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1 Introduction

Recently, the Sachdev-Ye-Kitaev (SYK) model [5-12], which arose from Sachdev-Ye
model [1-4], has emerged as a useful laboratory to understand the origins of AdS/CFT du-
ality. Related models have been studied [13, 14] with extensions [15-25] and generalizations
in the form of tensor type models [26-32] . Interesting random matrix theory interpreta-
tions have been studied in [33-39]. The model is notable for several reasons. It features
an emergent reparametrization and conformal invariance in the IR. The out-of-time-order
correlators exhibit quantum chaos, with a Lypunov exponent characteristic of black holes,
thus providing an example of the butterfly effect [40-49].

Like vector models, the SYK model is solvable at large N. Vector models, in general,
at large N can be expressed in terms of bi-local fields, and it was proposed in [50] that
these bi-local fields in fact provide a bulk construction of the dual higher spin theory [51],
with the pair of coordinates in the bi-local combining to provide the coordinates of the
emergent AdS space-time.

The simplest proposal of [50] was implemented nontrivially in three dimensions giving
an understanding of bulk higher spin fields [52-54]. In the one dimensional SYK case [10, 11]
such bulk mapping is realized in its simplest form, with the bi-local times mapped to
AdS; space-time, thus providing an elementary example (in addition to the ¢ = 1 matrix
model [55]) of how a Large N quantum mechanical model grows an additional dimension.



Nevertheless, and despite great interest, the precise bulk dual of the SYK model is
still ununderstood. It has been conjectured in [56-59] that the gravity sector of this model
is the Jackiw-Teitelboim model [60, 61] of dilaton-gravity with a negative cosmological
constant, studied in [62], while [63] provides strong evidence that it is actually Liouville
theory. (See also [64-69]) It is also known that the matter sector contains an infinite tower
of particles [8-10]. Recently, couplings of these particles have been computed by calculating
six point functions in the SYK model [70].

In this paper, we provide a three dimensional interpretation of the bulk theory. The
zero temperature SYK model corresponds to a background AdSs x I, where I = S1/Z5 is a
finite interval whose size needs to be suitably chosen. There is a single scalar field coupled to
gravity, whose mass is equal to the Breitenlohner-Freedman bound [71] of AdSs. The scalar
field satisfies Dirichlet boundary conditions at the ends and feels an external delta function
potential at the middle of the interval. Alternatively, one can consider half of the interval
with Dirichlet condition at one end, and a nontrivial boundary condition determining the
derivative of the field at the other end.! The background can be thought of as coming from
the near-horizon geometry of an extremal charged black hole which reduces the gravity
sector to Jackiw-Teitelboim model with the metric in the third direction becoming the
dilaton of the latter model [57]. The strong coupling limit of the SYK model corresponds
to a trivial metric in the third direction, while at finite coupling this acquires a dependence
on the AdSs spatial coordinate. With a suitable choice of the size of the interval L and
the strength of the delta function potential V' we show that at strong coupling, (i) the
spectrum of the Kaluza-Klein (KK) modes of the scalar is precisely the spectrum of the
SYK model and (ii) the two point function? with both points at the center of the interval
is in precise agreement with the strong coupling bi-local propagator, using the simplest
identification of the AdS coordinates proposed in [50]. For finite coupling, we adopt the
proposal of [57, 58], and show that to order 1/.J, the poles of the propagator shift in a
manner consistent with the explicit results in [9].

In section 2, we review relevant aspects of the bilocal formulation of the model. In sec-
tion 3, we discuss the three dimensional interpretation. Section 4 contains some concluding
remarks.

2 Overview of SYK

In this section, we will give a brief review of the Large N formalism and results along [10,
11]. The Sachdev-Ye-Kitaev model [5] is a quantum mechanical many body system with
all-to-all interactions on fermionic N sites (N > 1), represented by the Hamiltonian

N
1

H = 1 § Jijkl Xi X5 Xk X1+ (2.1)
i7j7k7l:1

We thank Edward Witten for a clarification on this point.
2Note that this two point function is not the same as the standard AdS, propagator. We thank Juan
Maldacena for discussions about this point.



where y; are Majorana fermions, which satisfy {x;, x;} = d;j. The coupling constant J;;x
are random with a Gaussian distribution with width J. The generalization to analogous
g-point interacting model is straightforward [5, 9]. After the disorder averaging for the
random coupling J;jx;, there is only one effective coupling J in the effective action. The
model is usually treated by replica method. One does not expect a spin glass state in this
model [7] so that we can restrict to the replica diagonal subspace [10]. The Large N theory
is simply represented through a (replica diagonal) bi-local collective field:

N
1
U(ty,t2) = N z; xi(t)xi(t2), (2.2)
1=
where we have suppressed the replica index. The corresponding path-integral is

Z = | T[] DU (t1,ta) p(w) e Seal¥], (2.3)

t1,t2

where S, is the collective action:

N N J2N
SCOI[\I}] = 2/dt [atq](t,t/)]tl:t + ETI'].Og\IJ - 2q/dt1dt2 ‘I’q(tl,tQ). (24)

Here the trace term comes from a Jacobian factor due to the change of path-integral
variable, and the trace is taken over the bi-local time. One also has an appropriate order
O(N°) measure . This action being of order N gives a systematic G = 1/N expansion,
while the measure p found as in [72] begins to contribute at one-loop level (in 1/N). Other
formulations can be employed using two bi-local fields. These can be seen to reduce to Sco
after elimination.

In the above action, the first linear term represents a conformal breaking term, while
the other terms respect conformal symmetry. In the IR limit with strong coupling [¢|J > 1,
the collective action is reduced to the critical action

2

N N
SC[‘IJ] = ETI"IOg\I/ — J2q /dtldtQ \I/q(tl,tg), (25)

which exhibits an emergent reparametrization symmetry

Q=

Wt ta) = Wyt ta) = | /()] (t2)

‘lj(f(tl)v f(t2)) ) (26)

with an arbitrary function f(t). This symmetry is responsible for the appearance of zero
modes in the strict IR critical theory. This problem was addressed in [10] with analog of the
quantization of extended systems with symmetry modes [73]. The above symmetry mode
representing time reparametrization can be elevated to a dynamical variable introduced
according to [74] through the Faddeev-Popov method, leading to a Schwarzian action for
this variable [11] proposed by Kitaev, and established first at quadratic level in [9]:

_ Na g [ s (Y
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where the coefficient @« = —127B;7y, with Bj representing the strength of the first order
correction, established in numerical studies by Maldacena and Stanford [9]. The details of
the non-linear evaluation are give in [11].

For the rest of this paper we proceed with ¢ = 4. Fluctuations around the critical IR
background can be studied by expanding the bi-local field as [10]

\I/(tl,tg) = \I/Q(tl,tg) + \/gn(tl,tz), (28)

where 7 is the fluctuation and the critical IR background solution is given by

1
1 1 sgn(t2)

Wo(ty,te) = 2.9
0( 1 2) <471’J2> \/m ’ ( )

where we defined ¢;; = t; — t;. With a simple coordinate transformation

1 1
t = §(t1+t2), z = §(t1—t2), (2.10)
the bi-local field n(tq, t2)

n(ti, te) = @(t,2), (2.11)

can be then considered as a field in two dimensions (¢, z). Expand the fluctuation field as

= Z &)V’wu,,’w (t,2) (2.12)

in a complete orthonormal basis
Uy (t,2) = sgn(z) e Z,(|lwz|), (2.13)

with Z, are a complete set of modes given in eq. (C.1), which diagonalizes the quadratic
kernel [8]. Then, the quadratic action can be written as

Sz) = 32fz By (G() = 1)y, (2.14)

where the normalization factor N, is

(2v)~! for v =3/2+2n
N, = (2.15)
2v L sin v for v =ir,
and the kernel is given by
2
gv) = — gy cot (%V) . (2.16)

After a field redefinition [10] the effective action can be written as

Sef — ;83}/&/000?@(@@ [3(vDp) — 1] @(t.2). (2.17)



featuring the Bessel operator
Dp = 2202 + 20, — 220} (2.18)

The operator Dg is in fact closely related to the laplacian on AdSs,

1 1

where ¢ and z in (2.10) are the Poincare coordinates in AdSp. This, therefore, realizes
the naive form of the proposal of [50]. However the action for ®(¢, z) is non-polynomial in
derivatives.

