finite element methods.
Primarily, drillstring structural dynamics models have been
reproduced using discretization of spring-mass systems into a
normal modes model implemented in MATLAB. Results
were validated by comparing to an identical model
implemented in MSC Nastran and by comparing to earlier
published data [8,12]. This model synthesis method was
applied to a 7200 ft drillstring common in the literature [3],
as well as to alternative models up to 16,000 ft in length [8].
(English units are used as is standard in the drilling industry
and literature.) This is our primary method for generating
models for the G;(s) and Gy (s) blocks in Fig. 1.

B. Dynamic Substructured Model using Port Functions

Substructuring methods were used to explore different
dynamic topologies for controllable “actuator” elements
(4(s) in Fig. 1) without needing to derive new equations or
develop new finite element models for the full system each
time the dynamics change. Specifically, the port functions
mechanical impedance and its inverse, mechanical
admittance, were chosen to represent each subsystem
because they provide several advantageous properties.
Mechanical impedance is defined as the force produced in
response to an imposed velocity, and characterizes the static

and dynamic behavior of the system at a particular spatial
location or port of interaction [13]. Because impedance and
admittance are defined in terms of power conjugate variables
(force and velocity), they enable analytical methods that are
not impacted by the instantaneous direction of energy flow.
They also seamlessly handle connection of multiple
subsystems without the need to consider impedance
matching or loading by other subsystems (unlike other
analytical methods such as block diagrams). Fundamentally
this distinction is because port functions represent the
dynamic behavior of systems as observed at a single point of
interaction with other systems — as opposed to “forward
path” representations (e.g. block diagrams) that relate an
output at one physical location to an input somewhere else.
Furthermore, this construct enables the explicit control of
port function behavior, potentially enabling application of
impedance control [14] to the controllable module.

Our approach represents the drillstring as a series of
impedance and admittance functions, alternating in
causality. Terminating (top and bottom) elements in the
string may be represented as single-port functions, whereas
intermediate subsystems are represented as “two-port”
functions that interact both above and below. Subsystems
may include arbitrary dynamic order and complexity, and
can be linear or nonlinear, time-varying or invariant. Details
for deriving port functions from normal mode coefficients
are provided in section 2.3 of [8].

C. Instability Model

A theory of instability in machining developed by Tlusty
is presented in [15] and its application to the drilling
vibration problem is described in [3]. This work elucidates
the interactions between the drillstring, drill bit, and drilling
medium, and the quantitative roles that each play in
determining susceptibility to self-excited vibrations.
Limiting conditions are found that define the conditions
under which stability may and may not be guaranteed. First,
a limiting bit diameter is derived. At smaller diameters, the
system is stable, whereas at larger diameters instability is
possible if problematic frequencies are excited. Thus the bit
diameter defines a boundary that can be used to quantify the
relative stability as dynamics are changed. Second, it is
determined that by making the real portion of the transfer
function from bit force to bit displacement positive at
frequencies of potential vibration, the contribution of those
frequencies to self-excited vibrations can be eliminated.
Thus a design goal for vibration absorbers is to “lift” the real
portion of the transfer function at problematic frequencies,
making them positive or, at least, less negative [3].

We apply and extend this model to include a widely-used
model for rock/bit interaction and explore system-level
simulations to predict the onset of actual unstable vibrations
(rather than simply the susceptibility to potential instability).
We also apply the key conclusions from this prior work in
seeking methods to autonomously sculpt the controllable
stiffness to minimize self-excited vibration instabilities.

D. Rock/Bit Interaction Forces

Rather than the simplified model for rock/bit interaction
used in [3], we incorporate the widely accepted friction-based
model of Detournay [10,11]. A complete model to predict the
force, torque, and displacements inherent to the rock-bit



interaction process is provided in [11]. Since we are only
concerned with longitudinal forces and displacements, we
apply Detournay’s model only to compute the reaction force
Fi; in response to a specific depth of cut d at a specified
constant angular velocity w, assuming that the drilling system
can provide the requisite torque to maintain that velocity.

