

Exceptional service in the national interest

Sandia
National
Laboratories

Optimization-Based Coupling for Local and Nonlocal Models

David Littlewood, Marta D'Elia, Mauro Perego, Pavel Bochev

SIAM Conference on Computational Science and Engineering
March 2nd, 2017

Center for Computing Research

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Model Coupling as an Optimization Problem

Goal: Simulation capability that combines disparate models

- Restrict use of high-fidelity models to subdomains to reduce overall cost
- Utilize multiscale and/or multiphysics models only where needed
- Overcome challenges resulting from disparate discretization strategies

Challenge: Inherent mismatch at model interface

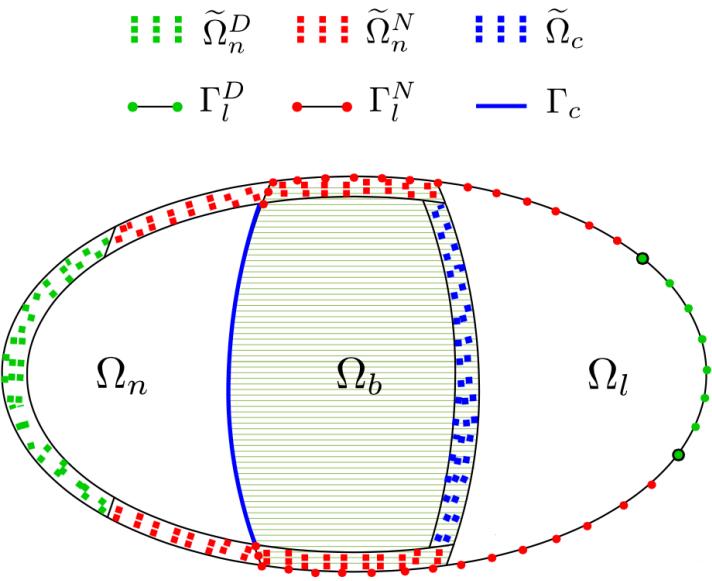
- Fundamentally different mathematical models
- Discretization schemes that are not directly compatible
- Disparate physics and/or length scales

Approach: Cast model coupling as an optimization problem

- Minimize difference between solutions in overlap region
- Governing equations of the individual models act as constraints
- Roles of coupling conditions and models are reversed with respect to standard coupling methods

Optimization Based Local-Nonlocal Coupling

Minimize the mismatch between local and nonlocal models subject to the two models acting independently in their respective domains



$$\min_{u_n, u_l, \theta_n, \theta_l} J(u_n, u_l) = \frac{1}{2} \int_{\Omega_b} (u_n - u_l)^2 d\mathbf{x} = \frac{1}{2} \|u_n - u_l\|_{0, \Omega_b}^2$$

subject to

Nonlocal model

$$\begin{aligned} -\mathcal{L}u_n &= f_n & \mathbf{x} \in \Omega_n \\ u_n &= \theta_n & \mathbf{x} \in \tilde{\Omega}_c \\ u_n &= 0 & \mathbf{x} \in \Omega_n^D \\ -\mathcal{N}(\mathcal{G}u_n) &= 0 & \mathbf{x} \in \tilde{\Omega}_n^N \end{aligned}$$

Local model

$$\begin{aligned} -\Delta u_l &= f_l & \mathbf{x} \in \Omega_l \\ u_l &= \theta_l & \mathbf{x} \in \Gamma_c \\ u_l &= 0 & \mathbf{x} \in \Gamma_l^D \\ \nabla u_l \cdot \mathbf{n} &= 0 & \mathbf{x} \in \Gamma_l^N \end{aligned}$$

where the nonlocal operators are defined as [Du, et al., 2013]:

$$\begin{aligned} \mathcal{L}u(\mathbf{x}) &= 2 \int_{\mathbb{R}^d} (u(\mathbf{y}) - u(\mathbf{x})) \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad \mathbf{x} \in \mathbb{R}^d \\ \mathcal{N}(\mathbf{v})(\mathbf{x}) &= - \int_{\Omega^+} (\mathbf{v}(\mathbf{x}, \mathbf{y}) + \mathbf{v}(\mathbf{y}, \mathbf{x})) \alpha(\mathbf{x}, \mathbf{y}) d\mathbf{y} \quad \mathbf{x} \in \tilde{\Omega} \\ \mathcal{G}(u)(\mathbf{x}, \mathbf{y}) &:= (u(\mathbf{y}) - u(\mathbf{x})) \alpha(\mathbf{x}, \mathbf{y}) \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^d \end{aligned}$$