To understand the implications of this, consider the bi-local propagator, first evaluated
in [8]. From the above effective action, one has that the poles are determined as solutions
of g(v) = 1, they represent a sequence denoted by p,, as

2
%:—tan(m’%), m A1l <pm<2m+2 (m=0,1,2,---) (2.20)
Therefore, the bi-local propagator is written as residues of v = p,, poles as
3 [e's)
32 & - / Z_ N <
D(t,z;t',z') _ 2 / dw e—zw(t—t) Z R(pm) Pm(|w|z ) pm(|w‘z ) ’ (221)
3J J_» — Ny,

where 27 (2<) is the greater (smaller) number among z and 2’. The residue function is
defined by

2
R(pm) = Res( 3P

1
g(V)_1> vmp Pt (3/2)][mpm — sin(mpm)] (2:22)

Since that p,, are zeros of g(v) — 1, near each pole p,,, we can approximate as

gv)—1 =~ [1/2 — (pm)Q] fm s (2.23)

where f,,, can be determined from residue of 1/(g(v) — 1) at v = p,,. Explicitly evaluating

these residues, the inverse kernel is written as an exact expansion

Ly 6p), 1
W - mZ:1 [p7, + (3/2)2][mpm — sin(mpy, )] <y2 _pgn) : (2.24)

The effective action near a pole labelled by m is that of a scalar field with mass, M2, =
p2, — 1, (m > 0) in AdS:

1 1
Sfrff = 2/\/jgd2$ [_gwjaud)mau¢m - (pzn - 4) ¢7271:| ’ (2'25)

where the metric g, is given by g, = diag(—1/22%,1/z%). It is clear from the above analysis
that a spectrum of a sequence of 2D scalars, with growing conformal dimensions is being
packed into a single bi-local field. In other words the bi-local representation effectively
packs an infinite product of AdS Laplacians with growing masses. An illustration of how
this can happen is given in the appendix A, relating to the scheme of Ostrogradsky. It
is this feature which leads to the suggestion that the theory should be represented by an
enlarged number of fields, or equivalently by an extra Kaluza-Klein dimension.

For finite coupling, the poles of the propagator is shifted. This has been calculated
by [9] in a 1/J expansion.



3 3D interpretation

According to [57] and [58], the bulk dual of the SYK model involves Jackiw-Teitelboim
theory of two dimensional dilaton gravity, whose action is given by (upto usual bound-

ary terms)

1

Sor =15 | V790 +2)  200]. (31)

where ¢q is a constant, and ¢ is a dilaton field. The zero temperature background is given
by AdSs with a metric

1
ds* = ?[fdtQ + dz?] (3.2)
and a dilaton
a
(2) = ¢o + > (3.3)

where a is a parameter which scales as 1/J. In the following we will choose, without loss
of generality, ¢g = 1.

This action can be thought as arising from a higher dimensional system which has ex-
tremal black holes, and the AdSs is the near horizon geometry [57]. The three dimensional
metric, with the dilaton being the third direction, is given by

1 2
ds® = o) [ - dt? + dz2] + (1 + g) dy? . (3.4)

This is in fact the near-horizon geometry of a charged extremal BTZ black hole.

3.1 Kaluza-Klein decomposition

We will now show that the infinite sequence of poles in the previous section from the Kaluza-
Klein tower of a single scalar in a three dimensional metric (3.4) where the direction y is
an interval —L < y < L. The action of the scalar is

S = ;/di”x\/fg[—g“” 9,0, — m3 d* — V(y)¢>2] : (3.5)

where V(y) = V§(y), with the constant V' and the size L to be determined. This is

similar to Horava-Witten compactification on S'/Z, [75] with an additional delta function

potential.> The scalar satisfies Dirichlet boundary conditions at the ends of the interval.
We now proceed to decompose the 3D theory into 2 dimensional modes. Using Fourier

transform for the ¢ coordinate:
dw —iwt
q)(tvzay) = ge Xw(Z,y) ) (36)

one can rewrite the action (3.5) in the form of

1

dw
S—Q/M@/%xwmwmmm (3.7)

3See also [76, 77]. We are grateful to Cheng Peng for bringing this to our attention.



where Dy is the a-independent part and D; is linear in a:
2 2 m(Q) L /0
D() = 8,2 + w® — ? + ?(ay - V(y)) )

a 1 m
D =207 - -0 ——0——<a2 V(y)| - 3.8
1 P z 5 : + w 22 + ( ) ( )
Here, we neglected higher order contributions of a. The eigenfunctions of Dy can be clearly
written in the form

Xw(2,9) = Xw(2) fr(y) - (3.9)

Then fi(y) is an eigenfunction of the Schrodinger operator —85 + V(y) with eigenvalue
k2. This is a well known Schrodinger problem: the eigenfunctions and the eigenvalues are
presented in detail in appendix B.

