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ABSTRACT: Heterogeneities such as point defects, inherent to material systems, can profoundly influence material 
functionalities critical for numerous energy applications. This influence in principle can be identified and quantified 
through development of large defect datasets which we call the defect genome, employing high-throughput ab initio 
calculations. However, high-throughput screening of material models with point defects dramatically increases the 
computational complexity and chemical search space, creating major impediments towards developing a defect genome.  
In this work, we overcome these impediments by employing computationally tractable ab initio models driven by highly 
scalable workflows, to study formation and interaction of various point defects (e.g. O vacancies, H interstitials and Y 
substitutional dopant), in over eighty cubic perovskites, for potential proton conducting ceramic fuel cell (PCFC) 
applications. The resulting defect datasets identify several promising perovskite compounds that can exhibit high proton 
conductivity. Further, the datasets also enable us to identify and explain, insightful and novel correlations between defect 
energies, material identities and defect induced local structural distortions. Such defect datasets and resultant correlations 
are necessary to build statistical machine learning models, which are required to accelerate discovery of new materials. 

INTRODUCTION 
The exponential increase in parallel computing and data 
storage capabilities over the last decade has revolutionized 
the way we conduct computational material science. By 
adopting a ‘high-throughput’ or ‘materials genome’ 
approach1,2, it has become possible to computationally 
screen numerous candidate materials for the desired 
functionality. Publicly sharing such computed materials 
data, as done by several projects such as the Materials 
Project3, AFLOW4, CHiMAD5, OQMD6 and NOMAD7, has 
further accelerated discovery of new materials pertaining 
to CO2 capture8, piezoelectrics9, bulk metallic glasses10, 
photovoltaics11 and many more applications. To date, the 
materials screened by such high-throughput approach 
have been mainly restricted to ideal defect free 
compounds. However, real materials inherently possess 
various forms of heterogeneities – ranging from point 
defects to extended defects, such as dislocations, 
disclinations, grain-boundaries, precipitates and 
interfaces. In particular, point defects such as intrinsic 
vacancies, substitutional dopants and interstitials (both 
intrinsic and extrinsic) are known to profoundly influence 
the functional properties of materials12–14. Therefore, the 
next natural extension of the materials genome is the 
creation of large defect datasets (aka defect genome) by 
systematically screening such functional heterogeneities 
across numerous candidate materials. 

These large defect datasets would contain information 
regarding the defect formation, interaction and migration 
energies across numerous material compounds and their 
influence on material properties. This information would 
be useful in identifying structure-composition-property 
trends. These insightful trends can enable us to build 

cheap statistical machine learning models that can 
accelerate the search for new materials15–17. Such large point 
defect datasets in solids can in principle be created using 
well established ab initio based computations14. However, 
the major challenges in developing them are due to the 
dramatic increase in (i) the computational complexity of 
the material models14,18,19 and  (ii) the vast combinatorial 
chemical search space upon introducing point defects in 
solid compounds.  
The increase in computational complexity can be 
addressed by creating systematic model approximations. 
One such example is a recent modeling study by Emery 
et.al20 to calculate oxygen vacancy formation energy in 
perovskites for thermochemical water splitting. They 
employ several approximations in their models, such as 
small size super-cells (of size 2x1x1) and ignoring structural 
relaxations, to keep the calculations tractable. However, 
such approximations are application dependent. For 
example, proton conducting ceramic fuel cells (PCFC) 
materials exhibit large anionic sub-lattice distortions upon 
proton uptake.21,22 Hence, ignoring structural relaxations is 
not a valid approximation. In addition, we are also 
interested in studying defect complex which typically 
require much larger supercells. 

Screening across vast chemical search space can be 
achieved through automated workflows that can create 
inputs, submit calculations, handle errors and parse output 
to store them in databases.23 However, to perform such 
screening in a short span of time, the workflow needs to 
efficiently scale and take advantage of the existing 
massively parallel supercomputing architectures. In this 
work, we develop and employ such a workflow to 
systematically screen defects in one of the several possible  



 

material/energy-application combinations – namely cubic 
perovskites for potential application in proton conducting 
ceramic fuel cells (PCFC). 
Proton conducting Ceramic Fuel Cells (PCFC) 

Solid-oxide fuel cells (SOFCs) are electrochemical energy 
conversion systems that can process wide range of fuels, 
such as H2, CH4 etc.24,25 SOFCs operate at high 
temperatures (>800°C) by selectively transporting oxygen 
ions26,27 across solid ceramic based electrolytes such as 
yttria stabilized zirconia, (YSZ). Proton conducting 
ceramic fuel cells (PCFC) on the other hand can operate at 
relatively lower temperatures (~400-600°C) by selectively 
transporting protons, since the small, singly-charged 
protons require lower activation energy for transport than 
the large doubly-charged oxygen ions.28–30 This lowering of 
operating temperature can greatly improve material 
reliability and operational efficiency.  

Proton transport across the PCFC materials underpins the 
overall performance of the technology. The mechanism of 
proton transport in solid oxide materials is shown in 
Fig.1(a). Protons cannot be spontaneously introduced via 
hydration in pure perovskites such as BaZrO3. 
Substitutional doping of the B-site (Zr in this case) with 
acceptor dopants, such as yttrium, creates charge 
compensating oxygen vacancy defects. These vacant sites 
can now be filled via hydration, introducing mobile 
protons into the material. Protons introduced in Y doped 
BaZrO3 are known to interact with the dopant atoms,31 that 
can influence their motion. Under PCFC operating 
conditions (400-600°C), protons exhibit short-range 

motion via the Grotthuss mechanism,32,33 which in turn 
leads to long-range proton conduction. 

