
1 Poly(ethylene glycol)s in Semidilute Regime: Radius of Gyration in 2 the Bulk and Partitioning into a Nanopore

3 Philip A. Gurnev,[†] Christopher B. Stanley,[‡] M. Alphan Aksoyoglu,^{||} Kunlun Hong,[§][†]
4 V. Adrian Parsegian,^{||} and Sergey M. Bezrukov^{*,†}

5 [†]Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National
6 Institutes of Health, Bethesda, Maryland 20892, United States

7 [‡]Biology and Soft Matter Division and [§]Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge,
8 Tennessee 37831, United States

9 ^{||}Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States

10 **ABSTRACT:** Using two approaches, small-angle neutron scattering (SANS) from bulk solutions and nanopore conductance-
11 fluctuation analysis, we studied structural and dynamic features of poly(ethylene glycol) (PEG) water/salt solutions in the dilute
12 and semidilute regimes. SANS measurements on PEG 3400 at the zero-average contrast yielded the single chain radius of
13 gyration (R_g) over 1–30 wt %. We observed a small but statistically reliable decrease in R_g with increasing PEG concentration: at
14 30 wt % the chain contracts by a factor of 0.94. Analyzing conductance fluctuations of the α -hemolysin nanopore in the mixtures
15 of PEG 200 with PEG 3400, we demonstrated that polymer partitioning into the nanopore is mostly due to PEG 200. Specifically,
16 for a 1:1 w/w mixture the smaller polymer dominates to the extent that only about 1/25 of the nanopore volume is
17 taken by the larger polymer. These findings advance our conceptual and quantitative understanding of nanopore polymer
18 partitioning; they also support the main assumptions of the recent “polymers-pushing-polymers” model.

19 ■ INTRODUCTION

20 Understanding polymer partitioning into nanoscale cavities of
21 different nature is important for many technological applica-
22 tions that include, but are not limited to, analytical
23 chromatography, separation techniques, and purification
24 methods. It is also critical in the qualitative interpretation and
25 quantitative analysis of molecular interactions and biological
26 regulation in the crowded cellular environment. This
27 necessitates model studies with polymer solutions explored in
28 both dilute and semidilute regimes.

29 Some of the early experimental investigations on polymer
30 confinement were conducted using Vycor glass as a nanoporous
31 medium.^{1–3} Small-angle neutron scattering (SANS) was used
32 to determine the structure of solution phase polymers within
33 the confined matrix and in the bulk. While the results were³
34 insightful, certain caveats were discovered with using Vycor.
35 For example, polymer adsorption to the pore walls has to be
36 considered and may require chemical treatment to passivate the
37 Vycor surface. Also, random pore geometries complicate the

38 analysis. It was realized that having better defined pore
39 geometries would greatly improve these experiments and
40 serve to more robustly test and develop theoretical approaches.

41 During the past 30 years it became clear that certain
42 biological channels provide well-defined nanopores for studying
43 both polymer partitioning^{4–14} and its osmotic action.^{15–17} In
44 addition, it was shown that conductance fluctuation analysis of
45 single nanopores allows one to study the dynamic side of
46 polymer partitioning, which offers advantages over ensemble
47 techniques. To the best of our knowledge, the first experiments
48 on polymer-induced noise in the nanopore current were
49 reported for alamethicin channels interacting with differently
50 sized poly(ethylene glycol)s (PEGs)¹⁸ and then further
51 advanced and extended to other biological nanopores.^{6,19–21} Highly
52 water-soluble and “soft” PEGs proved to be most

Received: November 28, 2016

Revised: February 24, 2017

53 popular in partitioning studies. In particular, it was demonstrated that under appropriate conditions PEG-induced single-
54 molecular events¹⁰ can be perfectly time-resolved²² and used
55 for PEG dispersion analysis at the submonomeric resolution.^{23–25} An interesting latest development in this single-
56 molecule technique relates to the unexpected temperature
57 dependence of the lifetime of a single polymer molecule
58 trapped by the α -hemolysin (aHL) nanopore.²⁶ It turned out
59 that the temperature effect can be opposite for PEGs of
60 different molecular weights. For the relatively small PEGs
61 (molecular weight <2000) the time was found to exponentially
62 decrease with temperature, while increasing for the larger PEGs
63 (molecular weight 2000 and higher).

64 Recently,²⁷ polymer partitioning from semidilute solutions of
65 PEG mixtures was studied with a number of membrane-
66 spanning β -barrel channels of different origin: the voltage-
67 dependent anion channel (VDAC) from outer mitochondrial
68 membrane, bacterial porin OmpC, and channel-forming toxin
69 aHL. PEGs of molecular weight 200 (PEG 200) and 3400
70 (PEG 3400), and their mixtures in different proportions, were
71 used. The results for the mixtures were rationalized within the
72 earlier formulated “polymers-pushing-polymers” model of
73 nanopore partitioning,²⁸ which is based on the assumptions
74 that the larger component of the polymer mixture, being
75 preferentially excluded from the cavity, pushes the smaller
76 component into the cavity, thus representing forced polymer
77 redistribution between the bulk and the channel. Here we study
78 polymer mixtures by using two different methods—SANS and
79 nanopore conductance fluctuation analysis—to quantify the
80 larger polymer parameters in the bulk and the degree of its
81 partitioning in the pore, respectively. We show that the
82 reduction of the PEG 3400 characteristic size with its increasing
83 concentration in the bulk is statistically significant but small.
84 We also demonstrate that partitioning of the larger polymer in
85 the nanopore is negligible, below 4%, if its relative weight
86 fraction is kept smaller than 1/2, in excellent agreement with
87 the major assumptions of the recent study.²⁷

90 ■ EXPERIMENTAL SECTION

91 **Materials.** The synthesis of perdeuterated PEG of MW 3900
92 (dPEG 3900) was achieved using a custom-made glass reactor with
93 constrictions and break-seal techniques under high-vacuum conditions.
94 Potassium 2-(tetrahydropyranloxy)ethanol was used as the initiator
95 and tetrahydrofuran as the solvent. Details of the synthesis and
96 characterization of the dPEG are similar to previously reported.²⁹
97 Deuterium oxide (Cambridge Isotope Laboratories, 99.9% D) was
98 used without further purification. *Staphylococcus aureus* aHL, PEGs of
99 MW 200 and 3400, KCl, and HEPES for nanopore experiments were
100 purchased from Sigma, and diphyanoylphosphatidylcholine was from
101 Avanti Polar Lipids. The buffered KCl solutions containing various wt
102 % of PEG 200, PEG 3400, and their mixtures were prepared in double-
103 distilled water.

