
  

Abstract— Drilling is a repetitive, dangerous and costly 

process and a strong candidate for automation. We describe a 

method for autonomously controlling a rotary drilling process as 

it transitions through multiple materials with very different 

dynamics. This approach classifies the drilling medium based on 

real-time measurements and comparison to prior drilling data, 

and can identify the material type, drilling region, and 

approximately optimal set-point based on data from as few as 

one operating condition. The controller uses these set-points as 

initial conditions, and then conducts an optimal search to 

maximize performance, e.g. by minimizing mechanical specific 

energy. The control architecture is described, and the material 

estimation process is detailed. The results of experiments that 

implement autonomous drilling through a layered concrete and 

granite sample are discussed.  

I. INTRODUCTION 

Rotary drilling is a complex process that is largely 

controlled by highly trained and experienced human expert 

operators. Drilling conditions change constantly due to 

heterogeneous rock formations, bit wear, and interactions 

between the drillstring and the wellbore. Furthermore, 

observed conditions at the surface may be drastically different 

than conditions downhole. The US drilling products and 

services industry is $60B [1], and improving drilling 

performance can have an enormous economic impact by 

reducing time spent per foot drilled and costly equipment 

failures. 

Drilling operations are highly repetitive and inherently 

dangerous, making drilling a strong candidate for automation 

[2]. Automation and autonomous control have the potential to 

improve safety, enhance operations in harsh environments, 

and increase efficiency. Field tests show that automated 

drilling systems can achieve improvements in penetration rate 

by over 10% [3]. In spite of the enormous potential benefits 

from automation, field drilling remains a startlingly manual 

process, with operators making continuous manual 

adjustments even to achieve basic regulation of low-level 

control set-points. 

One approach to autonomous drilling is to attempt to 

optimize high-level drilling performance metrics such as the 

rate of penetration (ROP) or the mechanical specific energy 

(MSE). MSE is the amount of energy required to remove a 

unit volume of rock, with units typically in psi [4]. The 

ExxonMobil Fastdrill technology estimates MSE online and 

prompts suggested setting changes to the driller [5]. Recently, 

several research groups have developed and tested optimizing 

automation tools that attempt to maximize ROP based on 

measured signals in the rock [3,6,7]. A central feature of these 

works is that they exploit a model that can be used to predict 

drilling performance. In [7], the authors employ the 

Bourgoyne and Young model [8]. Similarly, the authors in [9] 

employ the Jorden and Shirley model [10]. In [3,6], the 

authors employ a phenomenological rock-bit interaction 

model developed by Detournay [11,12]. The use of model 

fitting approaches is complicated by the unknown nature of 

the rock formations and their inhomogeneity. Different rock 

types have very different characteristics defined by unique 

model parameters, and indiscriminate fitting across rock types 

will result in inaccurate predictions. Furthermore, key 

parameters in the most effective rock-bit interaction models 

also depend on bit characteristics, including wear over time. 

Therefore, the ability to determine the rock-type and detect 

changes in real time is essential to successful automation. In 

[3,6], a Bayesian change point detector is used to determine a 

change in rock formation. The Detournay parameters for the 

data segment are then determined and used to determine 

optimal drilling settings which are then presented to the driller 

or used in closed-loop control to maximize ROP.  

We describe a new approach to fully autonomous drilling 

that focuses particularly on the autonomous management of 

transitions between multiple layers of different material. This 

approach has been validated using experiments at Sandia’s 

Hard Rock Drilling Facility (HRDF), shown in Fig. 1. Like 

the prior works [3,6], we exploit the Detournay model for 

rotary drag bit drilling. However, our approach uses a 

classifier and database from previous drilling data to correlate 
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Figure 1. Sandia’s Hard Rock Drilling Facility with an engineered 

multilayered rock sample and 5-blade PDC bit. 
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measured rock properties with rock types and desired drilling 

control parameters. This means that data from only one 

operating point is sufficient to estimate the rock type, the 

drilling region, and the optimal drilling settings for that rock 

type. The rock type is estimated continuously. When changes 

in the rock type are detected, the drilling set-points are 

updated. In order to handle small deviations from the database 

data, local searches are performed around the prescribed 

optimal settings to determine the true optimal. Low-level PI 

controllers are used to regulate to desired settings.  