Thus, the entire proton transport process involves a series 
of steps involving formation, interaction and migration of 
various types of point defects. The energies involved at 
each step of transport needs to be optimized to discover 
fast proton conducting material.  Some of the fastest 
proton conducting PCFC materials discovered to-date are 
perovskites based compounds (electrolyte – BaZr0.8Y0.2O3-δ 
(Y-BZO)34, cathode – BaCo0.4Fe0.4Zr0.1Y0.1O3-δ(BCFZY0.1)35). 
These discoveries have been mostly driven by expensive 
and time-consuming experimental approaches. Hence, 
there is a clear opportunity for computational modeling 
approaches to contribute towards discovering new proton 
conducting materials. 

One computational approach to accelerate the discovery is 
to create a genome of point defects by systematically 
screening for such defects across a wide range of 
perovskites.  In this paper, we demonstrate this approach 
by creating a computational framework that performs ab 
initio calculations driven by highly scalable workflow to 
compute structure formation, defect formation and defect 
interaction energies in more than eighty different (2,4) 
ABO3 cubic perovskites (where 𝐴	 ∈ {𝑀𝑔, 𝑍𝑛, 𝐶𝑑, 𝐶𝑎,
𝐻𝑔, 𝑆𝑟, 𝐵𝑎} and 𝐵	 ∈ {𝑀𝑛, 𝑆𝑖, 𝐺𝑒, 𝑉, 𝑅ℎ, 𝑇𝑖, 𝑅𝑢, 𝐼𝑟,
𝑂𝑠, 𝑆𝑛, 𝐻𝑓, 𝑍𝑟}). These energies are correlated with 
different atomic, structural and chemical properties to 
identify and explain insightful trends. Further, the data 
obtained from this framework also identifies several 
promising candidates amongst this dataset. This general 

 

Figure.1. (a) Proton transport mechanism and relevant energetics in a prototypical perovskite material such as Y doped BaZrO3. 
(b)Flowchart of the high-throughput computational framework employed in this study to systematically predict defect energetics.  



 

framework can be readily applied to screen other new 
materials with defects for any given energy application. 
 
THEORY AND COMPUTATIONAL DETAILS 
The various structural and defect energies calculated in 
this work are described below. The structure formation 
energy 𝐸? 𝐴𝐵𝑂@ 	 required to form a (2,4) cubic 
perovskite structure is given by 

𝐸? 𝐴𝐵𝑂@ =
1
𝑛
𝐸CDC[𝑛(𝐴𝐵𝑂@)] − 𝐸CDC[𝐴𝑂]
− 𝐸CDC[𝐵𝑂J] 

(1) 

where 𝐸CDC[𝑛(𝐴𝐵𝑂@)] is the ground state energy of cubic 
perovskite supercell of size n. 𝐸CDC[𝐴𝑂] and 𝐸CDC[𝐵𝑂J] are 
the ground state energies of the corresponding binary 
oxides. The binary oxide crystal structures required to 
calculate the energies were obtained from the Materials 
Project3 database. A negative structure formation energy 
indicates that it is energetically favorable to form a cubic 
perovskite structure w.r.t to the binary oxides, while a 
positive value indicates that it is energetically unfavorable 
to form the structure.  

The energy required to introduce an isolated substitutional 
dopant in the B site of perovskites with charge q is given by 

𝐸? 𝑌L
M = 𝐸CDC[𝑛(𝐴𝑌N

O
𝐵
NPNO

𝑂@); 𝑞] + 𝜇L + 𝑞𝜇U
− 𝐸CDC[𝑛(𝐴𝐵𝑂@)] − 𝜇V 

(2) 

𝐸CDC[𝑛(𝐴𝑌W
X
𝐵NPWX

𝑂@); 𝑞] is the ground state energy of the 

supercell with a substitutional dopant at charge state q.  
Since yttrium is the most widely used dopant, we restrict 
this study to only Y atom as a substitutional dopant. We 
also restrict the charge state q to zero for all defect 
calculations, since we are interested in relative energies 
and trends across different materials. 𝜇U is the 
electrochemical potential of the electrons, that is 
conventionally approximated to be the valence band 
maximum.  𝜇L and 𝜇V are the chemical potentials of B site 
and Y dopant atoms, that are obtained from the 
corresponding binary oxides as, 

𝜇L = (𝐸CDC[𝐵𝑂J] − 2𝜇Z)
𝜇V = (𝐸CDC[𝑌J𝑂@] − 3𝜇Z)

 
 

where 𝜇Z is the chemical potential of oxygen and is defined 
based on recent literature36 as 

𝜇Z =
1
2
(2𝐸CDC 𝑂 +	𝜀Z]

^D_)  

Where 2𝐸CDC 𝑂 	is the energy of an oxygen atom. From 
experimental data37 we obtain the cohesive energy of 
oxygen molecule 𝜀Z]

^D_	to be -5.21eV. The energy required to 
create an isolated oxygen vacancy defect 𝐸? 𝑉Z

M  with 
charge q is given by 

𝐸? 𝑉Z
M = 𝐸CDC[𝑛(𝐴𝐵𝑂

@PNO
); 𝑞] + 𝜇Z + 𝑞𝜇U

− 𝐸CDC[𝑛(𝐴𝐵𝑂@)] 

(3) 

 𝐸CDC[𝑛(𝐴𝐵𝑂@PWX
); 𝑞] is the ground state energy of the 

supercell with an oxygen vacancy in charge state q.  

