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Cr,3NbS, is a unique example of a hexagonal chiral helimagnet with high crystalline anisotropy, and

has generated growing interest for a possible magnetic field control of the incommensurate spin spiral.
Here, we construct a comprehensive phase diagram based on detailed magnetization measurements

of a high quality single crystal of Cr;3NbS, over three magnetic field regions. An analysis of the critical
properties in the forced ferromagnetic region yields 3D Heisenberg exponents 3=0.3460 = 0.040,
v=1.344=10.002, and T.=130.78 K £ 0.044, which are consistent with the localized nature the of

Cr** moments and suggest short-range ferromagnetic interactions. We exploit the temperature

and magnetic field dependence of magnetic entropy change (ASy,) to accurately map the nonlinear
crossover to the chiral soliton lattice regime from the chiral helimagnetic phase. Our observations in the
low field region are consistent with the existence of chiral ordering in a temperature range above the
Curie temperature, T, < T < T*, where a first-order transition has been previously predicted. An analysis
of the universal behavior of AS,(T,H) experimentally demonstrates for the first time the first-order
nature of the onset of chiral ordering.

The chiral helimagnetic structures in noncentrosymmetric magnetic materials, which arise from the competition
between the antisymmetric Dzyaloshinskii-Moriya interaction and symmetric exchange', exhibit a range of
variations in the nature of their magnetic ordering, such as itinerant vs. localized moments, critical behavior, and
magnetocrystalline anisotropy. The cubic B20 helimagnets, MnSi*°, FeGe® 7, and Fe,_,Co,Si®? display itiner-
ant magnetism, with the latter two belonging to the 3D Heisenberg universality class and the former exhibiting
tricritical mean-field behavior. Cu,0SeO;, however, exhibits both localized ferromagnetism and belongs to the
3D Heisenberg class'’. The weak anisotropy in these cubic systems allows the long-wavelength helimagnetic
structure to be fixed along a single axis belonging to a set of equivalent crystallographic directions. In MnSi, the
degeneracy of the <111> directions is lifted by a magnetic field. In FeGe, the preferred axes have a dependence
on temperature. A common attribute of the phase diagrams of chiral helimagnets is a fluctuation-disordered
precursor region above the magnetic ordering temperature which displays increasing chiral fluctuations as T,
is approached'® . The calculated H-T phase diagram of the chiral helimagnet Cr,;;NbS, contains an analogous
region above the Curie temperature, T < T < T,'2. However, in this regime a stable chiral phase exists below a
critical field.

Cr,;sNbS, crystallizes in the noncentrosymmetric space group P6;22 with Cr atoms intercalated between pla-
nar 2H-type NbS, layers!>-1°. Its unique magnetic properties arise from the strong uniaxial anisotropy of its hex-
agonal crystal structure paired with the localized nature of the Cr** moments. As a result, the chiral helimagnetic
structure propagates along the c-axis'®!”. The large anisotropy does not allow the formation of the skyrmion
lattice phase that is observed in the B20 helimagnets'®. Instead, the application of a magnetic field perpendicular
to the helical axis continuously transforms the spin chain into a chiral soliton lattice (CSL)". In the CSL state, an
applied magnetic field induces commensuration that competes with the symmetry protected chiral ordering to
produce a modulated nonlinear magnetic state consisting of chains of ferromagnetic domains separated by 360°
domain walls, called solitons. The spatial period of the CSL can be tuned with applied field and the macroscopic
spin texture is robust against defects'®. The CSL period diverges at a critical field, which drives a metamagnetic
incommensurate to commensurate (IC-C) phase transition to a forced ferromagnetic (FFM) state.
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Several studies have investigated the metamagnetic crossover from the chiral helimagnetic (CHM) phase into
the CSL regime with experimental techniques such as bulk magnetization®, magnetoresistance?!, and recently,
AC susceptibility*. The phase boundaries in ref. 20 identified the magnetic field at which the magnetization
reaches saturation as the critical field for the IC-C phase transition and the peak in the differential susceptibility,
dM/dH, as the crossover from CHM to CSL. In ref. 22, analysis of the linear and nonlinear AC magnetic response,
M, vs. T, in an applied dc field was used to identify two regions of the CSL: the low-field CSL-1, which displays a
linear response to an AC magnetic field, and a higher-field highly nonlinear CSL-2, which shows a giant response
in the third harmonic, Mj,. It was also suggested that the CHM state may exist only as a singularity at zero applied
magnetic field. These features of the magnetic response were restricted to the phase boundaries between the high
temperature paramagnetic state and the ordered phases below T in fixed dc fields. Thus, no signature of the
dc-field-driven crossover from CSL-1 to CSL-2 could be directly observed.

The nature of the phase transition has been addressed both experimentally and theoretically via measure-
ments of the specific heat and mean-field analysis, respectively. Heat capacity measurements have shown a lambda
anomaly consistent with a second-order phase transition near Tc*’. However, using a mean-field approximation,
Laliena ef al. demonstrated that a first-order transition from the paramagnetic state to the CHM phase occurs at a
zero-field critical temperature T, above T2 First-order transitions have been known to occur in the B20 chiral
helimagnets and have been categorized as fluctuation-induced® 2%, The nature of the low field phase transition
in Cr;;3NbS, may be difficult to observe experimentally if it is weakly first-order, which could explain the lack of
sharp divergence in the previous heat capacity measurements.

