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Abstract— Self-excited vibrations are a major problem for 
rotary drilling. They may be mitigated by introducing 
adjustable compliance near the bottom of the drillstring, but it 
is challenging to identify the appropriate stiffness, particularly 
in situ and with limited available data on the rapidly-changing 
overall system dynamics. We describe an approach to modeling 
and simulating self-excited vibrations in drillstrings. Our 
approach uses impedance and admittance port functions to 
represent and systematically combine subsystems, and 
integrates established models for drillstring vibrations and rock 
/ bit interactions. Simulations predict that intermediate 
stiffnesses provide better stability than either compliant or stiff 
extremes, which aligns with results from earlier work. Results 
also indicate that at least two different mechanisms limit 
stability in different stiffness regimes, producing significant 
differences in the relationship between vibration frequency and 
controlled module stiffness. This suggests a potential means of 
developing autonomous stiffness controllers that depend only 
on measurements taken at the variable stiffness module, 
without requiring a dynamic model of the rest of the drillstring.

I. INTRODUCTION

Drillstring vibrations can cause ineffective drilling and 
equipment damage and are a leading cause of non-
productive time in the drilling industry [1,2]. As hole depth 
increases, the drillstring becomes increasingly compliant and 
interacts with the large mass near the bit to create multiple 
modes of vibration across a wide range of frequencies. The 
lower right pane of Fig. 1 depicts the root cause of self-
excited longitudinal vibrations. Cutter forces at the rock/bit 
interface are modulated by the dynamic response of the bit 
and drillstring, producing a variable cutting force that can 
self-excite the modes of vibration of the drillstring. 
Conceptually, successive periodic passes of the bit over the
uneven bottom-hole surface act as an effective delay, 
introducing the possibility of instability [3].

Numerous approaches to suppressing vibrations have been 
explored, including tailoring the bit design to specific 
drilling conditions [4], monitoring and suppressing chatter 
via machine learning and spindle speed control [5], and
impact dampers [6]. None of these approaches accommodate 
highly variable drillstring dynamics.

Dynamic elements may be used to limit the 
transmissibility  between  the  bit forces  and  the  drillstring,
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Figure 1. Drilling instability is produced by periodic cutter forces self-
exciting drillstring modes of vibration.

reducing instability. However, the drillstring dynamics vary 
dramatically as holes are drilled, as a result of: adding drill 
pipe, frictional interaction and jamming between the drill 
pipe and the wellbore, and other factors. Furthermore, the 
rock-bit interaction characteristics change with different 
drilling conditions, e.g. different layers of rock as shown in 
Fig. 1 (left). Because of this variability, it is virtually 
impossible to specify a single set of dynamic parameters to 
prevent all unstable vibrations. Therefore, tunable dynamic 
elements have been used. In prior work, variable dampers 
were used to suppress vibrations. However, this work 
revealed that varying the stiffness of an element close to the 
bit also had a strong effect on vibration [7].

We are developing drillstring modules with controllable 
stiffness to actively suppress drillstring vibrations [8]. In 
theory, by introducing compliance that is controllable over a 
broad range, most or all unstable self-excited vibrations may 
be suppressed. However, several factors make the control of 
stiffness challenging. First, the overall drillstring dynamics 
are very challenging to observe from any one location (e.g. 
the surface). Second, given the challenges of drillstring 
telemetry, variable stiffness modules must be autonomously
controlled based on local sensor measurements. Third, the 
rock-bit interactions contribute not only excitation forces but 
also coupled dynamics based on elastic and dissipative 
behavior that depends on the drilling medium and the bit. 
These dynamics are very difficult to characterize, making 
some of the key system dynamics effectively unobservable.

Before autonomous downhole controllers may be 
developed, it is necessary to establish a modeling and 
simulation capability to understand and analyze drillstring
behavior. Fig. 1 illustrates a generic representation of 
drillstring dynamics with an adjustable module. The 
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dynamics of the overall drilling system as it appears at the 
bit may be represented by the Laplace domain transfer 
function G(s). G(s) may be decomposed by dynamic 
substructuring [9] into a controllable “actuator” portion (e.g. 
a variable spring) A(s), and portions of the drillstring that are 
below (Gl(s)) and above (Gu(s)) the actuator. Forces F and 
velocities V at subsystem interfaces are indicated.
Partitioning the system in this manner enables analysis based 
on the forces and motion exchanged between the 
controllable actuator and the uncertain drillstring dynamics. 
It also allows simulations to be rapidly iterated by changing 
A(s) without needing to recalculate Gl(s) or Gu(s).