Section II summarizes key drilling background, including 

an introduction to drilling regimes, common models for rotary 

drag bit drilling, and drilling performance metrics. Section III 

provides an overview of our control approach. Section IV 

presents our approach to material property estimation and 

material classification. Section V describes experiments and 

results performing closed-loop autonomous drilling through 

multi-material samples. Section VI provides discussions and 

conclusions. 

II. ROTARY DRILLING MODEL 

Detournay et al. describe a phenomenological model of the 

drilling process for drag bits with polycrystalline diamond 

compacts (PDC) as the cutting surface [11,12]. This model 

describes drilling as a three dimensional relationship between 

scaled weight (w), scaled torque (t), and depth of cut (d), 

which we will refer to as Detournay parameters. In the model, 

these quantities are employed as opposed to weight on bit 

(WOB), torque (τ), and ROP, to provide physical meaning 

that is not dominated by the impact of bit size and rotational 

speed. 

A. Three Drilling Regimes 

The Detournay model describes three drilling regimes 

referred to as phases I, II, and III. Phase I is characterized by 

contact area of the cutter wear flat increasing as depth of cut 

slowly increases with w. An ideal sharp bit would have no 

phase I. Phase II begins once a critical depth of cut has been 

reached such that the rock cannot support additional normal 

stress generated on the fully engaged wear flat. Because of 

this lack of support, any further increase in w drives the cutter 

into the rock and directly translates into an increase in cutting 

force, causing the bit to increasingly act as if perfectly sharp. 

Phase II is associated with productive and efficient drilling, 

and thus represents the target operating region. Phase III is the 

region which occurs after the founder point. In this region, the 

relationships between the Detournay parameters are not 

generally unique. However, the efficiency decreases as w 

increases in phase III. Drilling performance at higher weight 

can be degraded through a number of mechanisms including 

stick-slip and bit balling [13]. 

B. Drilling Mechanics Model 

The drilling response in Detournay’s model describes 

phases I and II as having linear relationships between w, t, and 

d in three-dimensional space. Furthermore, phase I is 

constrained to intersect the origin. While the model uses 

physical parameters to define the equations of these lines, we 

find that knowing that these relationships are linear is 

sufficient for finding useful models from data. For simplicity, 

we also assume that phase III can be characterized by a linear 

relationship. Thus, our model for rate-independent rock-bit 

interaction is a piecewise continuous function in three-

dimensional space with three linear segments as shown in 

Fig. 2. 

Because we have control of weight-on-bit, we define w as 

the independent variable. Our model necessitates two critical 

values to separate the three regions. We define w12 and w23 to 

denote the scaled weight at the phase I-II transition and phase 

II-III transition respectively. To ensure continuity and 

intersection of the origin we use the following equation for 

scaled torque: 

 𝑡 = {

𝑎1𝑤 𝑤 < 𝑤12
𝑎2(𝑤 − 𝑤12) + 𝑡12 𝑤12 < 𝑤 < 𝑤23

𝑎3(𝑤 − 𝑤23) + 𝑡23 𝑤 > 𝑤23

 (1) 

where 

 𝑡12 = 𝑎1𝑤12  

and 

 𝑡23 = 𝑎2(𝑤23 −𝑤12) + 𝑡12. 

Depth of cut, d, is defined similarly but with different 

scalars. 

C. Drilling Performance Metrics 

Our primary metric for drilling optimization is MSE. 

According to the Detournay model, the minimum MSE 

should occur at the transition from phase II to III. This 

transition begins when further increases in w no longer 

translate into pure cutting of virgin rock, and drilling proceeds 

in a less efficient manner (due, for example, to regrinding of 

cuttings, poor energy transfer, etc.). To compute MSE 

utilizing the Detournay parameters we use the following 

equation:  

 𝑀𝑆𝐸 =
𝑤

𝜋𝑅
+

𝑡

𝑑
 (2) 

where R is the bit radius. For a full cross-section (non-coring) 

bit, this equation computes the sum of linear and rotational 

energy per volume of rock removed. 