Analysis has established existence, uniqueness of solution to coupled problem

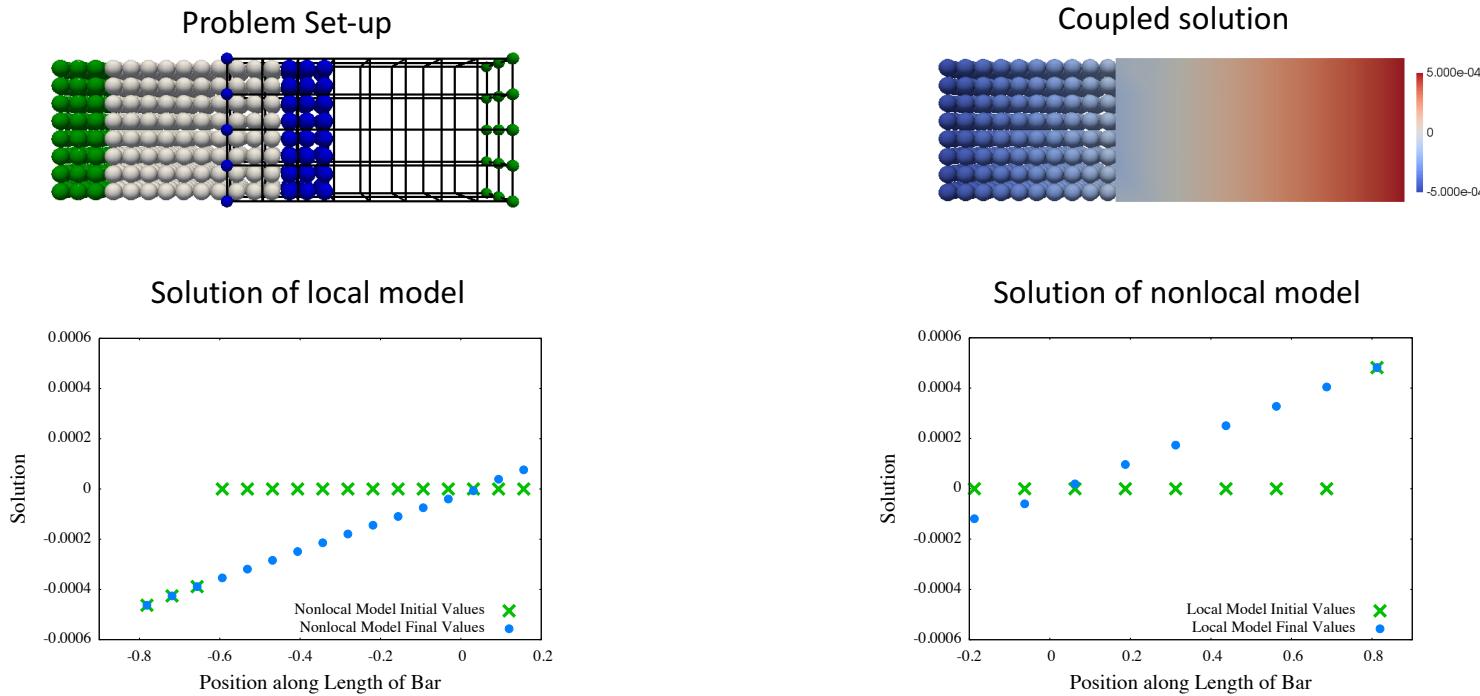
D'Elia, M., Perego, M., Bochev, P., and Littlewood, D. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions. *Computers and Mathematics with Applications* 71, 2218-2230, 2016.

Du, Q., Gunzburger, M., Lehoucq, R.B., and Zhou, K. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, *Mathematical Models and Methods in Applied Sciences* 23(03), 493-540, 2013.