In Section II we present a substructured modeling 
approach for drillstrings with actively controlled elements 
based on the use of port functions. This model combines 
prior work in drillstring instability modeling with a widely 
accepted model for rotary drag bit drilling. In Section III we 
present the results of simulations that explore the stability 
properties of the coupled system for a simplified drillstring 
model with different series stiffness values. In Section IV we 
explore the implications of these simulation results for local 
autonomous stiffness control methods, sketching out a 
potential approach that depends only on directly measured 
local information. Section V provides discussion and 
conclusions, including a description of key future work.

II. DYNAMIC MODELING

A novel model, suitable for study of the instability / self-
excited vibration problem, was developed by compiling four 
key techniques: subsystems were modeled using finite 
element representations, then combined using port functions, 
the cutting force instability model of [3] was implemented, 
and instantaneous rock/bit interaction forces were calculated 
by applying a physics-based model [10,11]. This section 
summarizes these elements.

A. Drillstring Subsystem Models

We have developed several means of representing 
complex drillstring subsystems via finite element methods. 
Primarily, drillstring structural dynamics models have been 
reproduced using discretization of spring-mass systems into a 
normal modes model implemented in MATLAB. Results 
were validated by comparing to an identical model 
implemented in MSC Nastran and by comparing to earlier 
published data [8,12]. This model synthesis method was 
applied to a 7200 ft drillstring common in the literature [3], 
as well as to alternative models up to 16,000 ft in length [8].
(English units are used as is standard in the drilling industry 
and literature.) This is our primary method for generating 
models for the Gl(s) and Gu(s) blocks in Fig. 1.

B. Dynamic Substructured Model using Port Functions

Substructuring methods were used to explore different 
dynamic topologies for controllable “actuator” elements 
(A(s) in Fig. 1) without needing to derive new equations or 
develop new finite element models for the full system each 
time the dynamics change. Specifically, the port functions 
mechanical impedance and its inverse, mechanical 
admittance, were chosen to represent each subsystem 
because they provide several advantageous properties. 
Mechanical impedance is defined as the force produced in 
response to an imposed velocity, and characterizes the static 

and dynamic behavior of the system at a particular spatial 
location or port of interaction [13]. Because impedance and 
admittance are defined in terms of power conjugate variables 
(force and velocity), they enable analytical methods that are 
not impacted by the instantaneous direction of energy flow. 
They also seamlessly handle connection of multiple 
subsystems without the need to consider impedance 
matching or loading by other subsystems (unlike other 
analytical methods such as block diagrams). Fundamentally 
this distinction is because port functions represent the 
dynamic behavior of systems as observed at a single point of 
interaction with other systems – as opposed to “forward 
path” representations (e.g. block diagrams) that relate an 
output at one physical location to an input somewhere else. 
Furthermore, this construct enables the explicit control of 
port function behavior, potentially enabling application of
impedance control [14] to the controllable module.

Our approach represents the drillstring as a series of 
impedance and admittance functions, alternating in
causality. Terminating (top and bottom) elements in the 
string may be represented as single-port functions, whereas 
intermediate subsystems are represented as “two-port” 
functions that interact both above and below. Subsystems 
may include arbitrary dynamic order and complexity, and 
can be linear or nonlinear, time-varying or invariant. Details 
for deriving port functions from normal mode coefficients 
are provided in section 2.3 of [8].

C. Instability Model

A theory of instability in machining developed by Tlusty 
is presented in [15] and its application to the drilling 
vibration problem is described in [3]. This work elucidates 
the interactions between the drillstring, drill bit, and drilling 
medium, and the quantitative roles that each play in 
determining susceptibility to self-excited vibrations. 
Limiting conditions are found that define the conditions 
under which stability may and may not be guaranteed. First, 
a limiting bit diameter is derived. At smaller diameters, the 
system is stable, whereas at larger diameters instability is 
possible if problematic frequencies are excited. Thus the bit 
diameter defines a boundary that can be used to quantify the 
relative stability as dynamics are changed. Second, it is 
determined that by making the real portion of the transfer 
function from bit force to bit displacement positive at 
frequencies of potential vibration, the contribution of those 
frequencies to self-excited vibrations can be eliminated. 
Thus a design goal for vibration absorbers is to “lift” the real 
portion of the transfer function at problematic frequencies, 
making them positive or, at least, less negative [3].