After solving this part, the kernels are reduced to

2 2 2 _ 2
Do = 9% + w? — my + P ’ Dy _a & — az L2 (M0 m , (3.10)
z 22 z 22
where p,, are the solutions of
—(2/V)k = tan(kL) (3.11)

while g,,, are the expectation values of —85 — V(y) operator respect to fp,.. If we choose
V =3 and L = § the solutions of (3.11) agree precisely with the strong coupling spectrum
of the SYK model given by g(r) = 1, as is clear from (2.14) and (2.16). This is our main
observation.

For these values of V', L, the propagator G is determined by the Green’s equation of
D. We now use the perturbation theory to evaluate it. This will then be compared with
the corresponding propagator of the bi-local SYK theory.

3.2 Evaluation of G(©

We start by determining the leading, zero-th order G(©) propagator obeying
Dy Gy (2,7, y) = —0(z = 2)o(y — y)d(w + ). (3.12)

We first separate the scaling part of the propagator by G(© =z GO and multiplying 2.
Expanding in a basis of eigenfunctions fi(y),

GO (z,y,wi2 W) = D W) fir ()G (23 2) (3.13)
kK’

The Green’s function éf%_w, w(2,2') is clearly proportional to 6(k — k') and satisfies the
equation

202+ 20, + WPt - ég))kw' k,(znz') = 2B 0z —2No(w+w)o(k—K). (3.14)

where we have defined
Vg =k? +md + 1/4. (3.15)



The operator which appears in (3.14) is the Bessel operator. Thus the Green’s function
can be expanded in the complete orthonormal basis. For this, we use the same basis form
Z, as in the SYK evaluation:*

G mailzs?) = [ w0 Z,(e). (3.16)

Then, substituting this expansion into the Green’s equation (3.12) and using egs. (C.4)

and (C.2), one can fix the coefficient §,(,0). Finally, the v-integral form of the propagator is

given by
0 L 1 [ dv Zi(|wz) Zu(Jw?'])
Gw,k;—w,k(z, Z’) = - |Zz’|2 /]Vl/ 2 I/(Q) . (317)
We now note that if we choose m2 = —1/4, which is the BF bound of AdSs, we have

1/3 = p2,, and the equation which determine p,,, (3.11) is precisely the equation which

determines the spectrum of the SYK theory found in [8, 10]. With this choice, the real
space zeroth order propagator in three dimensions is

dw o4 [ dv ZE(|wz]) Zy(Jw2'|)
( ) / . bt zw(t t) e v
GOt z,y;t', 2 ) |ZZ|Qprm ) fom (Y )/2776 N, V2 — p2 :

(3.18)
We now show that the above propagator with y = ¢’ = 0 is in exact agreement with
the bi-local propagator of the SYK model. The Green’s function with these end points is

it dv Z*(Jwz|) Z, (w2’
G()(tzot 2 O ’zz‘2ZC’pm / (t—t") Niy (| V2|)_pgi| D’

(3.19)
where we have defined

2 3
D 2p
C = 0 0) = B? m = m___ . (320
(pm) fpm( )fpm( ) m pgn + (3/2)2 [pgn ‘|‘ (3/2)2“me _ 51n(7rpm)] ( )
Now we note that Kaluza-Klein wave function coefficient coincides in detail with the SYK
one, namely:

Clpm) = — R(pm), (3.21)

where R(p,,) was given in eq. (2.22).

Asineq. (C.4), the integration of v is a short-hand notation which denotes a summation
of v =3/242n, (n=20,1,2---) and an integral of v = ir, (0 < r < 00). The sum over
these discrete values of v and the integral over the continuous values can be now performed
exactly as in the calculation of the SYK bi-local propagator [10]. Closing the contour for
the continuous integral in Re(rv)— oo, one finds that there are two types of poles inside
of this contour. (1): v =2n+3/2, (n =0,1,2,---), and (2): v = pp, (m =0,1,2,---).
The contributions of the former type of poles precisely cancel with the contribution from
the discrete sum over n. Details of the evaluation which explicitly shows the cancelation

4This represents a modified set of wavefunctions with boundary conditions at z — oo in contrast to the
standard AdS wavefunctions.



are presented in appendix D. Therefore, the final remaining contribution is just written as
residues of v = p,,, poles as

> <
G( )(t Z, 0 t Z 0 ‘ZZ ’2 Z/ dwe w(t— t)R(p ) Z_pm(’w|zN)me(|w’Z )
p

m

(3.22)
Altogether we have shown that y = 0 mode 3D propagator is in precise agreement with
the ¢ = 4 SYK bi-local propagator at large J given in eq. (2.21). The propagator is a sum
of non-standard propagators in AdSe. While it vanishes on the boundary, the boundary
conditions at the horizon are different from that of the standard propagator in AdS.

