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Estimation and Control for Efficient Autonomous Drilling through
Layered Materials
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Abstract— Drilling is a repetitive, dangerous and costly
process and a strong candidate for automation. We describe a
method for autonomously controlling a rotary drilling process as
it transitions through multiple materials with very different
dynamics. This approach classifies the drilling medium based on
real-time measurements and comparison to prior drilling data,
and can identify the material type, drilling region, and
approximately optimal set-point based on data from as few as
one operating condition. The controller uses these set-points as
initial conditions, and then conducts an optimal search to
maximize performance, e.g. by minimizing mechanical specific
energy. The control architecture is described, and the material
estimation process is detailed. The results of experiments that
implement autonomous drilling through a layered concrete and
granite sample are discussed.

. INTRODUCTION

Rotary drilling is a complex process that is largely
controlled by highly trained and experienced human expert
operators. Drilling conditions change constantly due to
heterogeneous rock formations, bit wear, and interactions
between the drillstring and the wellbore. Furthermore,
observed conditions at the surface may be drastically different
than conditions downhole. The US drilling products and
services industry is $60B [1], and improving drilling
performance can have an enormous economic impact by
reducing time spent per foot drilled and costly equipment
failures.

Drilling operations are highly repetitive and inherently
dangerous, making drilling a strong candidate for automation
[2]. Automation and autonomous control have the potential to
improve safety, enhance operations in harsh environments,
and increase efficiency. Field tests show that automated
drilling systems can achieve improvements in penetration rate
by over 10% [3]. In spite of the enormous potential benefits
from automation, field drilling remains a startlingly manual
process, with operators making continuous manual
adjustments even to achieve basic regulation of low-level
control set-points.

One approach to autonomous drilling is to attempt to
optimize high-level drilling performance metrics such as the
rate of penetration (ROP) or the mechanical specific energy
(MSE). MSE is the amount of energy required to remove a
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unit volume of rock, with units typically in psi [4]. The
ExxonMobil Fastdrill technology estimates MSE online and
prompts suggested setting changes to the driller [5]. Recently,
several research groups have developed and tested optimizing
automation tools that attempt to maximize ROP based on
measured signals in the rock [3,6,7]. A central feature of these
works is that they exploit a model that can be used to predict
drilling performance. In [7], the authors employ the
Bourgoyne and Young model [8]. Similarly, the authors in [9]
employ the Jorden and Shirley model [10]. In [3,6], the
authors employ a phenomenological rock-bit interaction
model developed by Detournay [11,12]. The use of model
fitting approaches is complicated by the unknown nature of
the rock formations and their inhomogeneity. Different rock
types have very different characteristics defined by unique
model parameters, and indiscriminate fitting across rock types
will result in inaccurate predictions. Furthermore, key
parameters in the most effective rock-bit interaction models
also depend on bit characteristics, including wear over time.
Therefore, the ability to determine the rock-type and detect
changes in real time is essential to successful automation. In
[3,6], a Bayesian change point detector is used to determine a
change in rock formation. The Detournay parameters for the
data segment are then determined and used to determine
optimal drilling settings which are then presented to the driller
or used in closed-loop control to maximize ROP.

We describe a new approach to fully autonomous drilling
that focuses particularly on the autonomous management of
transitions between multiple layers of different material. This
approach has been validated using experiments at Sandia’s
Hard Rock Drilling Facility (HRDF), shown in Fig. 1. Like
the prior works [3,6], we exploit the Detournay model for
rotary drag bit drilling. However, our approach uses a
classifier and database from previous drilling data to correlate
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Figure 1. Sandia’s Hard Rock Drillinig Facility with an engineered
multilayered rock sample and 5-blade PDC bit.



measured rock properties with rock types and desired drilling
control parameters. This means that data from only one
operating point is sufficient to estimate the rock type, the
drilling region, and the optimal drilling settings for that rock
type. The rock type is estimated continuously. When changes
in the rock type are detected, the drilling set-points are
updated. In order to handle small deviations from the database
data, local searches are performed around the prescribed
optimal settings to determine the true optimal. Low-level Pl
controllers are used to regulate to desired settings.

Section Il summarizes key drilling background, including
an introduction to drilling regimes, common models for rotary
drag bit drilling, and drilling performance metrics. Section 111
provides an overview of our control approach. Section IV
presents our approach to material property estimation and
material classification. Section V describes experiments and
results performing closed-loop autonomous drilling through
multi-material samples. Section VI provides discussions and
conclusions.