Drilling processes are characterized by three regions
associated with increasing applied force or weight on bit:
Region 1, in which the cutters are not fully engaged with the
rock; Region 2, in which the cutters are fully engaged and
increasing weight on bit results in linearly increasing depth of
cut; and Region 3, in which one of several drilling
pathologies occurs, e.g. the depth of cut reaches the
maximum physical cutter depth, resulting in reduced drilling
performance [16]. For this analysis, we restrict study to
Region 2, where productive drilling occurs.

Detournay’s model defines the relationships between the
scaled weight on bit (w) and scaled depth of cut (d) in
equation 4 in [11]:

Fpit _ 2mVpit
wW=— d= T (1)
We assume that the bit has full cross section with radius a.
Viie = Zp;e is the linear bit velocity or rate of penetration.
The values for w and d at the onset of Region 2 (the transition
from Region 1) are defined as w+ and d+ In Region 2,
equation 37 in [11] relates w and d:

w={e(d —d.) +w, )

{ and ¢ are two constants, specific to rock and bit, that define
the cutting process. In brief, € is the energy required to
remove a unit volume of rock by an ideally sharp bit, and ¢
characterizes aspects of the bit. Equation (2) shows that the
reaction force includes a spring-like portion that is
proportional to the depth of cut, plus a Coulomb friction
component represented by w= Together, (1) and (2) enable
the computation of the force Fj; in response to a linear
velocity Vi, at a particular angular velocity w. This provides
an impedance representation of the rock/bit interactions.

III. SIMULATIONS

This model was implemented in MATLAB and Simulink
to enable rapid parametric simulations. These simulations
were used to study the impact of changes in the variable
stiffness on the stability properties of the system and the
emergence of self-excited vibrations. Furthermore, the
characteristics of wunstable vibrations at the stability
boundaries were used to provide insight into the nature of the
instabilities, suggesting potential methods for autonomously
controlling the down-hole vibration suppression system.

A. MATLAB / Simulink Implementation

The integrated longitudinal vibration model was
simulated in MATLAB and Simulink. A block diagram of
the substructured drillstring model is shown in Fig. 2. There
are four major system elements, each represented by port
functions: the upper drillstring, the actuator or variable
spring, the lower drillstring (between the variable spring and
the point of contact with the rock), and the rock/bit
interactions. To enforce proper causality, alternating
impedance / admittance representations were used: the upper
and lower drillstrings were represented with admittance
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Figure 2. Block diagram of port-function based drillstring model.

functions, and the actuator and rock/bit interactions with
impedance functions. The terminating subsytems - rock/bit
interactions and the upper drillstring - were represented with
single-port functions, whereas the intermediate elements
were represented with two-port functions.

Simulations were conducted using a normal modes
representation of the 7200 ft drillstring described in [3], to
prove accuracy of the model with complex drillstrings. A
simplified model, a 2™ order simple harmonic oscillator
(SHO) was also simulated and studied in greater detail to
align with previous experimental studies [7] and to enable
more intuitive understanding of the primary subject of
interest: the interactions between the model elements,
including between the Detournay rock-bit interaction model
[11] and the Tlusty model for instability [3]. Prior work has
shown the utility of reduced-order models ranging from 1 to
6 modes in studying drillstring vibrational instabilities [3,7].