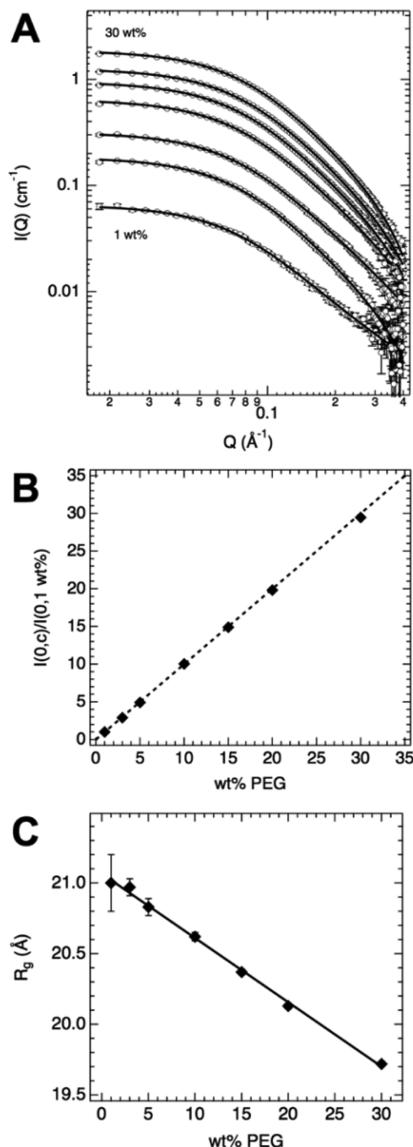
104 **Small-Angle Neutron Scattering.** SANS experiments were
105 performed on the extended Q-range small-angle neutron scattering
106 (EQ-SANS, BL-6) beamline at the Spallation Neutron Source (SNS)
107 at Oak Ridge National Laboratory (ORNL). In 60 Hz operation mode,
108 a 2.5 m sample-to-detector distance with 2.5–6.46 Å wavelength band
109 was used³⁰ to obtain the relevant wave-vector transfer, $Q = 4\pi \sin(\theta)/\lambda$,
110 where 2θ is the scattering angle. Samples were loaded into 1 mm
111 path-length circular-shaped quartz cuvettes (Hellma USA, Plainville,
112 NY), and SANS measurements were performed at 25 °C. Data
113 reduction followed standard procedures using MantidPlot.³¹ The
114 measured scattering intensity was corrected for the detector sensitivity
115 and scattering contribution from the solvent and empty cells and then
116 placed on absolute scale using a calibrated standard.³²

117 PEG solutions for SANS were prepared in 5 mM HEPES (pH 7), 1 M KCl buffer, consistent with the single-channel experiments. The
118 SANS zero-average contrast (ZAC) condition³³ was used to obtain the
119 single PEG chain conformation over the entire concentration series.
120 Here the scattering intensity, $I(Q)$, can be described by
121

$$122 I(Q) = [f_D \Delta \rho_D^2 + (1 - f_D) \Delta \rho_H^2] S_1(Q) + [f_D \Delta \rho_D + (1 - f_D) \Delta \rho_H]^2 S_2(Q) \quad (1)$$

123 where f_D is the fraction dPEG, $\Delta \rho_D$ is the dPEG contrast with H_2O/D_2O solvent,
124 $\Delta \rho_H$ is the hPEG contrast with H_2O/D_2O solvent, $S_1(Q)$ is the intrachain scattering, and $S_2(Q)$ is the interchain scattering. To
125 nullify $S_2(Q)$, the second term in eq 1 was set to 0 by choosing $f_D = 0.5$ (1:1 hPEG 3400:dPEG 3900) and then solving for the appropriate
126 D_2O percentage (= 63.3% D_2O). Both hPEG and dPEG have a similar
127 degree of polymerization (DP ~ 80), which is important for the ZAC
128 method. PEG concentrations are reported as total wt % PEG (hPEG
129 3400 + dPEG 3900) for the ZAC experiments. SANS curves were fit
130 to the Debye model for Gaussian polymer chains
131

$$132 I(Q) = I(0) \frac{2(e^{-x} + x - 1)}{x^2} \quad (2)$$


133 where the scattering intensity, $I(Q)$, is described by the zero-angle scattering intensity, $I(0)$, and $x = Q^2 R_g^2$, where R_g is the radius of gyration.
134

135 **Nanopore Experiments.** Bilayer lipid membranes were prepared
136 from diphyanoylphosphatidylcholine/pentane solution using the lipid
137 monolayer-opposition technique on a circular aperture in a Teflon
138 partition separating two compartments of an experimental cell.²⁰
139 Single membrane-spanning nanopores were formed by adding 25 μ g/
140 mL stock aHL solution directly to one of the compartments. Ion
141 current measurements were performed with an Axopatch 200B
142 amplifier (Molecular Devices, Eugene, OR) at room temperature
143 (~24 °C). A pair of Ag/AgCl electrodes in 15% agarose/2 M KCl
144 bridges was used to apply transmembrane voltages and to record ion
145 currents. A positive potential of 100 mV was applied from the side
146 opposite to aHL addition. The output signal of the amplifier was
147 filtered by the amplifier built-in 10 kHz Bessel filter and in-line low-
148 pass eight-pole Butterworth filter (Model 9002; Frequency Devices,
149 Ottawa, IL) at 15 kHz and directly saved into computer memory with
150 a sampling frequency of 50 kHz. Amplitude and fluctuation analyses
151 were performed using ClampFit 10.2 (Molecular Devices) and Origin
152 9.1 software (OriginLab, Northampton, MA).
153