Il. ROTARY DRILLING MODEL

Detournay et al. describe a phenomenological model of the
drilling process for drag bits with polycrystalline diamond
compacts (PDC) as the cutting surface [11,12]. This model
describes drilling as a three dimensional relationship between
scaled weight (w), scaled torque (t), and depth of cut (d),
which we will refer to as Detournay parameters. In the model,
these quantities are employed as opposed to weight on bit
(WOB), torque (z), and ROP, to provide physical meaning
that is not dominated by the impact of bit size and rotational
speed.

A. Three Drilling Regimes

The Detournay model describes three drilling regimes
referred to as phases I, I1, and I11. Phase | is characterized by
contact area of the cutter wear flat increasing as depth of cut
slowly increases with w. An ideal sharp bit would have no
phase 1. Phase Il begins once a critical depth of cut has been
reached such that the rock cannot support additional normal
stress generated on the fully engaged wear flat. Because of
this lack of support, any further increase in w drives the cutter
into the rock and directly translates into an increase in cutting
force, causing the bit to increasingly act as if perfectly sharp.
Phase 11 is associated with productive and efficient drilling,
and thus represents the target operating region. Phase 11 is the
region which occurs after the founder point. In this region, the
relationships between the Detournay parameters are not
generally unique. However, the efficiency decreases as w
increases in phase Il1. Drilling performance at higher weight
can be degraded through a number of mechanisms including
stick-slip and bit balling [13].

B. Drilling Mechanics Model

The drilling response in Detournay’s model describes
phases | and Il as having linear relationships between w, t, and
d in three-dimensional space. Furthermore, phase | is
constrained to intersect the origin. While the model uses
physical parameters to define the equations of these lines, we
find that knowing that these relationships are linear is
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Figure 2. A cartoon diagram illustrating the 3 phases of the Detournay
drilling model.

sufficient for finding useful models from data. For simplicity,
we also assume that phase 111 can be characterized by a linear
relationship. Thus, our model for rate-independent rock-bit
interaction is a piecewise continuous function in three-
dimensional space with three linear segments as shown in
Fig. 2.

Because we have control of weight-on-bit, we define w as
the independent variable. Our model necessitates two critical
values to separate the three regions. We define wi, and w3 to
denote the scaled weight at the phase I-11 transition and phase
I1-111 transition respectively. To ensure continuity and
intersection of the origin we use the following equation for
scaled torque:

aw w < wy,
t=4a,(Ww—wp)+t, wi <w<wyg (@)
az(w —wy3) + ty3 w > Wy
where
t12 = aywyp
and

tz3 = az(Wa3 — wiz) + tya.
Depth of cut, d, is defined similarly but with different
scalars.

C. Dirilling Performance Metrics

Our primary metric for drilling optimization is MSE.
According to the Detournay model, the minimum MSE
should occur at the transition from phase Il to Ill. This
transition begins when further increases in w no longer
translate into pure cutting of virgin rock, and drilling proceeds
in a less efficient manner (due, for example, to regrinding of
cuttings, poor energy transfer, etc.). To compute MSE
utilizing the Detournay parameters we use the following
equation:

w t
MSE = n_R + E (2)
where R is the bit radius. For a full cross-section (hon-coring)
bit, this equation computes the sum of linear and rotational
energy per volume of rock removed.



While maximizing ROP is commonly desired, MSE
minimization is more reliable for achieving high rates of
penetration while avoiding potentially deleterious effects
introduced during inefficient drilling. On our test drill rig we
have found that we can enter phase Il while still increasing
ROP. This has led to inefficient drilling that is often
accompanied by undesired oscillations in RPM due to stick-
slip or torque saturation.

I1l. CONTROL APPROACH OVERVIEW

Our overall approach to the autonomous control of rotary
drilling is depicted schematically in Fig. 3. The drilling
system controls the force applied to the rock by the bit, termed
the weight-on-bit (WOB), and the angular velocity . The
interactions between the bit and rock then determine the
outcomes of the drilling process, including: the torque t
between the bit and rock, the linear velocity or ROP, and
higher-level metrics such as the drilling efficiency or MSE.
Our approach uses a high-level control system to generate
desired set-points for @ and WOB. Low-level Pl controllers
are used to regulate these inputs, which are generally
controlled via hydraulic or pneumatic valves, depending on
the drilling rig details.