Example: Coupling of Local and Nonlocal Diffusion Models

Recovery of linear solution using coupled local-nonlocal model

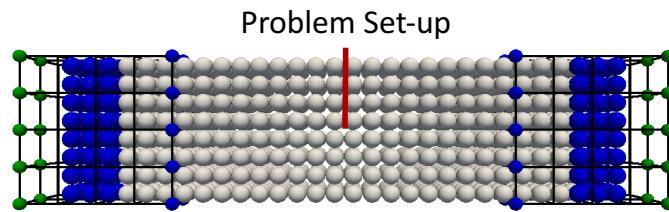
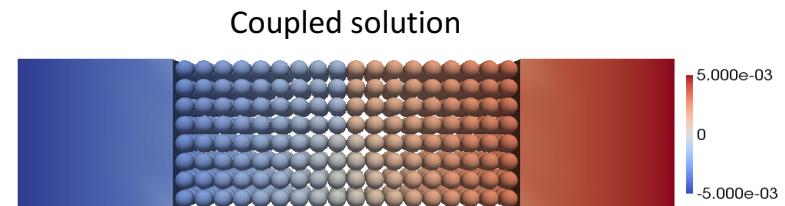
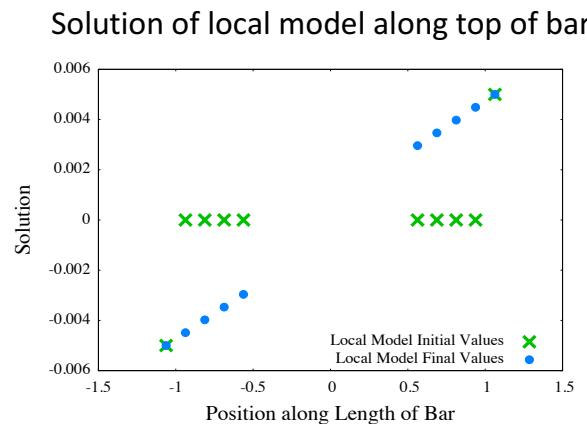
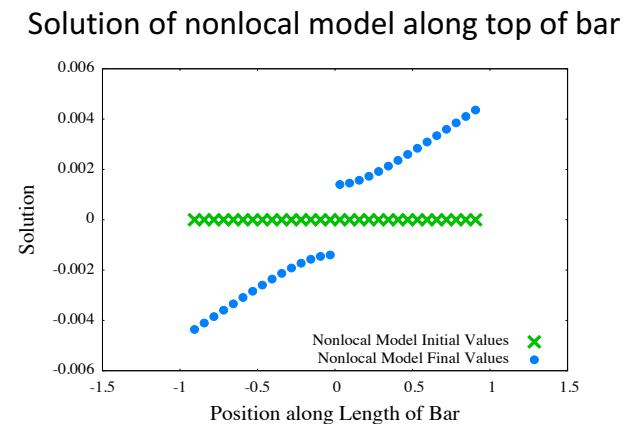
- Boundary conditions applied to ends of bar
 - Linear solution imposed over volumetric region of nonlocal model
 - Standard local boundary conditions applied to local model
- Optimization-based approach successfully couples local and nonlocal models



Example: Local and Nonlocal Diffusion in a Pre-Cracked Bar

Local boundary conditions applied to pre-cracked bar

- Boundary conditions applied to local model only
 - Avoids difficulties in applying volume constraints to nonlocal model
- Optimization-based approach successfully couples local and nonlocal models
- Nonlocal model provides solution in vicinity of crack



Optimization-Based Coupling for Local and Nonlocal Elasticity

Extension of the optimization-based coupling approach of D'Elia, et al., to local-nonlocal coupling for 3D elasticity

- Classical (local) elasticity model provided by *Albany/LCM* code
- Peridynamic (nonlocal) elasticity model provided by *Peridigm* code
- *Rapid Optimization Library (ROL)* utilized for minimization of functional

$$\min_{\mathbf{u}_n, \mathbf{u}_l, \boldsymbol{\nu}_n, \boldsymbol{\nu}_l} \mathcal{J}(\mathbf{u}_n, \mathbf{u}_l)$$

$$= \frac{1}{2} \int_{\Omega_o} \|\mathbf{u}_n - \mathbf{u}_l\|_{\ell_2}^2 d\mathbf{x}$$

s.t.

$$\begin{cases} -\mathcal{L}_{\text{LPS}}[\mathbf{u}_n](\mathbf{x}) = \mathbf{b}(\mathbf{x}) & \mathbf{x} \in \omega_n \\ \mathbf{u}_n(\mathbf{x}) = \mathbf{g}(\mathbf{x}) & \mathbf{x} \in \eta_D \\ \mathbf{u}_n(\mathbf{x}) = \boldsymbol{\nu}_n(\mathbf{x}) & \mathbf{x} \in \eta_c \end{cases}$$

$$\begin{cases} -\mathcal{L}_{\text{NC}}[\mathbf{u}_l](\mathbf{x}) = \mathbf{b}(\mathbf{x}) & \mathbf{x} \in \Omega_l \\ \mathbf{u}_l(\mathbf{x}) = \mathbf{g}(\mathbf{x}) & \mathbf{x} \in \Gamma_D \\ \mathbf{u}_l(\mathbf{x}) = \boldsymbol{\nu}_l(\mathbf{x}) & \mathbf{x} \in \Gamma_c \end{cases}$$

