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Abstract

With widespread adoption of electronic health records, there 
is an increased emphasis for predictive models that can effec-
tively deal with clinical time-series data. Powered by Recur-
rent Neural Network (RNN) architectures with Long Short-
Term Memory (LSTM) units, deep neural networks have 
achieved state-of-the-art results in several clinical predic-
tion tasks. Despite the success of RNNs, its sequential na-
ture prohibits parallelized computing, thus making it ineffi-
cient particularly when processing long sequences. Recently, 
architectures which are based solely on attention mecha-
nisms have shown remarkable success in transduction tasks 
in NLP, while being computationally superior. In this pa-
per, for the first t ime, w e u tilize a ttention m odels f or clini-
cal time-series modeling, thereby dispensing recurrence en-
tirely. We develop the SAnD (Simply Attend and Diagnose) 
architecture, which employs a masked, self-attention mech-
anism, and uses positional encoding and dense interpolation 
strategies for incorporating temporal order. Furthermore, we 
develop a multi-task variant of SAnD to jointly infer models 
with multiple diagnosis tasks. Using the recent MIMIC-III 
benchmark datasets, we demonstrate that the proposed ap-
proach achieves state-of-the-art performance in all tasks, out-
performing LSTM models and classical baselines with hand-
engineered features.

Introduction
Healthcare is one of the prominent applications of data min-
ing and machine learning, and it has witnessed tremendous 
growth in research interest recently. This can be directly at-
tributed to both the abundance of digital clinical data, pri-
marily due to the widespread adoption of electronic health 
records (EHR), and advances in data-driven inferencing 
methodologies. Clinical data, for example intensive care unit 
(ICU) measurements, is often comprised of multi-variate, 
time-series observations corresponding to sensor measure-
ments, test results and subjective assessments. Potential in-
ferencing tasks using such data include classifying diag-
noses accurately, estimating length of stay, and predicting 
future illness, or mortality.

The classical approach for healthcare data analysis has 
been centered around extracting hand-engineered features

and building task-specific predictive models. Machine learn-
ing models are often challenged by factors such as need for
long-term dependencies, irregular sampling and missing val-
ues. In the recent years, recurrent Neural Networks (RNNs)
based on Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) have become the de facto solution
to deal with clinical time-series data. RNNs are designed
to model varying-length data and have achieved state-of-
the-art results in sequence-to-sequence modeling (Sutskever,
Vinyals, and Le 2014), image captioning (Xu et al. 2015)
and recently in clinical diagnosis (Lipton et al. 2015). Fur-
thermore, LSTMs are effective in exploiting long-range de-
pendencies and handling nonlinear dynamics.

Attention in Clinical Data Analysis: RNNs perform
computations at each position of the time-series by gener-
ating a sequence of hidden states ht as a function of the pre-
vious hidden state ht−1 and the input for current position t.
This inherent sequential nature makes parallelization chal-
lenging. Though efforts to improve the computational effi-
ciency of sequential modeling have recently surfaced, some
of the limitations still persist. The recent work of Vaswani
et. al. argues that attention mechanisms, without any recur-
rence, can be effective in sequence-to-sequence modeling
tasks. Attention mechanisms are used to model dependen-
cies in sequences without regard for their actual distances in
the sequence (Bahdanau, Cho, and Bengio 2014).

In this paper, we develop SAnD (Simply Attend and Di-
agnose), a new approach for clinical time-series analysis,
which is solely based on attention mechanisms. In contrast
to sequence-to-sequence modeling in NLP, we propose to
use self-attention that models dependencies within a single
sequence. In particular, we adopt the multi-head attention
mechanism similar to (Vaswani et al. 2017), with an addi-
tional masking to enable causality. In order to incorporate
temporal order into the representation learning, we propose
to utilize both positional encoding and a dense interpolation
embedding technique.

Evaluation on MIMIC-III Benchmark Dataset: An-
other important factor that has challenged machine learn-
ing research towards clinical diagnosis is the lack of univer-
sally accepted benchmarks to rigorously evaluate the mod-
eling techniques. Consequently, in an effort to standardize
research in this field, in (Harutyunyan et al. 2017), the au-



thors proposed public benchmarks for four different clinical
tasks: mortality prediction, detection of physiologic decom-
pensation, forecasting length of stay, and phenotyping. In-
terestingly, these benchmarks are supported by the Medical
Information Mart for Intensive Care (MIMIC-III) database
(Johnson et al. 2016), the largest publicly available reposi-
tory of rich clinical data currently available. These datasets
exhibit characteristics that are typical of any large-scale
clinical data, including varying-length sequences, skewed
distributions and missing values. In (Lipton et al. 2015;
Harutyunyan et al. 2017), the authors established that RNNs
with LSTM cells outperformed all existing baselines includ-
ing methods with engineered features.

