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The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron
waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint
problem with a continuum spectrum of real and positive squared frequencies. The correspond-
ing complete basis of singular normal modes is obtained, along with their orthogonality relation.
This yields easily the general expression of the time-reversal-invariant solution for any initial-value
problem. Examples are given for specific initial conditions that illustrate different behaviors of the
Landau-damped macroscopic moments of the perturbations.

The linear Landau damping of collisionless plasma
waves is one of the classic results in plasma physics. Af-
ter Landau’s original formulation1, based on the Laplace
transform of initial-value solutions for high-frequency
electron Langmuir waves, an equivalent formulation
based on the normal modes of such a system was
developed by Van Kampen2 and Case3. Despite its
attractiveness, the Van Kampen-Case normal-mode
approach is mathematically cumbersome because the
considered normal modes are not eigenfunctions of a
Hermitian operator. A recent work4 has formulated
the linear theory of low-frequency, collisionless sound
waves in a quasineutral plasma, in terms of the com-
plete basis of eigenfunctions of a Hermitian operator.
The present paper develops the analogous Hermitian
(self-adjoint) formalism for the normal modes of the
classic, high-frequency electron plasma wave problem,
which results in a transparent and mathematically
straightforward analysis of the dynamics of such waves
and their eventual damping. The normal-mode approach
is especially well suited to take into account the most
general initial conditions. This facilitates addressing the
issue of perturbations different from Landau’s standard
solution whose asymptotic decay is exponential with
an oscillation frequency and a damping rate given by
the complex root of an ”effective dispersion relation”.
Work by Belmont et al.5, backed by detailed numerical
simulations, has shown Langmuir wave solutions which
decay exponentially at long times, with damping rates
and oscillation frequencies that may differ from the
standard Landau root. That study was based on wave
packet superpositions of the original, non-Hermitian Van
Kampen modes. The present Hermitian normal-mode
formalism affords a simple proof of the stronger result
that any time dependence of the macroscopic variables,
such that its Fourier transform exists and is sufficiently
well behaved, can be realized with a suitably chosen
initial condition for the distribution function. Further-
more, it provides the explicit solution for the inverse
problem of determining the initial distribution function
that yields the prescribed functional dependence of its
macroscopic moments versus time. The existence of
solutions whose damping rate is not determined by the

slope of the equilibrium distribution function at the
resonant velocity has led to a closer examination of the
wave-particle energy exchange paradigm6,7.

Consider a small-amplitude, electrostatic perturba-
tion (∇ × E = 0) about a homogeneous, unmagnetized
and Maxwellian plasma equilibrium with immobile ions.
A linear analysis of such a perturbation can be based
on the independent study of uncoupled spatial-plane-
wave Fourier modes characterized by their wavevector
k. Then, for one such k-mode, the curl-free condition on
the electric field implies that E is in the direction of k
(E = Ek/k with k = |k| > 0) and the linearized electron
Vlasov-Maxwell system yields

1

c2
∂E(t)

∂t
= −j[f1] (1)

j[f1] = −e
∫ ∞
−∞

dv vf1(v, t) (2)

∂f1(v, t)

∂t
+ ikvf1(v, t) +

eE(t)v

T0
fM0(v2) = 0. (3)

Here, j(t) is the magnitude of the electric current which
is also parallel to k (j = jk/k), v is the phase-space
velocity component in the direction of k, and fM0(v2)
and f1(v, t) stand respectively for the electron equilib-
rium and perturbation distribution functions, integrated
over the phase-space velocity components perpendicular
to k. Thus, the one-dimensional Maxwellian equilibrium
distribution function is

fM0(v2) = n0

(
m

2πT0

)1/2

exp

(
−mv

2

2T0

)
(4)

where n0 and T0 are the electron equilibrium density and
temperature, and m is the electron mass. The density
moment of (3) yields the continuity equation

∂σ(t)

∂t
+ ikj(t) = 0 (5)

where

σ(t) = −e
∫ ∞
−∞

dv f1(v, t) (6)
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is the charge density. Then, (1) and (5) guarantee that
Gauss’ law, ikE(t) = c2σ(t), is satisfied at all times
provided it is satisfied by the initial condition at t = 0.

