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A PRELIMINARY DESIGN STUDY
FOR IMPROVING PERFORMANCE IN TOMOGRAPHIC ASSAYS

by
Robert J. Estep

ABSTRACT

In a low-resolution tomographic assay device, it is desirable to have as flat
an etficiency profile as possible. Using computer simulations. we have
demonstrated that a flat response in the vertical direction can be obtained by
using a diamond-shaped collimator, and that this flatness of response
translates into improved assay accuracy, Similarly, we have shown that the use
of a continuous-motion scan protocol reduces horizontal efficiency
variations.

1. INTRODUCTION

We recently introduced the tomographic-gamma-scanner (TGS) method!-3 for assaying
transuranic (TRU) waste and special nuclear material (SNM) in 55-gal drums. The TGS combines
low-resolution emission and transmission tomography to obtain attenuation-corrected images of the
radionuclide distribution inside a drum. Similar tomographic assay methods#-5 are under
development elsewhere.

Although the imaging techniques used in the TGS method are straightforward, the design
constraints and objectives are considerably different from those encountered in mainstream
tomography. The usual aim in tomography is to obtain a high-resolution three-dimension..;
“picture” (for example, of a brain tumor) to be qualitatively examined. The aim of the TGS method,
in contrast, is to achieve accurate assays of radionuclides of low specific activity while maintaining a
high sample throughput and sensitivity. The image quality, in the sense it is generally understood, is
of little concern beyond its effect on assay accuracy. It is not surprising, then, that some of the
practices and design rules of thumb of ordinary single-photon emission computed tomography
(SPECT) do not carry over well to the TGS method.

In this report we present the results of a design study, based on computer simulations, undertaken
to improve the performance of TGS and other tomographic assay systems. The scope of this study is
narrow, and centers on the related issues of collimator shape and the use of continuous-motion scans.
We also suggest some nonrigorous design principles for tomographic assays. Guided by these



principles, we have developed a novel, diamond-shaped collimator design that demonstrably
improved the accuracy in our system. We also discuss some of the reasoning involved in selecting an
image resolution and collimator aspect ratio, although a detailed study remains to be done on these
topics.

2. DESCRIPTION OF THE TGS METHOD

2.1. Mathematical Concepts

The TGS uses a simple voxel model as a basis for image reconstruction. The description of the
model, below, is condensed from our earlier report on the TGS_FIT software.® Although in this study
we focus on the emission-only part of the problem, it should be kept in mind that the principle
benefit of tomographic assays is improved matrix corrections. In the TGS, we use a transmission
(density) image to build gamma-vay altenuation corrections into the emission imaging problem.

2.1.1. Emission Ounly. In the absence of attenuation the emission problem is described by an M
by N efficiency matrix, £, in which each clement £;; is proportional to the probability that a photon
(of the correct energy) emitted from the jth voxel will be detected in the ith measurement. The
cmission image is found as the solution to the linear system

d=F -3 (1

where o is an M-vector of measurements and s is an N-vector describing the source intensity
distribution (converted to mass units). The total mass is found by summing the individual masses, s;,

over the entire drum.

2.1.2. Transmission Only, The description of the transmission problem is similar to that of the
emission problem, but requires a logarithmic conversion to obtain a linear form. Let p; equal the ith
transmission measurement,

pi = counts; lcountsy,, 2)

where counts; is the photon count in the ith transmission measurement and countsy,, is the
unattenuated count for the transmission source. We define the logarithmic transmission, v;, by the

re.ation

vi=-ln(py) . (3)
With this conversion, the transmission problem can be described by an M by N thickness matrix T,
where each element Tj; is the linear thickness of the jth voxel along a ray connecting the transmission

source and the detector in the ith measurement position. The transmission image is found as the
solution of the linear system

v=T -u (4)

where v is an M-vector of logarithmic transmission measurements and u is an N-vector of linear
attenuation coefficients.

2.1.3. Combined Transmission and Emission. In a drum containing attenuating materials,
Eq. (1) is a poor description of the emission problem. To correct for the loss of photons due to



attenuation inside the drum we define an attenuation-corrected efficiency matrix, F. The elements of
F are given by the relation

F,‘j= EUA,J i (5)

where A; is the fractional attenuation, due to the drum contents, of photons emitted from the jth
voxel in the ith emission measurement. The attenuation-corrected emission image is found as the
solution of the linear system

d=F -3 (6)
where d and ¥ have the same meanings as in Eq. (1).