154 **Viscosity.** The kinematic viscosity, ν , of PEG 200/PEG 3400
155 mixtures in 5 mM HEPES (pH 7), 1 M KCl buffer was measured in
156 duplicate or triplicate using Cannon–Fenske viscometers. Using
157 density, ρ , measurements with a standard balance, the dynamic
158 viscosity η ($= \nu \rho$) was then calculated.
159

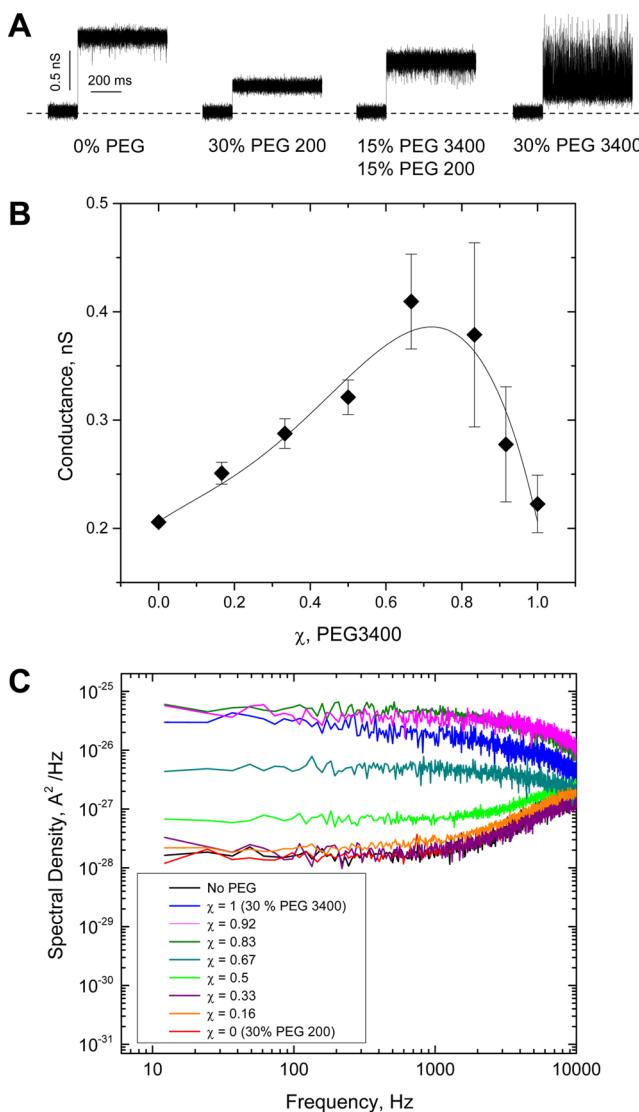
160 ■ RESULTS AND DISCUSSION

161 **SANS: Chain Contraction in the Semidilute Regime.** We first used SANS from bulk PEG solutions to evaluate
162 polymer chain contraction with increasing polymer concentration.
163 To accomplish this, we took advantage of the zero-average
164 contrast (ZAC) condition for SANS,³³ where an optical theta
165 condition is reached to cancel out intermolecular scattering
166 contributions and yield only the single chain scattering independent
167 of the PEG concentration. This method also was used in previous SANS studies on polymer structure in
168 Vycor.^{1–3} We achieved the ZAC condition for PEG by using
169 1:1 hPEG 3400:dPEG 3900 and 63.3% D_2O (see Experimental
170 Section) to unambiguously determine the single polymer chain
171 conformation over the full concentration range measured.
172 Importantly, the same buffered salt solution was used for SANS
173 and the nanopore polymer partitioning experiments. The SANS
174 curves and fits to the scattering as expected from a random coil
175 (solid lines) are shown in Figure 1A for the PEG concentration
176 fl

Figure 1. (A) SANS curves on 1:1 hPEG 3400:dPEG 3900 in 63.3% D₂O buffer. The total PEG concentration was varied as 1, 3, 5, 10, 20, and 30 wt % (with the lowest and highest wt % indicated). SANS curves were fit to the Debye equation (solid lines). (B) Normalized $I(0)$ vs wt % PEG (solid diamonds) compared to the direct wt % vs wt % PEG correlation (dashed line). (C) PEG 3400 single chain radius of gyration R_g vs wt % determined using SANS at the ZAC point. A linear fit to the data (solid line) yields the equation R_g (Å) = 21.07 - 0.046 (wt %).

series, from 1 to 30 wt %. As a control, the $I(0)$ values obtained from the random coil fits were normalized by $I(0)$ at $c = 1$ wt %, $I(0,c)/I(0,1\text{ wt}\%)$, to compare with the wt % concentration. The direct correlation demonstrated in Figure 1B verifies that $S_2(Q) = 0$ in eq 1 with only single chain contributions detected. Since hPEG 3400 and dPEG 3900 have a similar DP, we simply refer to this 1:1 mixture as "PEG 3400" below.

Figure 1C shows that the PEG 3400 R_g slightly decreases with increasing polymer concentration. A linear fit to the data provided the size extrapolated to infinite dilution, $R_{g0} = 21.0$ Å, which matches the value at 1 wt %. As the semidilute regime is approached, R_g decreases to 19.7 Å at 30 wt %. The SANS results here provide two main observations. First, they demonstrate that even at 1 M KCl bulk polymer behavior


does not change significantly, as the polymer size at infinite dilution is close to the expected value based on its length and persistence length.³⁴ This seems to be an important finding, as interactions between PEG and salt are well documented.³⁵ Second, the decrease in polymer size with increasing polymer concentration, though statistically significant, is small at ~ 1.3 Å. The R_g ratio between 30 and 1 wt % is about 0.94.