We apply and extend this model to include a widely-used 
model for rock/bit interaction and explore system-level 
simulations to predict the onset of actual unstable vibrations
(rather than simply the susceptibility to potential instability).
We also apply the key conclusions from this prior work in 
seeking methods to autonomously sculpt the controllable 
stiffness to minimize self-excited vibration instabilities.

D. Rock/Bit Interaction Forces

Rather than the simplified model for rock/bit interaction 
used in [3], we incorporate the widely accepted friction-based 
model of Detournay [10,11]. A complete model to predict the 
force, torque, and displacements inherent to the rock-bit 



interaction process is provided in [11]. Since we are only 
concerned with longitudinal forces and displacements, we 
apply Detournay’s model only to compute the reaction force 
Fbit in response to a specific depth of cut d at a specified 
constant angular velocity ω, assuming that the drilling system 
can provide the requisite torque to maintain that velocity.

Drilling processes are characterized by three regions 
associated with increasing applied force or weight on bit: 
Region 1, in which the cutters are not fully engaged with the 
rock; Region 2, in which the cutters are fully engaged and 
increasing weight on bit results in linearly increasing depth of 
cut; and Region 3, in which one of several drilling 
pathologies occurs, e.g. the depth of cut reaches the 
maximum physical cutter depth, resulting in reduced drilling 
performance [16]. For this analysis, we restrict study to 
Region 2, where productive drilling occurs. 

Detournay’s model defines the relationships between the 
scaled weight on bit (w) and scaled depth of cut (d) in 
equation 4 in [11]:
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We assume that the bit has full cross section with radius a.
���� = �̇��� is the linear bit velocity or rate of penetration. 
The values for w and d at the onset of Region 2 (the transition 
from Region 1) are defined as w* and d*. In Region 2, 
equation 37 in [11] relates w and d:

� = ��(� − �∗) + �∗ (2)

ζ and ε are two constants, specific to rock and bit, that define 
the cutting process. In brief, ε is the energy required to 
remove a unit volume of rock by an ideally sharp bit, and ζ
characterizes aspects of the bit. Equation (2) shows that the 
reaction force includes a spring-like portion that is 
proportional to the depth of cut, plus a Coulomb friction 
component represented by w*. Together, (1) and (2) enable 
the computation of the force Fbit in response to a linear 
velocity Vbit, at a particular angular velocity ω. This provides 
an impedance representation of the rock/bit interactions.

III. SIMULATIONS

This model was implemented in MATLAB and Simulink
to enable rapid parametric simulations. These simulations 
were used to study the impact of changes in the variable 
stiffness on the stability properties of the system and the 
emergence of self-excited vibrations. Furthermore, the 
characteristics of unstable vibrations at the stability 
boundaries were used to provide insight into the nature of the 
instabilities, suggesting potential methods for autonomously 
controlling the down-hole vibration suppression system.

A. MATLAB / Simulink Implementation

The integrated longitudinal vibration model was 
simulated in MATLAB and Simulink. A block diagram of 
the substructured drillstring model is shown in Fig. 2. There 
are four major system elements, each represented by port 
functions: the upper drillstring, the actuator or variable 
spring, the lower drillstring (between the variable spring and 
the point of contact with the rock), and the rock/bit 
interactions. To enforce proper causality, alternating 
impedance / admittance representations were used: the upper 
and lower drillstrings were represented with admittance 

Figure 2. Block diagram of port-function based drillstring model.

functions, and the actuator and rock/bit interactions with 
impedance functions. The terminating subsytems - rock/bit 
interactions and the upper drillstring - were represented with 
single-port functions, whereas the intermediate elements 
were represented with two-port functions. 