The values of A;; are estimated from the transmission image using Beer's law:

A = Tl exp (-t (N

where the triply-indexed quantity t;; is the linear thickness of the kth absorbing voxel along a ray
connecting the jth emitting voxel and the detector in the ith measurement position. (If the &th voxel is
not on a line between the emitting voxel and the detector, f;j is zero.) While the table of 7 values is
constant, A depends on the drum contents and must be computed anew for each drum assayed. It is
the computation of A that makes TGS image reconstructions time-consuming, even at low resolutions.

2.2. Scan Pattern and System Geometry

With our original prototype 208-L-drum TGS device,? tomographic scans are performed by
rotating the drum and translating (left-right, up-down) the high-purity germanium (HPGe) detector
and detector collimator. The transmission source is mounted on an arm (connected to the detector
platform) that extends around to the opposite side of the drum and follows the motion of the
detector. The scan pattern is a modification of a simple translate-rotate tomographic scan, in which
detector counts are taken at 15 angular positions spanning 180 degrees at each of 10 left-right
positions, for a total of 150 separate measurement positions for each layer of the drum. The left-right
motion reverses at the horizontal midpoint of the drum, returning naturally to its initial position by
the end of each layer scan. Thus, the left-right translation range required is only half of the drum
diameter, or 12 in.

The discrete scan pattern just described involves moving into position, then counting, then
moving to the next position, and so on. The modified scan pattern used in the TGS method moves
continuously, performing the counts while in motion. That is, the counting is synchronized with the
simultaneous rotation plus left-right translation. This is done partly to save the time wasted by
suspending counting while moving between positions, and partly to improve assay accuracy (as will
be discussed in Section 3.3.2) by smoothing out the spatial dependence of the counting efficiency.
The rotation is the faster motion, covering 15 12-degree angular increments in the time it takes to
move one 2.16-in. left-right increment. In order to maintain synchronization, the scanner pauses
every 15 measurements for a fraction of a second. The up-down motion is stepwise: at the completion
of each layer, the detector is raised all at once to the next vertical position.



We are currently constructing a well-engincered prototype TGS scanner. Conceptually, this new
scanner will be identical to our original scanner, the principle difterence being that a 2.4-in, diam
HPGe detector will be used in the new scanner, while a 2.25-in. diam detector is used in the original,
The simulations presented here all assume a 2.4-in. diam detector.

The TGS uses a right-handed coordinate system in which the z-direction points upward, the y-
direction points away from the detector (i.e., the collimator is aimed in the y-direction), and the x-
direction corresponds to transverse motion of the detector. Alf translations are ascribed to the detector
and collimator, even if it is actually the drum that moves. The drum rotates about the origin, on which
it sits, but is otherwise considered stationary.

2.3. Image Reconstructions

We use the computer program TGS_FIT® to reconstruct data coliected with our prototype
scanner, as well as to simulate the performance of various scanner designs. We also used TGS_FIT to
compute the relative efficiencies and related quantities quoted here. TGS_FIT reconstructs
transmission scans as independent single layers using a constrained least-squares fitting routine based
on the Kuhn-Tucker algorithm? or the algebraic reconstruction technique (ART).8 Because of the
low-aspect collimation used in the TGS method, an emission scan on any given layer can contain
significam contributions from severat layers. Therefore, the emission image must be reconstructed for
the entire drum at once. TGS_FIT reconstructs single-layer emission preimages using the Kuhn-
Tucker algorithm, and takes these as initial values in a full-drum reconstruction using the expectation
maximization (EM) algorithm.” The preimaging produces images in which the emission sources are
well-defined horizontally, but are smeared out vertically over several layers. The full-drum image
reconstruction serves to consolidate the sources into their correct layers by explicitly treating cross-
layer emissions.