Writing f1 as the sum of its even and odd parts with
respect to v (f1 = feven1 +fodd1 ) and eliminating feven1 and
E, the linearized Vlasov-Maxwell system (1-3) reduces to
the following second-order linear problem with respect to
time for fodd1 (v, t):

− 1

k2
∂2fodd1

∂t2
= L[fodd1 ] (7)

where the linear operator L is

L[fodd1 ] = v2fodd1 − ec2

k2T0
j[fodd1 ]vfM0. (8)

The operator L is self-adjoint in the Hilbert space of
square-integrable distribution functions with the scalar
product

〈f |f ′〉 =

∫ ∞
−∞

dv
T0

fM0(v2)
f∗(v)f ′(v), (9)

because the scalar product 〈f |L[f ′]〉 can be cast in the
Hermite-symmetric form

〈f |L[f ′]〉 =
c2

k2
j[f∗]j[f ′]

+

∫ ∞
−∞

dv
T0

fM0(v2)
v2f∗(v)f ′(v) = 〈L[f ]|f ′〉 (10)

Besides,

〈f |L[f ]〉 =
c2

k2
|j[f ]|2 +

∫ ∞
−∞

dv
T0

fM0(v2)
v2|f(v)|2 > 0

(11)

so L is a positive operator.

The normal modes of the second-order problem (7) are
separable solutions of the form

fodd1 (v, t) = v hλ(v2) exp(−iωt) (12)

where the label λ is the squared phase velocity (λ ≡
ω2/k2) so that vhλ is an eigenfunction of the operator
L with eigenvalue λ. Since L is self-adjoint and positive,
the λ spectrum is real and positive, therefore the normal-
mode frequencies ω are real. Then, calling ζ ≡ v2 and
normalizing hλ to

−1

e
j[vhλ] =

∫ ∞
0

dζ ζ1/2hλ(ζ) = 1, (13)

the normal-mode eigenvalue equation can be expressed
as

(ζ − λ)hλ(ζ) = −
mω2

p

k2T0n0
fM0(ζ) (14)

where ω2
p ≡ c2e2n0/m is the square of the plasma fre-

quency. For any λ > 0, this has the singular solution

hλ(ζ) = −
mω2

p

k2T0n0
P fM0(ζ)

(ζ − λ)
+ Λ(λ)λ−1/2δ(ζ − λ)

(15)

where P stands for the Cauchy principal value and δ is
the Dirac distribution. The coefficient Λ(λ) is specified
by the condition that hλ satisfy the normalization con-
dition (13). This yields

Λ(λ) = 1 +
mω2

p

k2T0
W (λ̂) (16)

where λ̂ ≡ mλ(2T0)−1 is the ratio of the squared phase
velocity to the squared electron thermal velocity, and

W (λ̂) ≡ π−1/2
∫ ∞
0

dζ̂ ζ̂1/2 P exp(−ζ̂)

ζ̂ − λ̂
(17)

which is related to the real part of the plasma dis-

persion function Z by W (λ̂) = 1 + λ̂1/2ReZ(λ̂1/2). It
satisfies W (0) = 1 and has the asymptotic behavior

W (λ̂→∞) = −(2λ̂)−1.

The scalar products among these normal modes,

〈vhλ|vhλ
′
〉 =

∫ ∞
0

dζ ζ1/2
T0

fM0(ζ)
hλ(ζ)hλ

′
(ζ), (18)

are evaluated with the help of the identity

P 1

ζ − λ
P 1

ζ − λ′
= P 1

λ− λ′

(
P 1

ζ − λ
− P 1

ζ − λ′

)
+π2δ(λ− λ′)δ(ζ − λ). (19)

Recalling the definition (17) of the function W and car-
rying the integration of Dirac deltas, one obtains

〈vhλ|vhλ
′
〉 =

T0
λ1/2fM0(λ)

D(λ)δ(λ− λ′) (20)

where

D(λ) =

[
1 +

mω2
p

k2T0
W (λ̂)

]2
+ π2

(
mω2

p

k2T0

)2
λf2M0(λ)

n20
,

(21)

so normal modes with different λ eigenvalues are or-
thogonal as expected from the self-adjointness of the
operator L.