In the case of the SHO drillstring, the upper drillstring
admittance is represented in the Laplace domain as:

—Vu_ s
Gy = F,  mys2+bys+ky @)
The SHO includes a mass m,=1613 [b, stiffness k,=5500
Ib/in, and damping ratio tuned to 0.4 via the damping
coefficient b,. The lower drillstring is a two-port admittance
representation of a rigid mass m~=180 /b:
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The actuator is represented as a two-port impedance
consisting of a parallel spring with variable stiffness k., and
damper b, per the matrix equation:

byss+kys _( vsSt vs)
Fau — A [Vau] — N N Vau] (5)
Fal Val _ (bvss+kvs) byss+kys Val
N N

For each value of k., b,s was tuned to provide a damping
ratio of 0.4 for the mode created by the mass m; and k..
The rigid connection of subsystems yields:
Vi = Vaw Vi = Var, Viie = Vi (6)

Enforcing Newton’s second law requires equal and
opposite forces at the interfaces:

B, =—Fu, Fi=—Fq,Fpy = —Fy (7
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Figure 3. Implementation of rock-bit interaction model

Finally, the rock/bit interactions are represented in
impedance form by applying (1) and (2). A block diagram of
this algorithm is shown in Fig. 3. The angular coordinate is
modeled to capture the position-dependent geometry of the
hole bottom. The angular and vertical bit positions are
determined by integrating the respective velocities. The
current geometry of the bottom of the hole (height versus
angle) is stored in a dynamic lookup table, which is updated
by circular buffers (not shown). On each revolution, all
material above the cutter is assumed to be removed, so that
the difference in vertical bit position from one pass to the
next is the depth of cut, d. (This model assumes that the bit
stays in contact with the rock, which can be verified by
studying Fpi.) The parameters {, ¢, d* and w* are derived
from literature or testing (for our example, coefficients were
derived from testing in Sierra White Granite) and used to
populate the Detournay model function. This function uses
these parameters as well as a, d, and o, and solves (1) and (2)
for the instantaneous Fj;. To provide an initial excitation, the
bottom hole is given a sinusoidal initial geometry.

Notably, each of the four blocks in Fig. 2 (and the
corresponding relationships in (3)-(5) and Fig. 3) can be
replaced with alternative models for different dynamics,
enabling seamless, modular drillstring simulations. To our
knowledge, this is the first implementation of the prevailing
friction-based drag bit model of Detournay as a modular
substructured port function suitable for simulation with
common control systems design and analysis tools.

B. Stability vs. Stiffness

A series of simulations was run with several variable
parameters to analyze the system’s stability limits. Increasing
the bit radius a makes unstable vibrations more likely by
increasing the effective rock-bit stiffness (this is evident by
substituting (1) into (2)). Therefore a is a useful parameter for
defining the relative stability for different values of the
variable stiffness. For a particular stiffness, a stability margin
can be defined in terms of a, e.g. the difference between the
actual and maximum stable values for a. As in [3], we
present a stability boundary in terms of maximum stable a —
in this case presented versus stiffness.

Because multiple modes of vibration are present, some
potentially unstable and others stable, we define instability
as occurring if vibrations are increasing in amplitude after 20
seconds from initial excitation. Examples of stable and
unstable bit velocity profiles are shown in Fig. 4.

Simulations were conducted at values for &, ranging from
1500 to 50k [/b/in. At each ky value, a was increased to find
its maximum stable value. This process was repeated for
three angular velocities w in the typical range for rock
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Figure 4. Stable and unstable velocity trajectories for a 6k /b/in spring, at two
different bit diameters. The periodic oscillations are initiated once per
revolution and are due to the initial bottom hole geometry.
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Figure 5. Maximum stable bit diameter a versus variable spring rate k.

drilling: 4, 6, and 8 rad/sec. The maximum stable values are
plotted in Fig. 5. To establish a baseline for stability, the
same process was repeated for a system with only the
Upper Drillstring Admittance and Rock/Bit Impedance -
i.e. with the Lower Drillstring and Variable Spring blocks
removed entirely from Fig. 2. For all three speeds, the
baseline stability limit was approximately 0.35”. The limiting
bit diameters are smaller than expected, likely because the
model does not include nonlinearities. The relative stability
of different k, values, rather than physically perfect
modeling, is our primary interest in this work. Fig. 5
indicates the following interesting results:

e Stability boundaries are only marginally impacted by
angular velocity, with lower speeds slightly more stable.

