
LLNL-TR-744703

CASC Newsletter Vol. 4 (Jan
2018)

J. May, D. Laney, C. Tong, P. Barnes, K. Mohror,
R. Neely

January 18, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

LLNL-TR-744703

On the web at: https://computation.llnl.gov/casc/newsletter/vol-4

Center for Applied Scientific Computing
CASC Newsletter | Vol 4 | January 2018

In this issue: from the director | lab impact | advancing the discipline |
collaborations | path to exascale | highlights

From the casc Director
The Sidney Fernbach Postdoctoral Fellowship in the Computing Sciences was established in
2012 to attract top new researchers into the Computation Directorate. Similar to LLNL’s
Lawrence Fellowship, it offers outstanding new scientists the opportunity to establish their own
research directions with a great deal of autonomy. The Lawrence Fellowship is open to all
technical disciplines at the Laboratory and is awarded to several candidates each year. The
Fernbach, on the other hand, focuses specifically on disciplines in the computing sciences:
applied mathematics, computer science, computational science, and data science. It usually
supports one fellow at a time for a two-year term.

fernbach.jpg

The fellowship was named for Sidney Fernbach (pictured), who founded the Computing
Department at LLNL in 1952 and ran it until 1982. We have completed three application cycles
since the fellowship began. In the inaugural year, we made three offers. None were accepted,
although one candidate became a Lawrence Fellow instead. Lesson learned: We needed to finish
the process sooner to compete with other opportunities available to outstanding recent doctoral
graduates. Our second solicitation brought us our first fellow, Hormozd Ghavari, who did
distinguished work in performance modeling of numerical algorithms at scale. Sadly, Hormozd
passed away in 2016 after a long and courageous battle against Ewing’s sarcoma. Our current
fellow is Nikhil Jain. Nikhil’s work has focused on modeling the performance of large parallel
applications, especially the influence of network topologies and interactions with other
applications. As a fellow, he has been extraordinarily productive, publishing nine peer-reviewed
papers just in 2017!

LLNL-TR-744703

As we begin 2018, we are in the middle of our fourth season of selection for the Fernbach. The
application process started in August 2017, and candidates have applied from around the world
(the deadline was in November). We expect to name a new fellow in the spring. While the
interests and backgrounds of the candidates are broad, a common theme in many of the letters of
reference is that their mentors view the candidates as colleagues rather than apprentices. Such
praise speaks highly of the candidates’ research maturity, independence, and professionalism,
and we look forward to welcoming our next fellow.

Sign up to be notified of future newsletters.

Contact: John May

top

Lab Impact | Workflow in Complex Simulation Codes
Workflow in the context of simulation is a term used to capture the entire process of using
application codes and computers in pursuit of our mission goals. Before a simulation is ever run
on a high-performance computer, an expert or team of experts must model the system by setting
up the problem inputs. After a simulation is run, that same expert or team must analyze the
results in order to turn the raw data into actionable information. During a simulation run (which
in some cases can span weeks or months) the user must manage large data sets, monitor progress,
and adjust course as necessary. It is this conception-to-conclusion series of steps that we refer to
as the user workflow, and making users of our simulation tools efficient and productive along
that path can be just as important as speeding up the core simulation on resources like those
available at LLNL.

The Workflow project, led by Dan Laney in CASC in support of LLNL’s ASC mission, is
focused on enabling an ecosystem of tools that users can draw on to construct workflows,
manage and analyze simulation information, and leverage next-generation analytics capabilities.
The project currently has three main efforts which are highlighted here: Siboka focused on data
& workflow management, C2C on problem setup, and ROVER on in-situ diagnostics.

