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Abstract

Attribution of the origin of an illicit drug relies on identification of compounds 

indicative of its clandestine production and is a key component of many modern forensic 

investigations. The results of these studies can yield detailed information on method of 

manufacture, starting material source, and final product - all critical forensic evidence. In 

the present work, chemical attribution signatures (CAS) associated with the synthesis of 

the analgesic fentanyl, N-(1-phenylethylpiperidin-4-yl)-N-phenylpropanamide, were 

investigated. Six synthesis methods, all previously published fentanyl synthetic routes or 

hybrid versions thereof, were studied in an effort to identify and classify route-specific 

signatures. 160 distinct compounds and inorganic species were identified using gas and 

liquid chromatographies combined with mass spectrometric methods (GC-MS and LC-

MS/MS-TOF) in conjunction with inductively coupled plasma mass spectrometry (ICP-

MS). The complexity of the resultant data matrix urged the use of multivariate statistical 

analysis. Using partial least squares discriminant analysis (PLS-DA), 87 route-specific 

CAS were classified and a statistical model capable of predicting the method of fentanyl 

synthesis was validated and tested against CAS profiles from crude fentanyl products 

deposited and later extracted from two operationally relevant surfaces: stainless steel and 

vinyl tile. This work provides the most detailed fentanyl CAS investigation to date by 

using orthogonal mass spectral data to identify CAS of forensic significance for illicit 

drug detection, profiling, and attribution.
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Introduction

Critical to law enforcement and related intelligence efforts to combat illicit drug 

abuse are methods that can assess the presence and the persistence of both the drug and 

its associated compounds: its chemical attribution signatures (CAS). These signatures 

often include synthesis precursors and byproducts, metabolites in various biological 

matrices, and degradation products after exposure to laboratory and other operational

surfaces. Analytical tools for the characterization of such compounds generally include 

various forms of chromatographic separation combined with spectrometric detection 

schemes. Gas and high-pressure liquid chromatography (GC and HPLC, respectively)

combined with mass spectrometric (MS) detection have traditionally been the workhorses 

of such studies.1 Though they each have specific merits and drawbacks, both are geared 

exclusively towards organic speciation and are generally used independently of one 

another. Another mass spectrometric technique that has found considerable success in 

forensic applications, particularly when coupled to statistical chemometric analyses, is  

isotope ratio mass spectrometry using, for example, time-of-flight secondary ion mass 

spectrometry (TOF-SIMS), accelerator mass spectrometry (AMS), or elemental analyzers 

coupled to isotope ratio mass spectrometers.2-4

Fentanyl, or N-(1-phenylethylpiperidin-4-yl)-N-phenylpropanamide, is a synthetic

opioid originally designed for anesthesia and analgesia. With a potency roughly 100 

times that of morphine5, its strong euphoric effects have bred a significant potential for 

misuse. Since its designation as a Schedule II narcotic, multiple domestic clandestine 

fentanyl laboratories were seized by law enforcement. Between 2000 and 2010, there
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were more than 1,000 confirmed or suspected fentanyl-related overdoses and deaths in 

the United States.6

In almost all clandestine laboratory raids in the 2000s, manufacture of fentanyl 

was found to rely on N-phenethyl-4-piperidone (NPP) as the starting reagent.6 The use of 

NPP is driven by its commercial availability and the ease of its manufacture from 

smaller, readily available compounds. Various sophisticated chromatographic and 

spectrometric techniques7-11 have been previously exploited to obtain information on 

fentanyl signatures. In a particularly detailed study by Lurie et al. two fentanyl synthesis 

pathways were profiled using UHPLC-MS/MS.9 A substantial number of compounds was 

detected and identified in this work, but unique CAS were readily classified due in part to 

the small number of routes studied and the significant differences between them (one 

route did not use NPP as an intermediate). Forensic chemical attribution of synthetic 

schemes that rely on a common intermediate, however, are often difficult to discriminate 

amongst due to a small number of unique signatures, particularly when present at trace 

levels. The work of Lurie thus prompted us to investigate the degree to which highly 

similar synthetic routes can be unambiguously discriminated.

In the present work, six synthetic methods were selected to prepare fentanyl in a 

manner believed to most closely mimic conditions used by a clandestine manufacturer. 

All methods were found either in the open literature12,13, on illicit drug synthesis 

websites14, or were hybrids of such methods. Intermediate purification was limited to 

simple solvent extractions; and silica gel chromatography, crystallization, etc. were 

eliminated both to retain unique CAS and to simulate the often more novice skills of 

illicit drug manufacturers. Taking a cue from samples previously seized from clandestine 
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laboratories, all of the routes chosen here relied on NPP as the critical intermediate 

compound. 