Simulations were conducted using a normal modes 
representation of the 7200 ft drillstring described in [3], to 
prove accuracy of the model with complex drillstrings. A 
simplified model, a 2nd order simple harmonic oscillator 
(SHO) was also simulated and studied in greater detail to 
align with previous experimental studies [7] and to enable 
more intuitive understanding of the primary subject of 
interest: the interactions between the model elements, 
including between the Detournay rock-bit interaction model 
[11] and the Tlusty model for instability [3]. Prior work has 
shown the utility of reduced-order models ranging from 1 to 
6 modes in studying drillstring vibrational instabilities [3,7].

In the case of the SHO drillstring, the upper drillstring 
admittance is represented in the Laplace domain as:
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The SHO includes a mass mu=1613 lb, stiffness ku=5500
lb/in, and damping ratio tuned to 0.4 via the damping 
coefficient bu. The lower drillstring is a two-port admittance 
representation of a rigid mass ml=180 lb:
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The actuator is represented as a two-port impedance 
consisting of a parallel spring with variable stiffness kvs and 
damper bvs per the matrix equation:
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For each value of kvs, bvs was tuned to provide a damping 
ratio of 0.4 for the mode created by the mass ml and kvs.

The rigid connection of subsystems yields:
�� = ���,   �� = ���, ���� = ��� (6)

Enforcing Newton’s second law requires equal and 
opposite forces at the interfaces:

�� = −���,   �� = −��� , ���� = −��� (7)
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Figure 3. Implementation of rock-bit interaction model

Finally, the rock/bit interactions are represented in 
impedance form by applying (1) and (2). A block diagram of 
this algorithm is shown in Fig. 3. The angular coordinate is 
modeled to capture the position-dependent geometry of the 
hole bottom. The angular and vertical bit positions are 
determined by integrating the respective velocities. The 
current geometry of the bottom of the hole (height versus 
angle) is stored in a dynamic lookup table, which is updated 
by circular buffers (not shown). On each revolution, all 
material above the cutter is assumed to be removed, so that 
the difference in vertical bit position from one pass to the 
next is the depth of cut, d. (This model assumes that the bit 
stays in contact with the rock, which can be verified by 
studying Fbit.) The parameters ζ, ε, d* and w* are derived 
from literature or testing (for our example, coefficients were 
derived from testing in Sierra White Granite) and used to 
populate the Detournay model function. This function uses 
these parameters as well as a, d, and ω, and solves (1) and (2)
for the instantaneous Fbit. To provide an initial excitation, the 
bottom hole is given a sinusoidal initial geometry.

Notably, each of the four blocks in Fig. 2 (and the 
corresponding relationships in (3)-(5) and Fig. 3) can be 
replaced with alternative models for different dynamics, 
enabling seamless, modular drillstring simulations. To our 
knowledge, this is the first implementation of the prevailing 
friction-based drag bit model of Detournay as a modular 
substructured port function suitable for simulation with 
common control systems design and analysis tools.

B. Stability vs. Stiffness

A series of simulations was run with several variable
parameters to analyze the system’s stability limits. Increasing 
the bit radius a makes unstable vibrations more likely by 
increasing the effective rock-bit stiffness (this is evident by
substituting (1) into (2)). Therefore a is a useful parameter for 
defining the relative stability for different values of the 
variable stiffness. For a particular stiffness, a stability margin 
can be defined in terms of a, e.g. the difference between the 
actual and maximum stable values for a. As in [3], we 
present a stability boundary in terms of maximum stable a –
in this case presented versus stiffness.

Because multiple modes of vibration are present, some 
potentially unstable and others stable, we define instability 
as occurring if vibrations are increasing in amplitude after 20 
seconds from initial excitation. Examples of stable and 
unstable bit velocity profiles are shown in Fig. 4.

Simulations were conducted at values for kvs ranging from 
1500 to 50k lb/in. At each kvs value, a was increased to find 
its maximum stable value. This process was repeated for 
three angular velocities ω in the typical range for rock 

Figure 4. Stable and unstable velocity trajectories for a 6k lb/in spring, at two 
different bit diameters. The periodic oscillations are initiated once per 

revolution and are due to the initial bottom hole geometry.

