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Abstract 

Representations are developed and illustrated for the distribution of link property values at the 
time of link failure in the presence of aleatory uncertainty in link properties. The following topics 
are considered: (i) defining properties for weak links and strong links, (ii) cumulative distribution 
functions (CDFs) for link failure time, (iii) integral-based derivation of CDFs for link property at 
time of link failure, (iv) sampling-based approximation of CDFs for link property at time of link 
failure, (v) verification of integral-based and sampling-based determinations of CDFs for link 
property at time of link failure, (vi) distributions of link properties conditional on time of link 
failure, and (vii) equivalence of two different integral-based derivations of CDFs for link property 
at time of link failure. 
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1. Introduction 

 Representations for the probability of loss of assured safety (PLOAS) for weak link 
(WL)/strong link (SL) systems [1-6] involving multiple time-dependent failure modes in the 
presence of both aleatory and epistemic uncertainty [7-17]  are developed and illustrated in Ref. 
[18]. As described in Ref. [18], loss of assured safety (LOAS) occurs under accident conditions 
(e.g., a fire) when SL failures place the overall system in a potentially operational mode before 
deactivation of the overall system as a result of WL failures. In the following, representations are 
developed and illustrated for the distribution of link property values at the time of link failure in 
the presence of aleatory uncertainty in link properties. The presented work has been performed in 
support of the National Nuclear Security Administration’s (NNSA’s) mandate for the 
quantification of margins and uncertainties (QMU) in analyses of the United States’ nuclear 
stockpile (see Refs. [19-22] for summary discussions of NNSA’s mandate for QMU, Refs. [23-
33] for additional background on the development of NNSA’s mandate for QMU, and Refs. [34-
45] for recent work on the implementation of NNSA’s mandate for QMU). 
 
 The following topics are considered in this presentation: (i) defining properties for WLs and 
SLs (Sect. 2), (ii) cumulative distribution functions (CDFs) for link failure time (Sect. 3), (iii) 
integral-based derivation of CDFs for link property at time of link failure (Sects. 4, 5, 8 and 10), 
(iv) sampling-based approximation of CDFs for link property at time of link failure (Sect. 6), (v) 
verification of integral-based and sampling-based determinations of  CDFs for link property at 
time of link failure (Sects. 7 and 11), (vi) distributions of link properties conditional on time of 
link failure (Sect. 9), and (vii) equivalence of two different integral-based derivations of CDFs for 
link property at time of link failure (Sect. 12). The presentation then ends with a concluding 
discussion (Sect. 13). 
 
 The results for link failure properties developed in this presentation will be extensively used 
in following reports on (i) time and failure property margins for systems involving multiple WLs 
and SLs [46] and (ii) delays in link failure time that are functions of link property value at the time 
of precursor link failure [47].  
 

This report and the two associated reports [46; 47] are part of a sequence of results related to 
WL/SL systems [18; 48-51]. The earlier results deal primarily with the time at which WL/SL 
systems fail and the resultant probability that LOAS will occur.  The probability that LOAS will 
occur is usually the outcome of greatest interest in the analysis of a WL/SL system. However, an 
over concentration on the final outcome of a complex analysis can lead to (i) loss insights and 
understanding with respect to the overall analysis and (ii) a possible failure to recognize errors that 
are present in the analysis. For these reasons, this report and the two indicated following reports 
deal with internal analysis results and additional summary results that can provide additional 
information in an analysis of a WL/SL system, including (i) times and property values at which 
individual links fail [18], (ii) times and property values at which systems of WLs or SLs fail [46], 
(iii) SL property values at which LOAS occurs [46], (iv) time and property value margins related 
to the occurrence of LOAS [46], and (v) a variety of verification procedures including comparisons 
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of LOAS related results obtained with quadrature-based procedures and sampling-based 
procedures [46; 47].  
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2. Link Properties 

 In a prior publication [18], representations for PLOAS are developed for systems in which the 
failure time CDF for a single WL or SL is based on the following assumed properties of that link 
for a time interval mn mxt t t  , where mnt  and mxt  define the endpoints of the time interval 

considered for analysis: 
 
     ( ) nondecreasing positive function defining nominal link property for ,mn mxp t t t t     (2.1) 

 

     
( )  nonincreasing positive function defining nominal failure value for link property 

  for ,mn mx

q t

t t t


 

 (2.2) 

 

     
( )  density function for a positive variable  used to characterize aleatory 

   uncertainty in link property,
Ad  

 (2.3) 

 

     
( )  density function for a positive variable  used to characterize aleatory 

   uncertainty in link failure value,
Bd  

 (2.4) 

 
     ( | ) ( )  link property value for  given ,mn mxp t p t t t t        (2.5) 

 
and 
 
     ( | ) ( )  link failure value for  given .mn mxq t q t t t t        (2.6) 

 
Further, ( )Ad   and ( )Bd   are assumed (i) to be defined on intervals [ , ]mn mx    and [ , ]mn mx    

and (ii) to equal zero outside these intervals. Although this does not have to be the case, it is 
anticipated that  and   will be assigned distributions with a mode of 1.0 in most analyses so that 

( )p t  and ( )q t  will be the modes (i.e., most likely values) for p(t|) and q(t|). 
 
 For given values for   and  , link failure occurs at the time t at which 
 
 ( ) ( ),p t q t    (2.7) 
 
which corresponds to the time at which the property value curve ( )p t  and crosses the failure 
value curve ( )q t . 
 
 As indicated in Eqs. (2.3) and (2.4), the distributions associated with the density functions 

( )Ad   and ( )Bd   are used to characterize aleatory uncertainty (i.e., random variability associated 

with the property value and failure value functions ( )p t  and ( )q t ). However, if desired for a 

specific analysis, ( )Ad   and ( )Bd   could, as an alternative, be defined and used to characterize 

epistemic uncertainty (i.e., lack of knowledge about the appropriate value for a quantity that has a 
fixed but poorly known value in the context of the analysis under consideration). In a previous 
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example analysis involving 5 SLs and 2 WLs, each link was assumed to have associated aleatory 
uncertainty characterized by independent density functions ( )Ad   and ( )Bd  . Further, each 

distribution for aleatory uncertainty was assumed to be epistemically uncertain due to epistemic 
uncertainty with respect to a parameter used in its definition (i.e., an epistemically uncertain 
standard deviation for normal distributions and an epistemically uncertain mode for triangular 
distributions; see Ref. [18], Sect. 10, for details). Thus, many possibilities exist for the possible 
use of ( )Ad   and ( )Bd   in future analyses.          

 
 To avoid excessively complex notation, two important special cases of the definitions for ( )p t
and ( )q t  in Eqs. (2.1) and (2.2) are considered in this presentation for the derivation of closed-
form integral representations for the distribution of property values at which an individual link 
could fail: 
 
 Case 1 ~  ( ) increasing and  ( ) decreasingp t q t   (2.8) 
and 
 
 Case 2 ~  ( ) increasing and ( ) constant valued.p t q t   (2.9) 
 
Further, d[ ( ) / ( )] / dq t p t t  is assumed to exist on [ , ]mn mxt t  except for at most a finite number of 

values for t. In addition to closed-form integral representations for the distribution of property 
values at which an individual link could fail, sampling-based procedures for the estimation of the 
distribution of property values at which an individual link could fail are also presented. The 
sampling-based procedures are valid for the general definitions of ( )p t  and ( )q t  in Eqs. (2.1) and 
(2.2). 
 
 As examples, Case 1 in Eq. (2.8) corresponds to a situation in which a sealed region is 
undergoing time-dependent pressurization from heating while the strength of the region’s 
boundary is degrading with increasing temperature. Case 2 in Eq. (2.9) corresponds to a situation 
in which a component is being heated until it reaches a constant but randomly variable failure 
temperature.    
   
 Three notional links that will be used for illustration are defined in Table 1 and shown in Fig. 
1. As indicated for Link 1 in Fig. 1, the curves ( )mx p   and ( )mn p   are represented by dotted 

lines above and below ( )p  , and the curves ( )mxq   and ( )mnq   are represented by dotted lines 

above and below ( )q  .   
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Table 1 Defining properties of example Links 1, 2 and 3 used to illustrate the calculation of the 
probability that a link fails at a property value less than or equal to p at a time prior or equal to t. 
 

General Properties for Links 1, 2 and 3 
  

2
1

( ) (0) (0)
( ) , ( )

(0) [ ( ) (0)]exp( ) 1 r

p p q
p q

p p p r k
 

 


 
    

 

 
Properties of Link 1 

    

 

1

4
2

( ) 875, (0) 300, 0.035

(0) 725, 1.41 10 , 1.8

( ) uniform on [ , ]=[0.6, 1.3]

( ) triangular on [ , ]=[0.7, 1.2] with mode 1.0

Corresponds to Case 1 (i.e., / /  ) in Sect. 