Studies similar to that reported presently have sought to use a variety of analytical 

techniques for chemical signal attribution and forensics related to acutely toxic 

chemicals. In particular these studies have sought to link relevant signatures to synthetic 

origin, particularly in work by Fraga and coworkers.15,16 The current work, however, 

employs several orthogonal, but complementary techniques for the identification of

fentanyl CAS. Electron impact (EI) and chemical ionization (CI) GC-MS and HPLC 

combined with time-of-flight mass spectrometry (MS/MS-TOF) were used to profile the 

organic content in the crude fentanyl reaction mixtures. In addition, inorganic content 

was profiled by inductively coupled plasma mass spectrometry (ICP-MS), which has, to 

the best of our knowledge, never been employed in previous fentanyl CAS studies.

The three analytical techniques provided 160 unique synthesis-related signatures.

The complexity of the resultant data, however, demanded the use of statistical techniques 

to extract relevant CAS. Therefore, a multivariate statistical model is presented that 

highlights the main sources of variance among the six synthetic routes. These statistical 

results directly relate to route-specific CAS and provide a model that can also be 

extended to the prediction of synthesis method for samples extracted from common 

laboratory surfaces, namely stainless steel ducting and vinyl tile flooring. Forensic 

samples are typically collected from a wide variety of surfaces, so the applicability of 

such statistical models towards data from traditional sampling strategies is therefore 

highly important, particularly when linking a compound to a particular laboratory is 

critical. Ultimately, we demonstrate the power of statistical methods for CAS analysis 
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using multiple orthogonal analytical techniques, and we provide what we believe to be 

the most detailed investigation to date for organic and inorganic signatures of fentanyl 

manufacture.

Experimental

Synthetic Approach

The synthesis of fentanyl-like compounds dates back to the 1960s in work by 

Janssen.17 The procedure patented in 1965 involved techniques believed to be too 

complicated or expensive for clandestine laboratories (e.g. hydrogenations with precious 

metal catalysts). As discussed above it is likely that the illicit manufacture of fentanyl 

would rely on NPP, and so the six routes chosen presently use this intermediate. In-house 

synthesis of NPP was preferred, however, as use of commercially available NNP is 

unlikely due to its controlled status (Drug Enforcement Administration (DEA) Schedule I 

compound). 

The six chosen methods offer variations on the attachment of the different 

fentanyl functional groups on the piperidine ring. 1-phenethyl-N-phenylpiperidine-4-

amine (ANPP), the direct precursor to fentanyl, was formed either directly from NPP via 

reductive amination (Methods 1, 3, and 5) or by a two-step condensation-reduction 

process (Methods 2, 4, and 6). ANPP was transformed into fentanyl using propionyl 

chloride (an unscheduled compound) using either pyridine or N,N-diisopropylethylamine 

(DIPEA). With few modifications of the published routes, all synthetic methods 

successfully yielded fentanyl with a range of purities. Due to the nature of the routes, 

complete synthetic details are not given in the present work, though they may be found in 
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the literature cited. We have, however, provided some information and observations of 

the six routes studies in Section 1 of the Supporting Information. In all, three replicate 

syntheses were performed for each of the six methods yielding a total of 18 crude 

reaction samples.  Scheme 1 gives the overall synthetic strategy for this work.

Scheme 1. Fentanyl synthesis summary. Black compounds are those common to a 
majority of the synthetic routes. Specific compounds in Orange: One Pot12, Method 1;
Blue: Siegfried14, Methods 2, 4, 6; Green: Valdez13, Method 3, 5; Purple: N-methyl-4-
piperidinone route18,19, Method 6. Methods 4, 5, and 6 are hybrid routes exploiting certain 
parts of the Valdez and Siegfried syntheses. ACN = acetonitrile, AcOH = acetic acid, 
Et3N = triethylamine, MeOH = methanol.

Method 1 was a so-called “One Pot” method taken from the open literature12 and 

was slightly modified for the current research. Method 2 was taken from a drug 

enthusiast website and is generally referred to as the “Siegfried” method due to the 

webpage’s authorship.14 Method 3 was taken from the open literature and was reported to 
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be an efficient, high yielding synthesis route.13  It is referred to as the “Valdez” method. 

Method 4 uses the Valdez method of generating NPP and continues on to fentanyl using 

Siegfried’s synthesis (named “Valdez→Siegfried”) . Method 5 is the complement to 

Method 4, using Siegfried NPP to generate fentanyl via the Valdez route

(“Siegfried→Valdez”). Method 6 is the only route that uses N-methylpiperidone to 

generate NPP (“Alt NPP→Siegfried”).18,19 The reaction then uses the Siegfried synthesis 

to form fentanyl.

Materials

Unless otherwise stated, all reagents and solvents were obtained from commercial 

suppliers (Sigma-Aldrich (St. Louis, MO), Alfa Aesar (Ward Hill, MA), J.T. Baker 

(Avantor Performance Materials, Center Valley, PA), Fisher Chemical (Fairlawn, NJ))

and used as received.