To shed light on the aforementioned issues, the magnetic transitions, critical behavior, and phase diagram of
Cr,;3NbS, have been investigated by DC magnetization, critical exponents analysis, and magnetic entropy change
(ASyp). Our combined analytical method has proven useful in uncovering the complex nature of magnetic mul-
tiphases and interactions, leading to establishment of the new comprehensive phase diagram of exotic systems
such as the spin chain compound Ca;Co0,04% and the multiferroic LuFe,0,%. In case of the monoaxial CHM,
Cr,;3NbS,, we found that at magnetic fields above the critical field for the IC-C phase transition, a second-order
transition to an FFM state occurs at T This transition is investigated via calculation of the critical exponents and
is described by the 3D Heisenberg model. At moderate and low magnetic field, ASy; clearly defines the critical
fields of the onset of the chiral and ferromagnetic phases, including crossovers within the CSL regime. These
results confirm the existence of the linear CSL and the concurrent disappearance of the CHM phase for non-zero
applied fields in a temperature region above and below T.. At lower temperatures, however, we demonstrate via
magnetic entropy arguments that the chirality of the CHM state may remain completely preserved even at finite
fields. Finally, we demonstrate for the first time a failure of the universality of ASy(T,H) that is consistent with the
existence of first-order behavior at the phase transition in small magnetic fields.

Background

Critical Behavior. It is well known, according to Landau theory of second-order phase transitions? %, that
the order parameter is small in the vicinity of the critical temperature. Thus the free energy can be expanded as a
power function of the order parameter, M.

& =dy + a/2 M* + b/aM* + ... — HM (1)

The linear term may be coupled to a field, H, if the ordered state involves a breaking of symmetry. The equilibrium
condition is satisfied from minimizing the thermodynamic potential d®/dM =0, leading to the equation of state
that defines the behavior of the ordered state in the critical region. For a ferromagnetic system, the order parame-
ter is simply the magnetization, i.e. the polarization. Therefore, the magnetic equation of state is

H=aM + bM. ()

In more exotic magnetic systems, such as the chiral helimagnet, the order parameter may be described by a
slowly varying periodic spin density and may be multi-component, as in the B20 CHMs%. In Cr,;;NbS,, and other
CHMs, a metamagnetic transition drives the system from the chiral state to a field-polarized ferromagnetic state.
Thus, above a critical magnetic field, a thermally driven phase transition from the paramagnetic (PM) to FFM
state can be described by a magnetic equation of state with order parameter M.

In the critical region near a second-order phase transition, the divergence of the correlation length,
€ = &, |(T — Tp)[", leads to a series of universal scaling laws. In the case of magnetization

M (T) = M, (=), T < T, (3)
X NT) = (WM)E", T > T, (4)
M=DH", T=T, (5)

where My, h/M, and D are the critical amplitudes, respectively, of the spontaneous magnetization, the inverse
susceptibility and the field dependence of the magnetization of the critical isotherm®. e = T — T/ T is the
reduced temperature. The critical exponents also may be calculated experimentally from magnetization measure-
ments using the Arrott-Noakes equation of state®,

(H/M) = Ae + BM'. (6)
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Therefore, the correct exponents are those by which M (H, T) is rescaled into a series of parallel lines, with the
critical isotherm passing through the origin at T= T, (hence ¢ =0).

Magnetocaloric Effect. The magnetocaloric effect (MCE) has been demonstrated to be an effective method
to probe field- and temperature-dependent magnetic phase transitions® 233 and is evaluated via calculation of
the magnetic entropy change, ASy;. Isothermal magnetization versus applied magnetic field curves are measured
with small steps for a range of temperatures near T;. By exploiting the thermodynamic Maxwell relation relating
the change in magnetic entropy (S,;) with respect to field to the change in M versus temperature

[asM(T, H)] _ [aM(T, H)]
T H

OH oT (7)

AS) can be calculated by integrating between successive isotherms using the expression:

H
AsM=f f[—aM(T’ H)] dH
H; oT u

i

(8)

'The sign of ASy indicates the nature of the ordering of the magnetic state. In the conventional MCE, application
of a magnetic field causes a decrease in magnetic entropy due to field-induced ordering of spins which suppresses
thermal fluctuations, hence ASy; < 0. Conversely, application of a magnetic field may result in ASy; > 0. In the
case of antiferromagnetic materials, the application of an external field causes spins to be rotated against their pre-
ferred direction in antiparallel sublattices. In general, a positive value of AS, indicates a magnetic field-induced
disorder with respect to the magnetic ground state, i.e. zero-field magnetic configuration. The information related
to spin ordering obtained from MCE allows us to map out the phase evolution via conventional measurements as
well as resolve details that have not been previously observed.

Results and Discussion

Magnetic Properties. Figure 1(a) shows the magnetization versus temperature for various applied magnetic
fields in the easy plane, H | ¢, measured with a zero-field-cooled protocol (ZFC). As observed in previous studies,
a sharp kink occurs at the onset of chiral ordering (inset), which broadens and shifts toward lower temperatures
with an increase in applied magnetic field* !7-3*, Similar behavior exists in the cubic chiral helimagnets where
the inflection point marks the onset of a fluctuation-disordered precursor region that precedes chiral magnetic
ordering at the kink point''°. At low applied fields, H=50-225 Oe, the kink occurs at a constant temperature,
T=132K. At H=425Oe, the peak occurs at T=130.75K.

Magnetization versus magnetic field applied perpendicular to the ¢ axis is shown in Fig. 1(b). Three distinct
regions appear in M vs. H below T - the low field linear region, the sharp nonlinear increase in M in the CSL state
at intermediate H, and saturation at Hgpy(T), the critical field corresponding Lo the FEM phase!* 117220 A 110K,
the measured saturation field is 1 kOe. At higher temperatures, the field required for the onset of the FEM state
continuously drops to lower values, as indicated by the arrows in Fig. 1(b).

