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Abstract
In random vibration environments, sinusoidal line noise may appear in the vibration signal and 
can affect analysis of the resulting data. We studied two methods which remove stationary sine 
tones from random noise: a matrix inversion algorithm and a chirp-z transform algorithm. In 
addition, we developed new methods to determine the frequency of the tonal noise. The results 
show that both of the removal methods can eliminate sine tones in prefabricated random 
vibration data when the sine-to-random ratio is at least 0.25. For smaller ratios down to 0.02 only 
the matrix inversion technique can remove the tones, but the metrics to evaluate its effectiveness 
also degrade. We also found that using fast Fourier transforms best identified the tonal noise, and 
determined that band-pass-filtering the signals prior to the process improved sine removal. When 
applied to actual vibration test data, the methods were not as effective at removing harmonic 
tones, which we believe to be a result of mixed-phase sinusoidal noise.
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1. INTRODUCTION
The purpose of this document is to characterize two methods for identifying and 
removing sinusoidal waveforms from mixed sine-on-random (SOR) data. The 
fundamental techniques will be described along with their strengths and limitations. 
In addition to the two primary methods, additional techniques to improve their 
effectiveness will be discussed. Various examples will be given of both methods to 
demonstrate their strengths and weaknesses.

1.1. Outline
The following flowchart provides an overview of the process.

Figure 1. Sine removal process. The two primary methods (Mayes, Stearns) 
are darkly shaded. Additional techniques which we explored (filtering, Fourier 

transform frequency, iteration) are lightly shaded. 

As shown in Figure 1, the original SOR signal is removed via one of two methods: a 
matrix inversion method developed by Randal Mayes or a chirp-z transform method 
by Samuel Stearns. This report will discuss these two methods as well as the 
additional techniques to increase their effectiveness, namely band pass filtering, fast 
Fourier transforms, and iteration (shown in Figure 1).
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2. METHODS
The principle information required to remove sinusoidal content is the frequency, 
magnitude, and phase of the tone. Equation (1) shows the form of the noise that we 
wish to remove:

𝑦 = 𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡) + 𝐵𝑐𝑜𝑠(2𝜋𝑓𝑡) (1)

where the sine amplitude y is a function of time t (in seconds), frequency f (in Hz), 
and amplitudes A and B. The unknown quantities that must be determined are f, A, 
and B. A and B characterize both the magnitude and phase of the tone. We examined 
two methods which determine the frequency, magnitude, and phase of the sinusoid: 1) 
Mayes’ matrix inversion method and 2) Stearns’ chirp-z transform method. The 
characteristics of the sinusoidal content must be time-invariant to achieve successful 
removal with the matrix inversion method. The chirp-z method can account for linear 
changes in frequency over time, but not changes in amplitude or phase. 

Beyond an analysis of the primary sine removal methods, it is also necessary to 
discuss the pre- and post-processing techniques that we performed on the input signal. 
Pre-processing methods such as band pass filtering were implemented to enhance the 
chances for a successful tone extraction. We also used Rayleigh distribution analysis 
before and after sine removal to evaluate the characteristics of the signal and to 
determine the amount of sinusoidal content that was present.

MATLAB was the computational tool in which all methods were implemented.

2.1. Band Pass Filtering
A SOR signal may contain multiple tones, each with different frequencies. 
Attempting to remove all sinusoids at once with a single set of fitting functions will 
produce poor results, as each sinusoid takes on noise from all other sinusoids. In order 
to remove one tone at a time, it is necessary to band pass filter the SOR time history 
within as narrow of a frequency band as feasible bounding the tone in question. The 
filter attenuates the amplitude of any tones and random signal outside of that 
frequency band.

2.1.1. Filter Parameters
We implemented a two stage filtering process. The first filter attenuates frequencies 
near to the pass band but has poor attenuation far from the pass band. Therefore, the 
second filter was introduced to attenuate frequencies far from the pass band. 

The first filter is a second-order Chebyshev Type II filter. We chose this filter 
because of its sharper roll-off at the edge of the pass band, which greatly attenuates 
frequencies close to either side of the band. The pass band is 4 Hz, which is narrow 
enough to attenuate the majority of frequency content in the signal but is wide enough 
to account for variations in the frequency of the sine tone to be removed. Smaller 
bands also produced an uneven frequency response in the pass band. The attenuation 



10

of the filter was set to 20 dB to similarly reduce as much signal content as possible 
outside the pass band while keeping the gain within the pass band close to 0. The 
filter runs from 0 Hz to the Nyquist frequency.

The second filter is a second-order Butterworth filter. A Butterworth was used 
because of its characteristic flat frequency response in the pass band. In addition, it 
has a higher attenuation farther from the pass band compared to the first filter 
(Chebyshev Type II). For similar reasons as the first filter, the pass band was set to 8 
Hz and the attenuation to 60 dB to maximize the signal attenuation outside of the pass 
band while keeping the pass band gain at 0 dB. The filter runs from 0 Hz to the 
Nyquist frequency.

The frequency responses for both filters are shown in Figure 2 and Figure 3. 
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Figure 2. Filter frequency response in local frequency range.
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Figure 3. Filter frequency response in total frequency range (0 Hz to Nyquist).

The input signals are filtered in both the forward and reverse directions to eliminate 
any time delay in the filtered signal. This zero-phase digital filtering is necessary to 
preserve the original phase of the sinusoid being filtered.

2.1.2. Filter Transience and Removal
After passing the signal through each band pass filter we observed a transient response 
in output amplitude during the first cycles of the signal. This is shown in Figure 4. A 
similar transient effect was also observed at the tail end of the signal.