A mn mx

B mn mx

mn mn mx mx

p p r

q k r

d

d

  
  

   



   

   

< 9.3

  

 
Properties of Link 2 

 

      

1

5
2

( ) 900, (0) 300, 0.025

(0) 775, 3.0 10 , 2.0

( ) triangular on [ , ]=[0.85, 1.25] with mode 1.0

( ) triangular on [ , ]=[0.65, 1.4] with mode 1.0

Corresponds to Case 2  (i.e., /

A mn mx

B mn mx

mx mx

p p r

q k r

d

d

  
  

 



   

   

/ ) in Sect. 9.3mn mn 

 

 
Properties of Link 3 

 

1

4
2

( ) 850, (0) 150, 0.045

(0) 900, 2.21 10 , 1.6

( ) uniform on [ , ]=[0.76, 1.3]

( ) uniform on [ , ]=[0.76, 1.3]

Corresponds to Case 3 (i.e., / / ) in Sect. 9.3

A mn mx

B mn mx

mn mn mx mx

p p r

q k r

d

d

  
  

   



   

   



 

_____________________________________________________________________________  
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Fig. 1, Frames a, b, c and d. Figure caption and Frames e and f on next page.   
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Fig. 1  Summary plots of the example Links 1, 2 and 3 defined in Table 1 used to illustrate the 
calculation of the probability that a link fails at a property value less than or equal to p at a time 
prior or equal to t with (i) ( )r  , f , mn , mx and l  defined in Eqs. (4.2)-(4.9) and (ii) 

1 2 3 4, ,  and      defined and discussed in Sects. 9.2 and 9.3. 

 
 The analytic representations for ( )p t  and ( )q t  defined in Table 1 and illustrated in Fig. 1 are 
used for representational convenience. In a real analysis, ( )p t  and ( )q t  would most likely be 
obtained as the discretized outcomes of complex numerical calculations rather than as simple 
continuous functions. In this situation, the options would be to (i) fit a continuous curve to the 
discretized results or (ii) deal directly with the discretized results. To maintain a level of realism, 
the numerical results obtained in this presentation with quadrature-based procedures using the 
MATLAB numerical package [52] and sampling-based procedures using the  CPLOAS program 
[53] start with discretizations of the analytic representations for ( )p t  and ( )q t  in Table 1.       
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3. CDF for Link Failure Time 

 The definition of cumulative distribution functions (CDFs) for link failure time is now briefly 
summarized (see Ref. [18] for additional details). Suppose t is a potential link failure time and i  

is an element of the subdivision 0 1mn n mx     < < <  of mn mx [ , ] . For p(t| i ) 

nondecreasing and q(t|) nonincreasing, link failure prior to time t conditional on i  can occur at 

or before time t only for values of  satisfying 
 
        | | ,i iq t q t p t p t       (3.1) 

 
which in turn implies the inequality 
 
      / , .i ip t q t F t     (3.2) 

 
As a consequence,  
 

 

 

   ( , )

2
11

 probability that link fails in the time interval [ , ] 

d ,
i

mn

T mn

n F t

B A i i
i

CDF t t t

d d



   





        
 (3.3) 

 
where (i) 1[~]  is the probability that  is less than or equal to ( , )F ti , and (ii) 2[~]  is an 

approximation of the probability that  is in the interval 1[ , ]i i  . In turn,  

 

      
( , )

d dmx

mn mn

F t

T B ACDF t d d
 

 
          (3.4) 

 
in the limit as 0i  . On a technical note, the inequality mx <  F(, t) is possible in the inner 

integrals in  Eqs. (3.3)-(3.4) but does not present a problem as  Bd  = 0 for   > mx . In effect, 

the upper limit of integration for the inner integral in Eqs. (3.3)-(3.4) is min{ ( , ), }mxF t  .   

 
 An alternative to the Riemann integral representation for ( )TCDF t  in Eq. (3.4) is the Stieltjes 

integral representation 
 

   [ ( , )]d ( ),
mx

mn
T B ACDF t CDF F t CDF




     (3.5) 

where 
 

 ( ) ( )d   and  ( ) ( )d
mn mn

A A B BCDF d CDF d
 

 
             (3.6) 

 
are the CDFs for  and , respectively. In computational practice, it may be easier to evaluate  
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( )TCDF t  with the Stieltjes integral  representation in Eq. (3.5) and precalculated values for the 

CDFs for  and   than to evaluate ( )TCDF t with the Riemann integral  representation in Eq. (3.4) 

and use of the density functions for   and  
 
 Another possibility is to use a sampling-based (i.e., Monte Carlo) procedure to estimate 

( )TCDF t . With this approach, (i) a sample 

 
 [ , ], 1,2, , ,i i i i n  s    (3.7) 

 
is generated from [ , ] [ , ]mn mx mn mx     is consistency with the distributions for  and , and (ii) 

the associated results 
 
 1 time of link failure ( / )i i ir      (3.8) 

obtained from 
 
 1( ) ( ) / ( ) / ( ) ( ) ( / )i i i i i i i i i i i ip q q p r r                   (3.9) 

 
are determined for 1, 2, ,i n  . Then, ( )TCDF t is approximated by 

  

 
1

1  for 
( ) ( ) /   with  ( )

0  otherwise.

n
i

T t i t i
i

t
CDF t n


   




  


   (3.10) 

 
With respect to the definition of i  in Eq. (3.8), 1( / )i ir    will have a unique value if ( )p   is 

increasing and ( )q   is nonincreasing. However,  1( / )i ir    may not have a unique value if ( )p   

is assumed to be nondecreasing and ( )q   is assumed to be nonincreasing. In this case, the curves 

( )i p  and ( )iq  must tracked to determine the time i  at which they initially intersect, which is 

equivalent to defining 1( / )r    by 
 

 1( / ) min{ : ( ) ( )}r p q           (3.11) 
 
when ( ) ( )p q     holds for an interval of time rather than for a single point in time. This has 
the potential to occur only if ( )p  and ( )q   are constant valued for overlapping intervals of time. 
 
 Additional details on the definition and numerical evaluation of CDFs for link failure time is 
available in Ref. [18]. Further, the link failure time CDFs for the three links described and 
illustrated in Table 1 and Fig. 1 are shown in Fig. 2. 
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Fig. 2  Link failure time CDFs (i.e., ( )TiCDF t defined in Eqs. (3.4) and (3.5) for Links 1, 2 and 3 

described and illustrated in Table 1 and Fig. 1. 
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4. CDFs for Link Property at Time of Link Failure for Case 1: ( )p t  Increasing 
and ( )q t  Decreasing  

4.1 Preliminaries: CDFs for Link Property at Time of Link Failure 

The following property for an individual link is now investigated: 
 

 
( | [ , ])  probability that link fails at a value less than or equal to 

 in the time interval [ , ].  
P mn

mn

CDF p t t p

t t


  (4.1) 

 
Possible link definitions and values for property value p at link failure are illustrated in Fig. 1 for 
Links 1, 2 and 3 defined in Table 1. 
 

For use in this section and additional parts of this presentation, the following notation is 
introduced: 

( ) ( ) / ( )r q p      (4.2)   

 1

first possible time for link failure defined by ( ) ( )

/

f mx mn

mx mn

p q

r

    

 

 


  (4.3) 

1

 property value at which link failure occurs at time 

( ) [ ( / )]

f f

mx f mx mx mn

p

p p r



    



 
  (4.4) 

 1

last possible time for link failure defined by ( ) ( )

/

l mn mx

mn mx

p q

r

    

 

 


  (4.5) 

1

 property value at which link failure occurs at time 

( ) [ ( / )]

l l

mn l mn mn mx

p

p p r



    



 
  (4.6) 

 1

time of minimum possible property value at link failure defined

 by ( ) ( )

/

mn

mn mn

mn mn

p q

r


   

 







  (4.7) 

1

 property value at which link failure occurs at time 

( ) [ ( / )]

mn mn

mn mn mn mn mn

p

p p r



    



 
  (4.8) 

 1

time of maximum possible property value at link failure defined 

 by ( ) ( )

/

mx

mx mx

mx mx

p q

r


   

 







   (4.9) 

1

 property value at which link failure occurs at time 

( ) [ ( / )]

mx mx

mx mx mx mx mx

p

p p r



    



 
  (4.10) 
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1

1

( )  first time that link failure could occur at property value 

( / )  from  [ ( )]  for  
  

( / )  from  [ ( )]  for  

f

mn mn f mn f

mx mx f f mx

p p

q p p q p p p p

p p p p p p p p



  