Once the normal modes (12,15-17) of the electron
plasma wave system have been obtained, one can readily
solve for any initial-value problem. The normal modes
vhλ(v2) constitute a complete continuum basis in the
space of odd, square-integrable functions with the scalar
product (9), because they are singular eigenfunctions of
a self-adjoint operator. Therefore, any initial conditions
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for fodd1 belonging to such Hilbert space can be expanded
as

fodd1 (v, 0) = v

∫ ∞
0

dλ λ−1/2C(λ) hλ(v2) (22)

∂fodd1 (v, 0)

∂t
= kv

∫ ∞
0

dλ S(λ) hλ(v2). (23)

Then, the solution of the corresponding initial-value
problem is

fodd1 (v, t) = v

∫ ∞
0

dλ λ−1/2hλ(v2)
[
C(λ) cos(λ1/2kt)

+S(λ) sin(λ1/2kt)
]
. (24)

Recalling the normalization condition (13) and changing
the integration variable back to ω, one obtains the ex-
pression for the current perturbation

j(t) = −2e

k

∫ ∞
0

dω

[
C
(ω2

k2

)
cosωt+ S

(ω2

k2

)
sinωt

]
(25)

which means that, up to the multiplicative constant spec-
ified in Eq.(25), C(ω2/k2) is the cosine Fourier transform
of j(t) and S(ω2/k2) is its sine Fourier transform. From
Maxwell’s equation (1) and Gauss’s law or the continu-
ity equation (5), the electric field and the electron density
perturbation are

E(t) =
2ec2

k

∫ ∞
0

dω

ω

[
C
(ω2

k2

)
sinωt− S

(ω2

k2

)
cosωt

]
(26)

n1(t) = −σ(t)

e
= −2i

∫ ∞
0

dω

ω

[
C
(ω2

k2

)
sinωt

−S
(ω2

k2

)
cosωt

]
(27)

This solution exhibits the invariance under the time re-
versal,

t→ −t, fodd1 (v, 0)→ −fodd1 (v, 0),

∂fodd1 (v, 0)/∂t→ ∂fodd1 (v, 0)/∂t, (28)

as should be the case for the considered dissipation-free,
collisionless Vlasov-Maxwell model (1-3). It also exhibits
the Landau damping of the macroscopic variables for
t → ±∞, as the consequence of the superposition of a
continuum of spectral components with rapidly varying
phases. To be precise, the Riemann-Lebesgue lemma
guarantees such long-time decay of the macroscopic vari-
ables (25-27), for initial conditions for which C(ω2/k2)
and S(ω2/k2) are regular and integrable functions of
ω, and S(ω2/k2 → 0) ≤ O(ω/k). On the contrary, the
time dependence of the macroscopic moments of the
normal modes (12) is undamped and purely oscillatory
because their associated C(ω2/k2) and S(ω2/k2) are

singular Dirac deltas. This analysis provides also a
straightforward linear proof that any j(t), E(t) or
n1(t), such that its Fourier transform exists and is
sufficiently well behaved, can be realized with the ap-
propriately chosen initial condition defined explicitly by
Eqs.(22,23,25-27). The Fourier transform has to be suffi-
ciently well behaved for the integrals (22,23) to converge.

Explicit applications of the above formalism are given
next, by considering two examples of specific initial con-
ditions. For the first one, take

f1(v, 0) =
n1(0)

n0
fM0(v2), E(0) =

iec2

k
n1(0). (29)

This implies

fodd1 (v, 0) = 0 (30)

and, from Eq.(3),

∂fodd1 (v, 0)

∂t
= −ikv

(
1 +

mω2
p

k2T0

)
n1(0)

n0
fM0(v2).

(31)

Making use of the orthogonality relation (20,21), the pro-
jection of this initial condition onto the normal-mode ba-
sis yields C(λ) = 0 and

S(λ) = −i

(
1 +

mω2
p

k2T0

)
n1(0)λ1/2fM0(λ)

n0D(λ)
. (32)

Accordingly, the time evolution of the density perturba-
tion is given by

n1(t) =
( 2

π

)1/2 ∫ ∞
0

dω ñ(ω) cosωt, (33)

where the Fourier transform of n1(t) is

ñ(ω) = (2π)1/2

(
1 +

mω2
p

k2T0

)
n1(0)fM0(ω2/k2)

n0kD(ω2/k2)

(34)

which can have a sharp resonant peak if D(ω2/k2) be-
comes close to zero for a narrow frequency interval.
This happens if and only if the wave phase velocity
is much greater than the electron thermal velocity, i.e.