An autonomous operating point control (AOPC) system is
used to produce desired set-points. This high-level control
system includes an estimator that uses measured drilling
process inputs and outputs to estimate the Detournay
parameters associated with the current rock type. (The details
of this estimator are discussed in the next section). These
parameters are then compared with a database to select
predetermined appropriate set-points. The Detournay
parameters are also supplied to a supervisory controller that
performs two functions. First, it determines whether the
parameters have changed enough to indicate that a new
material has been encountered. If there is no significant
change, then the set-point values from the database are passed
through to the low-level control system. If a material change
is indicated, then the supervisory controller triggers and
executes a local search for optimal operating conditions.
Generally, the system searches for settings that minimize
MSE, but it can also maximize ROP, co-optimize the two, or
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Figure 3. A schematic diagram of the autonomous drilling system.

optimize other metrics. In this work we employ a Golden
Section Search around a fixed interval around the AOPC set-
point. This method can be expanded to adaptively find an
initial search interval (rather than relying on a fixed interval).

Finally, we include an anti-stall controller. Stall conditions
can arise when transitioning from a hard material that requires
a very high WOB to a much softer material that cannot
tolerate high WOB. Softer rocks create significantly higher
ratios of torque to WOB than harder materials. Torques may
exceed system limits under high WOB, causing the bit to stall.
To avoid this, our anti-stall controllers can monitor torque. If
the torque exceeds a threshold (e.g. 80% of the drill rig limits),
the anti-stall controller intervenes and reduces the target
WOB by an amount determined by a barrier function. This is
designed to respond more rapidly to material changes than the
higher-level AOPC system, which generally has a time
constant of several seconds to avoid reacting to noise in the
drilling process.

The remainder of this paper focuses primarily on the
AOPC. Low-level controllers are implemented and discussed
briefly. The anti-stall controller has been simulated but not yet
implemented for the experiments described herein.

IV. MATERIAL ESTIMATION

Our approach for material estimation is to first create
Detournay models for each general type of rock we expect to
drill. When drilling, the rock type and drilling phase (I, I, or
I11) are then classified as the Detournay model which is
closest to the measured Detournay parameters. The three
types of “rock” we were interested in classifying for test
purposes were sandstone, concrete, and granite. Detournay
parameters are specific not only to the drilling medium, but
also to the design of the bit. Therefore this approach requires
either training experiments with the specific bit in question,
or extensive modeling to capture the relevant bit
characteristics.

Training data for the models came from 13 tests in
sandstone, 10 in concrete and 17 in granite. Detournay models
for each of the three rock types were fit to the test data using
a least squares approach. An optimization fit seven
parameters: ai, @z, and as in the equations for both t and d, as
well as wi. The parameter wp3 was chosen through a separate
process as the w which provided the minimum MSE. Before
computing the residuals, the data were normalized based on
the filtered maximum values for t and d over all tests.

Measuring the distance to the models was broken down into
two steps. Step one is to use the two bisecting planes of the
three phases to determine which line segment is closest to the
current set of Detournay parameters. This step is performed
for each of the models being tested. Once the closest segments
are identified, standard computation of the distance from a
point to a line is used to determine the distance to the model.
Again, the data is normalized before distance is computed.
These distances are compared and the closest model is chosen
as the estimated rock for the current data point. An added
benefit of this approach is that phase is also predicted by the
model from the first step.

Fig. 4 shows the results of running this classifier on the
training data. A confusion matrix is also included, indicating
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Figure 4. Plots illustrating the Detournay classifier performance using experimental data. For misclassified data, identified rock type is denoted by triangles,
circles and x’s for sandstone, concrete, and granite respectively. True rock type of misclassified data is not indicated.

84% success in identifying sandstone, 86% success in
identifying concrete, and 99% success in identifying granite.
Most of the confusion results from the fact that the models for
sandstone and concrete are fairly close to each other in some
portions of the t-w-d space. When integrated with the
autonomous controller, a mode filter was implemented on the
classifier output to prevent control behavior transitions from
occurring in response to noise in the classifier output. This
filter takes the mode of the rock estimate over a 4s window.

V. EXPERIMENTS

Laboratory experiments were conducted to demonstrate the
ability to autonomously drill through unknown multi-layered
material samples using an implementation of the control
architecture diagrammed in Fig. 3.

A. Experimental Apparatus

1) Hard Rock Drilling Facility

Rotary drilling tests were conducted at the Hard Rock
Drilling Facility (HRDF) at Sandia (Fig.1). The HRDF
consists of structural steel frame that houses a hydraulic top-
drive motor and hydraulic cylinders used to apply weight-on-
bit (WOB). The test facility can apply up to 6000 Ibf of WOB
and 560 Ibf-ft of torque. A 3 in. diameter drillstring transmits
torque from the top drive to the drill bit. Facility-supply water
is used as a drilling fluid and is circulated through the bit [14].
Drilling tests were performed with a 3.75” diameter 5-bladed
PDC bit from Ulterra (Fig. 5).