Figure 5. Maximum stable bit diameter a versus variable spring rate kvs.

drilling: 4, 6, and 8 rad/sec. The maximum stable values are 
plotted in Fig. 5. To establish a baseline for stability, the 
same process was repeated for a system with only   the   
Upper   Drillstring   Admittance and Rock/Bit Impedance -
i.e. with the Lower Drillstring and Variable Spring blocks 
removed entirely from Fig. 2. For all three speeds, the 
baseline stability limit was approximately 0.35”. The limiting 
bit diameters are smaller than expected, likely because the 
model does not include nonlinearities. The relative stability 
of different kvs values, rather than physically perfect 
modeling, is our primary interest in this work. Fig. 5 
indicates the following interesting results:
 Stability boundaries are only marginally impacted by 

angular velocity, with lower speeds slightly more stable.
 At large values of kvs, the stability limit converges close 

to the baseline (no spring) limit, as expected.
 Intermediate stiffness values are the most stabilizing, 

increasing the stable bit radius by 3x versus baseline. 
This provides strong support for the rationale of using a 
variable spring. Simply making the system as soft as 
practical is ill-advised. The advantage of intermediate 
stiffness values also aligns with some prior published
experimental data, e.g. Fig. 14 in [7].

 At the lowest stiffness values, the spring is significantly 
destabilizing; stability is worse than with no spring at all.
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Figure 6. Vibration frequency at minimum unstable radius a versus kvs.

Furthermore, the shape of the plot suggests two distinct 
stability limits, one dominating at low stiffness and another at 
high stiffness. Fig. 6 plots the vibration frequencies at the 
minimum unstable a for each stiffness tested, and confirms 
that there are two distinct characteristics of instability, which 
bifurcate depending on the value of kvs. At low kvs, the 
frequencies of unstable vibrations are roughly proportional to 
the natural frequency of the variable spring module, 
indicating that the instability is attributed to the new mode 
introduced by this module. At higher kvs, the unstable 
frequencies are virtually independent of kvs, and align closely 
with the oscillation frequency of the upper drillstring when 
interacting with the rock directly (~7.5 Hz). Note that the 
interaction with the effective stiffness of the rock results in 
vibrations at a higher frequency than the resonant frequency 
of the SHO alone (~5.25 Hz). 

IV. IMPLICATIONS FOR DOWNHOLE CONTROL

From Fig. 5 it is clear that to minimize unstable self-
excited vibrations for this particular example, it is best to 
select a spring rate around 15k lb/in. From Fig. 6, this is also
the minimum stiffness that avoids introducing its own 
instabilities. Fig. 7 shows the bit velocity as kvs is changed 
from a destabilizing value (6k lb/in) to a stabilizing value 
(15k lb/in) at time = 10 s. The unstable vibrations are rapidly 
suppressed by the appropriate spring.

For control, the key challenge is identifying this optimal
stiffness in situ, with only measurements available at the 
variable spring module, in order to avoid telemetry in the 
control loop. However, while the dynamics of the rock/bit 
interaction (e.g. the properties of the rock and the changing 
characteristics of the cutters as they wear) are difficult to 
estimate while drilling, they significantly impact both the 
vibration frequencies and the stability of various modes. 
Per [3], stability of particular modes (and their resistance to 
self-excited vibrations) may be improved by boosting the real 
portion of the transfer function between the   force and   
displacement  at the   bit, G=Zbit/Fbit,   at problematic
frequencies. This enables potential concepts for controlling 
the variable stiffness based only on the measured frequency 
content of vibration, and a dynamic model of the drillstring, 
without requiring knowledge of the rock/bit dynamics. 

Fig. 8 plots Re(G) for the simulated system with various 
spring rates. At the highest stiffness values, the transfer 
function  approaches  that  of  the system  with  no  vibration

Figure 7. Bit velocity for simulation at ω=6 r/s, 0.51” diameter. Stiffness kvs

switches at t=10 sec from 6k lb/in to 15k lb/in.

Figure 8. Real portion of net system transfer function.

absorber, as expected. From Fig. 6, destabilizing vibrations 
occur around 7.5-8 Hz in this regime, and in Fig. 8 it is clear 
that Re(G) is negative in this range. The lower stiffness 
values significantly boost Re(G) at low frequencies, but they 
drive it negative at slightly higher frequencies – hence there 
are instabilities in the 12-38 Hz range (Fig. 6). While it is by 
no means obvious from Fig. 8 which stiffness value is 
optimal, it is certainly plausible that the intermediate stiffness 
values in the 10k-25k lb/in range provide sufficient help at 
frequencies <10 Hz without dramatically compromising 
higher frequencies. Thus the fact that these springs are the 
most stabilizing agrees with the model in [3].