 
Figure 2. A cartoon diagram illustrating the 3 phases of the Detournay 

drilling model. 



  

While maximizing ROP is commonly desired, MSE 

minimization is more reliable for achieving high rates of 

penetration while avoiding potentially deleterious effects 

introduced during inefficient drilling. On our test drill rig we 

have found that we can enter phase III while still increasing 

ROP. This has led to inefficient drilling that is often 

accompanied by undesired oscillations in RPM due to stick-

slip or torque saturation. 

III. CONTROL APPROACH OVERVIEW 

Our overall approach to the autonomous control of rotary 

drilling is depicted schematically in Fig. 3. The drilling 

system controls the force applied to the rock by the bit, termed 

the weight-on-bit (WOB), and the angular velocity ω. The 

interactions between the bit and rock then determine the 

outcomes of the drilling process, including: the torque τ 

between the bit and rock, the linear velocity or ROP, and 

higher-level metrics such as the drilling efficiency or MSE. 

Our approach uses a high-level control system to generate 

desired set-points for ω and WOB. Low-level PI controllers 

are used to regulate these inputs, which are generally 

controlled via hydraulic or pneumatic valves, depending on 

the drilling rig details.  

An autonomous operating point control (AOPC) system is 

used to produce desired set-points. This high-level control 

system includes an estimator that uses measured drilling 

process inputs and outputs to estimate the Detournay 

parameters associated with the current rock type. (The details 

of this estimator are discussed in the next section). These 

parameters are then compared with a database to select 

predetermined appropriate set-points. The Detournay 

parameters are also supplied to a supervisory controller that 

performs two functions. First, it determines whether the 

parameters have changed enough to indicate that a new 

material has been encountered. If there is no significant 

change, then the set-point values from the database are passed 

through to the low-level control system. If a material change 

is indicated, then the supervisory controller triggers and 

executes a local search for optimal operating conditions. 

Generally, the system searches for settings that minimize 

MSE, but it can also maximize ROP, co-optimize the two, or 

optimize other metrics. In this work we employ a Golden 

Section Search around a fixed interval around the AOPC set-

point. This method can be expanded to adaptively find an 

initial search interval (rather than relying on a fixed interval).  

Finally, we include an anti-stall controller. Stall conditions 

can arise when transitioning from a hard material that requires 

a very high WOB to a much softer material that cannot 

tolerate high WOB. Softer rocks create significantly higher 

ratios of torque to WOB than harder materials. Torques may 

exceed system limits under high WOB, causing the bit to stall. 

To avoid this, our anti-stall controllers can monitor torque. If 

the torque exceeds a threshold (e.g. 80% of the drill rig limits), 

the anti-stall controller intervenes and reduces the target 

WOB by an amount determined by a barrier function. This is 

designed to respond more rapidly to material changes than the 

higher-level AOPC system, which generally has a time 

constant of several seconds to avoid reacting to noise in the 

drilling process. 

The remainder of this paper focuses primarily on the 

AOPC. Low-level controllers are implemented and discussed 

briefly. The anti-stall controller has been simulated but not yet 

implemented for the experiments described herein. 

IV. MATERIAL ESTIMATION 

Our approach for material estimation is to first create 

Detournay models for each general type of rock we expect to 

drill. When drilling, the rock type and drilling phase (I, II, or 

III) are then classified as the Detournay model which is 

closest to the measured Detournay parameters. The three 

types of “rock” we were interested in classifying for test 

purposes were sandstone, concrete, and granite. Detournay 

parameters are specific not only to the drilling medium, but 

also to the design of the bit. Therefore this approach requires 

either training experiments with the specific bit in question, 

or extensive modeling to capture the relevant bit 

characteristics. 