The issue of which image reconstruction method is best for tomographic assays will not be
addressed here. However, there can be no doubt the filtered back-projection technique widely used in
high-resolution transmission imaging is inappropriate for the emission part of this application. The
tiltered back-projection technique is famously inaccurate when applied to quantitative emission
imaging. This is true even for high-resolution SPECT, using high-aspect collimators. For our
application, filtered back-projection is even less appropriate, as it can only treat one layer at a time.
The EM algorithm is one of many approaches to solving the voxel-model formulation used in TGS.
In our earlier work we used both a constrained least-squares technique and ART with good results.
The application of more advanced optimization techniques (not necessarily voxel-based) to this
problem is being studied. For now, we regard EM as at least a suitable algorithm for this application,
although probably not the best.

2.4. Efficiencies and Sampling Points

The complex and shifting spatial relationships in a TGS scan make it necessary to define terms
carefully when discussing counting efficiency. The matrix element Ejj of the matrix E in Eq. (1) is
interpreted as the counting efficiency for the jth voxel in the ith measurement position. This
efficiency (which combines the geometric efficiency and collimator iransmittance) is calculated for a
representative sampling point, which we take to be the center of the voxel. Thus, we picture the
emission image as a grid of sampling points, rather than as a stack of cubes, as it is often depicted
graphically. One might instead use an average efticiency for the voxel, which does correspond to the
stack-of-cubes picture. But since there is always at least one point inside the voxel having the average
value, this amounis to using a different sampling-point scheme. The advantage of the sampling-point



picture is that it allows us to consider what happens in between the sampling points—a concept that
docsn't make sense in the stack-of-cubes picture.

The total-scan efficiency, €,/ is found by summing all the elements of £:

Eotal = 2ijij . (8)

For a particular distribution of radionuclides, the total assay time required to see a given number of
counts will be inversely proportional to €/

The total-scan point efficiency for the jth voxel, &, is found by summing the jth column of £

over {:
& =3 E,‘j ' )

The total-scan point efficiency at an arbitrary point in space, &x,y,z), is analogous to the single-
voxel total-scan efficiency. If the point (x,y,z) corresponds to the jth sampling point, then €x,y,z)is
the same as €j . Through the use of offsets, the TGS_FIT program allows the simulation of data for

point sources at arbitrary positions in space.

Continuous-motion scan efficiencies are computed in TGS_FIT as integrals over the range
traveled during the measurement. This gives a very good description of the system, so it is incorrect
to think of the voxel model as being true for the discrete scan, but merely an approximation for the
continuous scan. Both protocols are modeled equally well. The uniform-grid sampling-point picture
still applies, as we are averaging over the motion range, not over voxel volumes.

The effects of attenuation in the drum matrix can be included in the above expressions by using
the attenuation-corrected efficiency matrix, F, in place of the emission-only matrix, E.

3. DESIGN CONSIDERATIONS FOR TOMOGRAPHIC ASSAYS

3.1. Collimator Aspect Ratio

In emission tomography, the region visible to the detector expands to include neighboring layers
as the distance from the collimator increases. Because the layers are normally reconstructed
inaependently, this “crosstalk” between layers causes the reconstructed image to be vertically
defocused. The usual SPECT approach to dealing with this problem is to use a long, high-aspect
collimator in the hope of reducing the crosstalk to a point where it can be ignored. An aspect ratio of
9:1 (length to width) is usually considered sufficient for this purpose, although higher ratios have
been used (the images reported by Martz, et al.,> were obtained using a 51:1 aspect ratio). The
drawback to this approach is that a long collimator sacrifices counting efficiency.

The efficiency loss from using a high-aspect collimator can be substantial. As an example, a
2.5:1, 6-in.-long square collimator of 2.4x2.4-in. cross section with a 2.4-in. diam circular detector
will have a penumbra that spans 9 layers at a distance of 24 in. A 9:1 collimator of 21.6-in. length
would reduce the span to 3.33 layers, but would only be 7.5% as efficient. Thus, an assay that takes



30 min with the 6-in. collimator would require 6.7 h with the 21.6-in. collimator—a high price o pay
tor the luxury of treating the layers independently.