20 30 40 50 60 70 80 90 100

-60

-40

-20

0

Band Pass #1 for 55-65 Hz, Attenuation: 20 dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

Am
pl

itu
de

Original Curve

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [s]

-1

0

1

Am
pl

itu
de

Filtered Curve

Figure 4. Transience after passing signal through band pass filter.
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To improve the amplitude calculation from both sine removal methods we cropped 
the signal after the starting transience and before the ending transience. We created a 
formula to determine how many samples to remove, represented in Equation (2):

𝑇𝑟 =
0.55 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ

𝑏𝑎𝑛𝑑0.89 (2)

where Tr is the number of transient samples, length is the number of samples of the 
filtered signal, and band is the frequency band of the band pass filter in Hz. The 
constants in Equation (2) were determined by an empirical study in which we 
recorded the length of transience for a variety of frequencies, filter bands, and sample 
rates and iterated the constants until they formed a fit with the data.

After cropping out the transient segments, the sine removal algorithm can be 
performed on the filtered signal. After a sine tone is fit to the signal using either 
removal method, we extended the tone back to the original start and end of the 
original uncropped signal so that the sine-removed output has no residual tonal 
content.

2.2. Verification of Sinusoidal Content
We applied statistical analysis as both a qualitative and quantitative measure of the 
presence of sinusoidal content the performance of the solver in removing it. The 
primary measure was the peak distribution of the band pass filtered signal. The 
distribution reveals information about the amount of sinusoidal versus random 
content present in the signal, and thus can be compared before and after applying the 
sinusoidal removal process to evaluate the results.

2.2.1. Rayleigh Distribution and Coefficient of Variance
The probability density function (PDF) of the peak amplitudes of a stationary 
narrowband random signal follow a Rayleigh distribution. Pure sinusoidal stationary 
signals have a single amplitude and thus the PDF of the peaks has a single spike at 
that amplitude.

A useful quantitative metric associate with the peak distribution is the coefficient of 
variances (COV). It is defined by Equation (3).

𝐶𝑂𝑉 =
𝑠𝑡𝑑

𝑚𝑒𝑎𝑛 (3)

where std and mean are the standard deviation and mean of the peaks respectively.

A Rayleigh distribution is characterized by a single parameter that relates both the 
mean and std. As a result, a signal for which the peaks follow a Rayleigh distribution 
will have COV = 0.5227. A pure stationary sinusoid will always have COV = 0 
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because the standard deviation of the peaks is zero. This information provides a 
quantitative metric which evaluates whether the signal is random, sinusoidal, or SOR. 

A comparison of a narrowband random signal, a pure sinusoidal signal, and the 
combined SOR signal is shown in Figure 5. The COV of each of the examples is 
labeled in each plot.

Figure 5. PDF for random, sine, and SOR signals with a Rayleigh fit (red).

The computed COV values match our expectations, as the random noise has a COV 
close to that of an ideal Rayleigh distribution, the sinusoid has a COV close to zero, 
and the SOR signal has a COV somewhere in between.

2.3. The Chirp-Z Transform Method
The first method of characterizing sinusoidal content that we examined was Sam 
Stearns’ chirp-z transform (CZT) algorithm.

2.3.1. Chirp-Z Transform
The CZT is a generalized discrete Fourier transform that effectively maps straight 
lines in the S-plane to spiral arcs on the Z-plane. Bluestein’s Algorithm allows the 
CZT to be calculated by a set of fast Fourier transforms (FFTs). The general algorithm 
is shown in Equations (4) through (10) (Oppenheim and Schafer 1989).

𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑥𝑛 

𝑡𝑜 𝑀 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑍 𝑝𝑙𝑎𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚  𝑋𝑘

𝐿 = 𝑁 + 𝑀 ‒ 1 (4)
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𝑦𝑛 = {𝐴 ‒ 𝑛𝑊𝑛2/2𝑥𝑛
0 � 𝑛 = 0, 1, 2, …, 𝑁 ‒ 1

𝑛 = 𝑁, 𝑁 + 1, …, 𝐿 ‒ 1
(5)

𝑌𝑟 =  
𝑁 ‒ 1

∑
𝑛 = 0

𝑦𝑛𝑒
‒

𝑖2𝜋𝑟𝑛
𝑁 𝑟 = 0, 1, …, 𝐿 ‒ 1

(6)

𝑣𝑛 =  { 𝑊 ‒ 𝑛2/2 
𝑊 ‒ (𝐿 ‒ 𝑛)2/2

𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦
� 0 ≤ 𝑛 ≤ 𝑀 ‒ 1

𝐿 ‒ 𝑁 + 1 ≤ 𝑛 < 𝐿
𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑛

(7)

𝑉𝑟 =  
𝑁 ‒ 1

∑
𝑛 = 0

𝑣𝑛𝑒
‒

𝑖2𝜋𝑟𝑛
𝑁 𝑟 = 0, 1, …, 𝐿 ‒ 1

(8)

𝑔𝑘 =  
𝑁 ‒ 1

∑
𝑛 = 0

𝐺𝑟𝑒
𝑖2𝜋𝑟𝑛

𝑁 𝑟 = 0, 1, …, 𝐿 ‒ 1
(9)

𝑋𝑘 = 𝑊𝑘2/2𝑔𝑘 𝑘 = 0, 1, 2, …, 𝑀 ‒ 1 (10)

2.3.2. Applying the Chirp-Z Transform
Before applying the CZT, the signal is segmented and sent through a window function 
according to Stearns’ algorithm. In general, we used two segments with a 50% 
overlap. The window function used in this study is a form of tapered cosine window, 
as shown in Figure 6. We examined several possible windows including Hann, 
Hamming, and Blackman windows, but the tapered cosine yielded the best results for 
the CZT. 
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Figure 6. Tapered window function applied to signal.