Surface Sample Preparation

Coupons for the surface study were made out of either 0.01” thick 304 stainless 

steel or small pieces of 1/8” thick vinyl tile (Standard Excelon vinyl composition tiles, 

Pattern 51858, Imperial Texture, sandrift white, 1/8 inch thick, Armstrong Commercial 

Flooring, Lancaster, PA). The coupons were tared on an analytical balance, and a small 

droplet of each crude fentanyl mixture was deposited via a clean metal wire. The mass of 

the droplet was measured to within a tenth of a milligram. The spiked coupons were then 

allowed to sit for two hours.
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After exposure was complete, the spiked coupon was then placed in a clean 20 ml

glass vial and 10 ml of solvent was added. The solvents chosen were acetonitrile, 

dichloromethane, and 3 M nitric acid for LC-, GC-, and ICP-MS, respectively. The vials 

for GC and LC analysis were then shaken using a mechanical mixer for 15 minutes at 600 

rpm, while the samples for ICP-MS analysis were instead sonicated due to safety reasons 

(i.e. to prevent gas build up). The extracts were then transferred to clean glass vials. 

Vinyl tile extractions were filtered through 0.45 µm filter cartridges and directly 

analyzed. Stainless steel extracts showed no evidence of solid debris and were used as is.

Instrumentation

GC-MS

A quantitative weight of each crude fentanyl product was transferred to a 2 mL

glass vial and diluted in 1 mL dichloromethane. Dilutions were then performed in 

dichloromethane to yield a series of 20 μg/mL solutions. An Agilent Technologies (Santa 

Clara, CA) 7890A GC equipped with an Agilent HP-5MS column (5%-Phenyl-

methylpolysiloxane, 30 m x 0.25 mm x 0.25 μm) was used for the chromatographic 

separation. A carrier gas of helium (99.999%, Praxair, Inc., Danbury CT) was used, and 

the GC was operated in constant flow mode (2.0 mL/min). One microliter of the liquid 

sample was introduced via an autosampler (Agilent 7890 series) to the injection port held 

at 230°C, splitless injection. The oven temperature was held at 40°C for 3 minutes, then 

ramped at 10°C/min to 300°C and held for 5 minutes. Detection was performed with an 

Agilent 5975C MS detector and operated in EI (70 eV) and CI (positive, NH3) modes. 

For both ionization modes, the system was operated in scan mode (m/z 29-600, 2.57 
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scans/s) with the source and quadrupole mass analyzer held at 230°C and 150°C, 

respectively. A solvent delay of 3 minutes was used. The detector was auto-tuned using 

the standard tune capability of the ChemStation software, and the tune was confirmed 

before each set of experiments. Compounds were identified based on spectral comparison 

to the National Institute of Standards and Technology (NIST) Mass Spectral Library 

(NIST 08 MS Search 2.0, NIST, Gaithersburg, MD) as well as manual comparison to 

mass spectra published in the literature. Peak areas were calculated from extracted ion 

chromatograms of the base peak identified for each compound.

LC-MS/MS

A quantitative weight of each crude fentanyl product was transferred to a 4 mL

glass vial and diluted in 1 mL 50:50 acetonitrile:water. From each solution, dilutions 

were performed in 50:50 acetonitrile:water to yield a series of 20 μg/mL solutions. An 

Agilent 1260 LC equipped with an Atlantis T3 reverse phase column (C18, 150 mm x 2.1 

mm, 3 μm particle size, Waters, Milford, MA) was used. Time-of-flight mass 

spectrometric detection was performed in positive ion mode with a Bruker micrOTOF-Q 

III (Bruker Daltonics, Billerica, MA) equipped with an electrospray ionization (ESI) 

source and operated in Auto MS/MS mode (m/z 50-1000). Three precursor ions were 

monitored at a given time (m/z 50-450) with active exclusion after three spectra. MS was 

performed with a capillary voltage of 4500 V, a dry gas flow rate of 8 L/min at 200°C, 

quadrupolar ion and collision energies of 4.0 eV and 8.0 eV, respectively, and a spectral 

acquisition rate of 2 Hz.
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The mobile phase consisted of water with 0.1% formic acid (A) and acetonitrile 

with 0.1% formic acid (B). The gradient profile started with 95% A for 2 min, ramped to 

5% A at 18 minutes, held for 13.5 minutes, ramped quickly back to 95% over 0.5 min, 

and held for 10 min for column regeneration. This method was used for all samples 

except those in the vinyl tile surface study, for which the final 5% A was held for 18.5 

min to allow background contaminants to be completely removed from the column. Ten 

microliters of the liquid sample were introduced via an autosampler (Agilent B1329B) to 

the injection port. The detector was tuned and calibrated using the 20 μL injection loop of 

a 6-port valve on the MS using Agilent’s ESI-L Low Concentration Tuning Mix (G1969-

85000). Compounds relevant to each synthetic route were identified based on computer-

aided identification of MS/MS peaks using Bruker’s Compass for otofSeries 1.5 

software. Detailed analysis of each sample was done manually with peak areas calculated 

by manually integrating the extracted ion chromatogram of the base peak. After route-

specific compounds were identified for each route, a target table was created and 

searched against all 18 samples.