Previous SANS measurements³⁶ on hydrogenated PEG 3400 in D₂O found a similar dilute solution R_g but with a more pronounced decrease in the "apparent" R_g with increasing polymer concentration. Going from ~ 3 to 16 wt %, the reported R_g decreased by more than 10 Å. As the authors of ref 36 discuss, the reason for the stronger effect is that the measured "apparent" R_g is also influenced by the onset of interpolymer interactions ($S_2(Q)$ in eq 1), causing the measured R_g value to appear to decrease with increasing concentration. However, it is difficult to separate out the individual PEG chain R_g since interpolymer scattering contributions can become dominant. The "apparent" R_g values in this previous SANS study therefore are informing on a characteristic correlation length within the PEG solutions. By using ZAC to nullify $S_2(Q)$ in our SANS measurements, we show that the single PEG chain R_g does decrease, but the concentration effect is more subtle. This slight decrease in the size of individual PEG chains can be partially attributed to a decrease in water activity, which reduces the solvent quality for the PEG to favor a more compact conformation. A similar effect is observed upon raising the temperature, where PEG 3400 collapses in size due to decreased solubility.²⁶

Nanopore Fluctuation Analysis: Predominant Small-Chain Partitioning into the Nanopore. One of the main assumptions of the polymers-pushing-polymers model used for the analysis of the forced PEG partitioning into nanopores²⁷ was that in a mixture of smaller and larger polymers, namely, PEG 200 and PEG 3400, it is predominantly the smaller polymer that fills the pore, up to the larger polymer weight fraction of 0.5. We now show that fluctuation analysis of pore conductance in the presence of polymer mixtures allows one to check this assumption experimentally. To achieve this goal, we use single transmembrane channels or water-filled pores formed by α -hemolysin³⁷ in planar lipid bilayers.

Figure 2A displays samples of the currents through the channels before and after addition of different PEG mixtures. It shows two effects of PEG on the current: PEG addition to the membrane-bathing 1 M KCl aqueous solution reduces pore conductance and changes the noise in the ion current. Both effects depend on the composition of the polymer mixture.

Figure 2B gives the relative channel conductance in PEG 200/PEG 3400 mixtures of different composition, in which the total monomeric concentration of PEG is held constant at the 30 wt % level at a varying relative fraction χ of PEG 3400 in the mixture, defined as $\chi = [\text{PEG 3400}] / ([\text{PEG 3400}] + [\text{PEG 200}])$, where square brackets stand for the weight concentration. Surprisingly, channel conductance displays a non-monotonic dependence on the relative fraction of PEG 3400. It first increases with the increasing fraction of the larger PEG in the mixture, but then, after this fraction reaches about 2/3 (corresponds to 20 wt % of PEG 3400), it starts to decrease. Using the language of conductance-derived partitioning,²⁷ this can be interpreted in the following way. Substitution of smaller PEG 200 by larger PEG 3400 first leads to a decrease in partitioning which is manifested by an increase in the conductance of the pore due to the reduced pore occupancy by

Figure 2. (A) Traces of ionic currents through single aHL nanopores in lipid bilayers at different compositions of the polymer mixtures. The events of spontaneous assembly of nanopores are manifested as upward jumps in the current. Addition of polymers decreases the current due to their partitioning into the pore. It is also seen that the increasing concentration of PEG 3400 promotes excess fluctuations. Dashed line denotes zero current. Applied voltage was 100 mV. All traces were filtered by a low-pass filter with 10 kHz cutoff frequency. (B) Average conductance of the nanopore in the presence of 30 wt % PEG as a function of the relative fraction χ of PEG 3400. As PEG 3400 fraction grows from $\chi = 0$, corresponding to pure PEG 200, to about $\chi = 2/3$, the conductance increases, reporting on a reduced polymer partitioning into the pore. Further increase in PEG 3400 content decreases conductance increasing partitioning. (C) Power spectral densities of ion current noise in the polymer-free and polymer-containing solutions of different relative fractions χ of PEG 3400.

255 polymer. This is an expected behavior because of the extra
256 entropic penalty of moving larger polymer into the nanopore;
257 but then, surprisingly, with the fraction of the larger polymer
258 increasing, the partitioning increases again.

259 Figure 2C shows the results of the spectral analysis of
260 fluctuations in the currents through the α -hemolysin nanopore
261 in the polymer-free solutions and in the presence of the PEG
262 200/PEG 3400 mixtures of different small vs large polymer
263 proportions. It is immediately seen that while for the solutions

enriched with PEG 200 the noise is barely different from that of 264 the nanopore in the absence of polymers, for the ones enriched 265 with PEG 3400 the polymer-induced noise is quite significant. 266 The larger polymer induces a lot of current fluctuations while 267 the smaller one does not. 268

269 Visual examination of the data suggests that at the relative 270 fraction of PEG 3400 not greater than $\chi = 1/2$ (corresponding 271 to 15 wt % PEG 3400 in the bulk) the contribution of PEG 272 3400 to the partitioning is negligible. Indeed, the low-frequency 273 spectral density of current fluctuations at this relative fraction is 274 more than 2 orders of magnitude lower than it is in pure PEG 275 3400 solutions, $\chi = 1$. Assuming that this spectral parameter 276 reports on the presence of PEG 3400 in the nanopore, one may 277 conclude that this larger polymer is practically excluded from 277 the pore at $\chi = 1/2$. 278

279 To obtain quantitative estimates, we need to use the available 280 analytical approaches. One of them, deemed to be most 281 appropriate in our case, is based on the diffusion model of 282 channel-facilitated transport.³⁸ For the fluctuations, which are 283 induced by equilibrium exchange of nonconductive particles 284 between the pore and the bulk, it gives the following expression 285 for the spectral density of current noise $S_I(f)$ as a function of 285 frequency f :

$$S_I(f) = \langle N \rangle (\Delta G)^2 V^2 S(f) \quad (3) \quad 287$$

288 where $\langle N \rangle$ is the average number of particles in the pore, ΔG is 289 the reduction in pore conductance due to entering of one 290 particle, V is the applied voltage, and $S(f)$ is the spectral density 291 obtained from the normalized correlation function of the 291 number of particles in the pore $C(t)$:

$$S(f) = 4 \int_0^\infty C(t) \cos(2\pi ft) dt \quad (4) \quad 293$$

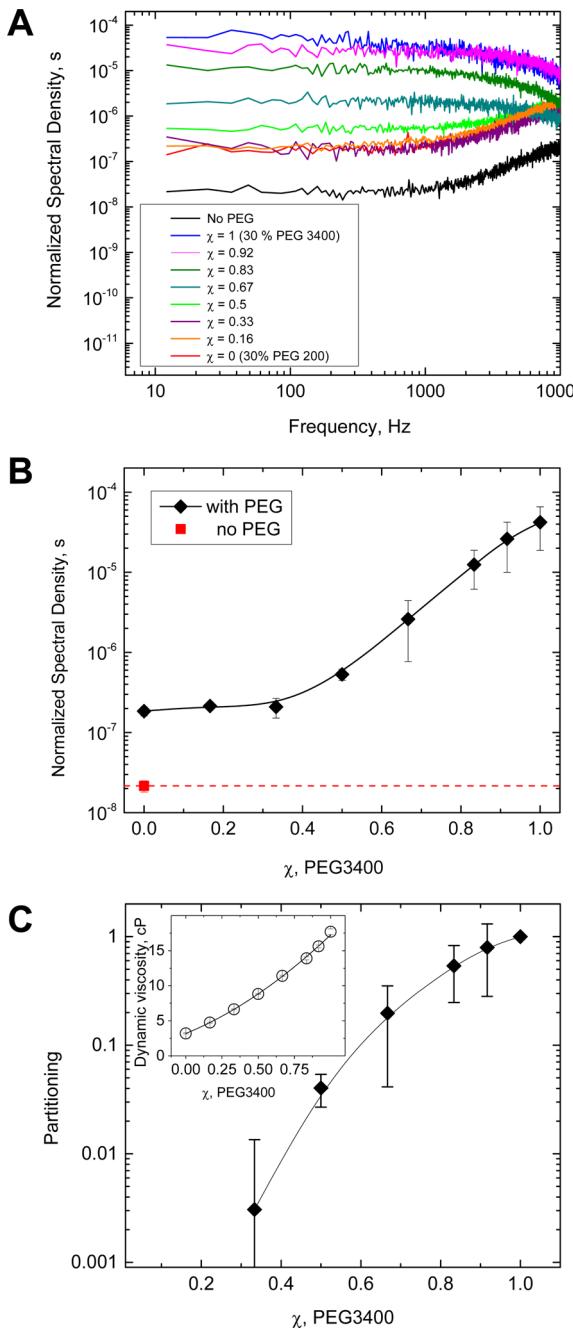
294 Solutions for $C(t)$ demonstrate that the spectral density may 294 have a quite complex frequency behavior,³⁹ which is 295 determined by many parameters of the pore and pore/particle 296 interactions. However, for the low-frequency spectral limit, 297 $S(0)$, and particle diffusional dynamics in a cylindrical pore, the 298 expression is simplified to³⁸ 299

$$S(0) = \frac{L^2}{3D} \left(1 + \frac{3\pi}{2} \frac{D_a}{D_b L} \right) \quad (5) \quad 300$$

301 where L is the channel length, a is the channel radius, D is the 301 particle diffusivity in the channel, and D_b is the particle 302 diffusivity in the bulk. Because for the pore in question $L \gg a$ ³⁷ 303 and $D_b \gg D$,²⁰ the last term in the brackets can be omitted, and 304 we obtain the following:

$$S_I(0) = \langle N \rangle \frac{L^2}{3D} (\Delta G)^2 V^2 \quad (6) \quad 306$$

307 It is convenient to introduce the normalized fluctuation spectra 307 by the following expression:


$$S_{\text{rel}}(f) \equiv \frac{S_I(f)}{\langle G \rangle^2 V^2} \quad (7) \quad 309$$

310 where $\langle G \rangle$ is the average conductance of the nanopore. As a 310 result, we have a simple expression:

$$S_{\text{rel}}(0) = \langle N \rangle \frac{L^2}{3D} \left(\frac{\Delta G}{\langle G \rangle} \right)^2 \quad (8) \quad 312$$

313 Experimentally obtained spectra transformed according to [eq 7](#)
 314 are shown in [Figure 3A](#). The values of $S_{\text{rel}}(0)$, defined as an
 315 average of the normalized spectra in [Figure 3A](#) over the 10–
 316 300 Hz range, are given in [Figure 3B](#).

317 Now, these data and [eq 6](#) allow us to quantify the relative
 318 population of PEG 3400 in the nanopore. Indeed, assuming

Figure 3. (A) Power spectral densities of [Figure 2C](#) normalized by pore average conductance according to [eq 7](#). The normalization demonstrates that the relative conductance fluctuations are increased by polymer presence for all mixtures. (B) Low-frequency spectral density, $S(0)_\chi$, as a function of polymer mixture composition characterized by the relative fraction of PEG 3400, χ . Pores in contact with solutions of the increasing PEG 3400 content display increasing noise intensities at $\chi > 1/3$. (C) PEG 3400 partition coefficient as a function of mixture composition calculated according to [eq 11](#) using dynamic viscosity data shown in the inset.

319 that $\Delta G/\langle G \rangle$, the normalized change in conductance due to the
 320 entrance of one PEG 3400 molecule, does not change much for
 321 the studied mixtures and that the intrachannel diffusion
 322 coefficient scales with the mixture composition similarly to its
 323 bulk counterpart and is inversely proportional to viscosity, we
 324 can estimate the average number of PEG 3400 molecules in the
 325 pore. Their average number, $\langle N(\chi) \rangle$, as a function of polymer
 326 composition in the bulk, χ , can be expressed through their
 327 average number in pure PEG 3400 solutions ($\chi = 1$), $\langle N(1) \rangle$, as
 328

$$\frac{\langle N(\chi) \rangle}{\langle N(1) \rangle} \simeq \frac{S_{\text{rel}}(0)_\chi}{S_{\text{rel}}(0)_{\chi=1}} \frac{\eta_p(1)}{\eta_p(\chi)} \quad (9)$$

329 where $S_{\text{rel}}(0)_\chi$ and $S_{\text{rel}}(0)_{\chi=1}$ are the low-frequency spectral
 330 densities of PEG 3400-induced fluctuations at the PEG 3400
 331 relative fraction χ and $\chi = 1$, respectively, and $\eta_p(1)/\eta_p(\chi)$ is the
 332 ratio of mixture viscosities in the pore at PEG 3400 relative
 333 fraction in the bulk indicated as arguments. As it is suggested by
 334 the conductance data in [Figure 2B](#), PEG 3400 practically
 335 equipartitions at $\chi = 1$, so that its content-dependent
 336 partitioning coefficient can be defined as $p(\chi) = \langle N(\chi) \rangle / \langle N(1) \rangle$.
 337