The CZT is performed on each windowed signal with respect to an equally spaced 
range of frequencies, following the algorithm laid out in Section 2.3.1. Figure 7 
shows the transform from the windowed signal to the Z plane (on real and imaginary 
axes).
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Figure 7. Signal in the time domain (left) and the Z-plane (right).

The transformed signals are turned into periodograms which estimate the power of 
the signal as a function of frequency, as shown in Figure 8. The peak power 
corresponds to the peaks of the periodograms. The periodograms use discrete 
samples, which affects the precision of the peak values. For this report, 1 million 
samples were used to provide a frequency resolution of 1e-9 Hz.
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Figure 8. Periodograms from two tapered windows and the resulting linear fit.

The frequencies corresponding to the peak power are linearly fit, as shown in the 
bottom half of Figure 8. The linear fit has the form of Equation (11).

𝑣(𝑡) = 𝑐1𝑡 + 𝑐0 (11)

The coefficients from the linear fit are used to determine the frequency f and 
amplitudes A and B of the sine tone. The y-intercept coefficient c0 is the initial 
frequency of the tone. The slope c1 is half of the chirp rate and is represented by β. 
The sine coefficients A and B which characterize the tone’s amplitude and phase are 
thus calculated using Equations (12) through (14).

where f is the frequency in Hz, β is half the chirp rate, x is the signal, and K is the 
index of x. Note that the sinusoidal argument θ contains both f and β and thus 

𝐴 =  ∑𝑥 ∙
sin (𝜃)

∑𝑠𝑖𝑛2⁡(𝜃)
(12)

𝐵 =  ∑𝑥 ∙
cos (𝜃)

∑𝑐𝑜𝑠2⁡(𝜃)
(13)

𝜃 = 2𝜋(𝑓 + 𝛽𝐾)𝐾 (14)
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accounts for any linear change of frequency recorded in the linear fit. For a stationary 
sinusoid, the theoretical solution has a chirp rate of zero and thus β = c1 = 0.

2.4. The Matrix Inversion Method
The second method of characterizing sinusoidal content that we examined was 
Randall Mayes’ matrix inversion algorithm.  This algorithm is extremely sensitive to 
the accuracy with which the tonal frequency is selected.  Therefore, in addition to the 
bandpass filtering operation, a tonal frequency identification scheme was employed. 
This frequency is then input into the algorithm which uses a Moore-Penrose 
pseudoinverse to find the A and B coefficients of the sine tone.

2.4.1. Frequency Determination with Fast Fourier Transforms
After we band pass filter the signal using the filters described in 2.1.1, only the 
frequency content within the band of the filter should remain at an un-attenuated 
amplitude. Taking the FFT of this filtered signal shows the distribution of 
frequencies. Any sinusoidal content will appear on a plot of the FFT as a narrow 
spike with a large peak-to-valley ratio, centered at approximately the same frequency 
as the sine tone. The best estimate of the tonal frequency is the weighted average of 
the FFT peak and the adjacent points as described by Equation (15): 

𝑓𝑒𝑠𝑡 =
𝑃𝑛 ‒ 1𝑓𝑛 ‒ 1 + 𝑃𝑛𝑓𝑛 + 𝑃𝑛 + 1𝑓𝑛 + 1

𝑃𝑛 ‒ 1 + 𝑃𝑛 + 𝑃𝑛 + 1
(15)

where n is the index of the peak frequency, f is the frequency at a given index, and P 
is the amplitude at a given index. An empirical study to verify the accuracy of this 
equation is discussed in the Appendix. An example FFT is shown in Figure 9, where 
the points used in the weighted average are circled red. The resulting frequency 
estimate  fest is the input to the matrix inversion method.
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Figure 9. FFT of the band pass filtered signal. The three data points used to 
estimate the frequency are circled in red. 

2.4.2. Matrix Inversion Algorithm
The matrix inversion process uses the FFT frequency estimate from Equation (15) to 
obtain the A and B coefficients, thus fully characterizing the sinusoid. The algorithm 
is described in Equations (16) through (21): 

Matrix size

𝑋 = sin (2𝜋𝑓𝑡) 𝑛 ‒ 𝑏𝑦 ‒ 1 (16)

𝑌 = cos (2𝜋𝑓𝑡) 𝑛 ‒ 𝑏𝑦 ‒ 1 (17)

𝑀 = [𝑋 𝑌] 𝑛 ‒ 𝑏𝑦 ‒ 2 (18)

𝑀𝐼 = 𝑝𝑖𝑛𝑣(𝑀) 2 ‒ 𝑏𝑦 ‒ 𝑛 (19)

𝐶 = 𝑀𝐼 ∗ 𝑥 2 ‒ 𝑏𝑦 ‒ 𝑛 ∗  𝑛 ‒ 𝑏𝑦 ‒ 1 (20)

[𝐴 𝐵] = 𝐶 2 ‒ 𝑏𝑦 ‒ 1 (21)

where f is the input frequency in Hz, t is the time vector in seconds, x is the signal 
vector, and A and B are the output coefficients. However, based on the FFT frequency 
step size and the noise amplitude, the frequency estimate that is used in the matrix 
inversion process is not always accurate. To increase the accuracy of this estimate, we 
also adopted an iterative approach based on the initial FFT ‘estimate’ of the tonal 
frequency described in Section 2.4.1.
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2.4.3. Iterative Frequency Determination
When the sine-to-random ratio (SRR) of a signal is very small, the FFT method of 
identifying the tonal frequency becomes less accurate. The goal of iterative frequency 
determination is to choose the frequency that best optimizes a given metric. For this 
study we used a examined all of the frequencies in a 2 Hz band centered on the initial 
FFT tonal frequency using a small incremental frequency step. The step size was 
determined by the minimum required resolution, which we discuss in Section 2.4.4. 