Figure 1(c) shows the (inverted) Arrott plot, H/M vs. M?, for T=110-140 K. The upward curvature clearly
indicates that the ferromagnetic interactions cannot be described as mean field, i.e. 3=0.5 and y=1 in the
Arrott-Noakes equation. A quadratic extrapolation® to zero field, performed for the field range H=1-30kOe,
gives To=130.75 K. Figure 1(d) shows negative slopes in the Arrott isotherms below the saturation field Hypy(T)
for temperatures near T.. Negative slope behavior exists for isotherms measured from T=110-132K and is likely
due the nature of the CSL. In this region, an applied magnetic field induces jumps®* in the soliton lattice period
(ferromagnetic domains) causing a rapid increase in M. As the magnetization in the CSL increases faster than
the field, a negative slope occurs in (FH/M)vs. M?. Thus, we stress that the negative slope behavior should not be
interpreted as satisfying the Banerjee criterion®, b <0 in equation (2), which is commonly used to identify a
first-order transition within Landau phenomenology. In terms of the field-driven transition, the change in period
of the CSL with applied field is a continuous process'. The CSL has also been noted to have irreversible behavior
in M vs. H that could be mistaken as a first-order phenomenon, namely hysteresis upon cycling the field up and
down?. However, this is likely due Lo different energy barriers for the exit and entry of solitons as the field is
cycled through saturation magnetization.

Critical Exponents Analysis. For fields exceeding Hypy (T) it can be seen that the slopes of the Arrott plots
are positive-only, consistent with a second-order phase transition. To confirm the nature of the paramagnetic to
FFM phase transition and to verify the correct value of T, critical exponents were calculated for H=1-30kOe.
The field range for the analysis is restricted to the FFM region of the phase diagram, which ensures the validity of
the magnetic equation of state.

An iterative procedure using the Kouvel-Fisher method* generates values for T, 3, and v, which are subse-
quently fitted to the Arrott-Noakes equation until the critical values converge. In this analysis, Eqs (3) and (4) are
re-written in the form:

M((T)[dM(T)/dT] " = (T — T))/3 )

X (Ddx, (AT = (T = )/ (10)
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Figure 1. Temperature and field dependence of dc magnetization for HLc. (a) M vs. T for H=25-1100 Oe.

The inset shows the kink point associated with the onset of chiral ordering. (b) Zoomed view of M vs. H from
H=0-2kOe. Arrows indicate the temperature dependence of the saturation field for the FTM state, Hppy(T). (c)
H/M vs. M? for H=0-30kOe. The line represents a quadratic fit to the isotherm at 130.75 K, which defines T¢.
(d) Zoomed view of Arrott plot from H=0-1kOe. Hppy(T) occurs at the minimum of the negative slope region.
The region shifts to successively smaller field ranges with increasing temperature.

Plots of M((T) [dMS(T)/dT]_1 vs. T'and Xo Y1) [d)(ofl(T)/dT]f1 vs. T result in straight lines with slopes of 1/3 and
1/ respectively, which intercept the temperature axis at T, (Fig. 2(a)). This procedure yields the critical expo-
nents §=0.3460 £ 0.040 y=1.3441+0.002 and T =130.78 K £ 0.044. These critical exponents are used to con-
struct the modified Arrott plot (Fig. 2(b)). The line represents a linear fit to the isotherm at 130.75K.

To test the validity of the calculated exponents, the critical isotherms are also rescaled according to the renor-
malized magnetic equations of state

m=f,(h) (11)

him = +a, + bim2 (12)

where m = |e[ " M(H, ¢),h = || °H are the renormalized magnetization and field*>*, respectively. If the
correct values for the critical exponents and T are used, the data should collapse onto universal curves above and
below T, signified by f.. in equation (11). As shown in Fig. 2(c) and (d), the data collapse well, indicating the
validity of the above analysis. This confirms the second-order picture of the PM-FEM phase transition, as well as
the correctness of the exponents. Our results agree with the specific heat results in ref. 20.

We note that the critical exponent values of Cr,,3NbS, (6=10.3460 +0.040, yv=1.344 4+ 0.002) match well
with those of the 3D Heisenberg model (5=0.365 £ 0.003, y=1.386 & 0.004). The 3D Heisenberg-like ferro-
magnetism appears to be appropriate for the localized nature of the Cr** moments (S=3/2), which have been
reported to have a moment that saturates at ~3 pp/Cr?. Although the model implies short-range interactions, the
low-field helimagnetic structure shows a robust spin coherence, which suggests a long-range order that is set by
the underlying crystalline chirality'® . Thus, saturating the system to the FFEM state decouples the competing
symmetric and DM interactions, and reveals the principal magnetic ordering to be that of short-range interac-
tions, a signature of the strong ferromagnetic exchange component of the system. In a report by Dyadkin et al.*,
3D Heisenberg exponents were calculated for a reduced-symmetry P6; polytype of Cr,,;NbS, with disorder of
Cr ions among three independent lattice positions, which showed no signatures of chiral magnetism and only
ferromagnetic ordering below T. =88 K for all field ranges. The lack of helical ordering suggests a breakdown of
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Figure 2. (a) Kouvel-Fisher plots from the reformulated spontaneous magnetization and initial inverse
susceptibility data. Linear fits yield 3, v, Tc*, and T¢.~. (b) Modified Arrott plot with the obtained critical
exponents, which fall into the 3D Heisenberg class. A linear fit passing through the origin confirms
T-=130.75K. (¢) Renormalized magnetization isotherms according to the equations of state from (11) and (d)
(12) which confirm universal behavior.

necessary noncentrosymmetry in the Cr sublattice despite the chiral nature of the NbS, layers®. Thus our critical
exponents, which describe a Heisenberg-like ferromagnetic subsystem, are consistent with the system that lacks
chiral ordering but preserves the symmetric exchange.

It has been theoretically shown'?, through a mean-field approximation, that a second-order phase line in
Cr,;;NDS, is terminated by a tricritical point below which a first-order transition appears in a region To < T < T*.
In the following section, the magnetic entropy change will be analyzed to define the boundaries in the chiral
phase as well as determine a value for T*. The magnetic entropy change results will also be used to test the univer-
sality in different regions of the phase diagram to identify a possible first-order transition.