338 According to [eq 9](#), in order to obtain the partition coefficient
 339 from the noise data, we need to know the intrapore viscosity
 340 ratio. We deduce the intrapore viscosity from the data on bulk
 341 dynamic viscosity measurements. These are shown in [Figure 3C](#)
 342 inset and approximated by the solid line

$$\eta(\chi) = 3.20 + 8.31\chi + 5.72\chi^{1.96} \quad (10)$$

343 drawn through the data points, assuming that the solution
 344 viscosity in the pore is proportional to the solution dynamic
 345 viscosity, [eq 10](#), with the larger polymer relative fraction
 346 corrected for partitioning, $\eta_p(p(\chi)) \propto \eta(p(\chi))$. As a result, on
 347 the basis of [eq 9](#), we arrive at
 348

$$p(\chi) = \frac{S_{\text{rel}}(0)_\chi}{S_{\text{rel}}(0)_{\chi=1}} \frac{\eta(1)}{\eta(p(\chi))} \quad (11)$$

349 Solving [eq 11](#) numerically, we obtain the values of $p(\chi)$ shown
 350 in [Figure 3C](#). The figure demonstrates that partitioning of PEG
 351 3400 is highly composition-dependent. Indeed, at $\chi = 0.5$ (1:1
 352 PEG 3400:PEG 200 solutions) it is only about 4×10^{-2} relative
 353 to its value in pure PEG 3400 solutions ($\chi = 1$) and at $\chi = 0.33$
 354 PEG 3400 partition drops to a fraction of one percent. 355
 Partitioning increases sharply, reaching unity at $\chi = 1$ where 356
 only the larger polymer is in solution. Here PEG 3400 is 357
 pushed into the nanopore due to high solution nonideality; in 358
 the dilute regime its partitioning is negligible.²⁷ Interestingly, in 359
 the case of the PEG 200/PEG 3400 mixture, the increase in 360
 viscosity produced by PEG 3400 relative fraction increase from 361
 $\chi = 0.5$ to $\chi = 1$ (corresponding to PEG 3400 concentration of 362
 15 and 30%, respectively) is about a factor of 2 ([Figure 3](#) inset 363
 and [eq 10](#)). This is significantly smaller than the viscosity 364
 change for pure PEG 3400 solutions at these two 365
 concentrations interpolated from the data published previ- 366
 ously.⁴⁰ 367

CONCLUSIONS

368 Structural parameters in the bulk and dynamic partitioning into
 369 a nanopore of PEG 3400 water solutions in the presence of 370
 371 PEG 200 and 1 M potassium chloride salt were studied by
 372 SANS from bulk solutions and by analysis of nanopore 373
 374 conductance fluctuations, respectively. It was demonstrated 375

374 that at the increasing fraction of PEG 3400 in the PEG 3400/375 PEG 200 mixtures with the total monomeric concentration of 376 PEG kept constant at 30 wt %/wt, partitioning of the larger 377 polymer into the α -hemolysin nanopore change. Increasing 378 PEG 3400 concentration also leads to a decrease in the 379 characteristic chain size. However, conclusions from both our 380 analysis of the structural features and dynamic partitioning are 381 in excellent accord with the major assumptions of the recently 382 formulated polymers-pushing-polymers approach.^{27,28} Indeed, 383 the R_g of PEG 3400 reduces from 21.0 Å (extrapolated to 384 infinite dilution) to 19.7 Å as the polymer concentration 385 increases from 1 to 30 wt %. This is a statistically reliable 386 (Figure 1C) but small effect.

387 Partitioning of PEG 3400 grows rapidly with χ but is 388 estimated as negligible, specifically, $p(\chi) \leq 4 \times 10^{-2}$, for the 389 fraction of this polymer in the mixture as large as $\chi = 0.5$ 390 (Figure 3C). This level of partitioning means that in 391 comparison to $\chi = 1$ only 4% of the polymer-accessible volume 392 of the pore is taken up by PEG 3400; the rest of the volume is 393 filled by the smaller PEG 200. Taking into account the 17-fold 394 difference in their molecular weight, we conclude that the ratio 395 of the average number of small polymer molecules in the pore 396 to that of the large ones exceeds 400 at this and smaller PEG 397 3400 relative fractions. With the increasing PEG 3400 fraction, 398 the partitioning of this larger polymer starts to dominate. Quite 399 unexpectedly, due to a significant nonideality at $\chi = 1$, this large 400 polymer fills the α -hemolysis pore to nearly the same degree as 401 pure PEG 200 at its 30% concentration (Figure 2B). This 402 means that polymer–polymer repulsive interactions overcome 403 the cost of its confinement by the pore.^{11,41}

404 We believe that these findings are important for understanding 405 and quantifying polymer behavior in the bulk and 406 polymer partitioning into nanopores in dilute and semidilute 407 regimes.

408 ■ AUTHOR INFORMATION

409 Corresponding Author

410 *(S.M.B.) E-mail: bezrukos@mail.nih.gov.

411 ORCID

412 Philip A. Gurnev: [0000-0001-9247-5027](https://orcid.org/0000-0001-9247-5027)

413 Kunlun Hong: [0000-0002-2852-5111](https://orcid.org/0000-0002-2852-5111)

414 Notes

415 The authors declare no competing financial interest.

416 ■ ACKNOWLEDGMENTS

417 The deuterated PEG was synthesized at the Center for 418 Nanophase Materials Sciences, which is a DOE Office of 419 Science User Facility. A portion of this research was performed 420 at Oak Ridge National Laboratory's Spallation Neutron Source, 421 sponsored by the U.S. Department of Energy, Office of Basic 422 Energy Sciences. We acknowledge laboratory support by the 423 Center for Structural Molecular Biology, funded by the Office 424 of Biological and Environmental Research of the U.S. 425 Department of Energy. P.A.G. and S.M.B. were supported by 426 the Intramural Research Program of the National Institutes of 427 Health (NIH), Eunice Kennedy Shriver National Institute of 428 Child Health.

429 ■ REFERENCES

430 (1) Lal, J.; Sinha, S. K.; Auvray, L. Structure of polymer chains 431 confined in Vycor. *J. Phys. II* **1997**, *7* (11), 1597–1615.