In this paper, we evaluate SAnD on all MIMIC-III bench-
mark tasks and show that it is highly competitive, and in
most cases outperforms the state-of-the-art LSTM based
RNNs. Both superior performance and computational ef-
ficiency clearly demonstrate the importance of attention
mechanisms in clinical data.

Contributions: Here is a summary of our contributions:

• We develop the first attention-model based architecture
for processing multi-variate clinical time-series data.

• Based on the multi-head attention mechanism in (Vaswani
et al. 2017), we design a masked self-attention modeling
unit for sequential data.

• We propose to include temporal order into the sequence
representation using both positional encoding and a dense
interpolation technique.

• We rigorously evaluate our approach on all MIMIC-III
benchmark tasks and achieve state-of-the-art prediction
performance.

• Using a multi-task learning study, we demonstrate the ef-
fectiveness of the SAnD architecture over RNNs in joint
inferencing.

Related Work
Clinical data modeling is inherently challenging due to a
number of factors : a) irregular sampling. b) missing values
and measurement errors. c) heterogeneous measurements
obtained at often misaligned time steps and presence of
long-range dependencies. A large body of work currently
exists designed to tackle these challenges – the most com-
monly utilized ideas being Linear Dynamical System (LDS)
and Gaussian Process (GP). As a classic tool in time-series
analysis, LDS models the linear transition between consec-
utive states (Liu and Hauskrecht 2013; 2016). LDS can be
augmented by GP to provide more general non-linear mod-
eling on local sequences, thereby dealing with the irregu-
lar sampling issue (Liu and Hauskrecht 2013). In order to
handle the multi-variate nature of measurements, (Ghassemi
et al. 2015) proposed a multi-talk GP method which jointly
transforms the measurements into a unified latent space.

More recently, RNNs have become the sought-after so-
lution for clinical sequence modeling. The earliest effort
was by Lipton et. al. (Lipton et al. 2015), which propose to
use LSTMs with additional training strategies for diagnosis

tasks. In (Lipton, Kale, and Wetzel 2016), RNNs are demon-
strated to automatically deal with missing values when they
are simply marked by an indicator. In order to learn repre-
sentations that preserve spatial, spectral and temporal pat-
terns, recurrent convolutional networks have been used to
model EEG data in (Bashivan et al. 2015). After the in-
troduction of the MIMIC-III datasets, (Harutyunyan et al.
2017) have rigorously benchmarked RNNs on all four clini-
cal prediction tasks and further improved the RNN modeling
through joint training on all tasks.

Among many RNN realizations in the NLP literature, at-
tention mechanism is an integral part, often placed between
LSTM encoder and decoder (Bahdanau, Cho, and Bengio
2014; Xu et al. 2015; Vinyals et al. 2015; Hermann et al.
2015). Recent research in language sequence generation in-
dicates that by stacking the blocks consisting of solely at-
tention computations, one can achieve similar performance
as RNN (Vaswani et al. 2017). In this paper, we propose
the first attention based sequence modeling architecture for
multivariate time-series data, and study their effectiveness in
clinical diagnosis.

Proposed Approach
In this section, we describe SAnD, a fully attention mecha-
nism based approach for multivariate time-series modeling.

Architecture
Our architecture is inspired by the recent Transformer model
for sequence transduction (Vaswani et al. 2017), where the
encoder and decoder modules were comprised solely of an
attention mechanism. The Transformer architecture achieves
superior performance on machine translation benchmarks,
while being significantly faster in training when compared
to LSTM-based recurrent networks (Sutskever, Vinyals, and
Le 2014; Wu et al. 2016). The attention module is comprised
of N identical layers constructed using a multi-head atten-
tion sub-layer and a fully connected feed-forward network.
A similar attention module is employed at the decoder as
well to generate sequences.