Siboka is a set of Python components supporting simulation information collection, data
management & analysis, and simulation management. This past year the team developed and
deployed a web-based application called VV4ALE3D that enables both workflow automation
and reporting/analysis of results for a subset of the ALE3D Verification and Validation (V&V)
suite. This effort is motivated by the extensive use of simulation suites in the WCI community to
guide code development and enable validation. VV4ALE3D allowed the team to integrate tools
previously developed for extracting information from simulation runs, and store them in a
common database with those used for managing runs and displaying results. The application is
integrated with the Livermore Computing (LC) web-based Lorenz (or myLC) infrastructure and
APIs which enable it to interact with LC compute resources and schedulers. The simulation
information management tools underpinning VV4ALE3D are being productized in Sina
(simulation insight & analysis), a python package bringing together database support with
querying and analysis. Finally, the project open-sourced a lightweight serverless workflow

LLNL-TR-744703

manager called Maestro, that enables specification of workflows and management of their
execution with minimal infrastructure. With day-to-day production use of VV4ALE3D now a
reality, plans are in place to generalize the tool to support additional simulation codes and suites.

workflow1.png

workflow2.png

workflow3.png

LLNL-TR-744703

Fig 1: VV4ALE3D is a prototype web application for managing a subset of the ALE3D V&V
suite (top). Fig 2: A Dashboard shows currently running and past simulations (lower left). Fig 3:
Simulation information is stored in a flexible SQL schema (lower right). The app allows
querying, display, and comparison of simulation results.

The C2C (Contours to Codes) project’s aim is make it easier and less error-prone for WCI users
to share the results of the time-intensive process of setting up simulation geometries. Contours
are geometric descriptions of curves and surfaces that provide much of the basis for embodying a
description of a mechanical part or system being modeled into a discretized mesh representation
suitable for use by a simulation code, and are often transcribed directly from original blueprints
or drawings to ensure provenance. The C2C team has developed a parser for a neutral contour
format designed to efficiently represent problem setup information, and a set of tools for working
with contours and converting between the contour format and other formats. The C2C tools
work with the LLNL’s workhorse parallel meshing tool PMESH to enable problem setup and
conversion between multiple code input formats. Efforts are underway to extend the C2C tools
and to develop a repository database of validated contours that will enable community-wide
sharing of validated problem setup information.

Finally, ROVER is focused on building a GPU accelerated ray tracing package capable of doing
multi-group radiography, both back-lit and with self-emission, as well as serving as a volume
rendering plot in VisIt and other VTK-based (Visualization Toolkit) visualization tools. The
long-term goal is a package with in-situ capability, or the ability for diagnostic images to be
rendered by the simulation and viewed in real-time, instead of as a file-based post-processing
step. ROVER components are being integrated into the open source VTK-m library (also
supported by the DOE Exascale Computing Project) and the capability will be available in a
future VisIt release.

The workflow team works closely with other teams providing setup and analysis tools in support
of the ASC Program, and together are working toward enabling new capabilities for exascale
computing and large-scale analytics, and increased efficiencies and productivity for ever-
increasingly complex workflows.

LLNL-TR-744703

The workflow team includes Kathleen Dyer, Joe Eklund, Rebecca Haluska, Nathan Greco,
Esteban Pauli, and Jessica Semler, all from the ASQ division in Computation, and Ghaleb
Abdulla and Ming Jiang from CASC.

Contact: Dan Laney

top

Collaborations | Using Uncertainty Quantification Tools to
Help Accelerate the Development and Deployment of
Carbon Capture Technologies
A viable approach to reduce the emission of greenhouse CO2 gas into the atmosphere is to
retrofit existing coal-burning power plants with cost-effective carbon capture capabilities.
However, the development and deployment of effective and efficient carbon capture
technologies have been hampered by the long lead time from new concepts to industrial
deployment, and the high cost of pilot projects. It was recognized (BY WHO?) that new
approaches based on advanced modeling and simulation have the potential to dramatically
reduce the development time. In response to these needs and opportunities, a partnership was
formed among five national laboratories, industry and academic institutions in 2010 with the
goal of developing and deploying state-of-the-art computational modeling and simulation tools
to accelerate the commercialization of carbon capture technology from discovery to
development, demonstration, and widespread deployment to existing power plants - a project
now known as the Carbon Capture Simulation Initiative (CCSI), which has been supported by
the US Department of Energy’s Office of Fossil Energy.