- (2) Gilbert, E. P.; Auvray, L.; Lal, J. Structure of polyelectrolyte chains confined in nanoporous glass. *Macromolecules* **2001**, *34* (14), 433 4942–4948. 434
- (3) Nieh, M. P.; Kumar, S. K.; Ho, D. L.; Briber, R. M. Neutron scattering study of chain conformations in the energetically neutral pores of Vycor glass. *Macromolecules* **2002**, *35* (16), 6384–6391. 436 437
- (4) Krasilnikov, O. V.; Sabirov, R. Z.; Ternovsky, V. I.; Merzliak, P. G.; Muratkodjaev, J. N. A Simple Method for the Determination of the Pore Radius of Ion Channels in Planar Lipid Bilayer-Membranes. *FEMS Microbiol. Lett.* **1992**, *105* (1–3), 93–100. 439 440
- (5) Sabirov, R. Z.; Krasilnikov, O. V.; Ternovsky, V. I.; Merzliak, P. G. Relation between Ionic Channel Conductance and Conductivity of Media Containing Different Nonelectrolytes - a Novel Method of Pore-Size Determination. *Gen. Physiol. Biophys.* **1993**, *12* (2), 95–111. 443 444
- (6) Bezrukov, S. M.; Vodyanoy, I. Probing Alamethicin Channels with Water-Soluble Polymers - Effect on Conductance of Channel States. *Biophys. J.* **1993**, *64* (1), 16–25. 446 447
- (7) Bezrukov, S. M.; Kasianowicz, J. J. The charge state of an ion channel controls neutral polymer entry into its pore. *Eur. Biophys. J.* **1997**, *26* (6), 471–476. 449 450
- (8) Merzlyak, P. G.; Yuldasheva, L. N.; Rodrigues, C. G.; Carneiro, C. M. M.; Krasilnikov, O. V.; Bezrukov, S. M. Polymeric nonelectrolytes to probe pore geometry: Application to the alpha-toxin trans-membrane channel. *Biophys. J.* **1999**, *77* (6), 3023–3033. 453 454
- (9) Rostovtseva, T. K.; Nestorovich, E. M.; Bezrukov, S. M. Partitioning of differently sized poly(ethylene glycol)s into OmpF porin. *Biophys. J.* **2002**, *82* (1), 160–169. 456 457
- (10) Movileanu, L.; Cheley, S.; Bayley, H. Partitioning of individual flexible polymers into a nanoscopic protein pore. *Biophys. J.* **2003**, *85* (2), 897–910. 459 460
- (11) Krasilnikov, O. V.; Bezrukov, S. M. Polymer partitioning from nonideal solutions into protein voids. *Macromolecules* **2004**, *37* (7), 463 2650–2657. 464
- (12) Ostroumova, O. S.; Gurnev, P. A.; Schagina, L. V.; Bezrukov, S. M. Asymmetry of syringomycin E channel studied by polymer partitioning. *FEBS Lett.* **2007**, *581* (5), 804–808. 466 467
- (13) Gurnev, P. A.; Rostovtseva, T. K.; Bezrukov, S. M. Tubulin-blocked state of VDAC studied by polymer and ATP partitioning. *FEBS Lett.* **2011**, *585* (14), 2363–2366. 468 469
- (14) Oukhaled, A. G.; Biance, A. L.; Pelta, J.; Auvray, L.; Bacri, L. Transport of Long Neutral Polymers in the Semidilute Regime through a Protein Nanopore. *Phys. Rev. Lett.* **2012**, *108* (8), 088104. 472 473
- (15) Zimmerberg, J.; Parsegian, V. A. Polymer Inaccessible Volume Changes during Opening and Closing of a Voltage-Dependent Ionic Channel. *Nature* **1986**, *323* (6083), 36–39. 475 476
- (16) Zimmerberg, J.; Bezanilla, F.; Parsegian, V. A. Solute Inaccessible Aqueous Volume Changes during Opening of the Potassium Channel of the Squid Giant-Axon. *Biophys. J.* **1990**, *57* (5), 1049–1064. 477 478
- (17) Vodyanoy, I.; Bezrukov, S. M.; Parsegian, V. A. Probing Alamethicin Channels with Water-Soluble Polymers - Size-Modulated Osmotic Action. *Biophys. J.* **1993**, *65* (5), 2097–2105. 481 482
- (18) Bezrukov, S. M.; Vodyanoy, I. In *Electrical noise of the open alamethicin channel*, International Conference on Noise in Physical Systems and 1/f Fluctuations, Kyoto, Japan, 1991; Musha, T., Sato, S., Yamamoto, M., Eds.; Ohmsha, Ltd.: Kyoto, Japan, 1991; pp 641–644. 484 485
- (19) Bezrukov, S. M.; Vodyanoy, I.; Parsegian, V. A. Counting Polymers Moving through a Single-Ion Channel. *Nature* **1994**, *370* (6487), 279–281. 488 489
- (20) Bezrukov, S. M.; Vodyanoy, I.; Brutyan, R. A.; Kasianowicz, J. J. Dynamics and free energy of polymers partitioning into a nanoscale pore. *Macromolecules* **1996**, *29* (26), 8517–8522. 491 492
- (21) Bezrukov, S. M.; Krasilnikov, O. V.; Yuldasheva, L. N.; Berezhkovskii, A. M.; Rodrigues, C. G. Field-dependent effect of crown ether (18-crown-6) on ionic conductance of alpha-hemolysin channels. *Biophys. J.* **2004**, *87* (5), 3162–3171. 494 495
- (22) Krasilnikov, O. V.; Rodrigues, C. G.; Bezrukov, S. M. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. *Phys. Rev. Lett.* **2006**, *97* (1), 018301. 498 499

501 (23) Robertson, J. W. F.; Rodrigues, C. G.; Stanford, V. M.;
502 Robinson, K. A.; Krasilnikov, O. V.; Kasianowicz, J. J. Single-molecule
503 mass spectrometry in solution using a solitary nanopore. *Proc. Natl.*
504 *Acad. Sci. U. S. A.* **2007**, *104* (20), 8207–8211.