There are two primary metrics to determine which frequency is the best choice for the 
tonal frequency. The first metric is the magnitude of the resulting sine tone. This 
follows the concept that the most complete removal of the sine tone corresponds to 
the sine tone with the largest possible amplitude. We calculated the amplitude Psine 
using Equation (22):

𝑃𝑠𝑖𝑛𝑒 = 𝐴2 + 𝐵2 (22)

where A and B are the amplitude coefficients from the matrix inversion results. The 
variation of sine amplitude as a function of the input frequency for the matrix 
inversion is plotted for example data in Figure 10. Note that the global maximum of 
the sine amplitude is near the true frequency of the tone, 60 Hz, but is not in perfect 
alignment.
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Figure 10. Optimization for amplitude of the removed sine tone. The x-axis 
shows the frequency that was input to the matrix inversion, and the y-axis is 

the resulting sine amplitude for each corresponding input frequency. 
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The second metric uses the RMS of the power spectral density (PSD) in the narrow 
band of frequencies near the input frequency. For each step in frequency in the 2 Hz 
band, a PSD of the sine-removed signal is created and the RMS is calculated from the 
same frequency band. The RMS corresponds to the area under the curve of the PSD 
plot so it is expected that the global minimum of RMS corresponds to the frequency 
that removes the most of the sine content. Using the same example data used to 
generate Figure 10, the effect of input frequency on the RMS is shown in Figure 11.
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Figure 11. Optimization for RMS of the PSD curve. The x-axis shows the 
frequency that was input to the matrix inversion, and the y-axis is the resulting RMS 

of the signal corresponding to each input frequency. 

As Figure 11 shows, the RMS is minimized at the frequency of the sine tone. Note 
that in comparison with the sine amplitude optimization, the RMS optimization tends 
to have a more accurate result. However, this is not always the case and the RMS 
metric is more computationally expensive to implement, thus the sine amplitude 
optimization remains useful.

A three dimensional plot of the PSD was created as shown in Figure 12. Note that the 
plane highlighted in red matches the profile of Figure 11 due to the relationship 
between RMS and the PSD curve. As the plot suggests, 60 Hz is the correct 
frequency of the tone because removing that frequency tone corresponds to the valley 
created in the PSD plot.
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Figure 12. PSD vs. change in matrix inversion input frequency. The Frequency 
axis is the x-axis of the PSD in that frequency band. The Removed Sine Frequency 

axis is the frequency that is input to the matrix inversion method. 

Examining the response of the FFT is also a useful metric to verify that the correct 
frequency was selected. When the frequency of the removed tone matches the actual 
frequency of the tone, the corresponding peak in the FFT should be eliminated. 
Figure 13 shows the response of the FFT plot as the removed frequency is varied in a 
2 Hz band. 



22

0

0.005

6155

0.01

0.015

FFT for 55-65 Hz band

FF
T 

Am
pl

itu
de

0.02

0.025

0.03

60.5

Frequency of Removed Sine [Hz]
Frequency [Hz]

6060
59.5

5965

0.005

0.01

0.015

0.02

0.025

Am
pl

itu
de

Figure 13. FFT vs. change in matrix inversion input frequency.

This is a helpful tool for verification but is not as accurate as the sine amplitude or 
RMS metrics because the FFT of the random portion of the signal can be 
unpredictable. The sine frequency that creates a valley in the FFT peak does not 
always correlate to the true sine frequency.

It must be noted that the iterative tool is only applicable to Mayes’ matrix inversion 
method. Stearns’ CZT method couples together the sine frequency and amplitude 
calculations so there is no way to iterate the frequency to create a more accurate 
amplitude.

2.4.4. Required Frequency Resolution
Removing the incorrect frequency creates a beating effect as shown in Figure 14. In 
this example a 2.1 Hz tone of amplitude 1 was subtracted from a 2 Hz tone of the 
same amplitude. Over time the waveforms overlap and the total amplitude of the 
signal exceeds that of either individual tone. The dotted lines mark the threshold of 
amplification, when the amplitude is greater than 1.
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Figure 14. Beat frequency caused by removal of incorrect frequency tone. 
Dotted lines mark the threshold of amplification. 

We found that amplification begins to occur soon after the estimated and true 
frequencies are approximately 1/6 of a wavelength apart in time. Because the 
frequency beats in time, the wavelength and period are equivalent. Equation (23) 
shows the relationship between time history length and frequency resolution:

𝐿 =
𝜆
6

=
𝑇
6

=
1

6𝑓𝑟
(23)

where L is the time history length in seconds, λ is the true frequency wavelength in 
seconds, T is the period in seconds, and fr is the beat frequency in Hz. This rearranges 
to the solution for the beat frequency shown in Equation (24):

𝑓𝑟 =
1

6𝐿 (24)

The beat frequency fr is equivalent to the maximum allowable difference between the 
true and estimated frequencies. Thus any frequency solution that deviates more than fr 
from the true frequency will result in ineffective removal of sine tone and potential 
sine amplification of the sine for time histories of length L or longer.
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3. TEST CASES
We used three test cases to evaluate the effectiveness of both the matrix inversion and 
chirp-z methods, as well as the supplemental techniques discussed (band pass filtering, 
iterative frequency solving, and COV analysis). Our first two cases use theoretical, 
fabricated SOR signals, of which the first case is simple and straightforward and the 
second case is more difficult to analyze. The third case uses actual random vibration 
test data.

3.1. Test Case 1: Fabricated SOR with High SRR
The first test case is a fabricated SOR signal with a high SRR. The signal follows the 
format described in Table 1. The signal is composed of three sine tone components 
added to a random component. We used the MATLAB function randn to create the 
random component.