$\boldsymbol{\nu}_n(\mathbf{x}), \boldsymbol{\nu}_l(\mathbf{x})$: control variables

Local and Nonlocal Elasticity Models

Nonlocal model

- Peridynamic model of solid mechanics with linearized Linear Peridynamic Solid (LPS) constitutive model
- Strong form solved using the meshless method of Silling and Askari

$$-\mathcal{L}_{\text{LPS}}[\mathbf{u}](\mathbf{x}) = \mathbf{b}(\mathbf{x}), \quad \mathbf{x} \in \omega \text{ with constraints in } \eta$$

$$\mathcal{L}_{\text{LPS}}[\mathbf{u}](\mathbf{x}) = \int_{\Omega \cap B_\delta(\mathbf{x})} \{ \mathbf{T}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle - \mathbf{T}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle \} dV'_{\mathbf{x}}$$

$$B_\delta(\mathbf{x}) = \{ \mathbf{x}' \in \mathbb{R}^d : \| \mathbf{x} - \mathbf{x}' \| \leq \delta \}$$

$$\mathbf{T}[\mathbf{x}] \langle \boldsymbol{\xi} \rangle = \frac{3K-5G}{m} \omega(\| \boldsymbol{\xi} \|) \theta(\mathbf{x}) \boldsymbol{\xi} + \frac{15G}{m} \omega(\| \boldsymbol{\xi} \|) \frac{\boldsymbol{\xi} \otimes \boldsymbol{\xi}}{\| \boldsymbol{\xi} \|} (\mathbf{u}(\mathbf{x} + \boldsymbol{\xi}) - \mathbf{u}(\mathbf{x}))$$

Local model

- Navier-Cauchy equations of classical elasticity
- Standard finite element approach applied to solve the variational form

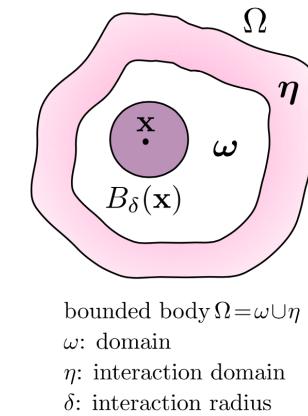
$$-\mathcal{L}_{\text{NC}}[\mathbf{u}](\mathbf{x}) = \mathbf{b}(\mathbf{x}), \quad \mathbf{x} \in \Omega \text{ with conditions on } \partial\Omega$$

$$\mathcal{L}_{\text{NC}}[\mathbf{u}](\mathbf{x}) := \left[(K + \frac{1}{3}G) \nabla(\nabla \cdot \mathbf{u})(\mathbf{x}) + G \nabla^2 \mathbf{u}(\mathbf{x}) \right]$$

Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. *Journal of the Mechanics and Physics of Solids*, 48:175-209, 2000.

Silling, S.A., and Askari, E. A meshfree method based on the peridynamic model of solid mechanics. *Computers and Structures*, 83:1526-1535, 2005.