The approach we use for handling crosstalk is to accept a large layer span and to image the entire
drum at once, explicitly taking into account the visibility across layers. This raises the question of
whether such low aspect collimation significantly impairs the ability to make faithful images. Without
doubt, a high-aspect collimator would be preferred for imaging complex distributions at very high
count rates, However, for equal count times with low-intensity sources, a low-aspect collimator can
give good images in cases where a high-aspect collimator is unable to distinguish the source from the
background noise. This is illustrated in Fig. 1, which shows images simulated for a 150-mg 239Pu
point source in a nonattenuating matrix. The simulations were based on a 2.4-in. width square
collimator and a 2.4-in.-diam circular detector, with a 26.6-m total scan time. Figure la shows the
true distribution displayed as a summed side view. Figure 1b shows a representative image obtained
with the 6-in. long, 2.5:1 collimator described above, while Fig. [c shows a representative image
obtained with the 21.6 in. long, 9:1 collimator. Using the conservative assumption that the
background rate is proportional to the overall scan efficiency, we assigned background levels of
0.1 cps for the 6-in. collimator and 0.0075 cps for 21.6-in. collimator. The simulated data were

randomized using Poisson statistics.

It can be seen in Fig. ] that the 26.1-1n, collimator was unable to produce an image of the source,
while the 6in. collimator produced a clear image. The explanation for this behavior lies in the nuclear
counting statistics: the 6-in. collimator yielded a total-assay net count of 209.7 + 23 counts (relative
standard deviation, or RSD, of 11%), while the 21.6-in. collimator yielded only 13.6 6.1 counts
(RSD of 45%). Other feasible background models (e.g., assuming that the background is
independent of the detection efficiency, or that it follows the collimator transmittance) would have
produced a larger gap in performance, as maintaining a low background rate is more important with
high-aspect collimation. The 6-in. collimator has the smallest advantage over the 21.6-in. collimator
when there is no background at all, in which case the RSDs would be 6.9% and 27%, respectively.

Even then, the 6-in. collimator would be preferred.

(a) True (b} 6-in. collimator (c) 21.6-in. collimator
a=0 o=11% 5 o =45%
n L
]

Fig. 1. Simudated emission images for assays of a 150-mg 239py point source, shown as
summed side views. (aj The true source distribution. (b) Image produced using a 6-in.
collimator. The total number of counts in this case was 209.7 + 23.0, giving a relative
standard deviation of 11%. (c) Image produced using a 21.6-in. collimator. The total
aumber of counts in this case was only 3.6 * 6.1, giving a relative standard deviation of
45%.



J3.2. Image Resolution

Increasing the image resolution without degrading fidelity generally requires an increase in
counting time. At a constant collimator length (and thus, layer span), the relationship between the
total-scan efficiency, €ggq, and voxel size, w, is approximately

Erotal < W (10)

Maintaining a constant aspect ratio by allowing the collimator length to change modifies this to a w2-
dependence, but results in a layer span that increases as 1/w. In either case, even a small increase in
resolution can carry a significant time penalty. Changing from a 10x10-voxel resolution to a 12x12
resoiution, for example, would increase assay time by either 44% (constant aspect) or 107% (constant
layer span). This leads us to conclude that the optimum resolution will be the lowest that gives

satisfactory assay accuracy.

Figure 2 shows estimated TGS total assay time required to see 1000 counts from 1 g of uniform-
ly-distributed 239Pu (414 keV line) in an ideal, nonattenuating 55-gal drum, for various resolutions
and collimator lengths, This is roughly the number of counts that would be seen in a typical 10- to
15-min SGS assay. Data are plotted for constant collimator lengths of §, 6, 9, 12, and 24 in. The
calculations are for a circular detector of 2.4-in. diameter masked by a square collimator of the same
size as the image voxels. For resolutions below 1.7 in., the detector is larger than the collimator in ail
directicns, and so behaves like a square detector of the same size as the collimator, The w# efficiency
dependency described above is effective for w less than or equal to 1.7 in., but not above.

Image reconstruction time is also an important factor in choosing a resolution, particularly when
assaying for multiple isotopes. The bottleneck in the image reconstruction process is the calculation
of the terms A;j in Eq. 7, which involves the execution of a triple loop requiring a time proportional
to n3 to execute, where # is the total number of voxels over all layers. To process higher-resolution
images (say, greater than 12x12), data acquired on a PC would have to be ported to a mainframe,
workstation, or parallel computing system for external analysis—a considerable inconvenience in a
systemn that must be operated by moderately-skilled technicians in an industrial setting. And even

Assay time (min) to see 1000 counts from 1 g of 2°Pu

10000
L=5in
-— L=6in.
£
E L=9in.
o
g L=12in
'— .
% L=24 in.
wn
7
<C

6 8 10 12 14 18 18 20 22 24
Resolution (N x N)

Fig. 2. The TGS total assay time required to see 1000 counts in one gram of 239Pu (414 keV
line), plotted as a function of image resolution for various constant collimator lengths (L).



on the fastest computers available, the #3-dependence would quickly limit the resolution that could be
handled. Another alternative is to revert to some less accurate matrix correction method (as is
normally done in mainstream high-resolution SPECT).