The effectiveness of LSTMs have been established in a
wide-range of clinical prediction tasks, e.g. ICU mortality
prediction. In this paper, we are interested in studying the
efficacy of attention models in similar problems, dispens-
ing recurrence entirely. In order to achieve this, we adopt
core components from Transformer and make key architec-
tural modifications to solve multivariate time-series infer-
ence problems. The proposed architecture is shown in Figure
1. In the rest of this section, we describe each of the compo-
nents in detail.

Input Embedding: Given the multivariate clinical mea-
surements at every time step, the first step in our architecture
is to generate an embedding that captures the dependencies
across different variables without considering the temporal
information. This is conceptually similar to the input em-
bedding step in most NLP architectures, where the words
in a sentence are mapped into a high-dimensional vector
space to facilitate the actual sequence modeling. To this end,
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Figure 1: An overview of the proposed approach for clinical time-series analysis. In contrast to state-of-the-art approaches, this
does not utilize any recurrence or convolutions for sequence modeling. Instead, it employs a simple self-attention mechanism
coupled with a dense interpolation strategy to enable sequence modeling. The attention module is comprised of N identical
layers, which in turn contain the attention mechanism and a feed-forward sub-layer, along with residue connections.

we employ an 1D convolutional layer to obtain the high-
dimensional embeddings for each time position.

Positional Encoding: Since our architecture contains no
recurrence, in order to incorporate information about the or-
der of the sequence, we include information about the rela-
tive or absolute position of the time-steps in the sequence.
In particular, we add positional encodings to the input em-
beddings of the sequence. The encoding is performed by
mapping the order of sample appearance to a randomized
lookup table. Note that, there are alternative approaches to
positional encoding, including the sinusoidal functions in
(Vaswani et al. 2017). However, the proposed strategy is
highly effective in all our tasks.

Attention Module: Unlike transduction tasks in NLP, our
inferencing tasks often require classification or regression
architectures. Consequently, SAnD relies almost entirely on
self-attention mechanisms. Self-attention, also referred as
intra-attention, is designed to capture dependencies of a sin-
gle sequence. Self-attention has been used successfully in a
variety of NLP tasks including reading comprehension (Cui
et al. 2016) and abstractive summarization (Paulus, Xiong,
and Socher 2017). As we will describe later, we utilize a
restricted self-attention that imposes causality, i.e., consid-
ers information only from positions earlier than the current
position being analyzed. In addition, depending on the task
we also determine the range of dependency to consider. For
example, we will show in our experiments that phenotyping
tasks require a longer range dependency compared to mor-
tality prediction.

In general, an attention function can be defined as map-
ping a query and a set of key-value pairs to an output, where
the query, keys, values, and output are all vectors. For each
position, we compute the inner product between the query
vector at the position and the key vectors at every other posi-
tion (within the restricted set) to obtain an attention weight-
ing to other positions in the sequence. Using these attention
weights, we compute a weighted combination of the value
vectors and pass the result through a feed-forward network
to obtain the vector representation for that position. Math-
ematically, the attention weighting computation can be ex-
pressed as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V, (1)

where Q,K, V are the queries, keys and values respectively,
and d is the dimension of the key vectors. This mechanism
is often referred to as the scalar dot-product attention. Since
we use only self-attention, all vectorsQ,K, V correspond to
input embeddings of the sequence (with position encoding).
Additionally, we mask the sequence to specify how far the
attention models can look into the past for obtaining the rep-
resentation for each position. Hence, to be precise, we refer
to this as masked self-attention.

Implicitly, self-attention creates a graph structure for the
sequence, where edges indicate the temporal dependencies.
Instead of computing a single attention graph, we can ac-
tually create multiple attention graphs each of which is de-
fined by different parameters. Each of these attention graphs
can be interpreted to encode different types of edges and
hence can provide complementary information about differ-
ent types of dependencies. Hence, we use “multi-head atten-
tion” similar to (Vaswani et al. 2017), where 8 heads are
used to create multiple attention graphs and the resulting
weighted representations are concatenated and linearly pro-
jected to obtain the final representation. The second compo-
nent in the attention module is 1D convolutional sub-layers
with kernel size 1, similar to the input embedding. Internally,
we use two of these 1D convolutional sub-layers with ReLU
activation in between. Note that, we include residue connec-
tions in both the sub-layers.

Since we stack the attention module N times, we perform
the actual prediction task using representations obtained at
the final attention module. Unlike transduction tasks, we do
not make predictions at each time step in all cases. Hence,
there is a need to create a concise representation for the en-
tire sequence using the learned representations, for which
we employ a dense interpolated embedding scheme, that en-
codes partial temporal ordering.