Training data for the models came from 13 tests in 

sandstone, 10 in concrete and 17 in granite. Detournay models 

for each of the three rock types were fit to the test data using 

a least squares approach. An optimization fit seven 

parameters: a1, a2, and a3 in the equations for both t and d, as 

well as w12. The parameter w23 was chosen through a separate 

process as the w which provided the minimum MSE. Before 

computing the residuals, the data were normalized based on 

the filtered maximum values for t and d over all tests. 

Measuring the distance to the models was broken down into 

two steps. Step one is to use the two bisecting planes of the 

three phases to determine which line segment is closest to the 

current set of Detournay parameters. This step is performed 

for each of the models being tested. Once the closest segments 

are identified, standard computation of the distance from a 

point to a line is used to determine the distance to the model. 

Again, the data is normalized before distance is computed. 

These distances are compared and the closest model is chosen 

as the estimated rock for the current data point. An added 

benefit of this approach is that phase is also predicted by the 

model from the first step. 

Fig. 4 shows the results of running this classifier on the 

training data. A confusion matrix is also included, indicating  
Figure 3. A schematic diagram of the autonomous drilling system. 



  

84% success in identifying sandstone, 86% success in 

identifying concrete, and 99% success in identifying granite. 

Most of the confusion results from the fact that the models for 

sandstone and concrete are fairly close to each other in some 

portions of the t-w-d space. When integrated with the 

autonomous controller, a mode filter was implemented on the 

classifier output to prevent control behavior transitions from 

occurring in response to noise in the classifier output. This 

filter takes the mode of the rock estimate over a 4s window. 

V. EXPERIMENTS 

Laboratory experiments were conducted to demonstrate the 

ability to autonomously drill through unknown multi-layered 

material samples using an implementation of the control 

architecture diagrammed in Fig. 3. 

A. Experimental Apparatus 

1) Hard Rock Drilling Facility 

Rotary drilling tests were conducted at the Hard Rock 

Drilling Facility (HRDF) at Sandia (Fig. 1). The HRDF 

consists of structural steel frame that houses a hydraulic top-

drive motor and hydraulic cylinders used to apply weight-on-

bit (WOB). The test facility can apply up to 6000 lbf of WOB 

and 560 lbf-ft of torque. A 3 in. diameter drillstring transmits 

torque from the top drive to the drill bit. Facility-supply water 

is used as a drilling fluid and is circulated through the bit [14]. 

Drilling tests were performed with a 3.75” diameter 5-bladed 

PDC bit from Ulterra (Fig. 5). 

The facility is configured to house a 36”x36”x20” test 

specimen for drilling. The rock sample can be positioned at 

various locations beneath the drill head allowing multiple 

holes to be drilled for each rock sample. 

2) Engineered Rock Sample 

Initial classifier training was completed on uniform 

material samples. Subsequent autonomous drilling tests were 

conducted using custom-made layered test articles. Each of 

these engineered rock samples consists of four 17.75”x 

17.75”x10.75” (LxWxH) concrete samples reinforced 

horizontally with ½” grade-8 threaded rods and an underlying 

 
Figure 4. Plots illustrating the Detournay classifier performance using experimental data. For misclassified data, identified rock type is denoted by triangles, 

circles and x’s for sandstone, concrete, and granite respectively. True rock type of misclassified data is not indicated. 

 
Figure 5. Photograph of the Ulterra 5-blade PDC bit used in drilling tests. 



  

36”x36”x5” slab of Sierra White Granite (SWG). Each of the 

concrete samples were post-tensioned to an average 

compressive stress of 150 psi and vary by aggregate type, 

aggregate volumetric fraction, and compressive strength. 

Compressive strength tests were conducted according to 

ASTM C39 at curing intervals of 7, 14, and 21 days and on 

the first day of drilling (52 days). The results are listed in 

Table I. Quadrants QII and QIII are most similar in 

compressive strength and were used for the autonomous 

drilling experiments presented in this paper. 