ICP-MS

Elemental analysis was performed using an Agilent Technologies (Santa Clara, 

CA) 8800 Triple Quadrupolar ICP-MS (ICP-QQQ). An initial semi-quantitative scan 

was performed to determine elements of interest within the sample sets. Down-selected 

analytes were then measured quantitatively with the following parameters: carrier gas 

(0.65 L/min), nebulizer pump (0.50 rps), spray chamber temperature (15°C), and dilution 

gas (0.40 L/min). Argon was used as plasma, carrier, and dilution gas. In the collision 
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cell, a helium flow was used as follows: 0.0 mL/min in No Gas tuning mode and 4.0 

mL/min in He mode. The measurements were performed as three replicates, with 50 

sweeps per replicate. Integration time per mass was held at 0.10 sec. The rinse time was 

set to 30 sec at 0.3 rps of the nebulizer pump, followed by 10 sec at 0.3 rps. Sample 

introduction was performed using an ASX-500 autosampler (Cetac, Omaha, NE).

Chemometric Data Analysis

Data analysis was performed using Solo (V8.0, Eigenvector Research Inc., 

Wenatchee, WA). Partial Least Squares Discriminant Analysis (PLS-DA), a supervised 

technique that facilitates classification of unknown samples against a known calibration 

data set was then performed on the entire data set. All processed data sets (LC, GC, and 

ICP-MS) were mean-centered by sample and range scaled by compound for each 

analytical method separately (technique by technique). Range scaling was performed by 

normalizing the data for each compound by the difference between its maximum and 

minimum mean-centered responses. This process ensures that 1) all compounds are given 

equal weight and 2) responses from each analytical technique are given equal importance. 

This preprocessing procedure has been employed previously for such fused datasets to 

remove response factors and to express response as “concentrations” independent of 

analytical technique and experimental conditions.20

Results and Discussion

PLS-DA Discrimination of Fentanyl CAS from Crude Reaction Mixtures
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From the analytical data, 126 unique compounds were identified by LC-MS/MS, 

and GC-MS identified 29 compounds. Sample LC- and GC-MS chromatograms from 

each route are given in Section 2 of the Supporting Information to demonstrate 

chromatographic ability of the methods chosen. Unabridged lists of LC- and GC-MS 

compounds are given in Section 4  of the Supporting Information. LC and GC

compounds were given a numerical or alphabetical designation, respectively, in order of 

retention time. LC- and GC-MS detected the same compound if it is labeled by both a 

number and a letter. Doubly charged compounds detected by LC-MS are designated with 

a “D” followed by its retention time. Initial semi-quantitative ICP-MS runs were 

performed and five elements were subsequently quantified for statistical analysis based 

on relevance to the synthetic methods and signal over background:  23Na, 39K, 127I, 133Cs, 

and 137Ba. In total, 160 species were identified from analytical data.

Statistical techniques are available that can make analysis of large, complex data 

sets objective and procedurally much simpler. These methods seek to describe the 

observed experimental data with a reduced set of new “latent” variables whose goal is a 

more efficient description of the underlying sources of sample variance. For this study 

partial least-squares discriminant analysis (PLS-DA) was chosen as the multivariate 

statistical methodology.  In PLS-DA a compromise is struck between describing the set 

of explanatory variables and predicting the response variables. General descriptive 

discriminant analysis (DA) techniques allow one to identify variables that best 

discriminate among various classes. Predictive DA techniques, however, extend the

concept of class assignment to classification of “unknown” data.21 The current work 

exploits such a statistical model to ultimately predict synthesis routes of “unknown” 
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samples taken from operational surfaces. First, we address the use of PLS-DA to identify 

important compounds that are highly route-specific and to highlight routes that produce 

similar CAS profiles. 

The selectivity ratio (SR) is a ratio of explained to residual variance of a given 

variable (i.e. chromatogram peak area) and is useful in the objective identification of

important CAS.22 High SR values indicate the spectral variable (i.e. compound)

contributes much towards discrimination of samples (i.e. reaction mixtures or routes). 

Selecting an appropriate SR threshold results in a reduced data set containing the most 

important compounds, i.e., a purely statistically determined list of CAS.

Choosing a SR threshold for CAS determination reflects a balance between 

identifying real markers and excluding those that do not bear significance on describing 

sample variance. Though various strategies such as the F-test or so-called nonparametric 

DIVA plots23 exist to more objectively determine SR thresholds, our initial goal was 

simply to generate a minimum of 2 signatures for each route, and a global value SRmin = 1 

was shown to be sufficient. Table 1 gives compounds that were identified as CAS for 

which their SR values were greater than unity. Table S-1 of Section 3 of the Supporting 

Information connects the identified compounds to their retention times, formulae, and 

tentative names when possible.