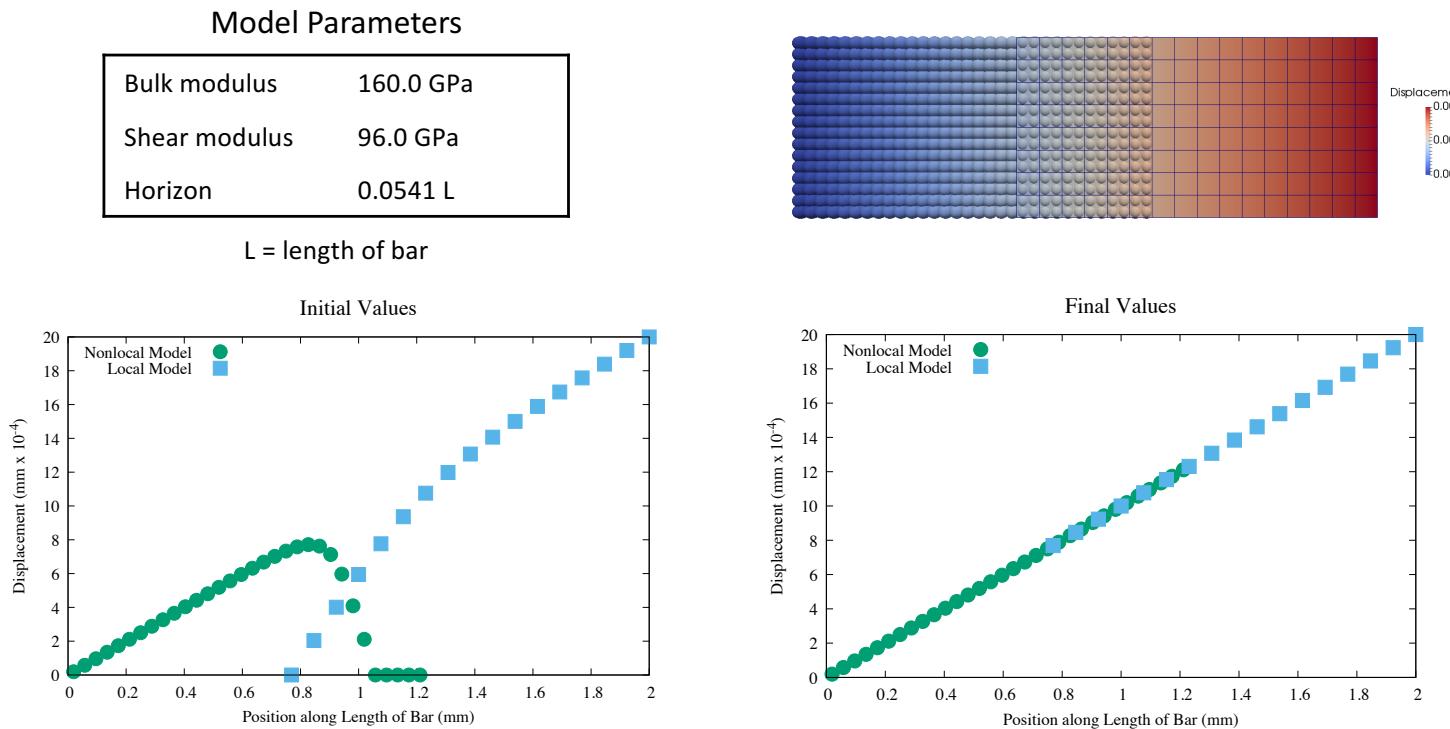
Silling, S.A. Linearized theory of peridynamic states, *Journal of Elasticity* 99, 85-1111, 2010.



3D Elasticity: Linear Patch Test

Recovery of linear solution using coupled local-nonlocal model

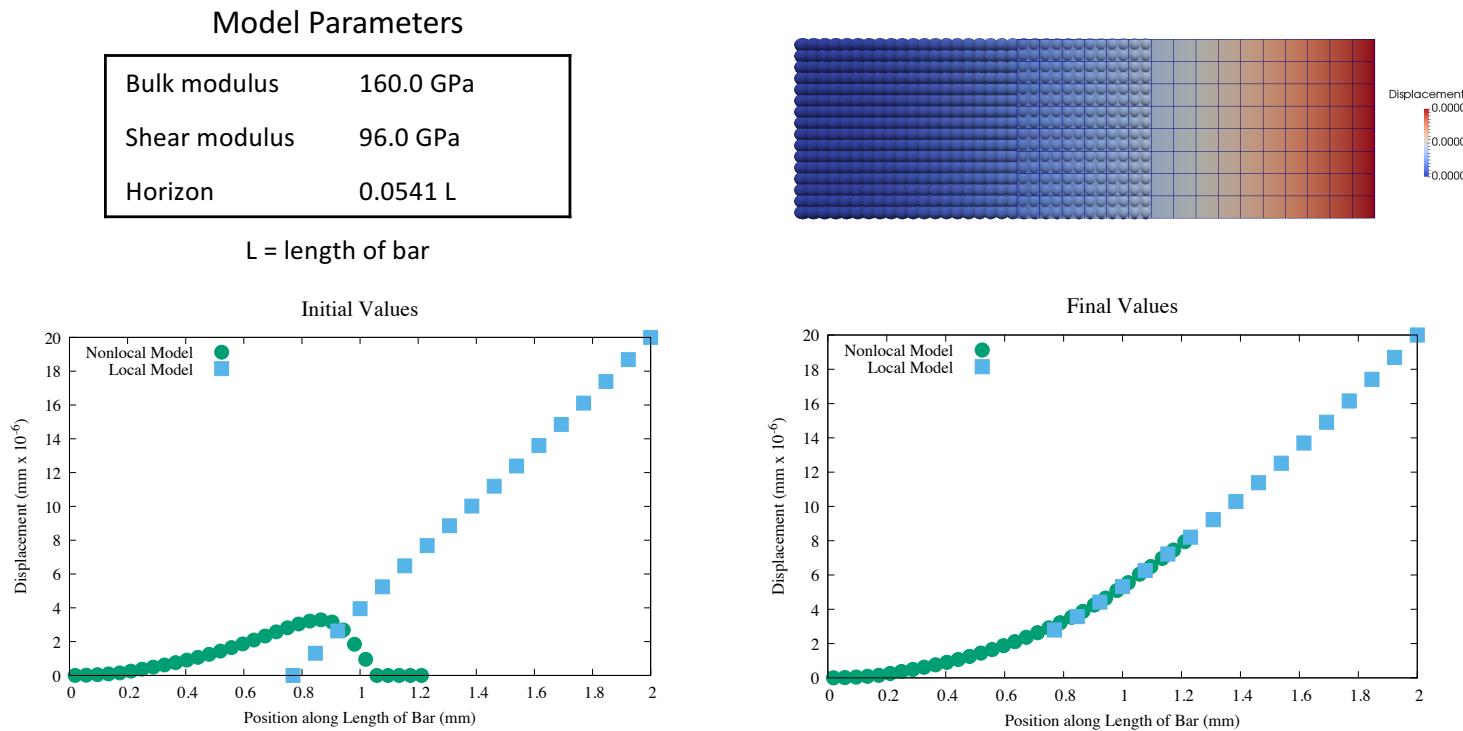
- Constraints applied at all free surfaces
 - Linear solution imposed over volumetric regions of nonlocal model
 - Standard local boundary conditions applied to surfaces of local model
- Optimization-based approach successfully recovers analytic solution (linear)