Magnetic Entropy Change: Temperature and Field Dependent Phase Boundaries. The magnetic
entropy change surface plot (Fig. 3(a)) depicts the general behavior of the temperature and field dependence of
the phase boundaries. Regions of positive and negative AS are represented with warm and cool colors, respec-
tively. This graph has similar behavior to reported phase diagrams'* -2, namely the gradual decrease in critical
field, Hgpy (T), with increasing temperature. It suggests that thermal fluctuations play an important role in the
stability of the CSL*. To resolve the details of the entropy surface plot, ASy vs. T and ASy vs. AH are analyzed
separately in Fig. 3(b and c), respectively.

Figure 3(b) shows the temperature dependence of ASy; for AH=100-1,000 Oe, spanning the chiral phase.
In the paramagnetic region, finite values of ASy; persist up to 140 K, well above T, which suggests that ferro-
magnetic correlations may be present even at higher temperature. The most prominent feature in ASy(7) is the
field-independent, global minimum at T ~ 132.5K, above the Curie temperature of 130.75 K determined in the
previous section. Given its relation to the derivative of the magnetization, OM/J'T, the behavior of the magnetic
entropy change at the global minimum indicates an order-disorder transition** at T* ~ 132.5K £0.13K. In the
cubic chiral helimagnets, an inflection point in M vs. T marks the onset of a precursor region of increasing
chiral correlations which precedes the transition to the chiral magnetic phase at T.. However according to the-
oretical results, Cr;,;NbS, exibits a stable chiral phase within this temperature gap region, AT, which indicates
a phase transition at T*. Evidence of this ordering in AT can be observed by the variation in the location of
ASyi max(T) between each field change. The inset shows a representative curve for AH =425 Oe, where the posi-
tive peak in AS,; occurs at T'=T¢. For AH < 425 Oe, ASy; .0, Occurs at successively higher temperatures between
Tc < T<T*. H (Tc) =425 Oe is thus defined as the critical field below which the CSL exists above T¢.

SCIENTIFICREPORTS |7:6545| DOI:10.1038/s41598-017-06728-5 5



www.nature.com/scientificreports/

115 120 125 130 135

T (K)
2.5 Chiral Magnetic Phase PM
< 0.0-
X 1 :
2 T, =13075K 3]
2251 .
7)) Iy
< -1{ AH=4250e jj
-5.0 $
115 120 125 130 135 140 Tc§ 3
115 120 125 130 135 140
T (K)
1.5
o 0.01
o
*
< -1.51
2
= -3.04
=
[72]
<
-4.5
60,0 50 1000 : e *y
' 0 250 500 750 1000 1250

AH (Oe)

Figure 3. Magnetic entropy change as a function of temperature and field. (a) H — T surface plot of ASy;. (b)
ASy;vs. T for AH=100-1,000 Oe, which shows the behavior of the chiral and PM phases. For clarity, ASy(T)
is shown in steps of AH =100 Oe. A temperature gap, AT, exists between T and the order-disorder transition
at T*. Inset: ASy vs. T for AH=H(T). (c) ASy vs. AH for temperatures below and above T*. Inset: ASy

at 115 K which shows the peak, H ,, above which AS,; monotonically decreases with H, defined as the IC-C
transition. The local minimum at H | defines the CHM—CSL crossover.

The metamagnetic crossover and IC-C phase transition boundaries are clearest by examining the field
dependence of ASy (Fig. 3(c)). For temperatures ranging from 110-129.5K, ASy, in the low AH regime linearly
decreases with applied field. This can be seen in the inset of Fig. 3(c), which shows AS,; vs. AH for 115K. Upon
reaching a local minimum, the entropy of the spin system begins to rise at a critical field Hc ;. ASy; reaches a
maximum at H¢, above which the entropy monotonically decreases with increasing field, characteristic of a
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ferromagnetic state. Figure 4(a) compares the critical fields derived from ASy vs. AH to points along M vs. H.
Hg, clearly corresponds to Hgpy;, the critical field for the IC-C phase transition to the FFM state.

Below H.,, the chiral phase is divided into two regions of opposite sign of ASy,. H., defines a crossover field
in the chiral phase. To interpret this crossover, it is necessary to consider the balance of energies that lead to the
stabilization of the CSL. It is underlined by Kishine and Ovchinnikov*! that the chiral helimagnetic ground state
is forced to break chiral symmetry and is thus protected by the underlying crystalline chirality. When a magnetic
field is applied perpendicular to the helical axis, the field-induced tendency towards commensuration competes
with the protected chirality, eventually causing the CHM-CSL crossover. The applied magnetic field clearly dis-
orders the chiral helimagnetic ground state and it is thus reasonable to define the crossover from CHM to CSL
from the critical field at which ASy; begins to increase, Hc ;. As the CSL period increases and the commensurate
domains grow with applied field, AS,; continues to increase until the IC-C phase transition at H ,. The bound-
aries defined by H., and H, are plotted in Fig. 4(c). For ~129.75 K < T < T*, entropy values are only positive
in the chiral phase, i.e. H¢| drops to 0 Oe and no pure CHM phase exists for non-zero field. This behavior agrees
well with the results in refs 12 and 22, which demonstrate the existence of a PM-CSL phase transition at non-zero
dc magnetic field.

The deviation of M vs. H curves from linearity have been noted as the possible boundary between the linear
CSL-1 and nonlinear CSL-2 states??. As discussed previously, the negative slope region of H/M vs. M? is attributed
to the rapid increase in the magnetization that occurs as the period of the CSL grows with increasing magnetic
field. Figure 4(b) shows an (inverted) Arrott isotherm at 117 K with the lower and upper magnetic field bounda-
ries of the negative slope region labelled by H,,., and Hy ., respectively. Hy,,, is found to correspond exactly with
Hg, (Fig. 4(c)). Hy.1, however, deviates from H |, with Hy ., < H¢, from 112 K until a crossover at ~125.5K. The
locations of Hy,,, and H, are compared to M vs. H, as shown in the inset of Fig. 4(b). For all temperatures meas-
ured, Hy,., was found to agree well with the deviation from linearity of the M vs. H curves. To confirm the loca-
tion, linear fits were done for a range of field points for which the R?>0.99990 and the chi-squared <5.00 x 107°.
Above 125.5K, H,; descends toward 0 Oe and falls below H,,, ;. This reveals a region which displays both increas-
ing magnetic entropy and linearity of M vs. H. Based on the present results and the results in ref. 22, we define this
region as the linear CSL regime.