Dense Interpolation for Encoding Order: The simplest
approach to obtain a unified representation for a sequence,
while preserving order, is to simply concatenate embeddings
at every time step. However, in our case, this can lead to a
very high-dimensional, “cursed” representation which is not
suitable for learning and inference. Consequently, we pro-
posed to utilize a dense interpolation algorithm from lan-
guage modeling. Besides providing a concise representa-
tion, (Trask, Gilmore, and Russell 2015) demonstrated that
the dense interpolated embeddings better encode word struc-
tures which are useful in detecting syntactic features. In our



Dense Interpolation Embedding
Input : Steps t of the time series and length of the

sequence T , embeddings at step t as st, factor
M

Output: Dense interpolated vector representation v
for t = 1 to T do

s =M ∗ t/T
for m = 1 to M do

w = pow(1− abs(s−m)/M, 2)
vm = vm + w ∗ st

end
end

Algorithm 1: Dense interpolation embedding with par-
tial order for a given sequence from representations at
each time-step.

architecture, dense interpolation embeddings, along with the
positional encoding module, are highly effective in captur-
ing enough temporal structure required for even challenging
clinical prediction tasks.

The pseudocode to perform dense interpolation for a
given sequence is shown in Algorithm 1. Denoting the hid-
den representation at time t, from the attention model, as
st ∈ Rd, the interpolated embedding vector will have di-
mension d × M , where M is the dense interpolation fac-
tor. Note that when M = T , it reduces to the concatenation
case. The main idea of this scheme is to determine weights
w, denoting the contribution of st to the position m of the
final vector representation v. As we iterate through the time-
steps of a sequence, we obtain s, the relative position of time
step t in the final representation v and w is computed as
w = (1− |s−m|M )2. We visualize the dense interpolation pro-
cess in Figure 2 for the toy case of T = 5,M = 3. The
larger weights in w are indicated by darker edges while the
lighter edges indicates lesser influence.

In practice, dense interpolation is implemented efficiently
by caching w’s into a matrix W ∈ RT×M and then per-
forming the following matrix multiplication: V = S ×W,
where S = [s1, . . . , sT ]. Finally we can obtain v by stacking
columns of V.

Linear and Softmax layers: After obtaining a single vec-
tor representation from dense interpolation, we utilize a lin-
ear layer to obtain the logits. The final layer depends on the
specific task. We can use a softmax layer for the binary clas-
sification problems, a sigmoid layer for multi-label classi-
fication since the classes are not mutually exclusive and a
ReLU layer for regression problems. The corresponding loss
functions are:

• Binary classification:−(y · log(ŷ))+(1−y) · log(1− ŷ),
where y and ŷ are the true and predicted labels respec-
tively.

• Multi-label classification: 1
K

∑K
k=1−(yk ·log(ŷk)+(1−

yk) · log(1 − ŷk)), where K denotes the total number of
labels in the dataset.

• Regression:
∑T

t=1(lt − l̂t)
2, where lt and l̂t denote the

Dense 
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Hidden 
Representations 
from Attention 

Module

Figure 2: Visualizing the dense interpolation module, for the
case when T = 5 and M = 3.

true and predicted response variables at time-step t.

Regularization: In the proposed approach, we apply the
following regularization strategies during training: (i) We
apply dropout to the output of each sub-layer in the atten-
tion module prior to residual connections and normalize the
outputs. We include an additional dropout layer after adding
the positional encoding to the input embeddings, (ii) We also
perform attention dropout, similar to (Vaswani et al. 2017),
after computing the self-attention weights.

Complexity: Learning long-range dependencies is a key
challenge in many sequence modeling tasks. Another no-
tion of complexity is the amount of computation that can be
parallelized, measured as the minimum number of sequen-
tial operations required. Recurrent models require O(T ) se-
quential operations with a total O(T · d2) computations in
each layer. In comparison, the proposed approach requires a
constant O(1) sequential operations (entirely parallelizable)
with a total O(T · r · d) computations per layer, where r
denotes the size of the mask for self-attention. In all our im-
plementations, d is fixed at 256 and r � d, and as a result
our approach is significantly faster than RNN training.

MIMIC-III Benchmarks & Formulation
In this section, we describe the MIMIC-III benchmark tasks
and the application of the SAnD framework to these tasks,
along with a joint multi-task formulation.