3D Elasticity: Quadratic Patch Test

Recovery of quadratic solution using coupled local-nonlocal model

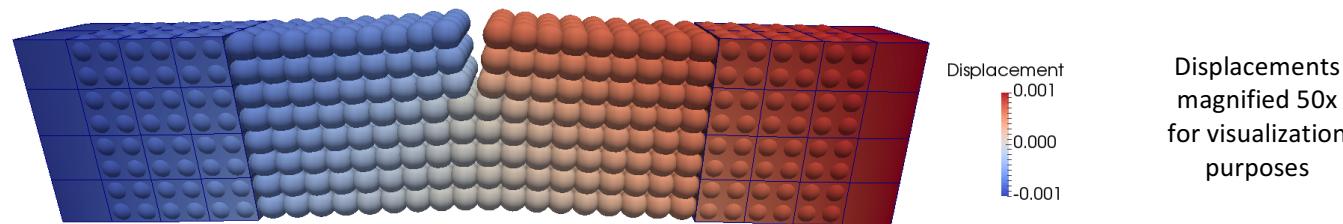
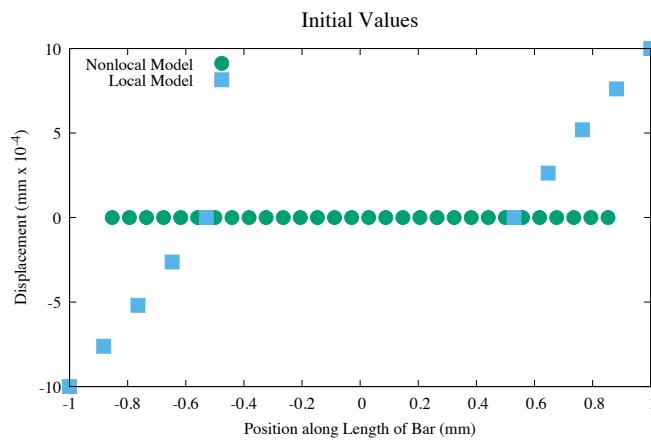
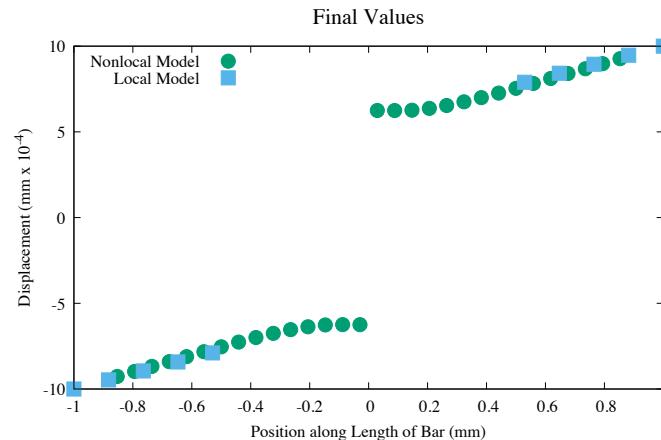
- Boundary conditions / nonlocal constraints
 - Linear solution imposed over volumetric regions of nonlocal model
 - Standard local boundary conditions applied to surfaces of local model
 - Body force applied to internal domains
- Optimization-based approach successfully recovers analytic solution (quadratic)