Based on the above considerations, we have selected a 6-in. 2.5:1 collimator and a resolution of
10x10 (2.4-in. voxels) as being the best overall combination for routine TGS assays of 55-gal drums.
This decision was based partly on our subjective opinion that a TGS assay should take no more than
twice as long to perform as a similar 3GS assay. The choice of a 10x10 resolution also seems natural,
since the diameter of a typical HPGe detector is approximately 1/10th that of a 55-gal drum. To use a
smaller voxel size would involve wasting efficiency by masking off part of the detector, while to use a
larger voxel size would result in efficiency gains at less than the fourth-power dependence. Our
prototype scanner can, of course, be operated at higher or lower resolutions without difficulty.

There are other considerations in selecting a resolution that we have not considered here. The
main reason for considering higher resolutions (say, up to 60x60, or w=1 cm) is the fear that
complex matrix and emitter distributions cannot be adequately modeled at lower resolutions. While a
definitive study of this issue remains o be done, there are indications that for matrix corrections a
point of diminishing returns is reached rapidly as the resolution is increased. The main evidence for
this is the large improvement in accuracy observed in going from the 1x1 SGS resolution to the
10x 10 TGS resolution, as reported in Ref. 3. If that level of accuracy proves to be general, the
implication is that we are either in or close to a region of asymptotically improving accuracy. More
pessimistically, there are other sources of error (in particular, self-shielding) that may overshadow
accuracy gains from imaging at resolutions higher than 10x10. Given the severe assay-time penalty
involved, routine use of higher resotutions should not be considered without first determining that the
benefit is substantial.

3.3. Interpolation Error

At the low image resolution of the TGS method, the distance between voxel sampling points is
large compared with the size of the sample. To obtain accurate assays, the interpolation error that
results when a source is between sampling points must be minimized. A point source halfway between
two sampling points, for example, should give nearly the same assay result as two sources of half the
intensity located at the sampling points. More generally, any point source must be approximated as a
superposition of the eight neighboring voxels that surround that point. If there are peaks or valleys in
the efficiency function between voxel sampling points, then the description of in-between points as
superpositions will not work. We therefore take it as a working (nonrigorous) design principle that the
interpolation error will be minimized only when the total-scan point efficiency, &(x,y,z), either is
constant or varies monotonically between neighboring sampling points,

3.3.1. Vertical Interpolation Error and Collimator Shape. In the absence of attenuation, the
values of €x,y,z) at sampling points of the same x and y in different (fully scanned) layers are equal.
This implies that the interpolation error for sources located between layers will be minimized only
when €x,y,z) is constant along the c-direction. The design parameters that have an effect on the
vertical efficiency profile include:

* the collimator cross-sectional shape and area;
* the collimator length;
e the distance of the sample from the collimator face; and

 the layer thickness.



The maximum efficiency difference oceurs midway between layers, so reducing the layer
thickness reduces the maximum vertical interpolation ervor for any particular design, (We have
reduced the voxel size in our prototype scanner from a symmetrie 2.4x2.4x2.4-in, 1o a flattened
2.4x2.4x2.25-in.} The reduction of layer thickness can only be carried so far, however, before
additional layers must be considered in treating crosstalk. Moving the sample farther from the
collimator face will also reduce the magnitude of vertical efficiency variations, but sacrifices
efficiency. Decreasing the collimator length reduces vertical efficiency variations for points in the
middle of the drum, but is inetfective for points near the drum periphery, where the variations are the
largest.