  







    
  

  (4.11) 

1

1

( )  last time that link failure could occur at property value 

( / )  from  [ ( )]  for  

( / )  from  [ ( )]  for  

l

mn mx f mn l

mx mx l l mx

p p

p p p p p p p p

q p p q p p p p



  

  







    
  

  (4.12) 

1

1

( )  first time that link failure could occur at a property value 

( ) ( / )  for  

( / )  for  

mn

f mn mn f

f mx mn f mx

p p p

p q p p p p

r p p p



 

  





 

    
  



  (4.13) 

1

1

( )  last time that link failure could occur at a property value 

( ) ( / )  for  

( / )  for  

mx

l mn mn l

l mn mx l mx

p p p

p p p p p p

r p p p



 

  





 

    
  



  (4.14) 

1

1

( )  largest  value resulting in link failure at a property value 

/ [ ( )] from  ( ) [ ( )]

/ [ ( / )] for  

/ [ ( / )]  for  .

mx

f mx f

mn mn f

mx mx f mx

p p p

p p p p p p p

p p q p p p p

p p p p p p p

 
  



 





 

 

   
  


  (4.15) 

 
Further, the results derived in Sect. 4 are for ( )p  increasing and ( )q  decreasing (i.e., for  Case 1 

as defined in Eq. (2.8)), which assures that 1( )p  , 1( )q   and 1( )r   exist. 
 

The CDF ( | [ , ])P mnCDF p t t  for link property at time of link failure defined in Eq. (4.1) can be 

formally represented by integrals involving the link parameters   and  . Consistent with the 
examples in Fig. 1, the configurations 
 
  1:  with ( )Configuration ,f mx f fp p p t p   <   (4.16) 

 
  2:Con   with (figuratio ) ( ),n mn mx f lp p p p t p   <   (4.17) 

 
  3: Conf  with igura on ( )ti l mx l lp p p p t   <   (4.18) 

 
involving t and p result in different integral representations for ( | [ , ])P mnCDF p t t  in terms of   

and  . The indicated representations for ( | [ , ])P mnCDF p t t  are derived in the following three 

subsections. Further, the derivations are illustrated with the two links (i.e., Links 4 and 5) defined 
in Fig. 3. 
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Fig. 3 Example Links 4 and 5 used to illustrate the derivation of integral representations of 

( ,[ , ])P mnCDF p t t  for Configurations 1, 2 and 3 defined in Eqs. (4.16)-(4.18): (a) Link 4 with 

( ) 2.0 0.6p    , ( ) 8.0 0.6q    , [ , ] [0.5,2.1]mn mx   , and[ , ] [0.75,1.7]mn mx     , and (b) 

Link 5 with ( ) 2.0p    , ( ) 10.0 0.8q    , [ , ] [0.6,1.25]mn mx   , and [ , ]mn mx    

[0.35,1.7] . 

4.2 Integral Representation of ( | [ , ])P mnCDF p t t for Configuration 1  

Given the conditions imposed on t and p for Configuration 1 (i.e., f mxp p p   with 

( )f ft p < ), a failure value p p  can only occur for curves ( )p   that cross the vertical 

line  illustrated in Fig. 4 connecting the points 
 

 
[ , ( )]  for  

[ , ( ) ( )] [ , ( )]  and  [ , ( ) ( )]
[ , ( )]  for ,

mn mn
mx mx mn

mn mn

t q t t
t p p t t p t t t p t

t p t t

 
  

 


   

<
  (4.19) 

 
where (i) ( )mx mxp   as indicated in Eq. (4.15) and (ii) ( )mn t  defined by 

 

 
( ) / ( ) ( )  for   from  ( ) ( ) ( ) 

( )
  for   from  ( ) ( ) ( ) 

mn mn mn mn mn
mn

mn mn mn mn

q t p t r t t t p t q t
t

t t p t p t

    


   
  

   
  (4.20) 

 
is the  value such that the curve ( ) ( )mn t p   passes through the point  [ , ( )]mnt q t   for mnt   as 

illustrated in Fig. 4a and the point  [ , ( )]mnt p t  for mn t   as illustrated in Fig. 4b. In turn, the set 

 
 { : ( ) }mn mxt        (4.21) 
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contains the  values for the curves crossing the line  . 
 
 

    
 
Fig. 4 Illustration of regions (i.e., colored areas) integrated over to obtain ( ,[ , ])P mnCDF p t t  for 

Configuration 1 defined in Eq. (4.16): (a) Link 4 with 0mnt  , 9p  , and 3t  , and (b) Link 5 

with 0mnt  , 8.5p  , and 4t  . 

 
 For the following, a subdivision 
 
 0 1 2( ) ( )mn n mxt p      < < < <   (4.22) 

 
 of [ ( ), ( )]mn mxt p   is assumed. For i  , (i) the value i  for which ( ) ( )i iq t p t    is given 

by 
 
 ( ) / ( ) / ( ) ( , ),i i i ip t q t r t F t        (4.23) 

  
and (ii) as a consequence of the monotonicity of ( )p  and ( )q  , 
 

 ( , )

prob( | )  probability that link fails at   conditional on  

( )d .
i

mn

i i i

F t

B

p p

d




   

 

    

 

 
  (4.24) 

 
In turn, given the results in Eqs. (4.23) and (4.24), 
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( , )

1

( , )

( )

/ ( )

( )

( | [ , ]) ( | [ , ])  for ( )

lim ( )d ( )

( )d ( )d

( )d ( )d

i

mn

mx

mn mn

mx

mn mn

P mn P f f f

n F t

B A i i
n

i

F t

B At

r t

B At

CDF p t t CDF p t t p

d d

d d

d d





 

 

 

 

  

   

   

   

 

 

    

    
    

 

 

 

<

  (4.25) 

 
with ( , ) / ( )F t r t   as defined in Eq. (4.23).  

4.3 Integral Representation of ( | [ , ])P mnCDF p t t for Configuration 2 

 Given the conditions imposed on t and p for Configuration 2 (i.e., mn mxp p p   with 

( ) ( )f lp t p < ), a failure value p p  can only occur for curves ( )p   that cross the 

horizontal line 1  illustrated in Fig. 5 connecting the points 

 
  ( ), = ( ), ( ) [ ( )]  and [ , ] , ( , ) ( )f f mx fp p p p p p t p t t p p t              (4.26) 

 
or the vertical line 2  also illustrated in Fig. 5 connecting the points 

 

 
[ , ( )]  for   as in Fig. 5a

 [ , ] and [ , ( ) ( )]
[ , ( )]  for   as in Fig. 5b,

mn mn
mn

mn mn

t q t t
t p t t p t

t p t t

 


 


  

<
  (4.27) 

 
  where (i) ( )mx p defined by 

 

 1

1

( ) / [ ( )]

/ [ ( / )] for   as in Fig. 5a

/ [ ( / )]  for   as in Fig. 5b

mx f

mn mn f

mx mx f mx

p p p p

p p q p p p p

p p p p p p p

 



 







   
  

  (4.28) 

 
in Eq. (4.15) is the  value such that the curve ( ) ( )mx p p   passes through the point [ ( ), ]f p p , 

(ii) ( , )t p defined by 
 
 ( , ) ( ) ( , ) / ( )p t p p t t p p p t      (4.29) 
 
is the  value such that the curve ( , ) ( )t p p  passes through the point [ , ]t p , and (iii) ( )mn t  is 

defined the same as in Eq. (4.20). In turn, the sets 
  
    2 1: ( ) ( , )   and  : ( , ) ( )mn mxt t p t p p                (4.30) 

 



 

25 
 

contain the  values for the curves ( )p   crossing lines 2  and 1 , respectively. 

 
 

 
 
Fig. 5 Illustration of regions (i.e., colored areas) integrated over to obtain ( | [ , ])P mnCDF p t t  for 

Configuration 2 defined in Eq. (4.17): (a) Link 4 with 0mnt  , 5p  , and 5.5t  , and (b) Link 5 

with 0mnt  , 6p  , and 5t  . 

 
 For the following, a subdivision 
 
 0 1 2( ) ( )mn n mxt p      < < < <   (4.31) 

 
of 
 2 1[ ( ), ( )] [ ( ), ( , )] [ ( , ), ( )]mn mx mn mxt p t t p t p p            (4.32) 

   
 is assumed with ( , )m t p  .  