Bar with Pre-Crack Loaded in Tension

Combination of local and nonlocal models for “best of both worlds”

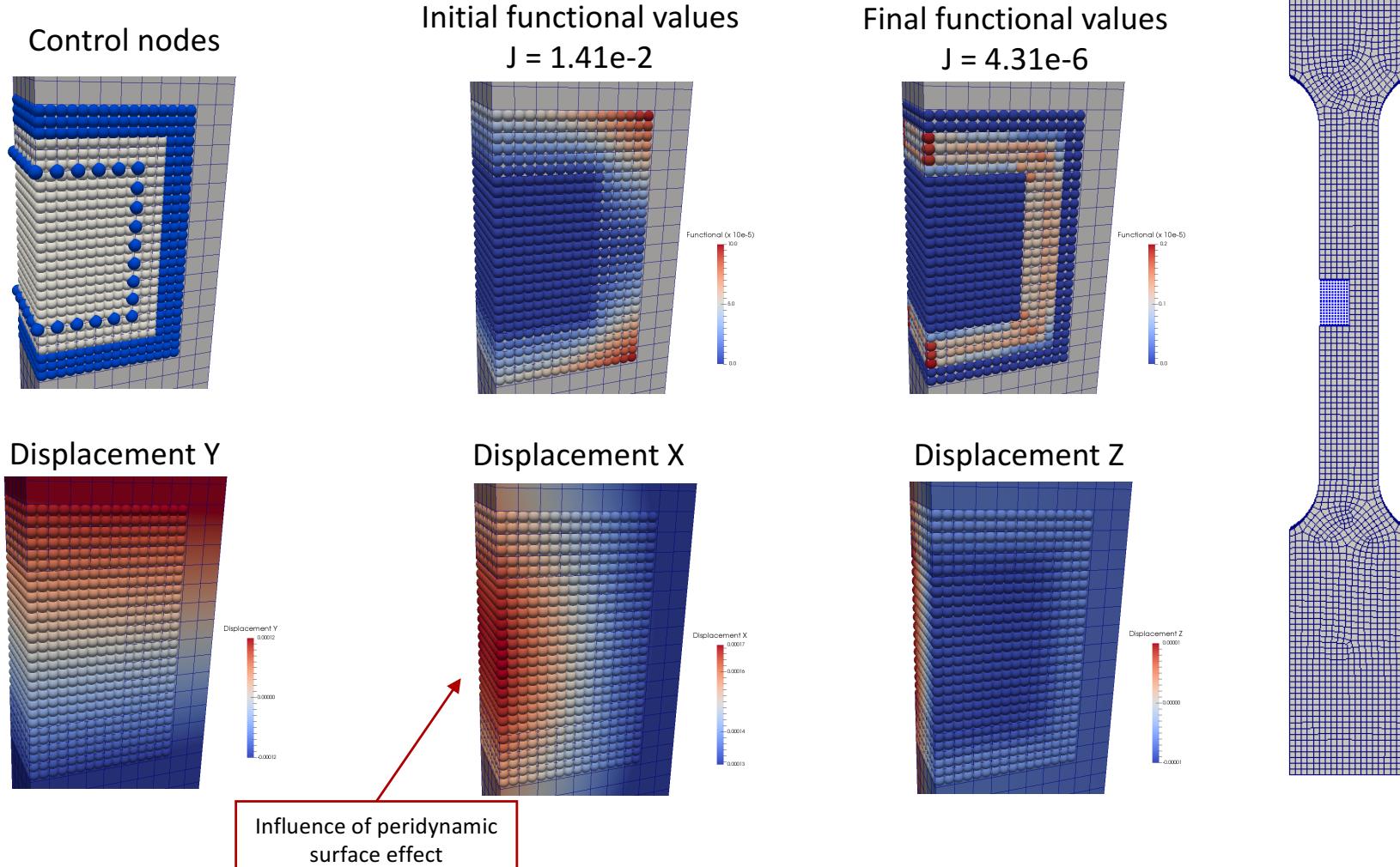
- Boundary conditions applied only to local model
 - Simple and well understood
- Peridynamic model applied in vicinity of crack
 - Nonlocal model is best suited to model crack region