The transition from the CHM to CSL regime is a nonlinear crossover within the same modulated phase?® and
is distinct from a true phase transition. Therefore, it may lack a clear anomaly in experimental measurements.
However, there are distinctly different behaviors below and above H | and H,,,, in the magnetic entropy change
and the Arrott plot, respectively. The field-dependent CHM-CSL and CSL-1-CSL-2 boundaries may have been
impossible to observe with temperature-dependent AC magnetic response in ref. 22. We define the CHM phase
as the region bounded from above by H. | and H,,,, in which AS,; is decreasing and M vs. H changes linearly. The
variation between Hc; and H,,,, below 125.5K may be a result of the nonlinear crossover process between the
CHM phase and the CSL regime.

The characteristic fields are plotted in Fig. 4(c) and show the phase line for the IC-C transition and the region
marking the nonlinear crossover from CHM to CSL. H, persists past T dropping to zero near T*. The IC-C
phase line in the temperature range T — T* is consistent with the theoretically reported phase diagram'? in which
the chiral phase is stable above T. This also agrees well with magnetoresistance results in ref. 21 in which a sharp
peak and broad shoulder correspond to two isothermal lines near T in the reported phase diagram.

'The CSL-FFM crossover field identified from conventional magnetization measurements as the peak in the
differential susceptibility (AM/dH), H,,c,, lies within the CSL regime defined by H; and H, (Fig. 4(c)). The nar-
row extent of the region between H,,, and H, resembles the highly nonlinear CSL region obtained in the theo-
retical phase diagram reported in ref. 12. The maximum values of entropy change (dark red region in Fig. 3(a)) are
observed in the highly nonlinear CSL regime between approximately 125K and 131.5K, where crossing of energy
levels leading to the increase in CSL period occurs rapidly, causing sharp increases in magnetization®.

We recall that below a critical magnetic field the IC-C phase line has been predicted'? to mark a first-order
transition from the PM state into the CSL state. Magnetic entropy change results can be used to determine
the order of the transition based on the existence or failure of the universal behavior of AS, expected for a
second-order phase transition, as presented in the following section.

Universal Behavior. The scaling of ASy(T) curves in the vicinity of a second-order phase transition has
been theoretically grounded?®*” and experimentally confirmed* %% in a variety of magnetic systems based on
the power law dependence of ASy; < H". Thus, equivalent points around the transition temperature of ASy(T)
curves measured up to different maximum applied fields (AH) should collapse onto the same point of the uni-
versal curve when properly rescaled. The universal curve for magnetic entropy change can be constructed by nor-
malizing ASy(T) curves by the maximum value of | ASy#**|, which occur at the transition temperature, Ty, *.
The temperature axis is rescaled with respect to a reference temperature such that ASy(T,)/ASy(Tpeu) = 0.5.
However, two reference temperatures, T,; > Tpeq and T < Tieq, are typically chosen, as will be discussed below.
The transition of interest is that occuring at T* ~ 132.5 K. The references were chosen such that ASy(T;,)/
AS(Theard = ASu(T12)/ ASy(Tear) =0.75. The rescaled temperature axis is defined as

[, -, TS
Tla-nHT, -, TS, (13)

such that 0= —1 for T="T,.

Figure 5(a) shows the rescaled curve constructed in the region To < T < T* for AH = 50-425 Oe. A second
universal curve is constructed for applied fields in the FFM region in Fig. 5(b). To remove contributions from the
low field phase that may have first-order behavior, ASy,(T) was recalculated by changing the limits of integration
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Figure 4. (a) Arrott plot and (inset) M vs. H at 115 K. The lower and upper field limits of the negative slope
region are defined as Hy,; and H,,,. Hy,,| occurs at fields where M vs. H deviates from linearity and is
compared to Hg . Hy,,, occurs at the forced ferromagnetic transition. (b) H-T phase diagram defined by the
characteristic fields.

in (1) to H;=1kOe Oe and H;=30kOe. The data near the PM-FFM transition scale well onto a universal curve
with a disperson of only ~5% for a reference § = —2%. The behavior in Fig. 5(b) agrees with the second-order
nature that was established previously via the renormalized equation of state depicted in Fig. 2(c and d).
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Figure 5. Rescaled ASy vs. T curves for (a) AH=250e-425Oe. The dispersion decreases with AH indicating
first-order behavior that is suppressed to second-order with increasing field. (b) Universal curves for ASy,
calculated only for fields above 1kOe. Collapse indicates second-order behavior.

The rescaled ASy(T) curves in Fig. 5(a) do not collapse onto a universal curve and show a much higher degree
of dispersion (~118%) below T}, The failure of collapse of ASy,(T) has been well-studied in a wide variety of
compounds®~°L. In certain systems the lack of scaling of the magnetic entropy change has been attributed an
additional magnetic phase which has increasing fluctuations near the magnetic ordering temperature at T, >°.
However, the use of 2 reference temperatures corrects the failure and collapse can still be achieved if the transition
is indeed second-order. However, if collapse continues to fail, extra entropy from a coexisting magnetic phase can
be ruled out and the dispersion signifies a first-order transition**°, The dispersion in ASy/AS,P**(0) typically
exceeds 100% in magnetic systems with a first-order transtion®. This effect has been demonstrated in a wide
variety of compounds and has even been successful in identifying the weakly first-order transition in DyCo,*.
In Cr,;;NDbS,, the IC-C second-order phase line is predicted!? to be terminated by a tricritical point at a critical
magnetic field below which a first-order transition occurs from PM-CSL. The large dispersion shown in Fig. 5(a)
gradually reduces with higher applied magnetic fields. This may be a signature of the suppression of the first-order
character to second-order. The suppression of first- to second-order with magnetic field has also been shown to
occur in the cubic chiral helimagnets. The present results within the ASy(T) scaling model are entirely consistent
with the first-order transition that has been theoretically predicted for Cr,;;NbS,2.