Table 1. Route specific CAS identified through PLS-DA using a selectivity ratio, SRmin = 
1. Letters and numbers refer to GC- and LC-MS detected compounds, respectively. 
Compounds represented as both a letter and a number were detected by both techniques. 
CAS with a “D” followed by a number are doubly charged compounds detected by LC-
MS. See the Tables S-1 through S-3 in the Supporting Information for more details, 
particularly assignments based on LC-MS/MS data.



15

Method (Class) LC-MS GC-MS ICP-MS

1, One Pot 2, 3, 4, 6, 7-S, 8, 9, 15-S, 
20, 23, 24-I, 26-AB, 31, 
32-AA, 33-AC, 36, 48, 
52, 54, 59, 64, 81, 87, 89, 
95, 98, 99, 102, 103, 104, 
105, D2.7, D2.8, D2.8-2

A, G, 24-I, 
7-S, U, V, Z, 
32-AA, 26-
AB

--

2, Siegfried 19, 27, 28, 43, 50, 53, 58, 
77, 82, 91, 94, 97, D13.7, 
D13.8, D14.1, D14.4, 
D14.8, D14.8-3, D15, 
D15.4, D15.7, D17.3,
D18

-- --

3, Valdez 73 67-E --
4, Valdez→Siegfried 11, 35, 60, 70, 84, 100 B, H, Y --
5, Siegfried→Valdez 39-K, 71, D15.3, D15.3-2 J, 39-K --
6, Alt NPP→Siegfried 45, 51, 83, 107 -- --

The vast majority of the 87 PLS-DA derived CAS (SRmin = 1) belongs to Methods 

1 and 2. Many of the SR values for these compounds are high, indicating large 

discriminatory ability. Considering the top 25% CAS in terms of SR value, almost all 

belong to Method 1. Only four of these variables were classified to other routes, namely

Methods 2 and 6. The large SR values of these variables imply the model should 

discriminate among these three synthesis methods. Conversely, the CAS identified for 

Methods 3, 4, and 5 are low in number and/or have low SR values. These facts indicate 

the chosen threshold may be too high to confidently classify samples from these methods.

A Chemical Perspective of Fentanyl CAS 

Though extremely powerful, statistical methods of data analysis are often of a 

“black box” nature and require a contextualization from a chemical perspective if a true 

understanding of the underlying data is desired. To that end we now turn to a brief 

discussion of some of the statistically determined CAS given in Table 1 and their 
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relevance to specific synthetic routes. We emphasize here that if structures/chemical 

names are given, they have been tentatively assigned through MS/MS data in the case of 

LC data or through GC library comparisons. They have not, however, been verified by 

authentic reference standards. The synthetic endeavor that would require is outside of the 

scope of the current work, especially considering the statistical focus. Work is on-going 

to unambiguously assign structures to compounds considered highly important to 

statistical discrimination. For compounds that were part of the synthesis (reaction 

components, isolatable intermediates, etc.) their identity was easily confirmed through 

comparing MS/MS spectra and retention times.

Fentanyl synthesized via Method 1 contained many early eluting compounds in 

the LC-MS analyses. Many of these were alcohols that did not apparently undergo further 

reaction. Under the LC analytical conditions used, most of these compounds are not well 

retained on the column, and therefore elute at or near the system dead volume. This

observation was shown to result from the mismatch in initial mobile phase and sample 

solvent compositions. This poor separation was deemed acceptable, however, as the high 

organic component of the solvent system is required to preserve sample stability and to 

ensure complete sample dissolution. 

Due to the high resolution and exact mass capabilities of the LC-MS/MS-TOF, all 

compounds could be deconvolved from the data. One alcohol in particular, 1-

phenethylpiperidin-4-ol, was detectable in relatively large amounts by both LC- (89% 

relative to fentanyl) and GC-MS (~200-300% relative to fentanyl). Method 1 also 

produced a large amount of acetylfentanyl (roughly 3.6x that of the desired fentanyl 

product by LC-MS). In fact, greater than 25% of the total LC-MS base peak 
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chromatogram area was due to this byproduct. This finding agrees reasonably well with 

the GC data, which showed roughly a 4.5-fold increase over fentanyl. Also present in 

large quantities were unreacted ANPP and aniline – two compounds found in extremely 

low amounts, if at all, in the other routes.

Additional unique attribution signatures of the one pot method are large amounts 

of other acetate- or acetamide-based compounds. For example, 1-phenethylpiperidin-4-yl 

acetate, N-phenylacetamide and N-phenethyl-N-phenylacetamide were deemed CAS by 

PLS-DA. Also unique to this reaction method was a series of bipiperidine compounds 

presumably formed through reductive amination of the phenethylpiperidinone and 

unreacted piperidine hydrochloride. Again, it is important to keep in mind, as with most 

assignments, these tentative identities are based merely on MS/MS data, GC-MS library 

matches, and most probable chemical reaction pathways. They have not been confirmed 

by authentic reference standards or in-house syntheses. 