The best way to control the vertical efficiency distribution is through the collimator shape. Square
or circular collimator shapes are commonly used in SPECT; both shapes result in highly-variable
vertical efficiency profiles, particularly for points near the drum periphery. A nonstandard collimator
shape that yields a nearly uniform vertical efficiency distribution has a diamond-shaped vpening. (By
“diamond-shaped™ we mean a square that has been rotated 45-degrees about the collimator axis.)
This is demonstrated in Fig. 3, which shows the calculated percent difference between €(x,y,z) at the
center of a layer (i.e., at the sampling point) and at the boundary between two layers (halfway
between sampling points), for every voxel on the image grid. In other words, Fig. 3 shows the
maximum vertical total-scan point efficiency variations as a function of x and y. In each case, the
collimator depth was 0 in. and the detector was circular with a 2.4-in. diam, Continvous-motion scan

efficiencies were used.

The results in Fig. 3a were calculated for a 2.4-in. diameter circular collimator. The results in
Fig. 3b were calculated for a 2.4x2.4-in.-square collimutor. For both cases the efficiency difference is
small at the center of the drum, but becomes pronounced near the drum periphery. The difference is
largest with the square collimator, Fig. 3b, with a maximum difference of 14%. Using a collimator
that is oversized relative to the detector and voxel size reduces the variation, as shown for the
2.8x2.8-in. square collimator in Fig. 3c. The efficiency variations shown in Fig. 3a—c are to be
contrasted with those in Fig. 3d, which were calculated for a 2.8x2.8-in. diamond-shaped collimator.
The maximum vertical efficiency difference in this case is only 2.8%, a significant improvement.
Note that the “oversized square” and “diamond” collimators of Fig. 3c-d are identical except for
orientation; the diamond collimator is obtained by rotating the square collimator 45 degrees. The
improvement in response uniformity, therefore, must be due solely to the diamond shape.

Using a circular detector with a square or diamond-shaped collimator distorts the outline of the
penumbra. The use of trim pieces in the left and right corners of the diamond-shaped collimator (as
illustrated in Fig. B-4 of Ref. 6) compensates approximately for this distortion. Figure 3¢ shows
efficiency variations using a trimmed, 2.8x2.8-ia. diamond-shaped collimator, which is the design
actually used in our prototype. The trimmed diamond collimator is clearly the design that comes
closest to satisfying the criteria of vertical uniformity, showing a maximum vertical efficiency
variation of only 2.2%.
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(a) Circular (b) Square

Fig. 3. The absolute percent difference between the total-scan point efficiencies (€) at
voxel sampling points and at the boundary between layers (i.e., vertically halfway
between sampling points), shown for each voxel on the image grid (excluding corner
cells that lie outside the 55-gal drum). All cases are calculated for a 2.4-in. diam
HPGe detector and a 6-in. collimator, with a 10x10 image resolution. The cases
shown are: (a) a 2.4-in. circular collimator, (b) a 2.4x2.4-in. square collimator,

(c) a 2.8x2.8-in. oversized square collimator, (d) a 2.8x2.8-in. diamond-shaped
collimator, and (e) a 2.8x2.8-in. trimmed diamond collimator.



We used computer simulations to verify that the vertical efficiency variations seen in Fig. 3 are
manifested as assay errors. The TGS_FIT program allows the use of efficiency matrix sampling
points at other than voxel centers. To simulate the assay ertor caused by having a point source
located between sampling points in the z-direction, we simeilated data for a source in an outer voxel
using models with various z-offsets (called HEIGHT_QFFS5ET in TGS_FIT), then reconstructed the
simulated data in the normal, nonoffset model. No randomization was used, so any errors cbserved
indicate an inability to model the space between sampling points. This procedute was repeated at z-
offset intervals of 1/8th of a layer. The simulation results are shown in Fig. 4 for each
cellimator/detector configuration of Fig, 3. A comparison of Fig. 4 at midlayer (x = 0.5) with Fig. 3
shows that the errors in the assay value closely track the computed midlayer efficiency differences.
Notice that the errors for the diamond collimator in Fig. 4 are negative, while those for the trimmed
diamond are positive. This implies that we have “overtrimmed” the collimator, and with careful
adjustment could have reduced the assay errors to almost zero.