3.3 First order eigenvalue shift

In this section, we study the first order eigenvalue shift due to D; by treating this operator
as a perturbation onto the Dy operator. The result will confirm the duality a = 1/.J, where
a is defined in the dilaton background (3.3) and J is the coupling constant in the SYK
model.

Since the ¢t and y directions are trivial, let us start with the kernels already solved for
these two directions given in eq. (3.10). The eigenfunction of Dy operator is

1
212 Zy(lw2]) (3.23)
and using the orthogonality condition (C.3), its matrix element in the v space is found as
N, [1/2 — (m2 +p2, + i)] S - (3.24)

Now following the first order perturbation theory, we are going to determine the first
order eigenvalue shift. Using the Bessel equation, the action of D; on the Dy eigenfunc-
tion (3.23) is found as

1 a 0 m2—q% +3
Dy |22 2, (we]) = [ - (0’”

For the derivative term, we use the Bessel function identity (for example, see 8.472 of [78])

Zy(|lwz]) . (3.25)

Opdy () = + Jyri(z) F gJ,j(m), (3.26)
to obtain

9. Z,(w2l) = 2 Zy(wl) — wl[Jar(wzl) — & Touma(zh)] . (327)

v
2|
Therefore, now the matrix element is determined by integrals

oo 1, 1
dz |2]2 Z} (|wz])D1 |2]2 Zy(|wz)
0

—a [ _ (mg N i) ] /°° iz Zllea) s

~alul [z B 1 (wzl) — & Toalloal)] . (3:28)




For the continuous mode (v = ir), the integrals might be hard to evaluate. In the following,
we restrict ourself to the real discrete mode v = 3/2 + 2n. In such case, §, = 0. Therefore,

the linear combination of the Bessel function is reduced to a single Bessel function as
Zy(x) = Jy(z). Since

[ o Fellate)
0

x

2 sin [ (a—B)]
T -pB2
/ i Jo(@)Jg(x) 4 sin [Z(a— 8 —1)]
0 2 s [(a—i—ﬁ) H(a—ﬁ)Q—l] ’

[Re(a), Re(3) > 0]

[Re(a),Re(8) > 1] (3.29)

we have now found the matrix element for the discrete mode is given by

2alw| sin [F(v —v' = D] |2 — (m§ — g5 + )]
T (v + 1)2 — 2 (v — 1)2 — 2

—1]. (3.30)

Next, let us focus on the zero mode (v = v/ = 3/2) eigenvalue. In the above formula,
taking the bare mass to the BF bound: m3 = —1/4 as before, the zero mode first order
eigenvalue shift is found as

alw|

o (244 2). (3.31)

Now, we compare this result with the 1/J first order eigenvalue shift of the SYK model,
which is for the zero mode found in [9] as

ok |w]

o e,

kE(2,w) =1 — (zero temperature) (3.32)
where ax ~ 2.852 for ¢ = 4. The w-dependence of our result (3.31) thus agrees with that
of the SYK model. Furthermore, this comparison confirms the duality a = 1/J.

Finally, we can now complete our comparison by showing agreement for the m = 0
mode contribution to the propagator. We include the first O(a) order shift for the pole as

3 alwl 2 2
= -+ —(2 o . 3.33
>+ 2 ad) + 0 (3:33)
For the zero mode part (m = 0) of the on-shell propagator in eq. (D.6), the leading order is
O(1/a). This contribution comes from the coefficient factor of the Bessel function, which
was responsible for the double pole at v = 3/2. For other py setting them to 3/2, we obtain
the leading order contribution from the zero mode as

(0) . _ 97 Bj L [T dw e
Gzerofmode(t’ z,0; t/,Z/,O) = " 4a (2+q8) |ZZ,‘2 —oome ( )Jg(|wzl)J%(|wz’\)
(3.34)

This agrees with the order O(J) contribution of the SYK bi-local propagator of Malda-
cena/Stanford [9].