Table 1. Fabricated SOR #1 Characteristics.

Signal Characteristics

Sample Rate [sample/s] 10,000

Signal Length [s] 100

Number of samples 106

Random signal RMS 1

Sine Tone Characteristics

Frequency [Hz] Amplitude Phase, relative to t = 0 [rad]

60 10 0

180 5 0

600 1 0

A segment of the time history is shown in Figure 15. A PSD of the signal is shown in 
Figure 16. Note the easily distinguished peaks in power at 60, 180, and 600 Hz 
compared to the random signal floor.
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Figure 15. Time history segment of Test Case 1.
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Figure 16. PSD of Test Case 1.
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3.2. Test Case 2: Fabricated SOR with Low SRR, Phase Shifts
The second test case is a fabricated SOR signal with a lower SRR and follows the 
format described in Table 2, similar to Test Case 1. Compared to Test Case 1, the 
frequencies of the tones are the same, but the amplitudes of Test Case 2 are much 
smaller and two of the three tones have phase shifts added. Also note that the signal 
length is shorter, resulting in a fewer number of samples to analyze.

Table 2. Fabricated SOR #2 Characteristics.

Signal Characteristics

Sample Rate [sample/s] 10,000

Signal Length [s] 5

Number of samples 50,000

Random signal RMS 1

Sine Tone Characteristics

Frequency [Hz] Amplitude Phase, relative to t = 0 [rad]

60 0.25 0

180 0.02 π/3

600 0.01 π/5

A segment of the time history is shown in Figure 17 and a PSD is shown in Figure 18. 
Note that although the 60 Hz tone is still well visible in the PSD plot, the 180 Hz and 
600 Hz tones are almost impossible to distinguish from the random signal floor.
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Figure 17. Time history segment of Test Case 2.
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3.3. Test Case 3: Real Vibration Test Data
The third and final test case uses actual data from a random vibration test. Information 
about the signal is tabulated in Table 3. Figure 19 and Figure 20 respectively show the 
time history and PSD of the data. Because 60 Hz harmonic line noise is suspected in 
this data, the frequencies to be analyzed are 60 Hz, 180 Hz, 300 Hz, and 420 Hz which 
all correspond to significant peaks in the PSD.

Table 3. Vibration Data Characteristics.

Signal Characteristics

Sample Rate [sample/s] 12,800

Signal Length [s] 62.72

Number of samples 802,816

The signal time history is shown in Figure 19 and a PSD is shown in Figure 20. The 
PSD plot shows pronounced peaks at 60 Hz and its odd harmonics of 180, 300, and 
420 Hz. This is suggestive of electrical line noise which should be removed from the 
signal to obtain the true vibration response.
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Figure 19. Time history segment of Test Case 3.
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4. RESULTS OF ANALYSIS
The results of both sine removal methods on the three test cases are described below. 

4.1. Summary of Results
For high SRR, the matrix inversion and chirp-z methods performed nearly identically, 
but chirp-z performed best. Both were able to remove the high amplitude sine tones. 
Iterative methods were not necessary because the initial frequency estimate derived 
from the FFT was already within the required resolution of accuracy. The COV metric 
was an accurate measure of tonal content before and after removal. It is proven that 
band pass filtering the signals improves sine removal results.

For low SRR, the matrix inversion method performed best. The chirp-z technique was 
unable to remove tones with very low SRR. However, the matrix inversion removed 
additional random content which we want to keep and not just the sine tone. Iterative 
methods identified the frequencies that removed the most content, but did not identify 
the exact frequency of each sine tone. The COV metric was not useful at low SRR and 
there was no observable correlation between COV and amount of tonal content at this 
SRR.

For the real test data, the 60 Hz tone was successfully removed by both methods. For 
all other tones, the matrix inversion method performed best, but neither method was 
able to remove all of the tonal content. The COVs and PDFs suggested that most of 
the content was removed, but the peaks in the PSD remained. One potential 
explanation may be that the higher frequency tones were multi-phased rather than a 
single sine form. Another explanation is that several tones with similar but not equal 
frequencies are clustered at the 60 Hz harmonics as suggested by the FFT of the 
signal.

4.2. Results: Test Case 1 (High SRR)
Both removal methods (matrix inversion, CTZ) were applied to Test Case 1. Band 
pass filtering was used in each case. The FFT tool was used for the matrix inversion 
method. The iteration tool was not used with the matrix inversion solver because the 
FFT tool produced a near perfectly accurate frequency solution. A subcase in which 
band pass filtering was not used is described in Section 4.2.1.

The comparison of the PSD before and after removal is shown in Figure 21. The PSD 
for the random signal is also plotted to provide a comparison against the sine-removed 
signal. A magnified view of the remaining sinusoidal content is shown in Figure 22.

The chirp-z method removed almost all sinusoidal content and the resulting PSD 
overlaps the random signal floor. Although the matrix inversion method removed the 
majority of sinusoidal content, a small portion remains. The signal was not impacted at 
any other frequencies besides those selected.
A parametric synopsis of the results are tabulated in Table 4.
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Figure 21. Case 1 PSD before and after applying matrix inversion removal.
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Figure 22. Case 1 magnified view of remaining sine tones.
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Table 4. Case 1 results.

Tone Actual Matrix Chirp
1 60 60 60
2 180 180 180Frequency 

(Hz)
3 600 600.0001 600
1 10 9.9874 9.9990
2 5 5.004 5.0001Amplitude
3 1 1.0013 1.0014

Tone Before After (Matrix) After (Chirp)
1 0.00337 0.514 0.475
2 0.00712 0.542 0.522COV

3 0.0255 0.525 0.548

The FFT method obtained a very accurate value for the tonal frequency. The CZT 
method of obtaining frequency was exactly correct for all frequencies.