The energy required to introduce an isolated H interstitial 
defect 𝐸? 𝐻`

M  with charge q is given by 

𝐸? 𝐻`
M = 𝐸CDC[𝑛(𝐴𝐵𝑂@𝐻N

O
); 𝑞] + 𝑞𝜇U

− 𝐸CDC[𝑛(𝐴𝐵𝑂@)] − 𝜇a 

(4) 

𝐸CDC[𝑛(𝐴𝐵𝑂@𝐻W
X
); 𝑞] is the ground state energy of the 

supercell with a H interstitial in charge state q. 𝜇a is the 
chemical potential of the H interstitial which is defined as 

𝜇a =
1
2
(2𝐸CDC 𝐻 + 2𝐸CDC 𝑂 − 𝜀a]Z

^D_ − 𝜇Z) 
 

From experimental reference data37, we obtain the 
cohesive energy of water molecule 𝜀a]Z

^D_ 	to be -10.07eV. The 
defect formation energies as defined here (𝐸? 𝑌L

M ,  𝐸? 𝑉Z
M , 

𝐸? 𝐻`
M ) needs to have a positive value to ensure that the 

material is stable against spontaneous formation of such 
defects.  

Recent work22,31 in Y doped BaZrO3 has shown that H 
interstitials are attracted to dopant atoms and can get 
trapped near the dopant atoms.  Hence, even in the dilute 
limit, it is important to understand the interactions 
between dopants and H interstitials, which can be 
electrostatically bound. The dopant-H interaction energy 
∆𝐸` 𝑌L

M − 𝐻`
M  is defined as the difference in the 

formation energy of the dopant-H defect complex 𝐸𝑓 𝑌𝐵
𝑞 −

𝐻𝑖
𝑞 	encompassing two interacting defects and the 

formation energy of the isolated defects. i.e., 

∆𝐸` 𝑌L
M − 𝐻`

M = 		 𝐸? 𝑌L
M − 𝐻`

M

− 𝐸? 𝑌L
M +	𝐸? 𝐻`

M  
(5) 

A negative value indicates an attractive interaction 
between the dopant and H interstitial. Similarly, we also 
calculate the dopant-vacancy interaction energy ∆𝐸` 𝑌L

M −
𝑉Z
M − 𝑌L

M  as  

 

∆𝐸` 𝑌L
M − 𝑉Z

M − 𝑌L
M

= 		 𝐸? 𝑌L
M − 𝑉Z

M − 𝑌L
M

− 2𝐸? 𝑌L
M +	𝐸? 𝑉Z

M  

(6) 

we choose the model system to comprise of an oxygen 
vacancy trapped between 2 Y dopants (see Fig 1(a) in main 
manuscript for schematics), since this configuration 
exhibits the strongest interaction in Y doped BaZrO338,39 

The major source of errors in defect energies arise due to 
electrostatic interactions, elastic strain interactions and 
quantum-mechanical interactions. Since, the models here 
are performed for systems with neutral charge (q=0), the 
supercell finite size error corrections due to electrostatic 
interactions14,40–42 can be safely ignored. The elastic strain 
interactions typically decay as 1/L3 14,43. Since, the models 
employed in this work correspond to large supercells 
(3x3x3), these elastic distortions are effectively captured. 
Finally, the effect of quantum-mechanical electronic 
interactions is quantified by performing hybrid functional 
based calculations for a few targeted systems as described 
in detail in the following sections. 



 

The ab initio calculations to compute these energies were 
performed using density-functional theory based methods 
as implemented in VASP.44,45 We employ the PBE 
exchange-correlation functional46 and PAW based atomic 
pseudo potentials,47 which have been previously used to 
successfully study proton transport properties of Y doped 
BaZrO3.

21,38,48 We use a 3x3x3 supercell of the cubic 
perovskite structure containing about 135 atoms. A 
Monkhorst-Pack k-point mesh of 2x2x2 was used in all our 
supercell calculations. In case of defect free structures, the 
volume was relaxed keeping the cubic shape of the crystal 
intact. In case of defect calculations, only the internal 
atomic coordinates are relaxed while fixing the volume and 
shape of the crystal structure. The charge state of defects  

 (q) is restricted to zero. The calculations are converged 
until the difference in total energy between two 
consecutive relaxation steps is less than 0.7E-03eV.  

The ab initio model used in this work does not incorporate 
corrections for errors arising from electron correlations, 
charged defect interactions and entropic contributions.14,18  
However, the data obtained from these models are helpful 
in performing comparative analysis and identifying 
insightful trends. For example, the data correctly identifies 
that Y doped BaZrO3 has high stability, small positive 
defect formation energy and small negative dopant-H 
interaction energy --- attributes that are needed for good 
proton conductivity. 

The models are further numerically validated by 
comparing the defect energies obtained for Y doped 
BaZrO3 against previously published results as shown in 
Table. S3 of the supplementary information (SI). 

The computational complexity and the number of 
calculations (search space) increases as we traverse from 

pure phase compounds to isolated defects to defect-
complexes. Maximizing the number of ab initio 
calculations that can be simultaneously performed is 
necessary to achieve scalability. To execute this, we divide 
our computations into multiple levels as shown in Fig.1(b). 
Level 1 comprises of calculations of pure phase structures 
to predict the structure formation energy  𝐸? 𝐴𝐵𝑂@ . 
Level 2 comprises of calculations containing an isolated 
point defect to predict defect formation energies such as 
(a) Oxygen vacancy formation energy 𝐸? 𝑉Zc ,  (b) 
Yttrium dopant substitution energy 𝐸? 𝑌Lc  and (c) H 
interstitial formation energy 𝐸? 𝐻`c .  Level 3 is employed 
to model defect complexes to predict defect interaction 
energies such as the dopant-H interaction energy 

∆𝐸` 𝑌Lc − 𝐻`c  reported in this work for yttrium dopants. 
Since, no two calculations in the same level are dependent 
on one another, they are simultaneously executed, thereby 
achieving maximal parallelization.   