TABLE I.  CONCRETE CONTENT AND MEASURED STRENGTH 

Mold 1 (4000 psi concrete mix) 52-day strength (psi) 

Q I (73% basalt aggregate) 3450 

Q II (68% basalt aggregate) 7890 

Q III (73% standard aggregate) 7860 

Q IV (68% standard aggregate) 8450 
 

3) Data Acquisition and Control 

The HRDF controller is a PC-based system integrated with 

data acquisition hardware. Displayed data includes WOB, 

torque, rotary speed, and drill head position. WOB is 

calculated from measured differential pressure across the 

hydraulic cylinders. Torque is determined by measuring the 

input pressure to the fixed-displacement hydraulic drive 

motor. Rotary speed is monitored using a rotary pulse 

generator on the hydraulic motor. A linear potentiometer is 

used to determine the drillstring position relative to the frame.  

The controller consists of a LabView virtual instrument 

(VI) integrated with MATLAB for data processing. Real-time 

estimation and control calculations are performed in the 

Labview VI, in some cases using embedded MATLAB 

scripts. The VI interfaces with the data acquisition hardware 

and displays the process variables to the operator via the 

display shown in Fig. 6. Data is acquired at a sampling rate of 

2048 samples per second and collected in 256 sample 

increments. The collected data is then processed in MATLAB 

for analysis. 

 
4) Low-level closed-loop control 

Rotational speed of the drill head is controlled using 

voltage-controlled proportional valves which modulate the 

hydraulic fluid flow to the rotation motor. A pressure relief 

valve limits output torque. WOB is controlled using voltage-

controlled proportional valves which modulate the hydraulic 

cylinder pressures.  

PI feedback controllers are used to achieve low-level 

control: to regulate rotary speed and applied WOB. Sensor 

measurements are as described above, and the control signals 

direct the behavior of the hydraulic valves. Fig. 7 shows 

example step responses for the low level WOB controller. 

Rise time were typically less than 0.5 s for large steps and as 

low as 0.1 s for small steps. The longer time for larger steps 

is due to nonlinear effects of the plant. 

B. Multi-Material Drilling Results 

AOPC control was implemented along with low-level 

drilling parameter regulators as diagrammed in Fig. 3, and a 

number of holes were drilled autonomously in the engineered 

composite rock sample (Fig. 1). Anti-stall control was not 

implemented for these experiments. 

Tests were conducted with a constant rotation rate of 

100 RPM, with WOB varied autonomously. The system was 

allowed to reach the desired speed set-point with no load. 

After the rotation rate was reached, the drill head was 

manually lowered onto the rock to initiate drilling. After the 

initial contact, the autonomous control was engaged. Drilling 

continued through each sample until the end of the drill head 

stroke was reached. The drilling operator took no action 

between the engagement of autonomous control and the 

automatic termination of drilling, and only monitored the 

process.  

Quadrant QIII was used primarily to train the concrete 

classifier and to develop control set-points. Subsequently, 

evaluation holes were drilled in quadrant QII. Fig. 8 shows 

the time histories of the Detournay parameters w, t, and d 

(scaled WOB, torque and depth of cut) as well as the MSE, 

for a representative test run. The plots are color coded to 

indicate the real-time estimate of rock type and phase. The 

actual transition from concrete to granite occurs just before 

the 30 second mark and is indicated by the significant 

transients in each parameter. During the initial WOB ramp, 

just before the AOPC was engaged, concrete is misclassified 

as sandstone. This estimate is quickly corrected as the WOB 

reaches more significant levels. The controller then performs 

 
Figure 6. A screenshot of the HRDF LabView Control Interface 

 
Figure 7. Time response data for three reference step changes illustrating 

performance of the low-level WOB system under PI control. 



  

a local search for the optimal WOB that converges to a local 

minimum for MSE. Fig. 9 plots the average MSE versus w at 

each set-point as the AOPC conducts a golden search, and 

indicates the search order. The MSE is relatively insensitive 

to w in the local search range, and the minimum MSE is 

located within a fairly narrow w range from the initial set-

point. This indicates that the initial set-point based on correct 

material classification and prior drilling is reasonably 

accurate, and the search need not deviate far.  

When the drill transitions materials, granite is rapidly 

detected based on the significant change in Detournay 

parameters. Control action lags by approximately 4-5 seconds 

as the filter confirms that a real transition has occurred. With 

confirmation of a granite medium, the controller switches to 

the prescribed optimal WOB and starts a new local search, 

which also finds a local minimum MSE. 