One could imagine sculpting a controller that optimizes the 
curve plotted in Fig. 8, for instance to maximize the 
minimum value of Re(G) over a broad range of frequencies 
believed to be most relevant to drilling conditions. However, 
to implement control based on Re(G) would require a model 
of the full drillstring dynamics. As noted, these dynamics
vary greatly from interactions with the wellbore, and cannot
in general be accurately determined based on a priori models. 
One possibility is to perform real-time system identification 
downhole. This is difficult because of measurement noise and 
a lack of rich, broadband excitation. 

Another potential approach is to select variable spring 
stiffness based on the measured vibrations and the properties 
of the real portion of the transfer function for only Gl and A, 
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Figure 9. Real portion of VRS module transfer function.

which can both be accurately known if A is close to the bit 
and Gl is simple. In the structure of Figs. 1 and 2, a composite 
transfer function GlA would replace the Gl (lower drillstring) 
and A (variable spring) blocks, and would be a mixed-
causality two-port, appearing as an admittance to the bit and 
an impedance to Gu (upper drillstring). The relationship 
between GlA and Re(G) is complex and depends on Gu. 
However, our example suggests that analysis of Re(GlA) may
provide hints that could enable the impact of adding these 
dynamics to the system to be estimated.

For the example, G1A is the transfer function for a spring-
mass-damper, and Re(GlA) is plotted in Fig. 9 for the same 
values of kvs. To reduce self-excited vibrations, adding GlA

must boost Re(G) in problematic frequency ranges. In this
example, it appears that the frequency ranges at which a 
particular GlA boosts Re(G) may be inferred from features of 
Re(GlA). Specifically, the downward zero crossings of 
Re(GlA) (Fig. 9) occur at frequencies that are quite close to 
the frequencies at which the curves for Re(G) with 
corresponding kvs intersect the original Re(Gu) curve with no 
spring (Fig. 8). For example, with a stiffness of 1,500 lb/in,
the zero crossing (Fig. 9) occurs at ~9 Hz, as does the 
intersection between the 1,500 lb/in and “no spring” curves in 
Fig. 8. The intersection points similarly align for other 
stiffnesses, generally within 10% in frequency. 

This is just a single example, and needs to be studied 
further. If this pattern holds, however, it suggests that it may 
be feasible to estimate the frequency range at which a 
particular spring will boost Re(G) based only on the known 
dynamics of Gl and A. If true in general, this could facilitate 
effective local controllers that work via the following steps:
1. Continuously measure downhole vibrations, and analyze 

frequency content (e.g. via power spectral density).
2. Identify frequencies that contain power over a threshold. 

Store in memory that forgets over a period of time.
3. Select spring rate that optimizes benefit across the 

frequencies with observed powerful vibrations. For 
example, select a rate that maximizes the minimum 
boost to Re(G) across the set of frequencies.

4. Repeat continuously.

V. DISCUSSION AND CONCLUSIONS

The work presents and demonstrates a new modeling 
framework for drillstrings with autonomously controllable 

dynamic modules for suppression of self-excited vibrations. 
Results align with previous experiments and provide insight 
into the relationships between stiffness, stability limits, and 
frequencies of unstable vibration in drillstrings. The results 
suggest interesting directions for further study to develop 
controllers to tune stiffness to suppress vibrations.

Significant additional work is required to develop, 
validate, and ultimately realize autonomous downhole 
controllers. Further simulations and analysis are required to 
determine whether the trends reported in Sections III and IV 
generalize to systems of higher dynamic order. This work 
must be accompanied by controlled experiments. Sandia’s 
Hard Rock Drilling Facility is well suited to this work, and 
our team has developed a laboratory prototype Variable Rate 
Spring [8]. Experimental studies will require overcoming 
several challenges, including: nonlinearities that, among 
other things, prevent unstable vibrations from growing 
indefinitely; as well as resonant (but stable) vibrations that 
can be difficult to distinguish from truly unstable self-
excited vibrations. Prior to deployment, suitable signal 
processing and real-time control algorithms must be 
developed and implemented on rugged hardware suitable for 
downhole use – a significant challenge in its own right.
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