Method 2 only had two unique CAS based on LC-MS/MS and GC-MS data: N-

phenethyl-N-phenylpropionamide and N-phenethyl-N-propionylpropionamide, both 

derivatives of 2-bromoethylbenzene. Also, the Siegfried method is the only one to use a 

potassium-containing base (K2CO3) in the formation of NPP. Only one potassium adduct, 

C10H23KN3, was deemed a CAS, though a structure was not proposed. ICP-MS data was 

expected to reflect potassium use, as well, but no statistical importance was observed 

from the PLS-DA analysis. Lastly, fentanyl synthesized via Method 2 yielded a 

significant number of LC CAS that are doubly charged. Due to inconclusive MS/MS 

fragmentation patterns we were not able to posit structures. Their presence, however, was

found to be indicative of the Siegfried method.
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Only two compounds were classified as unique CAS for the Valdez synthesis 

method, and only one structure was determined. A library match of GC-MS data 

identified this compound as N,N-diisopropylpropionamide. This compound most likely 

forms as a result of reaction between propionyl chloride and DIPEA impurities. 

Exclusive to the Siegfried route is a biphasic reaction mixture where water-soluble 

compounds are removed into an aqueous phase via polyethylene glycol. The Valdez 

method lacks such a phase transfer catalyst, so one may expect additional signatures to 

appear, particularly charged quaternary amines. In fact, two such CAS were revealed by 

LC-MS, namely 1,1-diphenethyl-4-(N-phenylpropionamido)piperidin-1-ium and 1-

phenethylpyridin-1-ium. These compounds were classified as CAS for Method 4, 

Valdez→Siegfried. 

PLS-DA identified two propionamides as specific to Method 5. Based on MS/MS 

fragmentation patterns, these compounds were tentatively identified as N-

phenylpropionamide and N-ethyl-N-phenylpropionamide. A GC mass spectral library 

match confirmed the assignment of N-phenylpropionamide, but the assignment of the 

latter compound was not confirmed. Finally, several CAS were associated with Method 6 

but none was assigned a specific structure. This method’s alternative route to making 

NPP should result in a variety of byproducts, but few expected compounds were detected

by any means. Iodine was expected to be a relevant CAS for this route as well, 

considering its exclusive presence in this route. The PLS-DA analysis, however, did not 

consider it important. This may result from iodine being dominated by compounds with 

higher selectivity ratios. In all, quantitative ICP-MS data affected data analysis very little. 

139I seemed to have some influence on discrimination of Method 6, but its SR value was 



19

relatively low (SR = 0.47). Overall, it was observed that ICP-MS data was not useful in 

the current study. That fact does not discount it as useful for other synthetic methods or 

forensic studies, however. 

PLS-DA Model Validation and Application to Surface Samples

From the complete data set of 160 variables, five components were chosen for the 

PLS-DA calibration model, covering an explained variance of 95.0% of the analytical 

data. The calibration data from the 18 samples derived from crude reaction mixtures are

displayed as a scores plot of the two dominant components given in Figure 1. The graph 

reveals Method 1 can be separated well with the first component. The second component, 

in turn, can separate Method 2 well; but there exists poor separation between Methods 3 

and 5 and Methods 4 and 6. Plotting these data in conjunction with the third component’s 

scores (Figure 2), though, allows for reasonable separation for all but Methods 3 and 5. 

Figure 1. Scores plot for the first and second components for the crude fentanyl mixture 
calibration data.
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Figure 2. Three-dimensional scores plot for components 1, 2, and 4 showing good 
separation of all classes except for data from synthesis Methods 3 and 5. Color-coding 
was done according to class membership. The X-Y projection is equivalent to those data 
plotted in Figure 2.

The observed statistical results can be easily rationalized in terms of the reaction 

chemistries. Method 1 generated quite a number of CAS with large SR values and was 

therefore easily separated by the first component. The same discriminatory ability was 

observed for Method 2 by a second component. Methods 4 and 6, which share the 

Siegfried method of ANPP→fentanyl synthesis, could not be distinguished by two 

components alone, and a third component was required for acceptable discrimination. 

Particularly problematic was the separation by scores values of Methods 3 and 5, routes 

that both share the Valdez method of ANPP→fentanyl synthesis. Since these methods 

share various precursors and byproducts in relatively low amounts, common signatures 

result in few CAS, which is reflected in similar component scores. Note the close 

clustering of replicates for a given route. This is due to the consistency in reaction 
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profiles between replicates for both the GC- and LC-MS data sets. Section 5 of the 

Supporting Information gives sample raw peak areas for the One Pot route to demonstrate 

the excellent reproducibility between syntheses.