A major product of CCSI is a simulation toolset and infrastructure comprising data, models,
software, and best practices. While LLNL has played multiple roles in CCSI, its key
involvement has been in the development of mathematical, statistical, and computer science tools
for quantifying uncertainties in simulation models. Uncertainty Quantification (UQ) was
recognized as important in the early project development stage, but soon it was realized that UQ
was ubiquitous in all aspects of the multi-physics (multi-phase flow, chemistry, etc.) and multi-
scale (particle, device and process scales) modeling and optimization process. As such,
systematic methodologies have to be developed to propagate and manage uncertainties across all
scales, taking into account uncertainties due to parametric uncertainties, model deficiency,
operating and data noises at various stages.

In the course of the project cycle, it became clear that there was a need to develop an integrated
framework for handling the complex simulation workflows, UQ, and design optimization. As
such, a CCSI software project called FOQUS (Framework for Optimization and Quantification
of Uncertainty and Sensitivity) was conceived. FOQUS integrates simulation models for carbon
capture with advanced process optimization and UQ tools to help identify the best potential

LLNL-TR-744703

carbon capture processes and quantify the level of uncertainties associated with different process
configurations. Embedded underneath the exotic FOQUS graphical user interface is its
computational workhorse - the PSUADE (Problem Solving environment for Uncertainty
Analysis and Design Exploration) software library, which provides capabilities for uncertainty
analysis, sensitivity analysis, response surface analysis, Bayesian inference, optimization under
uncertainty, experimental design, etc. FOQUS is also powered by another CCSI software tool
called Turbine (developed at LBNL) to run UQ ensemble calculations. Figure 4 below displays
some of the graphical outputs to help users analyze results.

uq1.png

LLNL-TR-744703

Fig 4.

Ongoing work includes multi-objective optimization under uncertainty, sequential design of
experiments, and application of FOQUS to newly-developed carbon capture models.

For additional information on the toolset developed for the CCSI, see this article published in
LLNL’s Science and Technology Review.

top

Contact: Charles Tong

Advancing the Discipline | Parallel Discrete Event
Simulation: When Differential Equations Just Won’t Cut It
As is often evidenced in the pages of this newsletter and much of the R&D that CASC pursues,
simulation is an essential tool in many research fields, standing as an equal alongside experiment
and theory. However, many science domains do not have an underlying physical theory
expressible as systems of differential or algebraic equations. In these cases, discrete event
simulation (DES) is used as a means to model and disentangle correlation and causation, explore
possible alternate realizations not available in physical form, and demonstrate emergent
phenomenon and other effects not amenable to theory.

Discrete event simulation decomposes a problem into separate “logical processes” (LPs),
sometimes called agents or nodes, which interact by sending time-stamped messages, or
events. LPs have internal state, which in turn evolve during the course of the simulation in
response to processing messages. Each message identifies an action the LP should take, perhaps
in the form of function pointer and any arguments needed, along with the simulation time at
which the LP should take that action. In the course of executing an event an LP can update its
state, as well as send (or cancel) other event messages. Events to self, out of order events, as well
as event ties are all allowed. Of course, sending events into the past is forbidden, as that would
violate causality.

LLNL-TR-744703

Fig 5: Illustration of typical messaging patterns
between two objects/logical processes.

In DES, there is a strong separation between the simulator and the model being simulated. The
job of the simulator is to execute events in time stamp order until there are no more events to
execute or a model-designated stop time or stopping condition is met. The model in turn
represents information specific to the domain being studied, such as computer networking traffic
or the evolution of virus outbreaks in a population. This separation of concerns is analogous to
the separation between a numerical solver library and a domain-specific continuum model in
traditional differential equation-based applications.

Naturally researchers want to explore larger and larger problems, requiring more computing
power and memory than available on a single system, necessitating parallel DES (or
PDES). Because there can only be one timeline with events executing in a specific order, and
the ordering of events cannot be predicted a priori since they are dynamically generated as the
simulation unfolds, the single most challenging problem in PDES is synchronizing the execution
across many simulation processes in a computing cluster. Each process simulates a portion of the
entire model, yet the overall execution must obey causality and reproduce the exact result which
a sequential (single computer) execution would have produced.