 
For 2i   and similarly to Eqs. (4.23)  and (4.24), (i) the value i  for which ( ) ( )i iq t p t   

is given by 
 
 ( ) / ( ) / ( ) ( , ),i i i ip t q t r t F t        (4.33) 

  
 and (ii) as a consequence of the monotonicity of ( )p  and ( )q  , 
 

     
2 2

( , )

prob( | )  probability that link fails at   conditional on   

( )d .
i

mn

i i i

F t

B

p p

d




   

 

    

 

 
  (4.34) 
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For 1i  , (i) the time i  at which ( )i ip p    is given by 1( / )i ip p  , (ii) the value i  

for which ( )i iq p   is given by 

 
 1/ ( ) / [ ( / )] ( , ),i i i ip q p q p p G p        (4.35) 

  
and (iii) as a consequence of the monotonicity of ( )p  and ( )q  , 
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  (4.36) 

   
In turn, given the assumption ( ) ( )f lp t p    and the results in Eqs. (4.34) and (4.36),  
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  (4.37) 

 
with ( )mn t , ( )mx p , ( , ) / ( )t p p p t  , ( , ) / ( )F t r t   and 1( , ) / [ ( / )]G p p q p p 
defined in Eqs. (4.20), (4.28), (4.29), (4.33) and (4.35), respectively.      
 
 Further, the preceding representation for ( | [ , ])P mnCDF p t t  simplifies to 

 

 
1( ) / [ ( / )]

( | [ , ]) ( )d ( )d
mx

mn mn

p p q p p

P mn B ACDF p t t d d
 

 
   

        (4.38) 

 
for ( )lt p  and mn lp p p<  as a result of (i) the relationships 

 
      1 1( ) ( / ), [ ( )]  and  / [ ( )] / [ ( / )]l mn mn l mn l mn mnp p p p p p p p p p p              (4.39) 

 
that exist when 1[ ( ), ] [ ( / ), ]l mnp p p p p   is a point on the curve ( )mn p   and (ii) the 

consequent equality  
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/ ( ) / ( ) / ( )

( )
( )d ( )d ( )d ( )d 0.mn

mn mn mn mn

p p t r t r t

B A B At
d d d d

  

   
                       (4.40) 

 

4.4 Integral Representation of ( | [ , ])P mnCDF p t t  for Configuration 3 

 Given the conditions imposed on t and p for Configuration 3 (i.e., l mxp p p   with

( )l lp t < ), a failure value  p p  can only occur for curves ( )p   that cross the horizontal 

line 1  illustrated in Fig. 6 connecting the points 

 
    ( ), = ( ), ( ) [ ( )]  and ( ), ( ), [ ( ), ] ( ) ,f f mx f l l lp p p p p p p p p p p p t                 (4.41) 

 
the curve 2  illustrated in Fig. 6 corresponding to ( )mxq   connecting the points 

 
        ( ), = ( ), [ ( )]  and , [ , ( )] ( ) , ( ) ,l l mx l mx mxp p p q p t t q t p t t q t         (4.42) 

  
or the vertical line 3  also illustrated in Fig. 6 connecting the points 

 

  
[ , ( )]  for   as in Fig. 6a

 , [ , ( )] ( )  and [ , ( ) ( )]
[ , ( )]  for   as in Fig. 6b,

mn mn
mx mn

mn mn

t q t t
t t q t p t t t p t

t p t t

 
  

 


  

<
  (4.43)  

 
 where (i) ( )mx p  defined in Eqs. (4.15) and (4.28) is the  value such that the curve ( ) ( )mx p p   

passes through the point [ ( ), ]f p p , (ii) [ ( ), ]l p p   and [ , ( )]mxt q t   defined by 

 
 1[ ( ), ] [ ( )] [ ( ), ] / [ ( )] / [ ( / )]l l l l mxp p p p p p p p p p p p q p            (4.44) 

 
and 
 
 [ , ( )] ( ) ( ) [ , ( )] ( ) / ( ) ( )mx mx mx mx mxt q t p t q t t q t q t p t r t            (4.45) 

 
are the  values such that the curve [ ( ), ] ( )l p p p    passes through the point [ ( ), ]l p p  and the 

curve [ , ( )] ( )mxt q t p    passes through the point [ , ( )]mxt q t , and (iii) ( )mn t  is defined the same 

as in Eq. (4.20). In turn, the sets 
 
  3 : ( ) [ , ( )] ,mn mxt t q t         (4.46) 

 
  2 : [ , ( )] [ ( ), ]mx lt q t p p          (4.47) 

and 
  1 : [ ( ), ] ( )l mxp p p         (4.48) 
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contain the  values for the curves ( )p   crossing lines 3 , 2  and 1 , respectively. 

 
 

    
 
Fig. 6 Illustration of regions (i.e., colored areas) integrated over to obtain ( ,[ , ])P mnCDF p t t  for 

Configuration 3 defined in Eq. (4.18): (a) Link 4 with 0mnt  , 8.5p  , and 6t  , and (b) Link 5 

with 0mnt  , 8.5p  , and 7t  . 

 
 For the following, a subdivision 
 
 0 1 2( ) ( )mn n mxt p      < < < <   (4.49) 

 
of 
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  

 



    
  (4.50) 

 
is assumed with 
 
 [ , ( )] ( ) / ( )  and  [ ( ), ] / [ ( )].r mx mx s l lt q t q t p t p p p p p             (4.51) 

 
  For 3i   and similarly to Eqs. (4.23)  and (4.24), (i) the value i  for which ( ) ( )i iq t p t   

is given by 
 
 ( ) / ( ) / ( ) ( , ),i i i ip t q t r t F t        (4.52) 
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 and (ii) as a consequence of the monotonicity of ( )p   and ( )q  , 
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  (4.53) 

 
For 2i  , (i) ( ) ( )mx i i iq p    , where i  is the time at which ( )i p   crosses the curve 2   

and (ii) as  a consequence of the monotonicity of ( )p  and ( )q  , 
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For 1i   and similarly to Eqs. (4.35) and (4.36),  (i) the time i  at which ( )i ip p    is given 

by 1( / )i ip p  , (ii) the value i  for which ( )i iq p    is given by 

 
 1/ ( ) / [ ( / )] ( , ),i i i ip q p q p p G p        (4.55) 

  
and (iii) as a consequence of the monotonicity of ( )p  and ( )q  , 
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  (4.56) 

   
In turn, given the assumption ( ) ( )l mxp t p <  and the results in Eqs. (4.53), (4.54) and (4.56), 
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  (4.57) 

with ( )mn t , ( )mx p , [ ( ), ] / [ ( )]l lp p p p p   , 1( ) ( / )l mxp q p  , [ , ( )] ( )mx mxt q t r t   ,

( , ) / ( )F t r t   and 1( , ) / [ ( / )]G p p q p p  defined in Eqs. (4.20), (4.28), (4.44), (4.12), 
(4.45), (4.52) and (4.55), respectively.      
 
 Further, the preceding representation for ( ,[ , ])P mnCDF p t t  simplifies to 
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          (4.58) 

 
for lt   as a result of (i) the equalities 

 

  1( ) ( )  for /mn mn mx l mn mxt r t t r           (4.59) 

 
as discussed in conjunction with Eqs. (4.37)-(4.40) and (ii) the consequent equality 
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                       (4.60) 

 

4.5 Summary and Illustration of CDFs for Link Property at Time of Link Failure for 
Case 1  

The integral representations for ( ,[ , ])P mnCDF p t t derived in Sects. 4.2-4.4 are summarized in 

Table 2. Further, the CDFs ( ,[ , ])P mn lCDF p t   for the three links defined in Table 1 and illustrated 

in Fig. 1 are shown in Fig. 7 . The CDFs in Fig. 7 are obtained by numerically evaluating the 
integrals in the following representations for ( ,[ , ])P mn lCDF p t  :  
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  (4.61) 

 
for Configuration 2 in Table 2 and mn lp p p< , and     
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for Configuration 3 in Table 2 and l mxp p p  . Numerical evaluation of the preceding integrals 

was performed with the MATLAB software package [52; 54] with (i) the fit function with the 
spline option used to fit property value functions and inverse  functions and (ii) the TwoD function 
[55] used for integration.    
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Table 2 Summary of integral   representations for ( ,[ , ])P mnCDF p t t  derived in Sects. 4.2-4.4 for 
Configurations 1-3 defined in Eqs. (4.16)-(4.18). 
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______________________________________________________________________________ 
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Fig. 7 Property value at link failure CDFs (i.e., ( | [ , ]) ( | [ , ])Pi mn Pi mn lCDF p t t CDF p t    for Link 

i, 1,2,3i  ) determined over all possible times of link failure (i.e., for time lt   defined by 

( ) ( )mn mxp t q t   in Eq. (4.5)) obtained as indicated in Table 2 for Links 1, 2 and 3 described 

and illustrated in Table 1 and Fig. 1. 
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5. CDFs for Link Property at Time of Link Failure for Case 2: ( )p t  Increasing 
and ( )q t  Constant-Valued 

The special, but important, case with ( )q   equal a constant k (i.e., ( )q k  ) is now 
considered. Examples of links with this property are defined in Table 3 and shown in Fig. 8.  
 