Though scores plots are convenient ways to conceptualize the statistical results, 

PLS-DA also provides a quantitative analysis of the data and can classify unknown 

samples based on their similarity to calibration data sets. PLS-DA model generation 

begins with cross-validation, which provides objective quantitation of the model’s ability 

to generalize to independent data sets (i.e. those resulting from the follow-up surface 

study).

The current model was shown to perform very well in the discrimination of 

samples into their corresponding classes during cross-validation. In other words, the 

likelihood that a given validation set corresponds to its known specific synthesis route is 

extremely high. In fact, for almost all cases there was no significant probability of 

misclassification. Only a single sample from Method 3 had any significant non-zero 

probability of belonging to another method (Sample M3-3 as Method 5, p = 0.094). This

observation is understandable, though, as Method 5 (Siegfried NPP/Valdez 

ANPP→fentanyl) is a hybrid method of Methods 2 and 3 (Siegfried and Valdez, 

respectively) and therefore shares a variety of common signatures with those routes. 

Nevertheless, correct classification for all 18 samples was observed since the probability 

of correct classification outweighs any underlying similarities to other methods. A heat 

map of classification data is shown in Figure S-3 in Section 6 of the Supporting

Information.
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It is important to recognize that the ability to discriminate amongst different 

syntheses is in part reflective of the different nature of the routes themselves. Minor 

changes in synthesis, whether in the form of material source, reaction conditions, or 

synthetic chemist (novice or professional), may have a significant impact on the end 

discriminatory ability. Unfortunately, the matrix of such conditions that can be tweaked 

and/or investigated is infinite and can therefore not be fully addressed, particularly with 

regards to the scope of the current work. We reemphasize the fact that the routes chosen 

were intended to reflect clandestine synthesis routes, but that sample-to-sample 

variability (though shown to be small) was inherently incorporated via completely 

independent syntheses from start to finish. It is part of on-going work to assess the 

influence of the abovementioned factors towards ultimate route discrimination. For not, 

we feel it is sufficient to use the current reaction matrix to demonstrate the proof-of-

concept nature of the statistical CAS methodology.

With a validated PLS-DA calibration model, we can now attempt classification of 

samples that have been exposed to stainless steel and vinyl tile. These materials aim to 

mimic protocols commonly found in forensic investigations, namely surface-based 

sampling from laboratories, warehouses, containers, etc. It is important to demonstrate 

that any additional signals associated with surface swipes or extractions especially for 

porous and/or organic matrices do not interfere with those from compounds of interest. 

Determination of the presence of these signatures on such surfaces is critical for linking a 

batch of seized fentanyl to its synthesis location, even if elucidating the synthetic 

pathway from surface data is not required or possible.
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Figure 3 shows scores results of the PLS-DA analysis for the “unknown” stainless 

steel surface data and compares those to results from the calibration set. It is evident that 

despite having been exposed to the metal surface, the relevant signatures are persistent 

enough that correct classification is likely possible. In other words, surface sample and 

calibration scores values cluster qualitatively well. As additional evidence of CAS 

persistence over a given period of exposure, Section 7 of the Supporting Information 

gives LC-MS chromatographic traces of the time dependence of the CAS profile over a 

24 hour period. CAS intensity invariance over this period suggests that this model should 

be useful even if sampling is delayed.

Figure 3. PLS-DA scores from stainless steel data color-coded by the predicted “most 
probable” class. Spheres are the surface data sets, whereas pyramids represent data from 
the calibration sets taken from Figure 2. Vinyl tile data given in Figure S-6 of the 
Supporting Information.



24

Figure 4a presents quantitative results from predicted class membership through a 

heat map for the stainless steel samples. Ideally there would only be on-diagonal intensity 

indicating complete confidence in correct class assignment. Indeed, for samples within a 

class (i.e. synthesis route), classification probability is essentially unity. The model does, 

however, predict that several samples bare similarities to others outside of its class (i.e. 

synthesis route). This fact is reflected by off-diagonal intensity. That these methods are 

all interrelated (i.e. permutations of the Valdez and Siegfried routes) may account for the 

multiple classifications. However, because the probability of making the correct 

assignment is generally higher than that of an incorrect classification, the PLS-DA 

analysis assigns the “most-probable” class correctly for every sample except for one.

Only one Method 3 sample, M3-SS2, was classified as belonging to Method 5 but the 

probability was relatively low (p = 0.680). Despite surface matrix effects, incubation time

and conditions, potential volatilization of compounds, etc., the statistical analysis still is 

able to assign the large majority of the stainless steel surface samples to their 

corresponding known synthetic origins.
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Figure 4. PLS-DA probabilities of class membership for Method 1 (M1, bottom) to 
Method 6 (M6, top) for stainless steel (a) and vinyl tile (b) samples. On-diagonal 
intensity reflects probability of correct classification. Off-diagonal intensities indicate 
that there is non-zero likelihood of that sample to be misclassified.