The facility is configured to house a 36”x36”x20” test
specimen for drilling. The rock sample can be positioned at
various locations beneath the drill head allowing multiple
holes to be drilled for each rock sample.

2) Engineered Rock Sample

Initial classifier training was completed on uniform
material samples. Subsequent autonomous drilling tests were
conducted using custom-made layered test articles. Each of
these engineered rock samples consists of four 17.75”x
17.757x10.75” (LxWxH) concrete samples reinforced
horizontally with %2 grade-8 threaded rods and an underlying
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Figure 5. Photograph of the Ulterra 5-blae PDC bit used in drilling tests.




36”x367x5” slab of Sierra White Granite (SWG). Each of the
concrete samples were post-tensioned to an average
compressive stress of 150 psi and vary by aggregate type,
aggregate volumetric fraction, and compressive strength.
Compressive strength tests were conducted according to
ASTM C39 at curing intervals of 7, 14, and 21 days and on
the first day of drilling (52 days). The results are listed in
Table 1. Quadrants QIl and QIIl are most similar in
compressive strength and were used for the autonomous
drilling experiments presented in this paper.

TABLE I. CONCRETE CONTENT AND MEASURED STRENGTH
Mold 1 (4000 psi concrete mix) | 52-day strength (psi)
Q| (73% basalt aggregate) 3450
Q Il (68% basalt aggregate) 7890
Q Il (73% standard aggregate) 7860
Q IV (68% standard aggregate) 8450

3) Data Acquisition and Control

The HRDF controller is a PC-based system integrated with
data acquisition hardware. Displayed data includes WOB,
torque, rotary speed, and drill head position. WOB is
calculated from measured differential pressure across the
hydraulic cylinders. Torque is determined by measuring the
input pressure to the fixed-displacement hydraulic drive
motor. Rotary speed is monitored using a rotary pulse
generator on the hydraulic motor. A linear potentiometer is
used to determine the drillstring position relative to the frame.

The controller consists of a LabView virtual instrument
(V1) integrated with MATLAB for data processing. Real-time
estimation and control calculations are performed in the
Labview VI, in some cases using embedded MATLAB
scripts. The VI interfaces with the data acquisition hardware
and displays the process variables to the operator via the
display shown in Fig. 6. Data is acquired at a sampling rate of
2048 samples per second and collected in 256 sample
increments. The collected data is then processed in MATLAB
for analysis.
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Figure 6. A screenshot of the HRDF LabView Control Interface

4) Low-level closed-loop control

Rotational speed of the drill head is controlled using
voltage-controlled proportional valves which modulate the
hydraulic fluid flow to the rotation motor. A pressure relief
valve limits output torque. WOB is controlled using voltage-

3000

2800

2600

2400

inj

2200

w (IbF

2000

1600

1400 -

|
|
|
|
|
|
|
|
1800 | |
|
|
|
|
|
|

34 035 36 37 38 39 40 41 42 43 44 45
Time (s)
Figure 7. Time response data for three reference step changes illustrating
performance of the low-level WOB system under PI control.

controlled proportional valves which modulate the hydraulic
cylinder pressures.

Pl feedback controllers are used to achieve low-level
control: to regulate rotary speed and applied WOB. Sensor
measurements are as described above, and the control signals
direct the behavior of the hydraulic valves. Fig.7 shows
example step responses for the low level WOB controller.
Rise time were typically less than 0.5 s for large steps and as
low as 0.1 s for small steps. The longer time for larger steps
is due to nonlinear effects of the plant.

B. Multi-Material Drilling Results

AOPC control was implemented along with low-level
drilling parameter regulators as diagrammed in Fig. 3, and a
number of holes were drilled autonomously in the engineered
composite rock sample (Fig. 1). Anti-stall control was not
implemented for these experiments.

Tests were conducted with a constant rotation rate of
100 RPM, with WOB varied autonomously. The system was
allowed to reach the desired speed set-point with no load.
After the rotation rate was reached, the drill head was
manually lowered onto the rock to initiate drilling. After the
initial contact, the autonomous control was engaged. Drilling
continued through each sample until the end of the drill head
stroke was reached. The drilling operator took no action
between the engagement of autonomous control and the
automatic termination of drilling, and only monitored the
process.