In the chiral helimagnets, first-order transitions have been identified as occuring through a
fluctuation-induced discontinuous transition**2*. Such transitions exist in systems that would otherwise be
second-order as defined by the symmetry conditions of Landau theory>2. Therefore as the system approaches the
phase transition, an excess of critical fluctuations causes the order parameter to evade the critical point*!. A mech-
anism proposed by Bak and Jensen for MnSi and FeGe is a first-order transition that may be driven by the
self-interaction of an order parameter with a large number of components - defined with respect to cubic symme-
tries?>. However, Janoschek et al. demonstrated experimentally that critical helimagnetic fluctuations are driven
first-order on the length scale of the DM interaction for MnSi, before the weak cubic anisotropies take effect® .
A recent study on Cu,0SeO; suggests that strong fluctuations arise on a length scale above the DM interaction'’.
Interestingly, 3D Heisenberg critical exponents were calculated for Cu,0SeOj;, while MnSi displays tricritical
mean-field behavior™'°. In these cubic systems, the hierarchy of energy scales go as] > DM > A_, or equiva-
lently length scales ¢, < €\ < €_ ** In Cr;;NbS,, however, the large single-ion anisotropy could lead to a
different hierarchy. Calculations in Yet. 53, give ], =1.4 x 10°K, J;=15K, and D=2.9K, which satisfies the
requirement D/J;=0.16 and demonstrates the strong FM interactions in the a-b plane, ], that give a relatively
high T.. Another study>* gives the ratio of the anisotropy energy to the exchange energy as A/J, =0.10. Using
these values, we estimate A = 14K thus suggesting the length scales¢ || < € de—ion < €y However, to deter-
mine the strength of the interactions that may cause the first-order transition, fthe Glnzburg scale &g, the length
scale at which fluctuations become strongly interacting, would need to be calculated. In Cu,08eO;, & is found to
be above ¢y, which implies that strong interactions of the fluctuations would occur at energies above the DM
interaction scale. This method could be applied in a future work for Cr,;;NbS,.

Phase Diagram. A comprehensive phase diagram is shown in Fig. 6(a) with phase lines and crosso-
ver boundaries determined from ASy; and H/M vs. M?. The shading separates regions of relative increase and
decrease in ASy;. The CSL, which corresponds to the region of increasing AS,; (shown in red), consists of three
apparent regimes, the linear region between He | and Hy,,, nonlinear region between Hy,,; and H,,,, and highly
nonlinear region between H,,, and H,. The hashed area between the FFM phase line and the dM/ dH peak indi-
cates where the highly nonlinear CSL may exist. Chiral ordering exists at applied fields below H, in the temper-
ature gap region, AT, between T =130.75K and T* =132.5 K. At magnetic fields greater than H-(T) =425 Oe,
indicated by a hashed area in AT, chiral fluctations are suppressed and PM-FM transition occurs at T¢.

Figure 6(b) shows the phase diagram in AT= T — T*. The light gray shaded region indicates the first-order
regime characterized by non-universal behavior of the rescaled magnetic entropy change. Hg, is 425 Oe at T,
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Figure 6. H-T phase diagram from ASy(T,H) and magnetization data. (a) AT is indicated by the shaded region
between T¢ and T*. The hashed area between Hc; and H,,, defines the highly nonlinear CSL. The nonlinear
CSL is bounded from above by H,,, and from below by H¢; and Hy,,,. Hc,; and Hy,,, (purple line) form a
pocket within the chiral phase of the linear CSL. H,,, (pink line) corresponds exactly to Hc,. (b) H-T phase
diagram in the AT region where first-order behavior exists. The phase line for onset of CSL is a steep boundary
at 132K, indicated by red stars, where a first-order transition may exist. Irreversibility in this region can be seen
by comparing M vs. T peaks measured with a ZFC protocol (black stars) and M vs. T peaks reformulated from
M vs. H:MY(T) (red stars).

and persists until 132K at a value of 175 Oe. At this temperature, the phase line separating CSL from PM drops
off sharply and ASy vs. T crosses zero for fields below 225 Oe. The sharpness of this drop off has been observed
previously and was noted to resemble the sharpness of the MnSi first-order phase line> 2. Evidence of irrevers-
ibility in AT can be seen from the 0.5 K offset (well within the resolution of our instrument) of the T(H) lines
determined from the kink points in M vs. T curves collected with a ZFC protocol (black stars) or reconstructed
from M vs. H data (red stars). The highly nonlinear CSL bounded by H, and H,,q is indicated by the dark hashed
region. Resolution of the measurements do not allow the exact determination of the possible tri-critical point,
however the convergence of Hc, and H,,, suggest that a crossover may occur in the vicinity of 131.5-131.75K.
In this region the postive peak in ASy(T) begins to deviate from H, determined from ASy(AH) (Figure S1 in
Supplementary Information). At temperatures above this boundary (small black squares), thermal fluctuations
compete with the magnetic field-induced commensuration that disorders the chiral ground state, and the meta-
magnetic crossover from linear CSL to highly nonlinear CSL eventually disappears.

In summary, a comprehensive phase diagram was constructed for the chiral helimagnet Cr,;;NbS, by ana-
lyzing three magnetic field regimes. Critical exponents analysis at high magnetic field shows that the localized
Cr*" moments fall into the 3D Heisenberg universality class with exponents 3=0.3460 4 0.040 y=1.344 £ 0.002,
and confirms the second-order phase transition from the FFM to PM state at T = 130.78 K+ 0.044. In the
field-polarized state, the ferromagnetic subsystem is decoupled from the DM interaction and reveals short-range
isotropic interactions. Below ~1kOe, the coherent long-range order of the CSL and CHM phase is set by the crys-
talline chirality. The magnetocaloric effect was used to calculate the magnetic entropy change, ASy(T), to map
out the boundaries separating the CHM, CSL, and FEM regions of the phase diagram. An order-disorder critical
temperature was defined at T* ~ 132.5K, where the chiral phase exists above the Curie temperature, which agrees
with the behavior shown theoretically in ref. 12. Using the condition to test universality of ASy/(T), we find that
failure of collapse of the rescaled ASy(T) for fields AH=250e-425 Oe indicates that a first-order transition
likely occurs in the region AT= T — T* and is suppressed to second-order at higher applied magnetic field.