The workflow that drives these multi-level ab initio 
calculations is created by integrating various open-source 
python codes derived from the Materials Project such as 
Pymatgen49 (to create input data and parse output data), 
Fireworks23 (workflow to launch simulations and store the 
IO data into MongoDB) and Custodian49 (job management 
and error handler framework) along with an MPI bundler 
package developed by Oak ridge Leadership Computing 
Facility (OLCF) called wraprun50. The wraprun is a utility 
that wraps around multiple program multiple data 
(MPMD) mode of the aprun command in Cray 
environment in Titan supercomputer. The wraprun 
enables independent execution of multiple mpi 
applications under a single mpi call. This provides very 
efficient scaling (see Fig.S1 in SI) to potentially use the full 

 

Figure.2 (a) Binary map of perovskite structure formation energy (favorable 𝐸? 𝐴𝐵𝑂@ < 0	magenta and unfavorable (𝐸? 𝐴𝐵𝑂@ > 0 
blue) for the various perovskites studied in this work.  Reliable defect energies were not obtained for ZnRuO3 and CaSnO3 (marked in 
large cross), and hence are neglected from all subsequent analysis. (b-e) Scatter plot of perovskite structure formation energy 𝐸? 𝐴𝐵𝑂@  
as a function of various material identities such as (b) cationic electronegativity difference 𝜒L − 𝜒h (c) tolerance factor t (d) sum of 
cationic radius 𝑟h + 𝑟L.  The straight line indicates the linear regression fit without excluding any outliers. (e) Cross 
comparing 𝐸? 𝐴𝐵𝑂@  with  𝜒L − 𝜒h and t identifies that most stable perovskites simultaneously possess high t and 𝜒L − 𝜒h values. 



 

capacity of Titan through bundling of hundreds of ab initio 
calculations that were previously not feasible. 

We also calculate the electronic structure of a few 
perovskites employing the hybrid exchange-correlation 
functional of Heyd, Scuseria, and Ernzerhof51,52 at gamma 
k-point with 20% mixing for PBE atomic coordinates. This 

enables us to understand the influence of electronic 
interactions on comparative analysis of defect energies 
across perovskites. 
RESULTS AND DISCUSSION 
Structure Formation Energy 
We employ heatmaps and scatter plots (including linear 
regression fit where applicable) in this work to visualize 
and gain insights from the large volume of generated 
datasets. Fig. 2(a) shows a binary heatmap of all 
compositions with favorable (𝐸? 𝐴𝐵𝑂@ < 0,𝑚𝑎𝑔𝑒𝑛𝑡𝑎) 
and unfavorable (𝐸? 𝐴𝐵𝑂@ > 0, 𝑏𝑙𝑢𝑒) structure formation 
energy. The corresponding numerical heatmap of 
𝐸? 𝐴𝐵𝑂@  is provided in Fig.S2 of the SI. As we could not 
obtain reliable defect energies for ZnRuO3 and CaSnO3, we 
exclude these two systems from all subsequent analysis. 
Fig.2(a) shows that perovskite formation is favored when 
the A site is occupied by a large alkaline earth metal atom, 
such as Ba, Sr and to some extent Ca. The symbol P denotes 
experimentally synthesized compounds found in the 
Inorganic Crystal Structure Database (ICSD) in cubic 
perovskite phase (Pm-3m). The computed 𝐸? 𝐴𝐵𝑂@  
correctly identifies the favorability of perovskite formation 
in all these compounds except a few high-pressure phases 
such as SrSiO3 and BaIrO3 since our ab initio calculations 
were not performed at high pressures. Conversely, our 
calculations, also identify favorable cubic perovskite 
formation for compounds, not listed in ICSD in cubic 
perovskite polymorphs such as: BaMnO3, BaGeO3, BaRhO3, 
BaRuO3, BaOsO3, BaHfO3, SrOsO3, SrHfO3, CaMnO3, 

CaVO3 and CaTiO3. Some of these compounds such as 
CaTiO3 are known to crystalize in non-cubic perovskite 
phases (Pbnm53). Hence, we can reasonably expect to 
synthesize cubic perovskite polymorphs of these 
compounds through doping,54,55 high-pressure synthesis56 
or via epitaxial strain57. 

To gain insights on how atomic, chemical and structural 
properties of the materials (aka material identities) 
influence 𝐸? 𝐴𝐵𝑂@ , we correlate 𝐸? 𝐴𝐵𝑂@  with various 
combinations of electronegativity (cationic 
electronegativity difference 𝜒L − 𝜒h ) and Shannon ionic 
radius (the Goldschmidt tolerance factor (t) and sum of 
cationic radius 𝑟h + 𝑟L ). Fig.2(b) identifies that most 
stable perovskites have a large cationic electronegativity 
difference 𝜒L − 𝜒h ≥ 0.35 . This is consistent with the 
proposition made by Kreuer28 based on data from Sr and 
Ba based perovskites. However, for the wider range of 
perovskites studied it this work, a large electronegativity 
difference appears to be a necessary but not sufficient 
condition to describe favorable perovskite formation. This 
suggests that there are additional parameters that 
determine the stability of the cubic perovskite phase. 
Stability of perovskite structures is also typically thought 
to correlate with the Goldschmidt’s tolerance factor t, 
defined as:  

𝑡 =
𝑟h + 𝑟Z
2(𝑟L + 𝑟Z)

 

Upon performing linear regression as shown in Fig.2(c), 
𝐸? 𝐴𝐵𝑂@  exhibits inverse correlation (R2=0.59) against  

t, wherein it becomes favorable to form cubic perovskites 
with increasing t. In fact, all stable cubic perovskites 
studied in this work possess high t value (t>0.85). This data 
is consistent with the previous empirical observations on 
experimentally synthesized perovskites58–60 where most 
cubic perovskites typically exist for a t value between 0.9  

 

Figure.3.  (a) Heatmap of small endothermic ([0,11] eV) Dopant substitution energy (𝐸? 𝑌Lc ) – replacing existing B-site atom with Y 
dopant atom.  Reliable defect energies were not obtained for ZnRuO3 and CaSnO3 (marked in large cross), and hence are neglected from 
all subsequent analysis. (b)  Scatter plot and linear regression fit of dopant substitution energy 𝐸? 𝑌Lc  which increases (becomes more 
unfavorable to form) with increasing local distortion (quantified by the maximum oxygen displacement (𝑚𝑎𝑥 ∆𝑅Z 𝑌Lc )). 