Quadrant QIIl was used primarily to train the concrete
classifier and to develop control set-points. Subsequently,
evaluation holes were drilled in quadrant QII. Fig. 8 shows
the time histories of the Detournay parameters w, t, and d
(scaled WOB, torque and depth of cut) as well as the MSE,
for a representative test run. The plots are color coded to
indicate the real-time estimate of rock type and phase. The
actual transition from concrete to granite occurs just before
the 30 second mark and is indicated by the significant
transients in each parameter. During the initial WOB ramp,
just before the AOPC was engaged, concrete is misclassified
as sandstone. This estimate is quickly corrected as the WOB
reaches more significant levels. The controller then performs
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Figure 8. A plot illustrating the real-time performance of the drilling classification and optimizing system.

a local search for the optimal WOB that converges to a local
minimum for MSE. Fig. 9 plots the average MSE versus w at
each set-point as the AOPC conducts a golden search, and
indicates the search order. The MSE is relatively insensitive
to w in the local search range, and the minimum MSE is
located within a fairly narrow w range from the initial set-
point. This indicates that the initial set-point based on correct
material classification and prior drilling is reasonably
accurate, and the search need not deviate far.

When the drill transitions materials, granite is rapidly
detected based on the significant change in Detournay
parameters. Control action lags by approximately 4-5 seconds
as the filter confirms that a real transition has occurred. With
confirmation of a granite medium, the controller switches to
the prescribed optimal WOB and starts a new local search,
which also finds a local minimum MSE.

C. Comparison to Fixed Control Settings

The local search in concrete found a local minimum MSE
of about 6.5 ksi at a scaled weight of 1320 Ibf/in. The search
in granite initially found a local minimum MSE of around
20.5 ksi at a scaled weight of 2780 Ibf/in; however, upon
returning to this setting at the completion of the search, the
final MSE was slightly higher at 23.2 ksi.

Additional experiments confirm that these results clearly
outperform any fixed w setting for drilling this composite rock
as measured by MSE. For example, if w is set at the average
between the two optimal conditions (w, 2050 Ibf/in), MSE is
7.6 ksi in concrete (17% worse than the AOPC) and 33 ksi in
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granite (42% worse). Increasing w above 2050 Ibf/in, to
improve granite drilling performance, results in stick-slip
behavior and significant vibrations during concrete drilling.
Operating at lower w to improve concrete performance results
in slow, inefficient drilling in granite. For example, operating
at the optimal w for concrete causes MSE to rise above 40 ksi
in granite, as can be seen in the interval in Fig. 8 after the
material transitions but before the controller responds
(time=30-34 secs). Allowing the controller to detect the rock



and change the set-point using our AOPC provides significant
improvements in average MSE and makes multi-material
drilling without operator intervention possible.

VI. DiscussioN AND CONCLUSIONS

This work describes the design and successful
experimental demonstration of a control system to enable
autonomous rotary drilling through layered multi-material
samples. The experiments demonstrate control that converges
to MSE values approximately equal to the ultimate
compressive strength of the drilled materials (concrete and
granite), indicating highly efficient drilling that approaches
the ideal. By applying the widely-accepted Detournay model
for drilling with PDC bits, this approach is able to explicitly
classify materials and determine initial set-points for those
materials based on prior drilling. In experiments, these set-
points prove to be near optimal, but a search for optimal
conditions is initiated upon detection of material transitions in
case the classifier is incorrect or the material differs
significantly from the available library of tested materials.
The autonomous controller is shown to significantly
outperform any single fixed setting in multi-material drilling.

Future work would significantly extend the capability and
further test its value. We would like to implement and verify
the anti-stall controller describe in section I11. This would add
a significant safeguard to the system by reducing WOB
rapidly when torque rises unexpectedly near its limit.

Expanding the controller’s material library database by
conducting additional drilling tests in different rocks could
enhance the versatility of the system. We note that as more
rock types are added, the probability of some pairs having
Detournay models with nearly intersecting lines increases.
This would result in having higher probability of
misclassifying the rock. Our local search should help the
controller reach an optimum in the event of initial
misclassification, however, more research should be done on
the consequences of having a large library of materials. One
possible solution for reducing misclassification rates when
operating with a large library would be to add prior
probabilities for the various rocks and use a Bayesian analysis
to pick the rock of maximum likelihood.

Finally, additional study into the applicability of this
approach for more realistic, deep-hole drilling is required.
Several challenges exist for moving out of the laboratory
environment:

1) The wear state of the bit is not constant as we have been
able to assume here. Thus, the material database should
dynamically update to account for a model of the
estimated wear of the bit based on the drilling history.

2) The rock-bit interaction parameters are also dependent
on the downhole pressure. Thus, the database must also
account for the measured downhole pressure.

3) Depth of cut resolution and other measurements in the
field are often poor due to the drillstring dynamics. A
key goal for further research is to determine how the
quality of Detournay model estimates degrades with
less controlled and more compliant drilling dynamics,
and also what techniques can be used to restore the
fidelity of downhole parameters using surface

measurements. Much of this can be done in a simulated
manner at our existing facility [14].
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