Table 3 Defining properties of Links 6, 7 and 8 used to illustrate the calculation of the probability 
that a link fails at a property value less than or equal to p at a time prior or equal to t for ( )q 
constant-valued. 
 

General Properties for Links 6, 7 and 8 
  

1

( ) (0)
( ) , ( ) constant valued

(0) [ ( ) (0)]exp( )

p p
p q

p p p r
 





   

 

 
Properties of Link 6 

    

 
1( ) 1400, (0) 225, 0.06, ( ) 725

( ) triangular on [ , ] [0.77, 1.15] with mode 1.0

( ) unifrom on [ , ] [0.8, 1.35]
A mn mx

B mn mx

p p r q

d

d


  
  

    




  

 
Properties of Link 7 

 

1( ) 1600, (0) 200, 0.09, ( ) 700

( ) triangular on [ , ] [0.6, 1.7] with mode 1.0

( ) triangular on [ , ] [0.65, 1.25] with mode 1.0
A mn mx

B mn mx

p p r q

d

d


  
  

    




 

 
Properties of Link 8 

 

1( ) 2000, (0) 200, 0.05, ( ) 550

( ) uniform on [ , ] [0.65, 1.4] 

( ) triangular on [ , ] [0.65, 1.4] with mode 1.0
A mn mx

B mn mx

p p r q

d

d


  
  

    




 

_____________________________________________________________________________  
  



 

35 
 

 
 
Fig. 8 Summary plots for Links 6, 7 and 8 defined in Table 3 and used to illustrate the calculation 
of the probability that a link fails at a property value less than or equal to p at a time prior or equal 
to t with ( )q   constant-valued (i.e., ( )q k  ): (a) Link 6 properties, (b) Link 7 properties, (c) 

Link 8 properties, and (d) link failure time CDFs (i.e., ( )TiCDF t defined in Eqs. (3.4) and (3.5) for 

Link i) for Links 6, 7 and 8. 
 
 As before, the function 
 
 ( ) ( ) / ( ) / ( )r q p k p       (5.1) 
 

is a decreasing function and thus has an inverse 1r . As indicated in Fig. 8, (i) the lower boundary  
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of possible link failure times has constant value of ( )mn mnq k    over the time interval 

 

      1 1/ , / , ,mx mn mn mn f mn mn mnr r                 (5.2) 

 
and (i) the upper boundary of possible link failure times has constant value of ( )mx mxq k     

over the time interval 
 

        1 1/ , / , , .mx mx mn mx mx l mx mxr r               (5.3) 

 

The times , , ,f mn mx l     as defined above have the same definitions with 1r  as in Sect. 4.1. 

However, as examination of Fig. 8 shows, they correspond to slightly different properties of a link 
when ( )q t k . Specifically with ( )q t k ,  (i) f mn  corresponds to both the first possible time 

for link failure and the first time at which the smallest possible value for link failure could occur, 
(ii) mn mn   corresponds to the last time at which the smallest possible value for link failure 

could occur, (iii) mx mx  corresponds to the first possible time at which the largest value for link 

failure could occur, and (iv) l mx   corresponds to both the last possible time at which the largest 

value for link failure could occur and the last possible time at which any link failure could occur. 
The changed notations 
 
 , , ,f mn mn mn mx mx l mx             (5.4) 

 
in Eqs. (5.2) and (5.3) are introduced to provide an indication of what the times , , ,f mn mx l     

correspond to for a constant-valued ( )q t .    
 
 As summarized below, the derivation of ( | [ , ])P mnCDF p t t  for ( )q t k  is similar to the 

derivations of ( | [ , ])P mnCDF p t t in Sects. 4.2 and 4.3 for link configurations 1 and 2 defined in 

Eqs. (4.16) and (4.17). Specifically, the following two cases with 
  

 1 1( ) ( / )  and  ( ) ( / )f mx l mnp p p p p p        (5.5) 

 
as defined in Eqs. (4.11) and (4.12) need to be considered: (i) ( )mn ft p    and  

( ) ( )f lp t p   . 

 
 For ( )mn ft p   , a derivation similar to the one in Sect. 4.2 results in the following form 

for ( | [ , ])P mnCDF p t t : 
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( , )

( )

( )/

( )

( | [ , ]) ( | [ , ])  for 

( )d ( )d

( )d ( )d ,

mx

mn mn

mx

mn mn

P mn P mn mn mx

F t

B At

p t k

B At

CDF p t t CDF p t t

d d

d d

 

 

 

 

  

   

   

 

    
    

 

 

<

  (5.6) 

 with 
 
 ( , ) / ( ) ( ) / ,F t r t p t k      (5.7) 
 
and 
 

 
/ ( )  from  ( ) ( )   for  

( )
  for .

mn mn mn mn mn
mn

mn mn mx

k p t p t q t k t
t

t

     


  
   

   
  (5.8) 

 
With respect to Eqs. (5.7) and (5.8), (i) the role of ( , )F t  is described in Eqs. (4.23)-( 4.25) and 

(ii) ( )mn t  is defined to incorporate the effects of the curves 

 
 [ , ( ) ], ,   and  [ , ( )], ,mn mn mn mn mn mn mxq k t p t                 (5.9) 

  
 on lower limits of integration for  . 
 
 For ( ) ( )f lp t p   , a derivation similar to the one in Sect. 4.3 results in the following form 

for ( | [ , ])P mnCDF p t t :  

 

 
( , ) ( , ) ( , )

( ) ( , )

/ ( ) ( )/ /

( )

( | [ , ]) ( | [ ( ), ])  for ( ) ( )

( )d ( )d ( )d ( )d

( )d ( )d ( )d

mx

mn mn mn

mn mn mn

P mn P mn f l

t p F t G p

B A B At t p

p p t p t k p k

B A Bt

CDF p t t CDF p p t p t p

d d d d

d d d

   

   



  

  

       

     

 

          
      

   

  

<

/ ( )
( )d

mx

Ap p t
d


 

 

  (5.10) 

 
 with (i) ( , )F t  and ( )mn t  defined in Eqs. (5.7) and (5.8), (ii) ( , ) / ( )t p p p t  defined in Eq. 

(4.29), and (iii) 1( , ) / [ ( / )]G p p q p p   defined in Eq. (4.35)-(4.36). Further, the preceding 

representation for ( | [ , ])P mnCDF p t t  simplifies to 

 

 
/ /

( | [ , ]) ( )d ( )d ( )dmx

mn mn mn

p k p k

P mn B A BCDF p t t d d d


  
              (5.11) 

 
for ( )lt p  as indicated in conjunction with Eqs. (4.38) and (4.39). A further simplification to 

 
    ( | [ , ]) / /P mn mn mx mnCDF p t t p k        (5.12) 



 

38 
 

results for ( )lt p and   uniform on [ , ]mn mx  . 

  
 As an example, the results of evaluating ( | [ , ])P mnCDF p t t  for Links 4, 5 and 6 defined in 

Table 3 with the integral representation in Eq. (5.11) are shown in Fig. 9. The integrals defining 
the CDFs in Fig. 9 were evaluated with the same numerical procedures used to evaluate the 
integrals defining the CDFs in Fig. 7. 
 

 
 
Fig. 9 Property value at link failure CDFs (i.e., ( | [ , ]) ( | [ , ])Pi mn Pi mn lCDF p t t CDF p t   for Link  

i, i = 6, 7, 8) determined over all possible times of link failure (i.e., for time lt   defined by

( ) ( )mn mxp t q t   in Eq. (4.5)) obtained as indicated in Eq. (5.11) for Links 6, 7 and 8 described 

and illustrated in Table 3 and Fig. 8. 
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6. Sampling-based Procedure to Estimate ( | [ , ])P mnCDF p t t  

  Another possibility is to use a sampling-based (i.e., Monte Carlo) procedure to estimate 
( | [ , ])P mnCDF p t t . This approach uses (i) a sample of the form [ , ], 1,2, , ,i i i i n  s   of the 

form indicated in Eq. (3.7), (ii) the corresponding link failure times i  defined in Eqs. (3.8)-(3.11)
, and (iii) the link failure values ( )i i ip p  . Then, 

 
1

1  for   and   
( | [ , ]) ( | ) /   with  ( | )

0  otherwise.

n
i i

P mn p i p i
i

p p t
CDF p t t p t n p t


 



 
  


   (6.1) 

 
As an example, CDFs for link property value at link failure obtained with use of samples of size 
nS = 106 as indicated in Eq. (6.1) are illustrated in Fig. 10.  