 

and 1. Fig.2(d) displays a similar inverse correlation 
(R2=0.65) between 𝐸? 𝐴𝐵𝑂@  and the sum of cationic 
radius 𝑟h + 𝑟L , suggesting that compounds with the 
largest A and B site atoms are more likely to form stable 
perovskite structures. Cross correlating material identities 
with 𝐸? 𝐴𝐵𝑂@  as shown in Fig. 1(e) identify that most 
stable cubic perovskite compounds simultaneously possess 
large 𝜒L − 𝜒h and t values. Thus, any descriptor employed 
to predict the favorability of perovskite formation should 
typically be a function of 𝜒L − 𝜒h, t and 𝑟h + 𝑟L. 
Defect Formation and Interaction Energies 
We then proceed to calculate the defect formation and 
defect interaction energies for all the above described 
perovskite structures. This is motivated by our desire to 
identify material identities that exhibit universal 
correlation with defect energies. The defect formation 
energies need to be endothermic (>0eV) to ensure that the 
material is stable against spontaneous defect formation. 
Fig.3 provides a heat map of endothermic defect formation 
energies (in range [0,11] eV) and dopant-H interaction 
energy (in range [-11,9] eV). More details on excluded 
compounds are provided in Sec 2.1 of the SI. 

From the heatmap of dopant substitution energy 𝐸? 𝑌Lc  
as shown in Fig.3(a), we can observe that many compounds 
with large A-site atom show small, yet positive dopant 
substitution energies. Unfortunately, 𝐸? 𝑌Lc  does not 
exhibit any quantitative linear correlation with these 
material identities.  

Formation and interaction of point defects in material 
compounds can induce local distortions around them due 
to varied reasons such as size mismatch (e.g. local strain 
effect), or electrostriction (e.g. screening of local charges) 
or additional bonding (e.g. due to hydrogen-bond 
formation). Correlating defect energies with such local 
distortions can enable us to better understand the 
mechanisms that influence the formation and interaction 
of point defects. We quantify the local structural 
distortions by the maximum displacement of the O atom 
in the crystal structure upon introducing point defects. 

Fig.3(b) shows that 𝐸? 𝑌Lc  exhibits linear positive 
correlation (R2=0.63) with dopant induced local distortions 
𝑚𝑎𝑥 ∆𝑅Z 𝑌Lc , wherein it becomes more unfavorable to 

dope the system with increasing distortion. A simple 
quantitative measure of local strain is the ionic radius 
difference between the dopant and the B-site atom 
𝑟q − 𝑟L . The existence of correlation between 𝑟q − 𝑟L and 
𝑚𝑎𝑥 ∆𝑅Z 𝑌Lc , demonstrated by a Pearson correlation 
coefficient value of 0.44 (where 1.0 indicating perfect 
positive correlation, -1.0 indicates perfect inverse 
correlation and 0.0 indicates no correlation), suggests that 
the higher the local strain, the more difficult it is to form 
substitutional dopants in these compounds. 

Fig. 4(a) shows the heatmap for oxygen vacancy formation 
energy 𝐸? 𝑉Zc . The 𝐸? 𝑉Zc  does not exhibit any 
quantitative correlations with material identities or oxygen 
vacancy induced local structural distortions. 

Fig.4(b) shows heatmap of H interstitial formation energy 
𝐸? 𝐻`c . Most compounds possess a positive 𝐸? 𝐻`c . In  

particular, compounds with large A site cations such as Sr 
and Ba (and large t values) possess small positive 𝐸? 𝐻`c . 
However, 𝐸? 𝐻`c  does not exhibit good quantitative linear 
correlation with other material identities or the H 
interstitial induced local structural distortions. 

Systems with dopant-H interaction energy ∆𝐸` 𝑌Lc − 𝐻`c  
between -11eV and 9eV is shown in Fig.3(d). We did not 
observe any quantitative correlations between  ∆𝐸` 𝑌Lc −
𝐻`c  and the material identities or the local distortions. 
Correlations in Favorable Compounds 

The presence of relatively few quantifiable correlations 
among defect energies, material identities and local 
distortions indicate that unstable compounds could be 
suppressing the other intrinsic correlations. To unravel 
such suppressed correlations, we restrict further analysis 
to only those compounds that possess a favorable structure 
formation energy 𝐸? 𝐴𝐵𝑂@ < 0  and endothermic defect 
formation energies (in range [0,11eV]). This results in a list 
of fifteen compounds shown in Table.1. These fifteen 

 

Figure.4.  Heatmap of (a) Oxygen vacancy formation energy (𝐸? 𝑉Zc ) in range [0, 11] eV, (b) H interstitial formation energy 𝐸? 𝐻`c   
in range [0,11] eV, (c) Dopant-H interaction energy ∆𝐸` 𝑌Lc − 𝐻`c  in range [-11,9] eV. 



 

compounds obtained from the initial eighty compounds 
are likely to exhibit good proton transport properties. 