The MIMIC-III database consists of de-identified infor-
mation about patients admitted to critical care units between
2001 and 2012 (Johnson et al. 2016). It encompasses an ar-
ray of data types such as diagnostic codes, survival rates,
and more. Following (Harutyunyan et al. 2017), we used the
cohort of 33, 798 unique patients with a total of 42, 276 hos-
pital admissions and ICU stays. Data for all tasks consists of
measurements such as capillary refill rate, systolic, diastolic
and mean blood pressure, glucose, heart rate, oxygen satu-
ration, temperature, height, weight, pH, and Glascow Coma
Scale (GCS) parameters like eye opening, motor response
and verbal response.

Using raw data from Physionet, each patient’s data has
been divided into separate episodes containing both time-



series of events, and episode-level outcomes (Harutyunyan
et al. 2017). The time-series measurements were then trans-
formed into a 76-dimensional vector at each time-step. The
size of the benchmark dataset for each task is highlighted
in Table 1. We employ SAnD to solve the four MIMIC-III
benchmark tasks, namely: mortality prediction, physiologic
decompensation, forecasting length of stay, and phenotype
classification.

In Hospital Mortality: Mortality prediction is vital dur-
ing rapid triage and risk/severity assessment. In Hospital
Morality is defined as the outcome of whether a patient dies
during the period of hospital admission or lives to be dis-
charged. This problem is posed as a binary classification one
where each data sample spans a 24-hour time window. True
mortality labels were curated by comparing date of death
(DOD) with hospital admission and discharge times. The
mortality rate within the benchmark cohort is only 13%.

Decompensation: Another aspect that affects treatment
planning is deterioration of organ functionality during hos-
pitalization. Clinical staff typically track patients through a
scoring system to trigger timely warnings and alert rapid re-
sponse teams. Physiologic decompensation is formulated as
a problem of predicting if a patient would die within the
next 24 hours by continuously monitoring the patient within
fixed time-windows. Therefore, the benchmark dataset for
this task requires prediction at each time-step. True decom-
pensation labels were curated based on occurrence of pa-
tient’s DOD within the next 24 hours, and only about 4.2%
of samples are positive in the benchmark.

Length of Stay: Moderating overall hospital costs is one
of the primary objectives in healthcare management. In lieu
of optimizing resource utilization, forecasting length of a pa-
tient’s stay in hospital is a key operation. Such an estimation
is carried out by analyzing events occurring within a fixed
time-window, once every hour from the time of admission.
As part of the benchmark, hourly remaining length of stay
values are provided for every patient. These true range of
values were then transformed into ten buckets, namely: a
bucket for less than a day, seven one day long buckets for
each day of the 1st week, and two outlier buckets-one for
stays more than a week but less than two weeks, and one for
stays greater than two weeks (Harutyunyan et al. 2017). Us-
ing these transformed labels, length of stay is converted into
a multi-class classification task from a regression task.

Phenotyping: Given information about a patient’s ICU
stay, one can retrospectively predict the likely disease con-
ditions. This process is referred to as acute care phenotyp-
ing, whose outcomes are helpful in providing patient sum-
maries, compiling specific cohorts, finding similarities be-
tween patients, and performing risk adjustment. The bench-
mark dataset deals with 25 disease conditions of which 12
are critical such as respiratory/renal failure, 8 conditions are
chronic such as diabetes, atherosclerosis, and 5 are ’mixed’
conditions such as liver infections. Typically, a patient is
diagnosed with multiple conditions and hence this can be
posed as a multi-label classification problem.

Table 1: Task-specific sample sizes of MIMIC-III dataset.
Benchmark Train Validation Test

Mortality 14,659 3,244 3,236
Decompensation 2,396,001 512,413 523,208
Length of Stay 2,392,950 532,484 525,912
Phenotyping 29,152 6,469 6,281