 

 
 
Fig. 10 Property value at link failure CDFs  (i.e., ( | [ , ]) ( | [ , ])Pi mn Pi mn lCDF p t t CDF p t   for Link  

i, i = 1, 2, 3, 6, 7, 8 ) determined over all possible times of link failure (i.e., for time lt   defined 

by ( ) ( )mn mxp t q t   in Eq. (4.5)) obtained with use of samples of size nS = 106 as indicated in 

Eq. (6.1) for (a) Links 1, 2 and 3 described and illustrated in Table 1 and Fig. 1 and (b) Links 6, 7 
and 8 described and illustrated in Table 3 and Fig. 8. 
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7. Verification and the Estimation of ( | [ , ])P mnCDF p t t  

 As discussed and illustrated in Refs. [49; 50] for WL/SL systems and in Refs. [56-65] for many 
additional contexts, model/analysis verification based on the comparison of results obtained in two 
independent analyses is an important part of the assessment of models and software used in the 
analysis of high consequence systems. Model verification and model validation are two related, 
but different and often confused, concepts. Two widely used definitions are (Ref. [65], p. 3): 
 
Verification: The process of determining that a model implementation accurately represents the 
developers’ conceptual description of the model and the solution of the model. 
 
Validation: The process of determining the degree to which a model is an accurate representation 
of the real world from the perspective of the intended uses of the model. 
 
Thus, verification relates to assessing the correctness of the mathematical development and 
implementation of a model. It is in this sense that verification is used in this presentation. Further, 
verification is interpreted broadly enough to include a checking of the correctness of the formal 
mathematical derivation of a model. In contrast, validation relates to assessing the degree to which 
a model represents the actual behavior of the processes under consideration. In general, validation 
involves the comparison of model predictions with experimental results. Such comparisons are not 
part of this presentation. 
 
 The explicit integral-based representations for ( | [ , ])P mnCDF p t t derived in Sects. 4.2.2-4.2.3 
are summarized in Table 2. These integrals can be estimated with quadrature procedures. Due to 
the changing forms of the integrals for different values of p and t, this can be a complex and 
inefficient way to estimate the CDF for link failure values that occur prior to time t (i.e., the CDF 
defined by ( , ( | [ , ]))P mnp CDF p t t  for all link failure values p that occur prior to time t). 

 However, the integral representations for ( | [ , ])P mnCDF p t t in Table 2 do have a useful role to 
play in analysis verification. Specifically, for selected values of p and t, the corresponding integral 
from Table 2 can be evaluated and used to verify that the sampling-based procedure in Eq. (6.1) is 
providing a correct and reasonably accurate approximation to ( | [ , ])P mnCDF p t t . As is the case 
here, the existence of two independent procedures to calculate a specific analysis result is a 
significant verification capability. 

 As an example, estimates for ( | [ , ])P mnCDF p t t are presented in Fig. 11 for the links in Fig. 1 
and Fig. 8 obtained by (i) numerical evaluation of the integrals in Eqs. (4.61), (4.62) and (5.11) 
and (ii) sampling-based evaluation as indicated in Eq. (6.1). The overlay of the CDFs obtained 
with the two procedures provides a strong indication that both procedures are correctly derived 
and implemented. This is a particularly strong verification result as the two procedures differ in 
both conceptual (i.e., mathematical) basis and computational implementation. 
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Fig. 11 Comparisons of quadrature-based evaluations , ( | [ , ])PQ i mn lCDF p t   and sampling-based 

evaluations , ( | [ , ])PS i mn lCDF p t   for ( | [ , ]) ( | [ , ])Pi mn Pi mn lCDF p t t CDF p t    for Link i, i = 1, 2, 

3, 6, 7, 8, in Figs. 7, 9 and 10: (a) Comparisons for Links 1, 2 and 3, and (b) Comparisons for Links 
6, 7 and 8. 
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8. Integral Representation of ( | [ , ])P mnCDF p t t  Based on Time   and Failure 

Value p 

An alternate form for the definition of ( | [ , ])P mnCDF p t t  is
 

 
( | [ , ]) ( | )d ( )

( | ) ( )d ,

mn

mn

t

P mn P Tt

t

P Tt

CDF p t t CDF p CDF

CDF p d

 

  








  (8.1) 

 
where (i) ( | )PCDF p   is the CDF for link property value p at link failure conditional on link 

failure occurring at time , (ii) ( )TCDF  is the CDF defined in Eq. (3.4) for link failure 

time,and(iii) ( )Td  is the density function for link failure time defined by 

 

 

    

   

    

     

( , )

( , )

( ) d ( ) / d

d
d d   

d

with ( , ) ( ) / ( ) / ( ) and ( ) ( ) / ( )

d
d d

d

( , ) d ( , ) / d d

d
/ ( ) 1 / ( )

d

mx

mn mn

mx

mn mn

mx

mn

T T

F

B A

F

B A

B A

B A

d CDF

d d

F p q r r q p

d d

d F F d

d r r d

  

 

  

 





  

   


         

   


      

    




    
  

    



    

 

 



     

     

d

d 1 / ( ) / d / ( ) d

d ( ) / ( ) / d / ( ) d .

mx

mn

mx

mn

mx

mn

B A

B A

r d r d

p q d r d















      

       

   

   







  (8.2) 

 
The derivation of ( | )PCDF p   is rather complex and is presented in Sect. 9.5. Then, in Sect. 11, 

it is shown that the representation for ( | [ , ])P mnCDF p t t  in Eq. (8.1) is mathematically equivalent 

to the representations for ( | [ , ])P mnCDF p t t  summarized in Table 2. The equivalent outcomes of 

two different derivations for ( | [ , ])P mnCDF p t t  provide an additional verification result indicating 

that ( | [ , ])P mnCDF p t t  has been derived correctly. 
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9. Distribution for Link Property Conditional on Time of Link Failure 

9.1 Preliminaries: Distribution for Link Property Conditional on Time of Link 
Failure 

 For systems of WLs and SLs, the distributions for link property values conditional on time of 
link failure play an important role in the formal representation of system properties such as (i) 
distributions of link property values at time of link system failure for WL systems and SL systems, 
(ii) distributions of WL link property values and SL property values at the time that LOAS occurs 
for a WL/SL system, (iii) distributions of margins for a WL/SL system defined by the difference 
of SL property value at time of SL system failure and WL property value at the time of WL system 
failure, (iv) distributions of margins for a WL/SL system defined by the difference of SL property 
value at time of SL system failure and SL property value at the time of WL system failure, and (v) 
delays in link failure time that are functions of link property value at the time of precursor link 
failure. The indicated system properties are developed in two following reports [46; 47]. \ 
    
 This section considers a single link (i.e., a WL or a SL) with properties as described in Sect. 2.  
Derivations follow for 
 

 
( | ) density function for link property  conditional on link failure 

occurring at time 
Pd p p




  (9.1) 

 
 and the interval of definition [ ( ), ( )]mn mxp p   for ( | )Pd p  . Further, values for a number of 

additional closely related quantities are also obtained. 

9.2 Sample Space [ ( ), ( )]mn mxp p   Associated with Density Function ( | )Pd p       

 Values for ( | )Pd p  and its interval of definition [ ( ), ( )]mn mxp p   are determined by (i) the 

positive-valued density functions ( )Ad   and ( )Bd   defined on intervals [ , ]mn mx   and 

[ , ]mn mx   indicated in Sect. 2 and (ii) the ratio r() = ( ) / ( )q p  for the functions ( )p   and ( )q   

defined in Sect. 2 (see Eqs. (2.1) -(2.2)). In set notation, the interval [ ( ), ( )]mn mxp p   is defined 

by 
 

 
 

[ ( ), ( )] ( | )

: ( ) ( ), [ , ], [ , ] .
mn mx

mn mx mn mx

p p p

p p p q

  

         



    


  (9.2) 

 
In turn, membership in the set (p|), which is the sample space for p, is determined by the values 

for and that satisfy the equalities 
 
  ( ) / ( ) ( ) .q p r         (9.3) 
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As illustrated in Fig. 12, the preceding linear relationship between  and  for a fixed value for 
leads to four possibilities for the definition of (p|). In correspondence with Line 1 in Fig. 12, 

the first possibility is  
 

 

  
 
 

1 1 1 1( | ) : ( ) for ( | ) : ( )  

( ) ( ), ( )

( ), ( )

mn mx

mn mx

mn mx

p p p p r

r p p

q p

          

    

   

       





   

  (9.4) 

  
with 
  1 : ( ) ( ) .mn mn mx mxr r            (9.5) 

 
Specifically, if 1  , then (i) the possible values for fall in the interval [ ( ) , ]mn mxr    , (ii) the 

corresponding interval of values for consistent with the equality ( )r    in Eq. (9.3) is

[ , / ( )]mn mx r   , and (iii) the resultant interval of values for p is [ ( ), ( )]mn mxq p    . 