ω2/k2 � 2T0/m = v2th, so that [1 + mω2
pk
−2T−10 W (λ̂)]2

can have a zero with λ̂ � 1, for which the other posi-
tive term in the expression of D(λ) (21) is small. Then,

using the large-argument asymptotic form of W (λ̂), one
can approximate

1 +
mω2

p

k2T0
W (λ̂) ' 1−

ω2
p

ω2
(35)

which has a zero at ω = ωp. Substituting the approxi-
mation (35) and setting ω = ωp in the remaining terms
of (34), in the limit ωp � kvth, one obtains

ñ(ω)

n1(0)
'
( 8

π

)1/2 η0 ω
3
p

(ω2 − ω2
p)2 + 4η20 ω

4
p

(36)
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where

η0 = π1/2
( ωp
kvth

)3
exp

(
−

ω2
p

k2v2th

)
� 1. (37)

Finally, after substituting (36) in (33) and carrying out
the integration over ω, the corresponding approximation
for n1(t) is

n1(t)

n1(0)
' exp(−η0ωp|t|)

[
cos(ωpt) + η0 sin(ωp|t|)

]
(38)

in agreement with the classic result1,2,3 for the weakly
Landau-damped electron plasma wave. Consistent
with the time-reversal invariance, n1(t) is an even
function of time with the same decaying behavior
as t → ±∞. This example is representative of the
standard initial conditions characterized by C(λ) and
S(λ) functions that are inversely proportional to D(λ),
thus resulting in Landau’s standard rate of exponential
decay for a Langmuir oscillation at the plasma frequency.

The second example will illustrate the solution to the
inverse problem of finding the distribution function initial
condition for a specified, non-standard time variation of
the perturbed density. To this effect, take

n1(t)

n1(0)
= exp

(
− t2

2τ2

)
(39)

where τ is an arbitrary time constant. This non-
oscillatory, Gaussian decay of the density is neither Lan-
dau’s standard one nor any of the non-standard forms of
exponential decay shown in Ref. 5. Equation (39) has a
regular Fourier transform,

n1(t)

n1(0)
=
( 2

π

)1/2 ∫ ∞
0

dω cosωt τ exp
(
−ω

2τ2

2

)
, (40)

hence the coefficients of the normal-mode expansion of
the initial condition are determined by Eq.(27) to be
C(λ) = 0 and

S(λ) = −in1(0)kτ

(2π)1/2
λ1/2 exp

(
−k

2τ2λ

2

)
(41)

which is not inversely proportional to D(λ), as ex-
pected from the non-standard nature of n1(t). Then,
Eqs.(3,22,23) yield the expressions for the initial distri-
bution function

fodd1 (v, 0) = 0, (42)

feven1 (v, 0) =
i

kv

∂fodd1 (v, 0)

∂t
−
mω2

pn1(0)

k2T0n0
fM0(v2)

(43)

and

i

kv

∂fodd1 (v, 0)

∂t
=

n1(0)kτ

(2π)1/2

∫ ∞
0

dλ λ1/2 exp
(
−k

2τ2λ

2

)
hλ(v2). (44)

After substituting Eqs.(15,16) for the normal-mode
eigenfunctions hλ(v2) and carrying out the integration
over λ, the final result is

f1(v, 0) =
n1(0)

(2π)1/2

{
kτ exp

(
−k

2τ2v2

2

)[
1 +

mω2
p

k2T0
W
(mv2

2T0

)]

+
m3/2ω2

p

k2T
3/2
0

exp
(
−mv

2

2T0

)[
W
(k2τ2v2

2

)
− 1

]}
(45)

which is a smooth, regular function of the phase-space
velocity. For large values of the time constant τ , it ap-
proaches the singular limit

lim
τ→∞

f1(v, 0) = n1(0)

[(
1 +

mω2
p

k2T0

)
δ(v)−

mω2
p

k2T0n0
fM0(v2)

]
.

(46)

It is generally accepted that, although there are in-
finitely many standard as well as non-standard possible
initial conditions, the standard ones are statistically
far more likely. A precise characterization and proof of
this proposition might be difficult but would be desirable.
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