PLS-DA demonstrated that the CAS profile necessary for accurate classification 

persisted relatively well on stainless steel, a relatively inert surface. In contrast, we also 

investigated the ability of vinyl tile, a complex polymeric matrix, to retain the signatures 

needed for the statistical analysis.  Like the stainless steel data, striking visual similarities 

between the test and calibration data sets can be seen in the scores plot given in Figure S-

3 in Section 8 of the Supporting Information. The remarkable similarity between 

calibration and test scores may be surprising considering the large number of new 
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compounds introduced through exposure to the organic surface. New signatures were 

automatically ignored, however, since the variable set was pre-determined by the 

calibration data. Ultimately, signatures relevant to fentanyl synthesis appear persistent 

against even complex matrices like vinyl tile. 

Examination of the class prediction plot given in Figure 4b shows that, again, the 

model has a tendency to confuse samples from Methods 3 and 5. Probabilities of 

misclassification of samples from Method 3 as Method 5 exceed 0.85 for all three 

samples. Again, the similar, trace CAS profiles of these routes explain the tendency for 

misclassification. Correct classification generally dominates any chance of the model’s 

incorrectly assigning samples, however. Again, there was only a single erroneous PLS-

DA assignment – Method 3 sample M3-VT1 was classified as a Method 5 sample.

PLS-DA of Individual Data Sets

As a final, though important, consideration, we investigated the degree to which 

individual techniques were able to discern differences amongst the six synthesis methods. 

PLS-DA analyses were performed GC, LC, and GC+LC data sets. The motivation behind 

this was to show the level of classification that could be performed in a laboratory with 

limited equipment and to highlight the benefits of using multiple sources of mass spectral 

data.

For the GC data alone, nine components were necessary to surpass the 90% 

cumulative variance threshold. This may indicate that differences among samples may 

not be sufficient to provide a robust predictive model. Analysis of LC data, however, 

needed only five components to exceed the variance threshold. The same is true for the 
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combined LC and GC data. Figure S-7 in Supporting Information shows scores plots 

from these PLS-DA analyses. Scores plots show that for the GC data, relatively poor

separation was achieved by the first three, dominant components. LC data, however, was 

able to separate well many of the samples into their respective methods, though, again, 

Methods 3 and 5 and Methods 4 and 6 were difficult to resolve.

The overall ability of the data to statistically resolve the methods was gauged by 

the number of both incorrect and/or multiple (i.e. ambiguous) class assignments made by 

the model. The results from considering GC and LC scores data alone were mirrored 

during application of the predictive model, which often failed to unambiguously or 

correctly assign samples to the respective synthesis methods. In fact, of the 36 surface 

samples, six stainless steel and six vinyl tile samples were misclassified or multiply 

classified when using just GC data. LC data only provided a modest improvement - four 

stainless steel and six vinyl tiles samples were not classified properly. Combining the GC 

and LC data resulted in better discriminatory ability among the six routes. Three samples 

from each surface set were incorrectly assigned a route. The full, unabridged data set 

combing GC, LC, and ICP-MS results resulted in one stainless steel and three vinyl tile 

classification errors, which, again, includes both wrong and multiple assignments. These 

improvements in discriminatory ability highlight the power of using data from multiple 

orthogonal techniques for unambiguous classification of unknown samples.

Conclusions
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A statistical analysis of chemical attribution signatures associated with the 

synthesis of fentanyl was presented. The results demonstrated that the combination of 

orthogonal techniques provided better discriminatory ability than that from individual 

analyses alone. Though we recognize that many more aspects of this method need to be 

addressed to assess its ultimately utility (synthetic variability, reaction conditions, CAS 

surface persistence, matrix effects, environmental conditions, etc.) this work provides a 

solid proof-of-concept work that aims to identify fentanyl CAS and to subsequently link 

them synthetic source. Through the application of the PLS-DA model, classification of 

“unknown” surface-exposed samples was possible even for synthetic strategies that are 

relatively similar or even share common synthetic steps. Also important to stress is that 

many important CAS are present at trace levels, further highlighting the power of 

statistical techniques for forensic attribution studies. Furthermore, purely objectively 

determined CAS were discussed in terms of their potential to be rationalized in terms of 

the specifics of the synthesis procedures. The authors feel it is critical to contextualize the 

“black box” nature often associated with statistical techniques with chemical knowledge 

to truly gain a deeper understanding of the origins of chemical attribution signatures. 

Again, we are working towards complete CAS identification and, also, this method’s 

application towards other potential toxic materials. Ultimately, however, we believe this 

work further reinforces the beneficial synergy between multivariate statistical analysis 

and contextualizing results within a synthetic chemical framework while providing the 

most comprehensive attribution study of fentanyl to date.
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