The superior performance of the diamond-shaped collimator can be understood from simple
geometric considerations. Figure 5 shows idealized collimator transmittances for the nth and (n+1)th
layers as a function of height () at some constant distance from the collimator face. The
transmittances are integrated over the x-direction, and so represent the average transmittance seen
when passing a source at constant velocity in front of the collimator, We take this as a very simplified
analog of what happens in a TGS scan. Notice that the 2-layer summed transmittances for the circular
and square shapes in Fig. 5a-b are quite variable in z. In particular, although the single-layer
transmittance for a square collimator is perfectly {lat within that layer, the sloping off-layer tails
create tall spikes in the summed transmittance. Physically, this means that near the collimator face a
source at the boundary between two layers is seen twice with nearly full transmittance, whereas a point
in the center of a layer is only seen once.

Figure 5c shows the transmittance function for a diamond-shaped collimator. The single-layer
collimation function is a triangle, with a base that increases with the distance from the collimator face.
Clearly, so long as the base of the triangle is greater than or equal to twice the layer thickness, the sum
of the transmittances for two adjacent layers will be constant in between those layers. We submit that it
is this flatness in the two-layer summed transmittance that gives the diamond-shaped collimator its
overall flat respense.

Fig. 4. Simulated percent
assay error for a point

1 ) ]

% I Layer boundar;' ' —a— Trimmeddiamond |  coyree located in an
- adl ~4— Diamend outside voxel, plotted as a
ut.l 20 ~/x—  large square Sunction of vertical
- ~—O—  Square distance from the sampling
§ 15 ~O—  Circle point. The five cases
< plotted correspond to the
'n‘:-; 1f collimator shapes
o considered in Fig. 3. A
& source-height offset of 0

layers means the source
was at the sampling poini.
0 0.25 0.5 0.75 1.0 At 0.5, the source is
Source Height Offset (in layers) midway between two layers,
while at 1.0, the source is
at the sampling point in the
next higher layer.
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3.3.2. Horizontal Interpolation Error and Continuous Metion, It is not necessary that the
overall efficiency be constant in the horizontal (x and y) directions, only that the efficiency function
be monotonic (or nearly so) between sampling points. The design factors that contribute to the
vertical efficiency profile also contribute to the horizontal profile, but to much less of an extent. The
only effective way we have found to achieve a horizontally smooth efficiency function is to use a
continuous-motion scan. This is illustrated in Fig. 6. Both graphs show €(x,y,z) computed as a
function of the transverse position x at a constant y and z (i.e., along a line passing through the
sampling points in an outside row of voxels). The efficiencies in Fig. 6a were calculated for a discrete
scan. Figure 6b shows the same function calculated for the analogous continuous-motion scan used
in the TGS method. As can be seen, the discrete scan leads to significant dips in the efficiency
function between sampling points, while the continuous scan results in a smoothly varying efficiency
function. As this result seems intuitively reasonable from a physical point of view, we will take it as a
working (nonrigorous) design principle that a continuous scan results in a smoothly varying
horizontal efficiency profile in all cases.



(a) Discrete scan (b) Continuous scan
Y AR NS D R N S DR R 45

a5 " i i ] PR L ] N 1 25 N i A | I 1 L L N i
2 3 4 5 6 7 2 3 4 5 6 7
Transverse Pasition (in voxels) Transverse Position (in voxels)

Fig. 6. Total-scan point efficiencies (€) as a function X at constant y and z, for an outside row of
vouxels. (a) Efficiency for the discrete scan. (b) Efficiency for the TGS continuous-motion scan.
The continuous-motion scan results in a much smoother horizontal efficiency profile.

4. SUMMARY

The design philosophy proposed here for tomographic assay systems is based on the simple idea
that an ideal scanner would have a perfectly flat response, such that a point source placed anywhere
within the active volume would give the same total number of counts in an assay. That is, the ideal
scanner is one that makes image reconstruction unnecessary. The reasoning is that such a scanner
would be insensitive to errors in reconstructing the image, and that it would correctly modei the space
between sampling points. An obvious problem with this concept is that if such a system could even be
built (which seems unlikely), it could only have a flat response for one particular drum matrix in one
orientation. Still, it makes sense to try to achieve as flat a response as possible for some common
matrix type. The trimmed diamond-shaped collimator, combined with a continuous-motion scan
protocol, seems to offer an easy way to achieve this goal.

This design study should be considered preliminary. A number of issues remain to be resolved
by future work, and even the issues that were addressed here could benefit from further study.
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