Tension Test

Application of coupling strategy to realistic geometry

- Boundary conditions applied only to local model
- Peridynamic model restricted to small subdomain

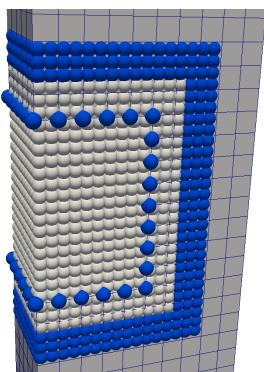


Tension Test with Pre-Crack

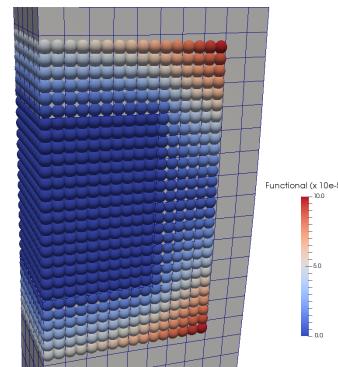
Application of coupling strategy to realistic geometry

- Boundary conditions applied only to local model
- Peridynamic model restricted to small subdomain

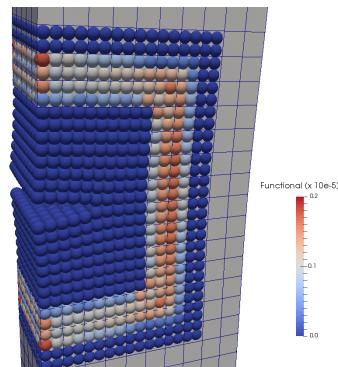
Control nodes



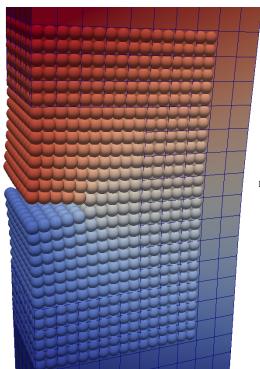
Initial functional values
 $J = 1.41\text{e-}2$



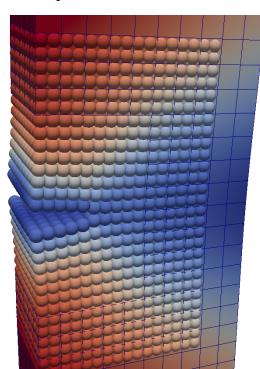
Final functional values
 $J = 3.80\text{e-}6$



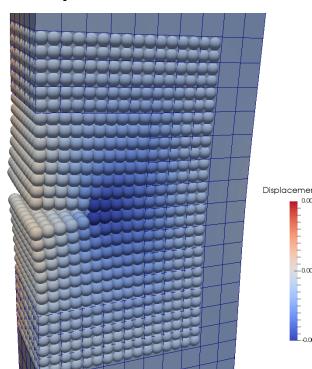
Displacement Y



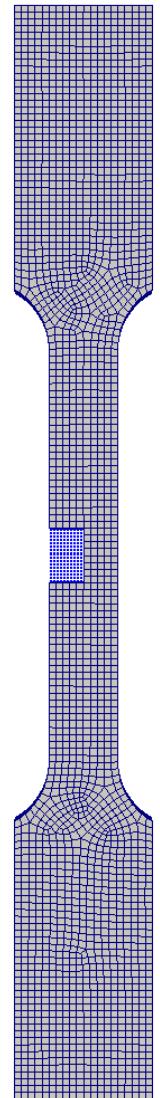
Displacement X



Displacement Z



Displacements
magnified 50x
for visualization
purposes



Ongoing Work

Improvements to optimization-based local-nonlocal coupling strategy

- Improvements in computational efficiency
 - Initial guess for solution on control nodes (utilize fully-local solution?)
 - Obtain second derivative information analytically (i.e., without finite difference) for use with ROL optimization routines
- Quasi-statics
- Crack growth
- Explicit dynamics

Questions?

David Littlewood

djlittl@sandia.gov

<https://peridigm.sandia.gov>

<https://github.com/gahansen/albany>