C. Comparison to Fixed Control Settings 

The local search in concrete found a local minimum MSE 

of about 6.5 ksi at a scaled weight of 1320 lbf/in. The search 

in granite initially found a local minimum MSE of around 

20.5 ksi at a scaled weight of 2780 lbf/in; however, upon 

returning to this setting at the completion of the search, the 

final MSE was slightly higher at 23.2 ksi.  

Additional experiments confirm that these results clearly 

outperform any fixed w setting for drilling this composite rock 

as measured by MSE. For example, if w is set at the average 

between the two optimal conditions (w, 2050 lbf/in), MSE is 

7.6 ksi in concrete (17% worse than the AOPC) and 33 ksi in 

granite (42% worse). Increasing w above 2050 lbf/in, to 

improve granite drilling performance, results in stick-slip 

behavior and significant vibrations during concrete drilling. 

Operating at lower w to improve concrete performance results 

in slow, inefficient drilling in granite. For example, operating 

at the optimal w for concrete causes MSE to rise above 40 ksi 

in granite, as can be seen in the interval in Fig. 8 after the 

material transitions but before the controller responds 

(time=30-34 secs). Allowing the controller to detect the rock 

 
Figure 8. A plot illustrating the real-time performance of the drilling classification and optimizing system. 

 
Figure 9. A plot illustrating the MSE optimizing golden search. The weight 

on bit sweeps from point 1 to 5. 



  

and change the set-point using our AOPC provides significant 

improvements in average MSE and makes multi-material 

drilling without operator intervention possible. 

VI. DISCUSSION AND CONCLUSIONS 

This work describes the design and successful 

experimental demonstration of a control system to enable 

autonomous rotary drilling through layered multi-material 

samples. The experiments demonstrate control that converges 

to MSE values approximately equal to the ultimate 

compressive strength of the drilled materials (concrete and 

granite), indicating highly efficient drilling that approaches 

the ideal. By applying the widely-accepted Detournay model 

for drilling with PDC bits, this approach is able to explicitly 

classify materials and determine initial set-points for those 

materials based on prior drilling. In experiments, these set-

points prove to be near optimal, but a search for optimal 

conditions is initiated upon detection of material transitions in 

case the classifier is incorrect or the material differs 

significantly from the available library of tested materials. 

The autonomous controller is shown to significantly 

outperform any single fixed setting in multi-material drilling. 

Future work would significantly extend the capability and 

further test its value. We would like to implement and verify 

the anti-stall controller describe in section III. This would add 

a significant safeguard to the system by reducing WOB 

rapidly when torque rises unexpectedly near its limit.  

Expanding the controller’s material library database by 

conducting additional drilling tests in different rocks could 

enhance the versatility of the system. We note that as more 

rock types are added, the probability of some pairs having 

Detournay models with nearly intersecting lines increases. 

This would result in having higher probability of 

misclassifying the rock. Our local search should help the 

controller reach an optimum in the event of initial 

misclassification, however, more research should be done on 

the consequences of having a large library of materials. One 

possible solution for reducing misclassification rates when 

operating with a large library would be to add prior 

probabilities for the various rocks and use a Bayesian analysis 

to pick the rock of maximum likelihood.  

Finally, additional study into the applicability of this 

approach for more realistic, deep-hole drilling is required. 

Several challenges exist for moving out of the laboratory 

environment: 

1) The wear state of the bit is not constant as we have been 

able to assume here. Thus, the material database should 

dynamically update to account for a model of the 

estimated wear of the bit based on the drilling history. 

2) The rock-bit interaction parameters are also dependent 

on the downhole pressure. Thus, the database must also 

account for the measured downhole pressure. 

3) Depth of cut resolution and other measurements in the 

field are often poor due to the drillstring dynamics. A 

key goal for further research is to determine how the 

quality of Detournay model estimates degrades with 

less controlled and more compliant drilling dynamics, 

and also what techniques can be used to restore the 

fidelity of downhole parameters using surface 

measurements. Much of this can be done in a simulated 

manner at our existing facility [14].  