505 (24) Rodrigues, C. G.; Machado, D. C.; Chevtchenko, S. F.;
506 Krasilnikov, O. V. Mechanism of KCl Enhancement in Detection of
507 Nonionic Polymers by Nanopore Sensors. *Biophys. J.* **2008**, *95* (11),
508 5186–5192.

509 (25) Baaken, G.; Halimeh, I.; Bacri, L.; Pelta, J.; Oukhaled, A.;
510 Behrends, J. C. High-Resolution Size-Discrimination of Single
511 Nonionic Synthetic Polymers with a Highly Charged Biological
512 Nanopore. *ACS Nano* **2015**, *9* (6), 6443–6449.

513 (26) Piguet, F.; Ouldali, H.; Discala, F.; Breton, M. F.; Behrends, J.
514 C.; Pelta, J.; Oukhaled, A. High Temperature Extends the Range of
515 Size Discrimination of Nonionic Polymers by a Biological Nanopore.
516 *Sci. Rep.* **2016**, *6*, 38675.

517 (27) Aksoyoglu, M. A.; Podgornik, R.; Bezrukov, S. M.; Gurnev, P.
518 A.; Muthukumar, M.; Parsegian, V. A. Size-dependent forced PEG
519 partitioning into channels: VDAC, OmpC, and alpha-hemolysin. *Proc.*
520 *Natl. Acad. Sci. U. S. A.* **2016**, *113* (32), 9003–9008.

521 (28) Podgornik, R.; Hopkins, J.; Parsegian, V. A.; Muthukumar, M.
522 Polymers Pushing Polymers: Polymer Mixtures in Thermodynamic
523 Equilibrium with a Pore. *Macromolecules* **2012**, *45* (21), 8921–8928.

524 (29) Pai, S. S.; Hammouda, B.; Hong, K. L.; Pozzo, D. C.;
525 Przybycien, T. M.; Tilton, R. D. The Conformation of the
526 Poly(ethylene glycol) Chain in Mono-PEGylated Lysozyme and
527 Mono-PEGylated Human Growth Hormone. *Bioconjugate Chem.*
528 **2011**, *22* (11), 2317–2323.

529 (30) Zhao, J. K.; Gao, C. Y.; Liu, D. The extended Q-range small-
530 angle neutron scattering diffractometer at the SNS. *J. Appl. Crystallogr.*
531 **2010**, *43*, 1068–1077.

532 (31) Arnold, O.; Bilheux, J. C.; Borreguero, J. M.; Buts, A.; Campbell,
533 S. I.; Chapon, L.; Doucet, M.; Draper, N.; Leal, R. F.; Gigg, M. A.;
534 Lynch, V. E.; Markvardsen, A.; Mikkelsen, D. J.; Mikkelsen, R. L.;
535 Miller, R.; Palmen, K.; Parker, P.; Passos, G.; Perring, T. G.; Peterson,
536 P. F.; Ren, S.; Reuter, M. A.; Savici, A. T.; Taylor, J. W.; Taylor, R. J.;
537 Tolchenov, R.; Zhou, W.; Zikovsky, J. Mantid-Data analysis and
538 visualization package for neutron scattering and mu SR experiments.
539 *Nucl. Instrum. Methods Phys. Res., Sect. A* **2014**, *764*, 156–166.

540 (32) Wignall, G. D.; Bates, F. S. Absolute Calibration of Small-Angle
541 Neutron-Scattering Data. *J. Appl. Crystallogr.* **1987**, *20*, 28–40.

542 (33) Benmouna, M.; Hammouda, B. The zero average contrast
543 condition: Theoretical predictions and experimental examples. *Prog.*
544 *Polym. Sci.* **1997**, *22* (1), 49–92.

545 (34) Lopez-Esparza, R.; Guedea-Boudeville, M. A.; Gambin, Y.;
546 Rodriguez-Beas, C.; Maldonado, A.; Urbach, W. Interaction between
547 poly(ethylene glycol) and two surfactants investigated by diffusion
548 coefficient measurements. *J. Colloid Interface Sci.* **2006**, *300* (1), 105–
549 110.

550 (35) Breton, M. F.; Discala, F.; Bacri, L.; Foster, D.; Pelta, J.;
551 Oukhaled, A. Exploration of Neutral Versus Polyelectrolyte Behavior
552 of Poly(ethylene glycol)s in Alkali Ion Solutions using Single-
553 Nanopore Recording. *J. Phys. Chem. Lett.* **2013**, *4* (13), 2202–2208.

554 (36) Thiagarajan, P.; Chaiko, D. J.; Hjelm, R. P. A Neutron-
555 Scattering Study of Poly(Ethylene Glycol) in Electrolyte-Solutions.
556 *Macromolecules* **1995**, *28* (23), 7730–7736.

557 (37) Song, L. Z.; Hobough, M. R.; Shustak, C.; Cheley, S.; Bayley, H.;
558 Gouaux, J. E. Structure of staphylococcal alpha-hemolysin, a
559 heptameric transmembrane pore. *Science* **1996**, *274* (5294), 1859–
560 1866.

561 (38) Bezrukov, S. M.; Berezhkovskii, A. M.; Pustovoit, M. A.; Szabo,
562 A. Particle number fluctuations in a membrane channel. *J. Chem. Phys.*
563 **2000**, *113* (18), 8206–8211.

564 (39) Berezhkovskii, A. M.; Pustovoit, M. A.; Bezrukov, S. M. Effect of
565 binding on particle number fluctuations in a membrane channel. *J.*
566 *Chem. Phys.* **2002**, *116* (14), 6216–6220.

567 (40) Stojilkovic, K. S.; Berezhkovskii, A. M.; Zitserman, V. Y.;
568 Bezrukov, S. M. Conductivity and microviscosity of electrolyte
solutions containing polyethylene glycols. *J. Chem. Phys.* **2003**, *119* 569
(13), 6973–6978. 570

(41) Zitserman, V. Y.; Berezhkovskii, A. M.; Parsegian, V. A.; Bezrukov, S. M. Nonideality of polymer solutions in the pore and concentration-dependent partitioning. *J. Chem. Phys.* **2005**, *123* (14), 573 146101. 574