Methods

Single crystals of Cr,,;NbS, were grown with a chemical vapor transport method using I, gas that has been
reported elsewhere?’. Magnetic measurements were performed using a Quantum Design Physical Property
Measurement System (PPMS) with a Vibrating Sample Magnetometer (VSM) option. A warming protocol was
adopted in which the sample was heated between each measurement to 200K - well above T - to minimize any
remanent effects and to account for possible irreversibility. Magnetic entropy change and critical exponents were
calculated from isothermal magnetization versus magnetic field data measured up to 30kOe and for temperature
range 110-140 K. Temperature and field steps for the range 125K < T;; < 133 K were measured in intervals of
0.25K and 25 Oe, respectively. Magnetization vs. temperature was measured from 50-140K for applied magnetic
fields ranging from 0-2000 Oe.

References
1. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241-255 (1958).
2. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91-98 (1960).
3. Volkova, L. M. & Marinin, D. V. Role of structural factors in formation of chiral magnetic soliton lattice in Cr,;; NbS,. J. Appl. Phys.
116, 133901 (2014).
4. Ishikawa, Y., Tajima, K., Bloch, D. & Roth, M. Helical spin structure in manganese silicide MnSi. Solid State Commun. 19, 525-528
(1976).

SCIENTIFICREPORTS |7:6545| DOI:10.1038/s41598-017-06728-5 10



www.nature.com/scientificreports/

12.
13.
14.

15.

17.
18.

19.
. Ghimire, N. J. et al. Magnetic phase transition in single crystals of the chiral helimagnet Cr,;;NbS,. Phys. Rev. B 87, 104403 (2013).
21.

22
23.

24.

25.

46.
47.
48.
49.
50.
51.

52.
. Shinozaki, M., Hoshino, S., Masaki, Y., Kishine, J. I. & Kato, Y. Finite-temperature properties of three-dimensional chiral

54.

. Zhang, L. et al. Critical behavior of the single-crystal helimagnet MnSi. Phys. Rev. B91, 024403 (2015).

. Wilhelm, H. et al. Scaling study and thermodynamic properties of the cubic helimagnet FeGe. Phys. Rev. B 94, 144424 (2016).

. Zhang, L. et al. Critical phenomenon of the near room temperature skyrmion material FeGe. Sci. Rep. 6, 22397 (2016).

. Chattopadhyay, M. K., Roy, S. B. & Chaudhary, S. Magnetic properties of Fe, ,Co,Si alloys. Phys. Rev. B 65, 132409 (2002).

. Jiang, W., Zhou, X. Z. & Williams, G. Scaling the anomalous Hall effect: A connection between transport and magnetism. Phys. Rev.

B 82, 144424 (2010).

. Zivkovi¢, I, White, J. S., Ronnow, H. M., Préa, K. & Berger, H. Critical scaling in the cubic helimagnet Cu,0SeO;. Phys. Rev. B 89,

060401 (2014).

. Wilhelm, H. et al. Precursor Phenomena at the Magnetic Ordering of the Cubic Helimagnet FeGe. Phys. Rev. Lett. 107, 127203

(2011).

Laliena, V., Campo, J. & Kousaka, Y. Understanding the H-T phase diagram of the monoaxial helimagnet. Phys. Rev. B 94, 094439
(2016).

Parkin, S. S. P. & Friend, R. H. 3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties.
Philos. Mag. 41, 65-93 (1980).

Kousaka, Y. et al. Chiral helimagnetism in T, ;NbS, (T = Cr and Mn). Nucl. Instruments Methods Phys. Res. Sect. A Accel.
Spectrometers, Detect. Assoc. Equip. 600, 250-253 (2009).

Van Laar, B,, Rietveld, H. M. & Jjdo, D. J. W. Magnetic and crystallographic structures of Me,NbS, and Me, TaS,. J. Solid State Chem.
3,154-160 (1971).

. Moriya, T. & Miyadai, T. Evidence for the helical spin structure due to antisymmetric exchange interaction in Cr,;;NbS,. Solid State

Commun. 42,209-212 (1982).

Miyadai, T. et al. Magnetic Properties of Cr,;NbS,. J. Phys. Soc. Japan 52, 1394-1401 (1983).

Wilson, M. N., Butenko, A. B., Bogdanov, A. N. & Monchesky, T. L. Chiral skyrmions in cubic helimagnet films: The role of uniaxial
anisotropy. Phys. Rev. B 89, 094411 (2014).

Togawa, Y. et al. Chiral magnetic soliton lattice on a chiral helimagnet. Phys. Rev. Lett. 108, 107202 (2012).

Togawa, Y. et al. Interlayer Magnetoresistance due to Chiral Soliton Lattice Formation in Hexagonal Chiral Magnet CrNb;,S,. Phys.
Rev. Lett. 111, 197204 (2013).

Tsuruta, K. et al. Phase diagram of the chiral magnet Cr,;NbS,. Phys. Rev. B 93, 104402 (2016).

Bak, P. & Jensen, M. H. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C Solid State Phys. 13,
L881-1885 (1980).

Janoschek, M. et al. Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets. Phys. Rev. B 87, 134407
(2013).

Lampen, P. et al. Macroscopic phase diagram and magnetocaloric study of metamagnetic transitions in the spin chain system
Ca;Co0,04. Phys. Rev. B 89, 144414 (2014).