 

  
Fig. 12 Possible relations between  and  for mn mx    , mn mx     and 

 ( ) / ( ) ( )q p r       .   

 
 Similarly, 2 2( | )p    , 3 3( | )p     and 4 4( | )p     are defined by 
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  
 

2 2 2 2( | ) : ( ) for ( | ) :  ( )  ( )

( ), ( )

mn mx

mn mx

p p p p r r

q q

           

   

       



   
  (9.6) 

 
with 2 { : ( ) ( ) }mn mn mx mxr r           in correspondence with Line 2 in Fig. 12; 

 

 
  

 
3 3 3 3( | ) : ( ) for ( | ) :  

( ), ( )

mn mx

mn mx

p p p p

p p

         

   

       



   
  (9.7) 

 
with 3 { : ( ) ( ) }mn mn mx mxr r           in correspondence with Line 3 in Fig. 12; and 

 

 
  

 
4 4 4 4( | ) : ( ) for ( | ) :   ( )

( ), ( )

mn mx

mn mx

p p p p r

p q

          

   

       



   
  (9.8) 

 
with 4 { : ( ) ( ) }mn mn mx mxr r           in correspondence with Line 4 in Fig. 12. If either 

of the inequalities ( )mx mnr  <  or ( ) mx mnr   <  holds, then (p|) is the null set. 

9.3 Exact Nature of and Relationships between Sets 1 2 3, ,   and 4   

 The exact nature of and relationships between the sets 
 
  1 : ( ) ( )mn mn mx mxr r            (9.9) 

 
  2 : ( ) ( )mn mn mx mxr r            (9.10) 

 
  3 : ( ) ( )mn mn mx mxr r            (9.11) 

and 
  4 : ( ) ( )mn mn mx mxr r            (9.12) 

 
is not immediately apparent from the preceding definitions. However, consideration of the cases 
 
  
 Case 1: / / ,mn mn mx mx   <   (9.13) 

 
  Case 2: / /mx mx mn mn   <   (9.14) 

and 
 Case 3: / /mn mn mx mx   =   (9.15) 

 
provides both (i) simple definitions for the sets 1 2 3 4, ,  and      and (ii) a clear description of the 

relationships between these sets. 
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 For Case 1 (i.e., / /mn mn mx mx   < ), the definitions for  1 2 3 4, ,  and      become 

 

 

 
 

  
 
 

    

1

1 1

: ( ) ( )

: / ( ), ( ) / , / ( )

: max / , / ( ), ( ) /

: / ( ), ( ) /

: / ( ) /

: / / ,

mn mn mx mx

mn mn mx mn mx mx

mn mn mx mx mx mn

mx mx mx mn

mx mx mx mn

mx mn mx mx

r r

r r r

r r

r r

r

r r

      

         

        

      

     

      

   

   

  

  

  

  



  (9.16) 

 

 

 
 
 

    

2

1 1

: ( ) ( )

: / ( ), ( ) /

: / ( ) /

: / / ,

mn mn mx mx

mn mn mx mx

mn mn mx mx

mx mx mn mn

r r

r r

r

r r

      

      

     

      

   

  

  

  



  (9.17) 

 

 

 
 
 

3 : ( ) ( )

: ( ) / , / ( )

: / ( ) /

,

mn mn mx mx

mn mn mx mx

mx mx mn mn

r r

r r

r

      

      

     

   

  

  

 



  (9.18) 

 
and 
 

 

 
 

  
 
 

    

4

1 1

: ( ) ( )

: ( ) / , / ( ), ( ) /

: / ( ), ( ) min / , /

: / ( ), ( ) /

: / ( ) /

: / ( ) / .

mn mn mx mx

mn mn mn mx mx mx

mn mx mn mn mx mx

mn mx mn mn

mn mx mn mn

mn mn mn mx

r r

r r r

r r

r r

r

r r r

      

         

        

      

     

      

   

   

  

  

  

  



  (9.19) 

 
In turn, the inequalities  
  
 4 2 1/ ( ) / ( ) / ( ) /mn mx mn mn mx mx mx mnr r r                  (9.20) 

 
and 
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       


 


 


 
1 2 4

1 1 1 1
1 2 4/ / / /

f mx mn l

mx mn mx mx mn mn mn mxr r r r

   

          
  

        
  

      (9.21) 

 
with i  indicating membership in i  for i = 1, 2 and 4 provide summaries for Case 1 (i.e., 

/ /mn mn mx mx   < ) of (i) the definitions of the nonnull sets 1 2 4,  and    and (ii) the 

relationships between these sets.  
 
 The relationships formally summarized in Eqs. (9.20) and (9.21) are illustrated in Fig. 1a,b for 
a notional link defined in Table 1 with properties consistent with Case 1 (i.e., for 

/ /mn mn mx mx   < ). Specifically, Fig. 1b shows the relationships between the function r() = 

( ) / ( )q p   and the times f , mx , mn  and l   defined in Eqs. (4.3)-(4.9). Further, the indicated 

times and their relationships to link failure properties are illustrated in Fig. 1a,b. The sets 

1 2 4,  and    correspond to the intervals [ , ]f mx  , [ , ]mx mn  and [ , ]mn l  on the abscissas in Fig. 

1a,b. 
 
 For Case 2 (i.e., / /mx mx mn mn   < ), derivations analogous to those shown in Eqs. (9.16)-

(9.19) for Case 1 establish the following forms for 1 2 3 4, ,  and     : 

 

 
 

    
1

1 1

: / ( ) /

: / ( ) / ,

mn mn mx mn

mx mn mn mn

r

r r r

     

      

  

  


  (9.22) 

 
  2 : / ( ) / ,mn mn mx mxr            (9.23) 

 

 
 

    
3

1 1

: / ( ) /

: / / ,

mx mx mn mn

mn mn mx mx

r

r r

     

      

  

  


  (9.24) 

 
and 
 

 
 

    
4

1 1

: / ( ) /

: / / .

mn mx mx mx

mx mx mn mx

r

r r

     

      

  

  


  (9.25) 

 
In turn, the inequalities  
  
 4 3 1/ ( ) / ( ) / ( ) /mn mx mx mx mn mn mx mnr r r                  (9.26) 

 
and 
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        


 


 

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31 4

1 1 1 1
1 3 4/ / / /

f mn mx l

mx mn mn mn mx mx mn mxr r r r

   

          
 

        
 

      (9.27) 

 
with i  indicating membership in i  for i = 1, 3 and 4 provide summaries for Case 2 (i.e., 

/ /mx mx mn mn   < ) of (i) the definitions of the nonnull sets 1 3 4,  and     and (ii) the 

relationships between these sets. 
 
 The relationships formally summarized in Eqs. (9.26) and (9.27) are illustrated in Fig. 1c,d for 
a notional link defined in Table 1 with properties consistent with Case 2 (i.e., for 

/ /mx mx mn mn   < ). Specifically, Fig. 1d shows the relationships between the function r() = 

( ) / ( )q p   and the times f , mx , mn and l . Further, the indicated times and their relationships 

to link failure properties are illustrated in Fig. 1c,d. The sets 1 3 4,  and    correspond to the 

intervals [ , ]f mn  , [ , ]mn mx  and [ , ]mx l  on the abscissas in Fig. 1c,d. Although f , mx , mn  and 

l are defined the same for Case 1 and Case 2, their ordering in time is different (i.e., 

f mx mn f   < < <  for Case 1 and f mn mx f   < < < for Case 2). 

 
 For Case 3 (i.e., / /mn mn mx mx   = ), derivations analogous to those shown in Eqs. (9.16)-

(9.19) for Case 1 establish the following forms for 1 2 3 4, ,  and     : 

 

 
 

    
1

1 1

: / / ( ) /

: / / ,

mn mn mx mx mx mn

mx mn mx mx

r

r r

       

      

   

  


  (9.28) 

 

 
 

  
2 3

1

: / ( ) /
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r

r
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 
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  (9.29) 

and 
 

 
 

    
4
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: / ( ) /
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mn mx mx mx

mx mx mn mx

r
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
  (9.30) 

 
In turn, the inequalities  
  
 4 1/ ( ) / ( ) /mn mx mx mx mx mnr r             (9.31) 

 
and 
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  

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
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1 1 1
1 4/ / /

f mx l

mx mn mx mx mn mxr r r
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       
 

     
 

     (9.32) 

 
with i  indicating membership in i  for i = 1 and 4 provide summaries for Case 3 (i.e., 

/ /mn mn mx mx   = ) of (i) the definitions of the nondegenerate sets 1 4 and    and (ii) the 

relationships between these sets. Similarly to the examples for Cases 1 and 2 in Fig. 1a-d, the 
relationships formally summarized in Eqs. (9.31) and (9.32) for Case 3 are illustrated in Fig. 1e,f 
with 1 4 and    corresponding to the intervals [ , ]f mn mx    and [ , ]mn mx l   on the abscissas 

in Fig. 1e, f. 
 