The matrix inversion method was not as accurate in its amplitude calculations as the 
chirp-z method, which may explain the inability to completely remove the tones.

The COV values provide quantitative verification that the initial signals were sine 
tones because the COV values before removal were very close to 0. After the tones 
were removed, the new COV values were close to the Rayleigh distribution value of 
0.5227 which matches random noise. This verifies that the initial signals were 
sinusoids, and that the resulting signals were random. 

4.2.1. Case 1 Bandpass Filter Study
A second study was performed to examine the effectiveness of the dual band pass 
filter technique described in 2.1. For this study the signal were not bandpass filtered 
prior to applying the tone removal algorithms.  The results are plotted in Figure 23.  
Comparing these results against those in Figure 21 clearly shows the value of 
employing the bandpass filtering technique.
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Figure 23. Case 1 comparison of results with and without band pass filtering.

As the plot shows, passing the signal through the band pass filters significantly 
improved the ability to remove the sine tones. The amount of remaining tonal content 
decreased by several orders of magnitude for both methods.

4.3. Results: Test Case 2 (Low SRR)
Both removal methods (matrix inversion, CTZ) were applied to Test Case 2. Band 
pass filtering was used in each case. The FFT tool was used for the matrix inversion 
method. The iteration tool was not used in the main results, but was applied to the 
matrix inversion solver in a subcase described in Section 4.3.1.

The comparison of the PSD before and after removal is shown in Figure 24. The PSD 
for the random signal is also plotted to provide a comparison against the sine-removed 
signal.  A magnified view of the remaining sinusoidal content is shown in Figure 25.  
A parametric synopsis of the results are tabulated in Table 5.
Figure 24 shows that while both methods removed the tone at 60 Hz, the chirp-z 
method did slightly better.  However, only the matrix inversion method removed the 
tones at 180 Hz and 600 Hz.
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Figure 24. Case 2 PSD before and after applying matrix inversion removal.
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Figure 25. Case 2 magnified view of remaining sine tones.
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Table 5. Case 2 results.

Tone Actual Matrix Chirp
1 60 60.0003 59.9958
2 180 180.0184 180.1063Frequency 

(Hz) 3 600 600.0086 602.8273
1 0.25 0.261 0.261
2 0.02 0.0241 0.0237Amplitude
3 0.01 0.0180 0.00233

Tone Before After (Matrix) After (Chirp)
1 0.07122 0.5269 0.5205
2 0.4590 0.4562 0.4976COV

3 0.4570 0.4125 0.4411

Because Test Case 2 is a much shorter time history than Test Case 1 the frequency 
resolution is much higher at 0.0333 Hz. The largest deviation in frequency was 
180.0184 Hz, which is still within the resolution limit. It is believed that the inversion 
method worked better for this case because the FFT method obtained accurate values 
for the tonal frequencies even at very low SRR. The chirp-z calculated frequencies 
were outside the required frequency resolution except for the 60 Hz tone. This is the 
most likely reason the chirp-z method was unable to remove those tones. 

The usefulness of the COV metric begins to fall apart at low SRR as shown in Table 5. 
At 60 Hz the COV before the process was still relatively small which is suggestive of 
sinusoidal content. After the removal process, the signal at 60 Hz reached the expected 
COV value of approximately 0.5227. However, the COV for the signal at 180 Hz and 
600 Hz actually decreased after the sine removal process.

The result is that without any prior knowledge of the random signal floor, the 180 Hz 
and 600 Hz tones would be virtually indistinguishable from the random signal. 
Although the matrix inversion method successfully removed the tones, this success 
was evaluated with knowledge of the true solution. Without the random signal floor, 
there is no effective quantitative or qualitative metric to determine if the tones were 
originally present, or if the tones were successfully removed.

4.3.1. Case 2 Iterative Frequency Metric Study
Both iterative convergence metrics, the sine amplitude and RMS, were tested against 
Case 2 using the matrix inversion solver. The goal of the iterative solvers as discussed 
in 2.4.3 is to determine the frequency at which the most sinusoidal content is removed 
by the matrix inversion. The results of both iterative metrics is shown in Figure 26.
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Figure 26. Comparison of iterative frequency solvers and original method.

The figure shows that both iterative methods removed more of the peak in the PSD 
than the original matrix inversion. The sine-optimized iteration and RMS-optimized 
iteration were roughly equal in effectiveness, although the sine-optimized iteration is 
much less computationally intensive. However, like the original matrix inversion 
results these tools removed more content from the signal beyond just the sine tones. 
The frequencies and amplitudes selected by the iterative solvers are shown in Table 6 
in comparison to the original matrix inversion results. Note that although the relative 
metrics (sine amplitude, RMS) were optimized, the corresponding frequencies and 
amplitudes were often farther from the true values than the original FFT estimate.

Table 6. Case 2 iterative frequency results.

Tone Actual FFT
(no iteration)

Sine 
Optimization

 RMS 
Optimization

1 60 60.0003 60.0002 60.0002

2 180 180.0184 179.9803 179.9636Frequency 
[Hz]

3 600 600.0086 600.0419 600.0586

1 0.25 0.261 0.262 0.262
2 0.2 0.0241 0.0242 0.0241Amplitude
3 0.1 0.0180 0.0183 0.0183
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Tone Before COV FFT COV Sine COV RMS
1 0.1127 0.5269 0.5602 0.5602
2 0.4332 0.4562 0.4952 0.4594

COV

3 0.4570 0.4125 0.4195 0.4238

4.4. Results: Test Case 3
Both removal methods (matrix inversion, CTZ) were applied to Case 3. Band pass 
filtering was used in each case. The FFT tool was used for the matrix inversion 
method. The iteration tool was not used in the main case but was applied to the matrix 
inversion solver in a subcase described in Section 4.4.1.