. Phan, M. H. et al. Complex magnetic phases in LuFe,0,. Solid State Commun. 150, 341-345 (2010).

. Landau, L. D. On the theory of phase transitions. Zh. Eks. Teor. Fiz. 7, 19-32 (1937).

. Landau, L. D. On the theory of phase transitions. Ukr. J. Phys. 53, 25-35 (2008).

. Pramanik, A. K. & Banerjee, A. Critical behavior at paramagnetic to ferromagnetic phase transition in Pr, sSr,sMnOj: A bulk

magnetization study. Phys. Rev. B79, 214426 (2009).

. Arrott, A. & Noakes, J. E. Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett. 19, 786-789 (1967).
. Caballero-Flores, R. ef al. Magnetocaloric effect and critical behavior in Pr5Sr,sMnO;: an analysis of the validity of the Maxwell

relation and the nature of the phase transitions. J. Phys. Condens. Matter 26, 286001 (2014).

. Phan, M. H. et al. Phase coexistence and magnetocaloric effect in Lags ,Pr,CassMnO; (y=0.275). Phys. Rev. B 81, 094413 (2010).
. Biswas, A. et al. Universality in the entropy change for the inverse magnetocaloric effect. Phys. Rev. B 87, 134420 (2013).
. Stishov, S. M. et al. Experimental Study of the Magnetic Phase Transition in the MnSi Itinerant Helimagnet. J. Exp. Theor. Phys. 106,

888-896 (2008).

. Lampen, P. et al. Heisenberg-like ferromagnetism in 3d-4 f intermetallic La, ;5Pr,, ,5Co,P, with localized Co moments. Phys. Rev. B.

90, 174404 (2014).

. Tsuruta, K. et al. Discrete Change in Magnetization by Chiral Soliton Lattice Formation in the Chiral Magnet Cr,;;NbS,. J. Phys. Soc.

Japan 85,013707 (2016).

. Banerjee, B. K. On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16-17 (1964).

. Kouvel, J. S. & Fisher, M. E. Detailed Magnetic Behavior of Nickel Near its Curie Point. Phys. Rev. 136, A1626-A1632 (1964).

. Kaul, S. Critical behavior of amorphous ferromagnetic alloys. IEEE Trans. Magn. 20, 1290-1295 (1984).

. Kaul, S. N. Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater. 53, 5-53 (1985).

. Kishine, J. & Ovchinnikov, A. S. In Solid State Physics - Advances in Research and Applications 66, 1-130 (Elsevier Inc., 2015).

. Dyadkin, V. et al. Structural disorder versus chiral magnetism in Cr,;;NbS,. Phys. Rev. B 91, 184205 (2015).

. Ghimire, N. J. Complex magnetism in noncentrosymmetric magnets. (University of Tennessee, 2013).

. Franco, V., Conde, A., KuzMin, M. D. & Romero-Enrique, ]. M. The magnetocaloric effect in materials with a second order phase

transition: Are T and T, necessarily coincident? J. Appl. Phys. 105,07A917 (2009).

. Kishine, J., Bostrem, I. G., Ovchinnikov, A. S. & Sinitsyn, V. E. Topological magnetization jumps in a confined chiral soliton lattice.

Phys. Rev. B 89, 014419 (2014).

Franco, V., Conde, A., Romero-Enrique, J. M. & Blazquez, J. S. A universal curve for the magnetocaloric effect: an analysis based on
scaling relations. J. Phys. Condens. Matter 20, 285207 (2008).

Romero-Muiiiz, C., Tamura, R., Tanaka, S. & Franco, V. Applicability of scaling behavior and power laws in the analysis of the
magnetocaloric effect in second-order phase transition materials. Phys. Rev. B 94, 134401 (2016).

Franco, V., Conde, A., Pecharsky, V. K. & Gschneidner, K. A. Field dependence of the magnetocaloric effect in Gd and (Er,_,Dyy)
Al,: Does a universal curve exist? Europhys. Lett. 79, 47009 (2007).

Bonilla, C. M. et al. Universal behavior for magnetic entropy change in magnetocaloric materials: An analysis on the nature of phase
transitions. Phys. Rev. B 81, 224424 (2010).

Franco, V., Caballero-Flores, R., Conde, A., Dong, Q. Y. & Zhang, H. W. The influence of a minority magnetic phase on the field
dependence of the magnetocaloric effect. J. Magn. Magn. Mater. 321, 1115-1120 (2009).

Lampen, P. et al. Impact of reduced dimensionality on the magnetic and magnetocaloric response of La, ;Ca,;MnO,. Appl. Phys.
Lett. 102, 62414 (2013).

Binder, K. Theory of first-order phase transitions. Reports Prog. Phys. 50, 783-859 (1987).

helimagnets. J. Phys. Soc. Japan 85,74710 (2016).
Chapman, B. ]., Bornstein, A. C., Ghimire, N. J., Mandrus, D. & Lee, M. Spin structure of the anisotropic helimagnet Cr,;NbS, in a
magnetic field. Appl. Phys. Lett. 105, 72405 (2014).

SCIENTIFICREPORTS |7:6545| DOI:10.1038/s41598-017-06728-5 11



www.nature.com/scientificreports/

Acknowledgements

Research at the University of South Florida was supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438. L.1.
and D.G.M. acknowledge support from the National Science Foundation under grant DMR-1410428. We thank
Professor Victorino Franco from Sevilla University for useful discussions.

Author Contributions

EM.C,, R.D,, PJ.LK, D.G.M. and M.H.P. designed the study. The Cr,,;NbS, single crystals were grown and
structurally characterized by L.L., V.K. and D.G.M. Magnetic characterization and analysis were performed
by E.M.C. and R.D. All authors discussed the results. E.M.C. wrote the manuscript with inputs from all other
authors. M.H.P. and H.S. jointly led the research project.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-06728-5

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

oam | icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

SCIENTIFICREPORTS |7:6545| DOI:10.1038/s41598-017-06728-5 12