Applying SAnD to MIMIC-III Tasks
In order to solve the afore-mentioned benchmark tasks with
SAnD, we need to make a few key parameter choices for
effective modeling. These include: size of the self-attention
mask (r), dense interpolation factor (M ) and the number of
attention blocks (N ). While attention models are computa-
tionally more efficient than RNNs, their memory require-
ments can be quite high when N is significantly large. How-
ever, in practice, we are able to produce state-of-the-art re-
sults with small values of N . As described in the previous
section, the total number of computations directly relies on
the size of the mask, r and interestingly our experiments
show that smaller mask sizes are sufficient to capture all
required dependencies in 3 out of 4 tasks, except pheno-
typing, which needed modeling of much longer-range de-
pendencies. The dependency of performance on the dense
interpolation factor, M is more challenging to understand,
since it relies directly on the amount of variability in the
measurements across the sequence. The other hyperparam-
eters of network such as the learning rate, batch size and
embedding sizes were determined using the validation data.
Note, in all cases, we used the Adam optimizer (Kingma
and Ba 2014) with parameters β1 = 0.9, β2 = 0.98 and
ε = 10−8. The training was particularly challenging for the
decompensation and length of stay tasks because of the large
training sizes. Consequently, training was done by dividing
the data into chunks of 20000 samples and convergence was
observed with just 20-30 randomly chosen chunks. Further-
more, due to the imbalance in the label distribution, using a
larger batch size (256) helped in some of the cases.

Multi-task Learning: In several recent results from the
deep learning community, it has been observed that joint in-
ferencing with multiple related tasks can lead to superior
performance in each of the individual tasks, while drasti-
cally improving the training behavior. Hence, similar to the
approach in (Harutyunyan et al. 2017), we implemented a
multi-task version of our approach, SAnD-Multi, that uses
a loss function that jointly evaluates the performance of all
tasks, which can be expressed as follows:

`mt = λp`ph + λi`ihm + λd`dc + λl`los, (2)

where `ph, `ihm, `dc, `los correspond to the losses for the
four tasks. The input embedding and attention modules are
shared across the tasks, while the final representations and
the prediction layers are unique to each task. Our approach
allows the use of different mask sizes and interpolation fac-
tors for each task, but requires the use of the same N .
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Figure 3: Applying SAnD to MIMIC-III benchmark tasks - We illustrate the training behavior and impact of the choice of the
attention mask size, number of attention layers and dense interpolation factor on test performance.

Performance Evaluation
In this section we evaluate the proposed SAnD framework on
the benchmark tasks and present comparisons to the state-
of-the-art RNNs based on LSTM (Harutyunyan et al. 2017),
and baseline logistic regression (LR) with hand-engineered
features. To this end, we discuss the evaluation metrics and
the choice of algorithm parameters. In particular, we analyze
the impact of the choice of number of attention layers N ,
the dense interpolation factor M , and the mask size of the
self-attention mechanism r on the test performance. Finally,
we report the performance of the mutli-task variants of both
RNN and proposed approaches on all tasks.

Single-Task Case
Phenotyping: This multi label classification problem in-
volves retrospectively predicting acute disease conditions.
Following (Lipton et al. 2015) and (Harutyunyan et al.
2017), we use the following metrics to evaluate the different
approaches on this task: (i) macro-averaged Area Under the
ROC Curve (AUROC), which averages per-label AUROC,
(ii) micro-averaged AUROC, which computes single AU-
ROC score for all classes together, (iii) weighted AUROC,
which takes disease prevalence into account. The learning
rate was set to 0.0005, batch size was fixed at 128 and a
residue dropout probability of 0.4 was used. First, we ob-
serve that the proposed attention model based architecture
demonstrates good convergence characteristics as shown in
Figure 3(a). Given the uneven distribution of the class labels,

it tends to overfit to the training data. However, with both
attention and residue dropout regularizations, it generalizes
well to the validation and test sets. Since, the complexity of
the proposed approach relies directly on the attention mask
size (r), we studied the impact of r on test performance. As
shown in Figure 3(b), this task requires long-term depen-
dencies in order to make accurate predictions. Though all
performance metrics improve upon the increase of r, there
is no significant improvement beyond r = 96 which is still
lower than the feature dimensionality 256. As shown in Fig-
ure 3(c), using a grid search on the parameters N (number
of attention layers) and M (dense interpolation factor), we
identified the optimal values. As described earlier, lower the
value of N lesser the memory requirements of SAnD. In this
task, we observe that the values N = 2 and M = 120 pro-
duced the best performance, and as shown in Table 2, it is
highly competitive to the state-of-the-art results.