Historically there have been two approaches to the synchronization problem, conservative or
optimistic execution, with different requirements and constraints the model must adhere to. Not
surprisingly some kinds of models perform better with one approach versus the other, and this
distinction may not be known up front - or may even vary within a simulation over time. Until
recently, model writers have had to make a static global choice of parallel synchronization
approach, and thus the simulator upon which to run their model.

CASC researchers David Jefferson and Peter Barnes recently spearheaded the development of
Unified Virtual Time, a mechanism which enables the simulator to choose dynamically whether
to execute the next event optimistically or conservatively, and make this choice separately at
each LP. The following figure illustrates the behavior of one LP, from the simulator perspective,

LLNL-TR-744703

during the course of execution; using the terminology from the paper [1]. At various times the
simulator is executing events either conservatively or optimistically, based on the value of a
control variable CVT, which is updated asynchronously. Switching back and forth between
conservative and optimistic execution leaves behind different spans of past events which the
simulator then correctly manages.

Fig 6.

The significance of this unification is that it enables the model writer to concentrate on what they
know best: the desired agents, actions, and messages needed to represent their problem, and let
the simulator be entirely responsible for executing the model as fast as possible. This separation
of concerns is made much easier by our prior development of Backstroke [2], a code generation
framework leveraging the ROSE compiler toolkit developed in CASC, which automatically
transforms sequential model code into a reversible form suitable for optimistic synchronization.

We are currently expanding our theory into a journal submission, and expect to implement and
test these ideas in practice in the coming months. Check back in future newsletters for articles
describing how the PDES simulation techniques described here have enabled specific models to
solve complex problems of interest to DOE, the DoD, and others.

Contact: Peter Barnes

[1] D. Jefferson and P. D. Barnes Jr., Virtual Time III: unification of conservative and optimistic
synchronization in parallel discrete event simulation, in proceedings of the Winter Simulation
Conference 2017 Reno, Nevada.

[2] M. Schordan, et al, Automatic Generation of Reversible C++ Code and Its Performance in a
Scalable Kinetic Monte-Carlo Application, in proceedings of PADS 2016: ACM SIGSIM

LLNL-TR-744703

Conference on Principles of Advanced Discrete Simulation (PADS), (Banff, Canada, May 15-18,
2016), p. 111.

top

The Path to Exascale | Unify: Breaking the I/O Bottleneck in
Exascale Architectures
The view of storage systems for HPC is changing rapidly. Traditional, single-target parallel file
systems have reached their cost-effective scaling limit, and multi-target, hierarchical storage
systems are being designed and installed for our nation’s next-generation and exascale leadership
class systems such as the Sierra system currently being stood up at LLNL. We expect the first-
level target of hierarchical storage for future exascale HPC systems to be compute-node local
storage, e.g., SSDs or NVRAM. This distributed, node-local storage design promises fast,
scalable I/O performance because storage bandwidth and capacity will automatically scale with
the compute resources used by jobs and workflows and won’t suffer from inter-job interference
common with shared storage resources like the parallel file system or shared burst buffers.
However, a major concern for this distributed design is how to present the disjoint storage
devices as a single storage location to applications that use shared files.