o At large values of £, the stability limit converges close
to the baseline (no spring) limit, as expected.

o Intermediate stiffness values are the most stabilizing,
increasing the stable bit radius by 3x versus baseline.
This provides strong support for the rationale of using a
variable spring. Simply making the system as soft as
practical is ill-advised. The advantage of intermediate
stiffness values also aligns with some prior published
experimental data, e.g. Fig. 14 in [7].

o At the lowest stiffness values, the spring is significantly
destabilizing; stability is worse than with no spring at all.
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Figure 6. Vibration frequency at minimum unstable radius a versus &,;.

Furthermore, the shape of the plot suggests two distinct
stability limits, one dominating at low stiffness and another at
high stiffness. Fig. 6 plots the vibration frequencies at the
minimum unstable a for each stiffness tested, and confirms
that there are two distinct characteristics of instability, which
bifurcate depending on the value of k. At low ky, the
frequencies of unstable vibrations are roughly proportional to
the natural frequency of the wvariable spring module,
indicating that the instability is attributed to the new mode
introduced by this module. At higher k., the unstable
frequencies are virtually independent of 4., and align closely
with the oscillation frequency of the upper drillstring when
interacting with the rock directly (~7.5 Hz). Note that the
interaction with the effective stiffness of the rock results in
vibrations at a higher frequency than the resonant frequency
of the SHO alone (~5.25 Hz).

IV. IMPLICATIONS FOR DOWNHOLE CONTROL

From Fig. 5 it is clear that to minimize unstable self-
excited vibrations for this particular example, it is best to
select a spring rate around 15k /b/in. From Fig. 6, this is also
the minimum stiffness that avoids introducing its own
instabilities. Fig. 7 shows the bit velocity as k. is changed
from a destabilizing value (6k /b/in) to a stabilizing value
(15k Ib/in) at time = 10 s. The unstable vibrations are rapidly
suppressed by the appropriate spring.

For control, the key challenge is identifying this optimal

stiffness in situ, with only measurements available at the
variable spring module, in order to avoid telemetry in the
control loop. However, while the dynamics of the rock/bit
interaction (e.g. the properties of the rock and the changing
characteristics of the cutters as they wear) are difficult to
estimate while drilling, they significantly impact both the
vibration frequencies and the stability of various modes.
Per [3], stability of particular modes (and their resistance to
self-excited vibrations) may be improved by boosting the real
portion of the transfer function between the force and
displacement at the bit, G=Z,/Fu:, at problematic
frequencies. This enables potential concepts for controlling
the variable stiffness based only on the measured frequency
content of vibration, and a dynamic model of the drillstring,
without requiring knowledge of the rock/bit dynamics.

Fig. 8 plots Re(G) for the simulated system with various
spring rates. At the highest stiffness values, the transfer
function approaches that of the system with no vibration
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Figure 7. Bit velocity for simulation at =6 1/s, 0.51” diameter. Stiffness &,
switches at t=10 sec from 6k /b/in to 15k Ib/in.
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Figure 8. Real portion of net system transfer function.

absorber, as expected. From Fig. 6, destabilizing vibrations
occur around 7.5-8 Hz in this regime, and in Fig. 8 it is clear
that Re(G) is negative in this range. The lower stiffness
values significantly boost Re(G) at low frequencies, but they
drive it negative at slightly higher frequencies — hence there
are instabilities in the 12-38 Hz range (Fig. 6). While it is by
no means obvious from Fig. 8 which stiffness value is
optimal, it is certainly plausible that the intermediate stiffness
values in the 10k-25k /b/in range provide sufficient help at
frequencies <10 Hz without dramatically compromising
higher frequencies. Thus the fact that these springs are the
most stabilizing agrees with the model in [3].