In Hospital Mortality: In this binary classification task,
we used the following metrics for evaluation: (i) Area un-
der Receiver Operator Curve (AUROC), (ii) Area under
Precision-Recall Curve (AUPRC), and (iii) minimum of pre-
cision and sensitivity (Min(Se,P+)). In this case, we set the
batch size to 256, residue dropout to 0.3 and the learning rate
at 0.0005. Since the prediction is carried out using measure-
ments from the last 24 hours, we did not apply any additional
masking in the attention module, except for ensuring causal-
ity. From Figure 3(d), we observe that the best performance
was obtained at N = 4 and M = 12. In addition, even for



Table 2: Performance Comparison for the MIMIC-III benchmark tasks, using both single-task and multi-task learning strategies.
MethodMetrics

LR LSTM SAnD LSTM-Multi SAnD-Multi

Task 1: Phenotyping
Micro AUC 0.801 0.821 0.816 0.817 0.819
Macro AUC 0.741 0.77 0.766 0.766 0.771
Weighted AUC 0.732 0.757 0.754 0.753 0.759
Task 2: In Hospital Mortality
AUROC 0.845 0.854 0.857 0.863 0.859
AUPRC 0.472 0.516 0.518 0.517 0.519
min(Se, P+) 0.469 0.491 0.5 0.499 0.504
Task 3: Decompensation
AUROC 0.87 0.895 0.895 0.900 0.908
AUPRC 0.2132 0.298 0.316 0.319 0.327
min(Se, P+) 0.269 0.344 0.354 0.348 0.358
Task 4: Length of Stay
Kappa 0.402 0.427 0.429 0.426 0.429
MSE 63385 42165 40373 42131 39918
MAPE 573.5 235.9 167.3 188.5 157.8

the optimal N the performance drops with further increase
in M , indicating signs of overfitting. From Table 2, it is ap-
parent that SAnD outperforms both the baseline methods.

Decompensation: Evaluation metrics for this task are the
same as the previous case of binary classification. Though
we are interested in making predictions at every time step
of the sequence, we obtained highly effective models with
r = 24 and as a result our architecture is significantly more
efficient for training on this large-scale data when compared
to an LSTM model. Our best results were obtained from
training merely on about 25 chunks (batch size = 128, learn-
ing rate = 0.001) , when N = 1 and M = 10 (see Figure
3(e)), indicating that increasing the capacity of the model
easily leads to overfitting. This can be attributed to the heavy
bias in the training set towards the negative class. Results for
this task (Table 2) are significantly better than the state-of-
the-art, thus evidencing the effectiveness of SAnD.

Length of Stay: Since this problem is solved as a multi-
class classification task, we measure the inter-agreement be-
tween true and predicted labels using the Cohen’s linear
weighted kappa metric. Further, we assign the mean length
of stay from each bin to the samples assigned to that class,
and use conventional metrics such as mean squared error
(MSE) and mean absolute percentage error (MAPE). The
grid search on the parameters revealed that the best results
were obtained at N = 3 and M = 12, with no further
improvements with larger N (Figure 3(f)). Similar to the
decompensation case, superior results were obtained using
r = 24 when compared with the LSTM performance, in
terms of all the evaluation metrics.

Multi-Task Case
We finally evaluate the performance of SAnD-Multi by
jointly inferring the model parameters with the multi-task
loss function in Eq (2). We used the weights λp = 0.8, λi =
0.5, λd = 1.1, λl = 0.8. Interestingly, in the multi-task case,
the best results for phenotyping were obtained with a much
lower mask size (72), thereby making the training more ef-
ficient. The set of hyperparameters were set at batch size =
128, learning rate = 0.0001, N = 2, M = 36 for phenotyp-
ing andM = 12 for the other three cases. As shown in Table
2, this approach produces the best performance in almost all
cases, with respect to all the evaluation metrics.

Conclusions
In this paper, we proposed a novel approach to model clin-
ical time-series data, which is solely based on masked self-
attention, thus dispensing recurrence completely. Our self-
attention module captures dependencies restricted within a
neighborhood in the sequence and is designed by adopt-
ing the multi-head attention. Further, temporal order is in-
corporated into the sequence representation using both po-
sitional encoding and dense interpolation embedding tech-
niques. The training process is efficient and the representa-
tions are highly effective for a wide-range of clinical diag-
nosis tasks. This is evidenced by the superior performance
on the challenging MIMIC-III benchmark datasets. To the
best of our knowledge, this is the first work that emphasizes
the importance of attention in clinical data modeling and can
potentially create new avenues for pushing the boundaries of
healthcare analytics.
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