For these restricted favorable compounds, we additionally 
calculate the dopant-vacancy interaction energies 
∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc , since the oxygen vacancies can get 

trapped near acceptor dopants22,38 that can influence the  

hydration capacity of these doped perovskites. The PBE 
bandgap of these compounds are 

provided in Table.S2 in SI where all of them possess a finite 
bandgap. The gap slightly increases with increasing A-site  
ionic radius. Since, DFT using the PBE functional is 
notoriously known to under predict band-gaps,61,62  this 
suggests that these compounds have good potential to be 
employed as electrolytes in PCFCs. 
Defect Energies and Material Identities 

To gain additional insights, we calculate the Pearson 
correlation coefficient between structural and defect 
energies, local distortions and material identities for this 
subset of compounds as shown in Fig.5. Fig.5(a) shows the 
correlation between the energies and material identities 
which is now expanded to include (i) tolerance factor with 
dopant ionic radius at B site (tDA), (ii) ionic radius 
difference between dopant and B-site 𝑟q − 𝑟L , (iii) 𝜒 
difference between dopant and B-site  𝜒q − 𝜒L ,  (iv) 𝜒 
difference between dopant and A-site  𝜒q − 𝜒h . Similar 
to the previous observation in the full dataset (Fig.1(c-d), 

𝐸? 𝐴𝐵𝑂@  inversely correlates, and becomes more 
favorable with increasing values of t and 𝑟h + 𝑟L.  
Interestingly, in case of these favorable compounds we 
observe new correlations between defect energies and 
material identities. 𝐸? 𝐻`c  inversely correlates, and 
become more favorable with increasing tolerance factor 

(t), (i.e. R2 = 0.52) as shown in Fig.6(b).  This indicates that 
it is energetically favorable to introduce H interstitial in 
perovskites with large A site cations. 

Similarly, Fig.6(a) shows that 𝐸? 𝑉Zc  decreases (O vacancy 
formation becomes more favorable) with increasing 
cationic electronegativity difference (𝜒L − 𝜒h) (R2=0.62). 
As the electronegativity of the B-site atom increases, its 
tendency to donate electron decreases, which likely leads 
to weaker bonding with oxygen atoms and smalle𝐸? 𝑉Zc r. 
On the other hand, even for the subset of fifteen favorable 
compounds, dopant related energies 𝐸? 𝑌Lc , 	∆𝐸` 𝑌Lc −
𝐻`c , ∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc 	  do not show any good 
quantitative correlation with the material identities 
indicating the challenges in creating simple and cheap 
descriptors to describe dopant related energies. 
Defect Energies and Local Structural Distortions 
Fig. 5(b) shows the correlation between defect energies 
and the induced local distortions. Like trends observed in 
the full dataset (Fig.3a), 𝐸? 𝑌Lc  increases and positively 
correlates (dopant substitution becomes more 
unfavorable) with increasing local distortions 

 

Figure.5 Correlation analysis among the fifteen potential perovskites to identify trends, where 1.0 indicates perfect positive correlation, 
-1.0 indicates perfect negative correlation and 0.0 indicates no correlation. (a) structure and defect energetics against material identities 
such as (i) tolerance factor (t) (ii) tolerance factor with dopant ionic radius at B site (tDA), (iii)ionic radius difference between dopant and 
B-site 𝑟q − 𝑟L    (iv) cationic electronegativity  difference 𝜒L − 𝜒h , (v) Electronegativity difference between dopant and B-site  
𝜒q − 𝜒L ,  (vi) Electronegativity difference between dopant and A-site  𝜒q − 𝜒h , (vii)  sum of cationic radius 𝑟h + 𝑟L . The check 

mark indicates that the structure and defect energetics become more favorable as the material identities (such as t) increases.  The symbol 
U indicates the correlation is universal, and is valid for the full dataset, comprising of both favorable and unfavorable perovskites. (b) 
Defect energetics against the induced local distortions as quantified by maximum displacement of O atom. The cross mark indicates that 
the 𝐸? 𝑌Lc  becomes more unfavorable with distortion, while check mark indicates the dopant-H interaction becomes more attractive with 
increasing distortion. (c)  Cross-correlation amongst the structure and defect energetics. The symbol C / IC respectively denotes 
correlation/inverse-correlation between the two variables. 

Subset of cubic perovskites  SrOsO3, CaTiO3, SrSnO3, SrRuO3, SrGeO3, CaVO3, SrMnO3, SrHfO3, SrZrO3, SrTiO3, 

SrVO3, BaTiO3, BaVO3, BaHfO3, BaZrO3, 

Table. 1.  Subset of fifteen cubic perovskites compounds with favorable structure formation (𝐸? 𝐴𝐵𝑂@ < 0) and endothermic 
defect formation (𝐸? 𝑌Lc , 𝐸? 𝑉Zc , 𝐸? 𝐻`c   in range [0,11eV]). 



 

(𝑚𝑎𝑥 ∆𝑅Z 𝑌Lc ). However, for this subset, we also observe 
new correlations. 

Fig. 6c shows that ∆𝐸` 𝑌Lc − 𝐻`c inverse correlates and 
becomes more negative (stronger dopant-H attraction) 
with increasing local distortion (𝑚𝑎𝑥 ∆𝑅Z 𝑌Lc − 𝐻`c ) with 
an R2 value of 0.23. Although the R2 value is weak due to  

few outliers, the insights from this correlation is consistent 
with previous literature. In Y doped BaZrO3, previous  

works21,63,64 have established the attractive interaction 
between proton interstitial and a wide range of acceptor  
dopants. These attractive interaction results in formation  

of hydrogen bonds 𝑂 ∙∙∙ 𝐻  through distortion of oxygen 
sub-lattice. The data described in Fig.6(d) shows that the 
phenomenon of hydrogen bond formation due to 
attractive dopant-H interaction is more generic across 
many perovskites compounds. 
Cross Correlating Structural and Defect Energies 