 

ACKNOWLEDGMENT 

The authors would like to thank Elton Wright for his 
assistance with testing and David Raymond for providing 
extensive knowledge of rotary drilling and the HRDF facility. 

REFERENCES 

[1] Freedonia Group, “Drilling Products & Services,” Study #3286, 2015. 
http://www.freedoniagroup.com/Drilling-Products-And-Services.html. 

[2] A. W. Eustes III, “The Evolution of Automation in Drilling,” Proc. Of 
the 2007 SPE Annual Technical Conference, Anaheim, CA, Nov. 2007, 
pp. 1-5. 

[3] J. Dunlop, R. Isangulov, W. Aldred, H. A. Sanchez, R.L. Flores, J. 
Belaskie, et. al., “Increased Rate of Penetration Through Automation,” 
Paper IADC/SPE 139897 presented at the SPE/IADC Drilling 
Conference and Exhibition, Amsterdam, NL, 2011, pp. 1-7. 

[4] R. Teale, “The concept of specific energy in rock drilling,” 
International Journal of Rock Mechanics and Mining Sciences and 
Geomechanics, vol. 2(1), pp. 57-73, 1965. 

[5] F.E. Dupriest and W.L. Koederitz, “Maximizing drill rates with real-

time surveillance of mechanical specific energy,” in Proc. SPE/IADC 
Drilling Conference, Amsterdam, Netherlands, 2005. 

[6] C. D. Chapman, J. L. S. Flores, R. D. L. Perez, H. Yu, “Automated 
Closed-loop Drilling with ROP Optimization Algorithm Significantly 
Reduces Drilling Time and Improves Downhole Tool Reliability,” 
Paper IADC/SPE 151736 presented at the SPE/IADC Drilling 
Conference and Exhibition, San Diego, CA, 2012, pp. 1-7. 

[7] D. Sui, R. Nybo, V. Azizi, “Real-time Optimization of Rate of 
Penetration during Drilling Operation,” Proc. Of the 2013 IEEE 
International Conference on Control and Automation, Hangzhou, CN, 
2013, 357-362.  

[8] A. T. Bourgoyne, F.S. Young, “A multiple regression approaches to 
optimal drilling and abnormal pressure detection,” Journal of the 
Society of Petroleum Engineers, vol. 14(4), 1974, pp. 371-384. 

[9] G. Boyadjieff, D. Murray, A. Orr, M. Porche, P. Thompson, “Design 
Considerations and Field Performance of an Advanced Automatic 
Driller, Paper SPE/IADC 79827 presented at the SPE/IADC Drilling 
Conference, Amsterdam, NL, Feb. 2003, pp. 1-11.  

[10] R. Jorden, O. Shirley, “Application of Drilling Performance Data to 
Overpressure Detection,” Paper SPE 1407 presented at the SPE 
Symposium on Offsore Technology and Operations, New Orleans, LA, 
May 1966, pp. 1387-1394. 

[11] E. Detournay, T. Richard, M. Shepherd, “Drilling response of drag bits: 
Theory and experiment,” International Journal of Rock Mechanics & 
Mining Sciences, vol. 45, pp. 1347-1360, 2008. 

[12] E. Detournay, P. Defourny, “A phenomenological model of the drilling 
action of drag bits,” International Journal of Rock Mechanics & Mining 
Sciences, vo. 29, pp. 13-23, 1992. 

[13] F. E. Dupriest, “Comprehensive Drill Rate Management Process to 
Maximize Rate of Penetration,” Paper SPE 102210 presented at the 

SPE Annual Technical Conference and Exhibition, San Antonio, TX, 

Sept. 2006. 

[14] D. W. Raymond, M. A. Elsayed, Y. Polsky and S.S. Kuszmaul, 

“Laboratory simulation of drill bit dynamics using a model-based 
servo-hydraulic controller,” Journal of Energy Resource Technology, 

vol. 130, pp. 54-61, 2008. 