One could imagine sculpting a controller that optimizes the
curve plotted in Fig. 8, for instance to maximize the
minimum value of Re(G) over a broad range of frequencies
believed to be most relevant to drilling conditions. However,
to implement control based on Re(G) would require a model
of the full drillstring dynamics. As noted, these dynamics
vary greatly from interactions with the wellbore, and cannot
in general be accurately determined based on a priori models.
One possibility is to perform real-time system identification
downbhole. This is difficult because of measurement noise and
a lack of rich, broadband excitation.

Another potential approach is to select variable spring
stiffness based on the measured vibrations and the properties
of the real portion of the transfer function for only G; and 4,
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which can both be accurately known if 4 is close to the bit
and G; is simple. In the structure of Figs. 1 and 2, a composite
transfer function G4 would replace the G; (lower drillstring)
and A (variable spring) blocks, and would be a mixed-
causality two-port, appearing as an admittance to the bit and
an impedance to G, (upper drillstring). The relationship
between G4 and Re(G) is complex and depends on G,.
However, our example suggests that analysis of Re(G4) may
provide hints that could enable the impact of adding these
dynamics to the system to be estimated.

For the example, G, is the transfer function for a spring-
mass-damper, and Re(G4) is plotted in Fig. 9 for the same
values of k. To reduce self-excited vibrations, adding Gy
must boost Re(G) in problematic frequency ranges. In this
example, it appears that the frequency ranges at which a
particular G4 boosts Re(G) may be inferred from features of
Re(Gy). Specifically, the downward zero crossings of
Re(Gi4) (Fig. 9) occur at frequencies that are quite close to
the frequencies at which the curves for Re(G) with
corresponding k. intersect the original Re(G,) curve with no
spring (Fig. 8). For example, with a stiffness of 1,500 /b/in,
the zero crossing (Fig. 9) occurs at ~9 Hz, as does the
intersection between the 1,500 /b/in and “no spring” curves in
Fig. 8. The intersection points similarly align for other
stiffnesses, generally within 10% in frequency.

This is just a single example, and needs to be studied
further. If this pattern holds, however, it suggests that it may
be feasible to estimate the frequency range at which a
particular spring will boost Re(G) based only on the known
dynamics of G; and 4. If true in general, this could facilitate
effective local controllers that work via the following steps:

1. Continuously measure downhole vibrations, and analyze
frequency content (e.g. via power spectral density).

2. Identify frequencies that contain power over a threshold.
Store in memory that forgets over a period of time.

3. Select spring rate that optimizes benefit across the
frequencies with observed powerful vibrations. For
example, select a rate that maximizes the minimum
boost to Re(G) across the set of frequencies.

4. Repeat continuously.

V. DISCUSSION AND CONCLUSIONS

The work presents and demonstrates a new modeling
framework for drillstrings with autonomously controllable

dynamic modules for suppression of self-excited vibrations.
Results align with previous experiments and provide insight
into the relationships between stiffness, stability limits, and
frequencies of unstable vibration in drillstrings. The results
suggest interesting directions for further study to develop
controllers to tune stiffness to suppress vibrations.
Significant additional work is required to develop,
validate, and ultimately realize autonomous downhole
controllers. Further simulations and analysis are required to
determine whether the trends reported in Sections III and IV
generalize to systems of higher dynamic order. This work
must be accompanied by controlled experiments. Sandia’s
Hard Rock Drilling Facility is well suited to this work, and
our team has developed a laboratory prototype Variable Rate
Spring [8]. Experimental studies will require overcoming
several challenges, including: nonlinearities that, among
other things, prevent unstable vibrations from growing
indefinitely; as well as resonant (but stable) vibrations that
can be difficult to distinguish from truly unstable self-
excited vibrations. Prior to deployment, suitable signal
processing and real-time control algorithms must be
developed and implemented on rugged hardware suitable for
downhole use — a significant challenge in its own right.
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