To design a new proton conductor, it is important to 
simultaneously optimize various structural and defect 
energies that influence proton transport. This in turn 
necessitates how these energies correlate with one 
another. Fig.5(c) shows the correlation between various 
energies with the detailed scatter plots shown in Fig.7. 
Fig.7(a) shows 𝐸? 𝑉Zc  inversely correlates (with R2=0.50) 
with 𝐸? 𝐴𝐵𝑂@ . Thus, the more stable a perovskite 
structure, the more difficult it is to create an oxygen 
vacancy. Fig.7(b) identifies that dopant-H interaction 
∆𝐸` 𝑌Lc − 𝐻`c  inversely correlates with 𝐸? 𝐻`c  (R2 = 0.46). 
Similarly, Fig.7(c) identifies that dopant-vacancy 
interaction ∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc  inversely correlates with  
𝐸? 𝑌Lc  (R2 = 0.67). This suggests that as forming isolated  
defects (H interstitial and Y dopant in this case) become 
more unfavorable, it becomes more favorable to form a 
dopant-defect complex. Further if a perovskite compound 
favors the formation of a dopant-H defect complex, it is 
also likely to favor the formation of dopant-vacancy 
complex as observed from the strong correlation between 
∆𝐸` 𝑌Lc − 𝐻`c  and ∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc  as shown in Fig.7(d). 
However, such defect complex inherently possess strong 

attraction that leads to lowering of carrier (proton) 
concentration and mobility. 
Perovskites with High Proton Conductivity 

The energies of all these fifteen favorable compounds are 
plotted in Fig.8. As expected, BaZrO3 a fast proton 
conductor exhibits small defect formation and defect 

interaction energies. On the other hand, SrZrO3 that 
exhibits relatively lower  proton conductivity,28,65 exhibits 
stronger dopant-H attraction ( -7.52eV for SrZrO3 in 
comparison to -2.88eV for BaZrO3), indicating proton 
trapping and reduced transport. From Fig.8, we observe  

that energies of three materials namely BaTiO3, BaVO3, 
BaHfO3 are close to BaZrO3, suggesting that these 
compounds are more likely to demonstrate fast proton 
transport in cubic perovskite phase.  

Preliminary studies appear to validate this finding. Y doped 
BaHfO3

66,67 appears to exhibit good proton transport 
properties. Similarly, cubic perovskite structures of BaTiO3 
stabilized through acceptor doping with Sc or In atoms54,55 
exhibit higher proton conductivity compared to other 
structural polymorphs. BaVO3 under ambient conditions 
exhibits a hexagonal structure (P-3m1)68. However, it 
appears likely to stabilize cubic perovskite structure of the 
material at high pressures,69 although no information is 
available regarding the stability of this phase upon proton 
uptake and its proton transport properties. 

Density gradient based exchange correlation functional 
(PBE) are known to generate errors in bandgaps and defect 
transition levels of complex oxides. Thus, in order to 
ensure the robustness of the comparative analysis amongst 
various perovskite compounds and to qualitatively 
understand the uncertainty in defect energies in the 
current framework, we compare the PBE defect energies of 
four compounds namely BaZrO3, BaHfO3, BaTiO3 and 
SrZrO3 against energies obtained from hybrid functional 
(HSE06), as shown in Table.2. We can observe from that 
PBE over-estimates favorability of dopant substitution 
(𝐸? 𝑌Lc ast −	𝐸? 𝑌Lc uLt 	∈ [2.14, 2.36] eV) and under-
estimates favorability of vacancy formation (𝐸? 𝑉Zc ast −
	𝐸? 𝑉Zc uLt 	∈ [-1.29, -2.10] eV). Similarly, PBE based 

 

Figure.6. Scatter plot of energetics of the fifteen potential perovskites compounds along with linear regression fit. (a) Oxygen vacancy 
formation energy 𝐸? 𝑉Zc  decreases (becomes more favorable to form) with increasing cationic electronegativity difference (𝜒L − 𝜒h) 
(b) H interstitial formation energy 𝐸? 𝐻`c   decreases (becomes more favorable to form) with increasing tolerance factor (t). (c) Dopant-
H interaction energy ∆𝐸` 𝑌Lc − 𝐻`c   decreases (the interaction becomes more attractive), with increasing induced local structural 
distortion (quantified by the maximum oxygen displacement (𝑚𝑎𝑥 ∆𝑅Z 𝑌Lc − 𝐻`c ). 



 

calculations also under-estimates the attractive interaction 
between dopant-H (∆𝐸` 𝑌Lc − 𝐻`c

ast
− ∆𝐸` 𝑌Lc − 𝐻`c

uLt
∈ 

[-0.09, -1.46] eV) and dopant-vacancies (∆𝐸` 𝑌Lc − 𝑉Zc −
𝑌Lc ast − ∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc ast ∈ [-1.15, -3.19] eV). 
More importantly, this comparison enables us to validate 
that the current methodology based on PBE captures the  

trends across compounds for all the defect energies studied 
in this work. Accordingly, the methodology correctly 
identifies that it is more difficult to dope SrZrO3 than 
compared to BaZrO3 and that the formation of defect-
complex is more likely in SrZrO3 compared to BaZrO3 that 
explains the poor proton conductivity in SrZrO3. Thus, the 
current computational framework is robust in identifying 
potential compounds that can exhibit good proton 
transport property. 
SUMMARY & CONCLUSIONS 
To summarize, we develop a computational framework, 
where highly scalable workflows are employed, to perform 
ab initio calculations, to systematically study (i) structure 
formation energy 𝐸? 𝐴𝐵𝑂@ , (ii) defect formation 
energies (yttrium dopant substitution (𝐸? 𝑌Lc ), oxygen 
vacancy formation (𝐸? 𝑉Zc ),  H interstitial formation 