The results for both methods are relatively similar, although the matrix inversion 
method removed more of the sine tones. Both methods removed the tone at 60 Hz. 
However, neither method removed much of the tones at 180 Hz, 300 Hz, or 420 Hz. 
These results are shown in Figure 27. The parametric results are tabulated in Table 7.
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Figure 27. Case 3 PSD before and after for each method.

Table 7. Case 3 results.
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Tone Matrix Chirp
1 59.9972 59.9986
2 179.9917 179.9944
3 299.9869 299.9917Frequency

4 419.9902 419.9917
1 0.002 0.002
2 0.0024 0.0024
3 0.003 0.003Amplitude

4 0.002 0.002

Tone Before After (Matrix) After (Chirp)
1 0.3298 0.5119 0.5125
2 0.0226 0.6430 0.6853
3 0.1902 0.5029 0.5817

COV

4 0.1156 0.5905 0.5864

The two methods obtained slightly different frequencies. The amplitudes are the same 
between the two methods. This suggests that the reason the matrix inversion 
performed better is because the frequency estimate was better, and that the removal of 
the tone is very sensitive to picking the correct frequency.

The initial COV values support the theory that these frequencies contained sinusoidal 
line noise because they are close to the theoretical COV value for sinusoids (although 
the initial COV for the 60 Hz bandpass filtered signal is the least sinusoidal of the raw 
signals.  However, despite the presence of narrowband spikes in the corrected PSD, 
which suggests that there is still tonal content remaining, the COV values and peak 
distributions increased towards the ideal Rayleigh value after the removal process  
which suggests that much of the content was successfully removed. 

The peak distributions and the resulting Rayleigh fits at each frequency are shown in 
Figure 28 through Figure 31. 
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Figure 28. Case 3 PDFs before and after removal, 60 Hz.

Figure 29. Case 3 PDFs before and after removal, 180 Hz.
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Figure 30. Case 3 PDFs before and after removal, 300 Hz.

Figure 31. Case 3 PDFs before and after removal, 420 Hz.

All frequency bands moved from a characteristic tonal distribution (a large spike at a 
single amplitude) to a more random Rayleigh distribution after sine removal. These 
results, combined with the COV values, suggest that the majority of sinusoidal content 
was removed despite the peaks remaining in the PSD.
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The Case 3 data came from an acoustic test involving over one hundred of 
electrodynamic speakers.  One possible reason there are still peaks in the PSD is that 
there are multi-phased tones present at these frequencies. Another possible explanation 
might be multiple 60 Hz line noise sources.  Differences in cabling length for the 
various sources could have resulted in small phase shifts between the various sources.  
Either possibility would result in multiple sinusoids with different phases but the same 
frequency are overlapping in the signal, and neither removal method would be 
successful in removing this content.

Another possible explanation is that there are additional tones nearby the 60 Hz 
harmonics that are responsible for the in ability to identify a single sine tone. An 
examination of the FFT in the 420 Hz band shows multiple peaks (shown in Figure 
32), which may be caused by several sine tones of similar frequency overlapping.
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Figure 32. Case 3 FFT peaks near 420 Hz.

4.4.1. Case 3 Iterative Frequency Results
The iterative techniques slightly increased removal of the 300 Hz and 420 Hz tones, as 
shown in Figure 33. The iteration had no effect on the 60 Hz or 180 Hz results. The 
RMS optimized iteration was able to remove the most content from the PSD.
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Figure 33. Case 3 comparison of iterative methods.

The selected frequencies from both optimization metrics are compared with the 
original FFT frequency in Table 8.

Table 8. Case 3 iterative frequency results.

Tone # FFT Frequency 
(baseline)

Max Sine 
Amplitude

Min RMS

1 59.9972 59.9982 59.9982
2 179.9917 179.9927 179.9913
3 299.9869 299.9892 299.9865
4 419.9902 419.9859 419.9939

COV Before COV Sine COV RMS
1 0.3998 0.5043 0.5043
2 0.0299 0.7157 0.6091
3 0.1902 0.5372 0.4973
4 0.1156 0.5229 0.5792

These results show that the original FFT frequency was already accurate, as the 
iterative results provide only a marginal decrease in the PSD peaks.
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5. FUTURE WORK
An area of interest for future examination is multi-phase sinusoids. This form of signal 
may explain the removal results for the 180 Hz tone in Test Case 3 as described in 4.4. 
Multi-phase signals are composed of two or more tones of the same frequency but 
different phase shifts relative to one another. A common electrical application of this 
is three-phase power, which is comprised of three sine tones 120° apart from one 
another in phase. An example of a three-phase power signal is shown in Figure 34.
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Figure 34. Three-phase power signal with sine tones 120° apart in phase.

Because of the common use of three-phase power in electrical systems, it is possible 
that this could be a source of line noise in the Case 3 signals. When plotted in a PSD, 
the three-phase power contains a peak at the frequency of the tones. As shown in 
Figure 35, this matches the appearance of the 180 Hz peak in the Case 3 data.
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Figure 35. Comparison of three-phase power PSD (lower curve) and Test 
Case 3 (upper curve). 