~10 -



4 Conclusion

In this paper we have provided a three dimensional perspective of the bulk dual of the
SYK model. At strong coupling we showed that the spectrum and the propagator of the
bi-local field can be exactly reproduced by that of a scalar field living in AdSs x S!/Z,
with a delta function potential at the center. The metric on the interval in the third
direction is the dilaton of Jackiw-Teitelboim theory, which is a constant at strong coupling.
We also calculated the leading 1/J correction to the propagator which comes from the
corresponding term in the metric in the third direction, and showed that form of the poles
of the propagator are consistent with the results of the SYK model [9].

We would like to emphasize that there are two aspects of this 3d perspective. The first
concerns the agreement of the strong coupling spectrum and the form of the leading finite
J correction. This agreement may very well follow from more general considerations [79].°
The second aspect is that the exact large-J propagator agrees, and the form of the leading
enhanced correction for large but finite J agrees as well. We believe that this second aspect
is rather non-trivial and intruiging and the implications are yet to be fully understood.

This three dimensional view is a good way of re-packaging the infinite tower of states
of the SYK model. Our analysis was done at the linearized level and the 3D gravity is
only used to fix the background, as we did not treat them dynamically.® Demonstrating
full duality at the nonlinear level is an open problem. In particular it would be interesting
if the three point function of bi-locals [70] has a related 3d interpretation.
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A Actions non-polynomial in derivatives

To illustrate how an action which is non-polynomial in derivatives can arise let us start
with the example of N decoupled fields

N
L= Z OnDnon . (A.1)
n=1

5We thank the referee for bringing this paper to our attention.
5We thank Juan Maldacena for a clarification regarding this point.
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One can then introduce fields
N
@ngpn, and Xn (n=1,---,N—-1), (A.2)
n=1

so that the Lagrangian is rearranged to

L=¢Dp + Z XnDnn , (A.3)

where

N
ﬁ Hn:l D”
N )
Zn1<--~<nN,1 Dnl e D711\7—1
Zp+1 D, -- .an

D, = misre iy =1,---,N—1 Ad
p P Doy Do, p=1-, ) (A.4)

ny<-<np_1

which represents a transformation preserving the determinant:
N N-1
[[2.=D+ [] Dn. (A.5)
n=1 n=1

Integrating x’s out, one eventually ends up with the effective Lagrangian

N p
@=w(2N L= DW1>W (A.6)

ni<--<ny_1 Dnl a

Here all the poles are contained in the higher-order laplacian, as in eq. (2.16). The
opposite procedure of going from this effective action with the N-th order Laplacian to the
first one, requires introducing N — 1 extra fields, which would correspond to the scheme
introduced by Ostrogradsky.

B Schrodinger equation

In this appendix, we consider the equation of f(y), which is the Schrédinger equation:

[ =32+ Vil 1) = EfW), (B.1)

where E is an eigenvalue of the equation. Since we confined the field in —L < y < L,
we have boundary conditions: f(£L) = 0. The continuation conditions at y = 0 are
f(+0) = f(—0) and the other can be derived by integrating the Schrodinger equation (B.1)
over (—¢,¢) and taking limit ¢ — 0 as

f1(+0) = f1(=0) = V £(0). (B-2)

Since the potential of the Schrodinger equation is even function, the wave function is either
odd or even function of y.

- 12 —



(i) Odd: for odd parity case, a solution satisfying the boundary conditions at y = £L is
given by

(B.3)

f@):{Agmmy—m) (0<y<L)

Asin(k(y + L)) (-L<y<0)

where k2 = E. For odd parity solution, to satisfy the boundary condition f(+0) =
f(=0), we need f(£0) = 0. This implies that

k:f7 (n:172737) (B4)

Then, the continuity condition (B.2) is automatically satisfied. The normalization
constant is fixed as A = 1/v/L.