To hierarchical storage of exascale systems, we are developing the Unify framework. Our goal
with Unify is to deliver transparent, blazing-fast I/O performance over distributed first-level
storage. Unify is a framework that supports a suite of user-level file systems that can be flexibly
loaded into users’ job allocations, where each file system is highly-specialized for a particular
I/O workload. For example, one specialized Unify file system (UnifyCR) targets write-heavy,
bulk-synchronous I/O workloads, typical of checkpoint/restart or periodic output by HPC
applications, while another Unify file system is tailored for read-heavy workloads common in
machine-learning applications. The key factor behind delivering a suite of file systems instead of
a single general-purpose file system is performance. General-purpose file systems must support
the strictest consistency semantics, e.g., imposing expensive locks around I/O
operations. Ensuring general semantics and strict consistency greatly reduces performance when
the workload does not require them. For example, for checkpoint/restart workloads, write and
read phases are disjoint and processes do not write to the same file offset in a shared file. Thus,
in UnifyCR, we eliminate locking and delay visibility of file data across distributed storage until
the end of the write phase, resulting in more than 2X speedups over the state-of-the-art in shared
write performance in our experiments.

unify1.png

LLNL-TR-744703

Fig 7: System architecture of Unify. Users can request Unify file systems to
run in their job allocations, e.g. UnifyCR at /chkptmt. Unify transparently
intercepts all I/O operations from applications or support libraries and
handles them with specialized, high-performance semantics depending on
the workload.

Unify file systems are ephemeral, with the same lifetime as an HPC job. Unify file system
instances are launched at the beginning of a batch job, provide data services for all applications
in the job, and terminate at the end of the job allocation. The figure below shows the system
architecture of Unify using UnifyCR as an example. A user can request one or more Unify file
systems to be loaded and respective mount points in their batch script (UnifyCR on /chkptmt in
the figure). Then, applications in the allocation can leverage Unify to share files simply by
directing I/O operations to the Unify mount point, e.g., /chkptmt. Additionally, applications
within the same job allocation (e.g., restarts after failure or separate application components) will
be able to share data and storage on the same Unify file system instance, which can greatly
reduce the need of back-end persistent file systems for data sharing across these programs.

Project members include CASC personnel Kathryn Mohror and Kento Sato, Livermore
Computing collaborators Adam Moody, Danielle Sikich, and Ned Bass, as well as external
collaborators from Florida State University and Oak Ridge National Lab.

Contact: Kathryn Mohror

top

casc Highlights

LLNL-TR-744703

Awards

• Abhinav Bhatele, Jae-Seung Yeom, Nikhil Jain, and others won a 2017 NERSC Award
for Innovative Use of HPC.

• Dean Williams, Sasha Ames, Charles Doutriaux, Renata McCoy, Matthew Harris,
William Hill, Jason Boutte, Zeshawn Shaheen, Denis Nadeau, Tony Hoang, and Jeff
Painter won an R&D 100 Award for the Earth System Grid Federation software, which
helps scientists around the world manage, disseminate, and analyze earth system
science data.

• Brian Van Essen and external collaborators won an HPCwire Editor’s Choice Award for
Best Use of AI for the CANDLE project, which applies machine learning to personalized
cancer medicine.

• Roger Pearce won an IEEE High Performance Extreme Computing Conference Graph
Challenge Champion award.

Looking back…

December’s calendar was filled with holiday parties for CASC employees, as it has been for
many years. In the past, a premier event was the Lab Director’s Office party. This invitation-only
gala was attended mainly by managers and other senior staff. It was held at elegant off-site
locations with live music and dancing. Guests wore formal attire and paid a significant amount
for their tickets. Today, the Director’s holiday party is far more egalitarian. It’s held at several
locations onsite, and all employess are invited.

LLNL-TR-744703

Fifteen years ago, then-Associate Director Dona Crawford hosted an onsite celebration for
Computation that featured extensive decorations and carolers in costume, above. (Judging by
their badges, they were non-employees brought in for the event.) The White Room was adorned
with photos from a door-decorating contest, where employees had dressed up their office
entrances with snowmen and other holiday items, below.

These days, CASC holds its holiday parties at a private residence near the lab (which happens to
be the home of the Acting CASC Director). Employees bring spouses and children, and the
food includes pizza and desserts. No formal attire is required. However, you celebrated the
holidays, at work and at home, we hope you had a restful and cheerful break, and we wish you
the best for the new year!

Newsletter Sign-up

Sign up to be notified of future newsletters.

Prepared by LLNL under Contract DE-AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any

LLNL-TR-744703

legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