(𝐸? 𝐻`c )), and (iii) defect interaction energy (dopant-H 
∆𝐸` 𝑌Lc − 𝐻`c ) in over eighty (2,4) cubic perovskites.  
 𝐸? 𝐴𝐵𝑂@  and endothermic defect formation energies (in 
range [0,11] eV) exhibit inverse correlations (becomes more 
favorable to form) with increasing values of material 
identities, such as (a) 𝐸? 𝐴𝐵𝑂@  (vs) t, (b) 𝐸? 𝐴𝐵𝑂@  (vs) 

𝑟h + 𝑟L and (c) 𝐸? 𝐻`c  (vs) t. The intersection of favorable 
𝐸? 𝐴𝐵𝑂@ 	 (< 0eV) and endothermic defect formation 
energies (in range [0,11eV]) identifies a subset of fifteen 
promising favorable compounds. For these favorable 
compounds, we also calculate the dopant-vacancy 
interaction energy ∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc . Data from this 
subset identifies new correlations with material identities, 
(such as 𝐸? 𝑉Zc  (vs) 𝜒L − 𝜒h and 𝐸? 𝐻`c  vs t), that were 
previously suppressed in the full dataset by presence of 
unfavorable compounds.  

The defect energies of this subset when correlated with the 
defect induced local distortions help elucidate the 
mechanisms that influence defect formation and 
interaction, such as (a) local strain in 𝐸? 𝑌Lc , and (b) 
hydrogen bonding in ∆𝐸` 𝑌Lc − 𝐻`c ). We also identify 
various inverse correlations between energies, such as, (a) 
𝐸? 𝑉Zc  (vs) 𝐸? 𝐴𝐵𝑂@ , (b)		∆𝐸` 𝑌Lc − 𝐻`c  (vs) 𝐸? 𝐻`c  and  

 

Figure.7 Scatter plot of energetics of the fifteen potential perovskites compounds along with linear regression fit.  (a) Oxygen vacancy 
formation energy 𝐸? 𝑉Zc  decreases (becomes more favorable to form) with increasing (unfavorable) structure formation energy 
𝐸? 𝐴𝐵𝑂@ 	 (b) Dopant-H interaction energy ∆𝐸` 𝑌Lc − 𝐻`c   decreases (the interaction becomes more attractive) with increasing 

(unfavorable) H interstitial formation energy 𝐸? 𝐻`c . (c) Dopant-vacancy interaction energy ∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc 	decreases (the 
interaction becomes more attractive) with increasing (unfavorable) Dopant substitution energy 𝐸? 𝑌Lc . (d)  Dopant-vacancy interaction 
energy ∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc 	increases (the interaction becomes less attractive) with increasing (less attractive) Dopant-H interaction 
energy ∆𝐸` 𝑌Lc − 𝐻`c . 



 

 (c) ∆𝐸` 𝑌Lc − 𝑉Zc − 𝑌Lc  (vs) 𝐸? 𝑌Lc . We also identify the 
positive correlation between ∆𝐸` 𝑌Lc − 𝐻`c  and ∆𝐸` 𝑌Lc −
𝑉Zc − 𝑌Lc . These correlations highlight the tradeoffs and 
illuminate us on the challenges in simultaneously 
optimizing competing structural and defect energies for 
high proton conductivity. Finally, comparing the energies 
of the compounds against BaZrO3 enables us to narrow  

down to three perovskite compounds namely BaTiO3, 
BaVO3, BaHfO3 that are expected to exhibit fast proton 
transport. 

To conclude, the genomic point defect data and the 
insightful correlations generated by this high-throughput 
computational framework, can be envisioned to be fed into 
computationally inexpensive machine-learning models, 

 

Figure.8 Structure and defect energetics for the fifteen potential perovskite compounds compared against the most commonly studied 
proton conductor BaZrO3. Three systems namely BaTiO3, BaVO3 and BaHfO3 are identified to have similar energetics as BaZrO3 and 
hence are expected to exhibit high proton conductivity. 

Perovskites 
Compounds 

PBE Defect Energies (eV) HSE Defect Energies (eV) 

 𝐸? 𝑌Lc  𝐸? 𝑉Zc  𝐸? 𝐻`c  ∆𝐸` 𝑌Lc

− 𝐻`c  
∆𝐸` 𝑌Lc
− 𝑉Zc
− 𝑌Lc  

𝐸? 𝑌Lc  𝐸? 𝑉Zc  𝐸? 𝐻`c  ∆𝐸` 𝑌Lc

− 𝐻`c  
∆𝐸` 𝑌Lc
− 𝑉Zc
− 𝑌Lc  

BaTiO3 0.89 4.72 2.01 -2.95 -2.73 3.17 2.62 1.06 -4.09 -2.82 
BaZrO3 0.72 6.29 2.98 -5.06 -2.89 3.04 5.19 3.57 -8.26 -4.11 
BaHfO3 0.72 6.59 3.68 -5.39 -3.41 3.09 5.30 4.08 -8.24 -4.88 

SrZrO3 1.38 6.04 6.35 -8.14 -7.52 3.52 4.63 6.94 -10.52 -8.91 

Table.2. Comparison of defect energies between PBE based current methodology and hybrid (HSE) based calculations for four 
different compounds identifies that the trends in defect energies are similar for the two exchange-correlation functionals.	



 

that can accelerate predictions of defect energetics. This 
combination could then be used to expand the search for 
new proton conductors not only across different dopants, 
but also across other crystal structures such as double-
perovskites, pyrochlores, fluorites etc. Similar approaches 
can also be employed to systematically screen functional 
defects and its influence on material properties for other 
energy applications such as hydrogen storage, CO2 capture, 
solid state lighting, thermoelectrics and solid-state 
batteries. 
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