(ii) Even: for even parity case, a solution satisfying the boundary conditions at y = £
is given by

f) = {Bsin(k(y -L) (0<y<L) (B5)

—Bsin(k(y+ L)) (-L<y<0)

where k2 = E. The evenness of the parity guarantees f(—0) = f(4+0). So, we only
need to impose the condition (B.2) on this solution. This condition gives an equation

2
v k = tan(kL). (B.6)

Now we set L = w/2 and V = 3, then we have —(2/3)k = tan(wk/2), which is
precisely the same transcendental equation determining poles of the ¢ = 4 SYK bi-
local propagator (2.20). We denote the solutions of —(2/3)k = tan(wk/2) by pm,
2m+1<py <2m—+2), (m=0,1,2,---). The normalization constant is fixed as

2k
B = \/%L—sm(%L) ‘ (B-7)

Finally, let us prove the orthogonality of the parity even wave function (B.5):

L
[ A5 6) = b (B.35)
Using the solution (B.5) and evaluating the integral in the left-hand side, one obtains
in(L(k —K))  sin(L(k+ k"))
g2 | s - . B.
[ k— K k+ K (B.9)

Now let’s assume k # k’. Then, the integral result can be rearranged to the form of
2

B
5 cos(Lk) cos(LK') | K tan(Lk) — ktan(Lk’)} =0, (B.10)
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where the final equality is due to the relation tan(Lk) = —2k/3. Next, we consider k = &’
case. In this case, due to the delta function identity, the result (B.9) is reduced to

sin(2Lk)

B2|L —
-

:| Okt = Okt (B.11)

where for the equality we used eq. (B.7). Therefore, now we have proven the orthogonal-
ity (B.8).

C Completeness condition of Z,

In this appendix, we summarize some properties of the Bessel function Z,,, which are used
to determine the zero-th order propagator (3.18). The linear combination of the Bessel
functions is defined by [§]

tan(mv/2) + 1

Zy(x) = Ju(@) + & J (), & = Wu (C.1)
which satisfies the Bessel equation
(2202 + 20. + w?2%] Z,(|wz|) = v* Z,(lwz]). (C.2)

In [8], the orthogonality condition of the linear combination of the Bessel function
Z, (C.1) is given by

/000 ci%c ZNx) Zy(z) = N, 6(v—1), (C.3)

where N, is defined in (2.15).

From this orthogonality condition, one can fix the normalization for the completeness
condition of Z,. Namely, dividing each Z, by /N,, finally we find the completeness
condition as

dv

N, 2ol Zu(a'l) = w8 — o). (C-4)

D Evaluation of the contour integral

In this appendix, we give a detail evaluation of the continuous and the discrete sums
appearing in eq. (3.19). As we defined before, the integral symbol dv is a short-hand
notation of a combination of summation over v = 3/2+2n, (n =0,1,2,---) and integration
of v =ir, (r > 0). Namely,

dv Zj(|lwz]) Z,(Jw?'])

=h+i D.1
Nu 1/2—pgn 1+ 12, ( )
with
- 2v

L = 7'] .] /
1 ;”2—10%1 (ozl) (=) v=3+42n

o dr r
b Ziy(lwz]) Zip (jw=']) D.2
? /0 2sinh(7r) 72 + p2, i(lwz]) Zir (Jw2'|) (D.2)
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Let us evaluate the continuous sum I first. Using the symmetry of the integrand, one can
rewrite the integral as
i

oy v ,
h=-3 | s ) + ol o). (©3)

We evaluate this integral by a contour integral on the complex v plane by closing the
contour in the Re(r)> 0 half of the complex plane if z > 2’. Inside of this contour, we
have two types of the poles. (i) at v = p,,, coming from the coefficient factor. (ii) at
v=3/242n,(n=0,1,2,---) coming from {_,, where {_, = co. After evaluating residues
at these poles, one obtains

R i [T (902]) + € T (02| Ty, (J02')

- ijngu(le\)Ju(le’l)‘ (D.4)
n=0

m V:%—i—?n '

Now, one can notice that the second term exactly cancels with the contribution from I7.
One can also repeat the above discussion for 2’ > z case. Therefore, combining these two
cases the total contribution is now

™ pm‘F§
Lh+Lh=—-——7—1|J > 2] )|, < D.5
I QSm(me)[ el >+<pm—g> A >] (629, (D)
where 27 (2<) is the greater (smaller) number among z and z’. Then, the propagator is
reduced to
1 1 > o0 . ’ B2 p2
GOt 2,0:t,2,0) = = |22/]2 / dw e~ w(t=t) __—m m
( Al sinlmp,) 7% + (327
> pm+% > <
X | (] 27) + —5 | Jom((w]z7) | Jp (lw[z%) . (D.6)
m 3

This agrees with the result given in eq. (3.22).
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