When the matrix inversion removal method is applied to this three-phase signal, it 
cannot remove the entire peak because of the signal’s multi-tone nature. These results 
are shown in Figure 36. Note the similar to the Test Case 3 results.
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Figure 36. Sine removal applied to Test Case 3 and three-phase signal at 180 
Hz.
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6. CONCLUSIONS
Both the matrix inversion and chirp-z transform sine removal methods are 
mathematically sound and can easily remove sine tones from random signals on 
theoretical data. Both methods are effective when the sine amplitudes are large; as the 
SRR decreases below 0.1, the matrix inversion method outperforms the chirp-z. As the 
SRR approaches 0.01, the matrix inversion method begins to remove more signal 
content than the sine tone itself, but is still relatively effective.

Similarly, the COV metric to measure the presence and removal of sine tones was 
effective for SRR above 0.1. At SRR < 0.05, the COV values became unpredictable 
and in some test cases the removal of the sine tone actually decreased the signal COV 
rather than increasing it as expected. This, in combination with the decreasing 
effectiveness of the removal methods at SRR < 0.1, suggests that these methods 
should only be applied when the SRR is at least 0.1.

Band pass filtering the signal prior to application of either method significantly 
improves results. Implementing two separate filters to attenuate different regions of 
the frequency spectrum (local and far frequencies) allows more signal content outside 
of the frequency range of interest to be removed prior to application of the matrix or 
CZT solvers.

The optimization metrics used to iteratively determine the tonal frequency are 
functional at high SRR, with the RMS metric providing the best frequency estimate. 
As the SRR approaches 0.01, the iterative technique also loses accuracy and 
usefulness. The FFT method of determining tonal frequency is still very accurate for 
SRR above 0.01.

For the Case 3 data, both removal techniques were moderately effective but the matrix 
inversion performed best. The resulting PSD showed that not all of the tonal content 
was removed at 180 Hz, 300 Hz, or 420 Hz. However, the COVs and PDF plots at 
each tone showed that a significant portion of the content was removed despite the 
PSD plot results. The failure to remove the complete tonal content at those frequencies 
may be a result of multi-phase tones in the signal which overlap at the same 
frequencies. Further effort is required to fully identify the cause and to solve this issue.
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APPENDIX

We performed an empirical study on the accuracy of Equation (15), reproduced below:

𝑓𝑒𝑠𝑡 =
𝑃𝑛 ‒ 1𝑓𝑛 ‒ 1 + 𝑃𝑛𝑓𝑛 + 𝑃𝑛 + 1𝑓𝑛 + 1

𝑃𝑛 ‒ 1 + 𝑃𝑛 + 𝑃𝑛 + 1

As described in Section 2.4.1, this equation estimates the primary frequency of a 
signal after being Fourier-transformed. The frequency at the peak amplitude of the 
transformed signal as well as the frequencies of the adjacent points are combined in a 
weighted average to form the estimated frequency of the signal. Figure 9 in the 
aforementioned section shows a visual representation of the point selection.

To verify the validity of this estimation method, we performed a study of the 
equation’s accuracy for small changes in frequency. We created a pure sine tone with 
unit amplitude. The FFT method has a resolution related to the length of the time 
history – we created a 100 second signal with a sample rate of 10,000 Hz for a signal 
1,000,000 samples long. This gives the FFT a resolution of 0.01 Hz. To verify that 
Equation (15) could accurately determine the sine frequency within this resolution, we 
generated a range of frequencies from ± 0.01 Hz of the base frequency. At an interval 
of 0.0001 Hz this results in 200 different frequencies. The percent error that resulted 
when the FFT method and Equation (15) were applied is shown in Figure 37 for the 
normalized frequency range.
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Figure 37. Error in frequency identification inside the FFT resolution range.
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These results show that while there is no error when the frequency aligns with the FFT 
resolution, the error inside the ± 0.01 Hz range is nonzero. However, with a maximum 
value of approximately 0.0022%, this is still negligible. 

We also performed an empirical study of the equation accuracy for a range of 
frequencies and amplitudes. We created SOR signals with an RMS value of 1 for the 
random component. For the sine component, we selected the amplitudes 0.01, 0.1, 0.5, 
1, and 2 which will help demonstrate the equation’s accuracy for low and high SRR. 
Because the RMS is 1, the SRR is equal to the sine amplitude. Frequencies of the sine 
component ranged from 15 to 1000 Hz with a step size of 5 Hz. This results in 198 
different frequencies, each with 5 amplitudes, for a total of 990 different SOR signals. 
For each SOR signal we applied a band pass filter at the true frequency of the sine 
tone, then applied an FFT and used Equation (15) to attempt to identify the frequency. 
This identified frequency was compared to the true frequency to determine the error. 
After this was done for every selected frequency in the range, this study was repeated 
for a different sine amplitude. The results of this study are shown in Figure 38 and 
Figure 39.
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Figure 38. Error of frequency identification for ranging sine amplitudes.

As Figure 37 shows, the only significant errors occur at low sine amplitudes. Because 
the frequency step size was 5 Hz starting at 15 Hz, every selected frequency should be 
resolvable by the FFT method; unlike before the error should be zero for a pure sine 
tone. In this case, the error comes from the addition of random noise. For the 
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amplitude of 0.01, the error is large at low frequencies, but dies off to within 2% by 
about 120 Hz. However, due to the accuracy required to remove a sine tone this is too 
large an error, so the best that can be achieved is a partial removal. The higher sine 
amplitudes have an error close to 0%. A magnified view is presented in Figure 39.
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Figure 39. Error of frequency identification at higher amplitudes.

For amplitudes greater than 0.1, the error is small, mostly below 0.01%, which is more 
than sufficient for almost complete sine tone removal. For sine amplitudes above 1 and 
frequencies above 150 Hz, the error is less than 0.001%. This validates the accuracy of 
the FFT method and Equation (15) within reasonable limits. For SRR near 0.01, the 
tonal content is so small that there is virtually no effect in removing it, so it is not 
significant that the error of the FFT method is large for SRR of 0.01.
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