 Definitions of the sets 1 2 3 4, ,  and      initially defined in Eqs. (9.9)-(9.12) for Cases 1, 2, 3 

defined in Eqs. (9.13)-(9.15) are summarized in Table 4. The role of 1 2 3 4, ,  and      is to identify 

the intervals of definition for [ ( ), ( )]mn mxp p   with 
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


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  (9.33) 

 
as summarized in Eqs. (9.4)-(9.8) and illustrated in Fig. 1 and Fig. 8. 

9.4 Density Function for   Conditional on Link Failure at Time   

 The density function ( | )Pi id p    for p defined on ( | )i ip     for i = 1, 2, 3, 4 can be 

obtained from the corresponding density function ( | )Ai id    for where  
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  (9.34) 

 
is the corresponding sample space for . Specifically, given that p is defined by p() = ( )p  , 

the density function ( | )Pi id p   for p defined on ( | )i ip    for i = 1, 2, 3, 4 is given by 

 
    ( | ) 1 / ( ) / ( ) |Pi i Ai id p p d p p         (9.35) 
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through an application of the relationship 
 
 ( ) (1 / ) ( / )U Xd u cx c d u c    (9.36) 

 
for (i) a constant c > 0, (ii) ( )Xd x  the density function for x on [ , ]mn mxx x , and (iii) ( )Ud u  the 

density function for u on  [ , ]mn mxcx cx  ([66], Table 7.1, p. 381). 

 
Table 4 Definition of sets 1 2 3 4, ,  and      initially defined in Eqs. (9.9)-(9.12) for Cases 1, 2, 3 

defined in Eqs. (9.13)-(9.15) with (i) f = first possible time for link failure, (ii) mx = time of 

maximum possible property value at link failure, (iii) mn = time of minimum possible property 

value at link failure, and (iv) l = last possible time for link failure. 

  
Case 1: / /mn mn mx mx   <  

 

    1 1
1 [ , ] : / /f mx mx mn mx mxr r              

    1 1
2 [ , ] : / /mx mn mx mx mn mnr r             

3    

    1 1
4 [ , ] : / ( ) /mn l mn mn mn mxr r r             

 
Case 2: / /mx mx mn mn   <  

 

    1 1
1 [ , ] : / ( ) /f mn mx mn mn mnr r r             

2     

    1 1
3 [ , ] : / /mn mx mn mn mx mxr r             

    1 1
4 [ , ] : / /mx l mx mx mn mxr r             

 
Case 3: / /mn mn mx mx   =  

 

    1 1
1 [ , ] : / /f mn mx mx mn mx mxr r                

    1 1
2 3 / : /mx mx mx mxr r            

    1 1
4 [ , ] : / /mn mx l mx mx mn mxr r               

______________________________________________________________________________ 
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 As indicated in Eq. (9.35), the determination of ( | )Pi id p    is straight forward provided the 

density function ( | )Ai id     for defined on ( | )i i     can be determined. The 

determination of ( | )Ai id     is now addressed. There is a certain level of complexity to this 

determination because the conditionality on the ratio r = r() = ( ) / ( )q p   that derives from the 

required equality ( ) ( )p q     results in ( | )Ai id     being dependent on the density 

functions ( )Ad   and ( )Bd   and  their associated intervals of definition  [ , ]mn mx   and 

[ , ]mn mx  . 

  
The derivation for ( | )Ai id     starts with a determination of the joint density function 

( / , )d u     for  u = /  and . In general, the joint density function d(x, y) for variables x 

and y with densities ( )Xd x  and ( )Yd y  is given by ([67], p. 88) 

 
 ( , ) ( | ) ( ) ( ) ( | ).X Y X Yd x y d x y d y d x d y x    (9.37) 

 
In consistency with Eq. (9.37), ( / , )d u     can be represented in two forms: 
 

 
( | / ) ( / )

( / , )
( ) ( / | ).

A U

A U

d u d u
d u

d d u

    
  

   
 

   
  (9.38) 

 
Further, the density function ( / )Ud u    is defined by 

 

      2( / ) / / d
mx

mn
U A Bd u u d d u




          (9.39) 

 
as stated in ([66], Table 7.2, p. 385), and the density function ( / | )Ud u    is defined by 

 
 2( / | ) ( / ) ( / )  with  ( ) /U Bd u u d u u u           (9.40) 

   
through an application of the relationship 
 

  2

( ) d ( ) / d [ ( )] for ( )

[ ] for ( ) / , ( ) / , 0,

U X

X

d u x u u d x u u u x

c u d c u u x c x x u c u c

 

   
  (9.41) 

 
where ( )Xd x  and ( )Ud u  are the density functions for x and u, respectively ([66], Eq. (2.93a, p. 

377). Eq. (9.36) is a special case of the first equality in Eq. (9.41). 
 
 Representations for the density function ( | / )Ad u   in Eq. (9.38) are given by 
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      

   

2

2

( | / ) ( / , ) / ( / )

( ) ( / | ) / ( / )

( )( / ) ( / )

/ / d

( ) ( / )
,

/ d

mx

mn

mx

mn

A U

A U U

A B

A B

A B

A B

d u d u d u

d d u d u

d u d u

u d d u

d d u

d d u









       
     

  

   

  

   

   

  









  (9.42) 

 
where (i) the first two equalities follow from Eq. (9.38), (ii) the third equality follows from Eqs. 

(9.39) and (9.40), and (iii) the fourth equality follows from the cancellation of 2u . In turn, the 
desired density function 
 

 

 

( | ) ( | / ( ) / ( ) ( )  for  )

( ) [ / ( )]

[ / ( )]d
mx

mn

Ai i Ai i

A B

A B

d d u q p r

d d r

d d r




        
   

    

     




 

  (9.43) 

 
is obtained for ( ) ( )p q    from the final equality in Eq. (9.42) by replacing u with ( )r  .     
 
 The final forms of the integral 
 

      ( ) / ( ) d
mx

mn
A BI r d d r




         (9.44) 

 
 in the denominator of Eq. (9.43), and hence the final forms for ( | )Ai id    , depend on which 

of the sets 1 2 3 4, , ,     defined in conjunction with Eqs. (9.4)-(9.8)   belongs to. This 

membership also determines the sample space associated with ( | )Ai id    ; specifically, the 

sample space for ( | )Ai id     is the set ( | )i i     as indicated in Eqs. (9.4)-(9.8). The final 

forms of the integral I(r() are now obtained and will depend on the subsets of [ , ]mn mx   on 

which either / ( ) mnr    or / ( )mx r    holds and, consequently, ( / ( )) 0Bd r   .  

 
 Membership of  in 1  requires that r() satisfies the inequalities

( ) ( )mn mn mx mxr r        , with the results that (i) / ( ) mnr    for  ( )mn mnr    <  

and (ii) / ( )mn mxr      for ( ) mn mxr      . As a consequence of the preceding 

inequalities, the final form of the integral in Eq. (9.44) for 1   is 
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     

       

   

1 1

0 0
( )

( )

( )

( ) | / ( ) d

/ ( ) d / ( ) d

/ ( ) d .

mx

mn

mn mx

mn mn

mx

mn

A B

r

A B A Br

A Br

I r d d r

d d r d d r

d d r





  

  



 

      

         

    

 

 

 





 





 
  (9.45) 

  
Membership of   in 2  requires that r() satisfies the inequalities ( ) ( )mn mn mx mxr r       
, with the results that (i) / ( ) mnr    for  ( )mn mnr    < , (ii) / ( )mn mxr      for 

( )mn mnr r     , and (iii) / ( )mx r    for ( ) mx mxr      . As a consequence of the 

preceding inequalities, the final form of the integral in Eq. (9.44) for 2   is 

 

 

     

       

   

   

2 2

0 0
( ) ( )

( )

0

( )

( )

( )

( ) | / ( ) d

/ ( ) d / ( ) d

/ ( ) d

/ ( )d .

mx

mn

mn mx

mn mn
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A B

r r

A B A Br

A Br

r

A Br

I r d d r

d d r d d r

d d r

d d r





   
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

 

 

 

      

         

    
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 



 

 







 







 


  (9.46) 

 
Membership of  in 3  requires that r() satisfies the inequalities ( ) ( )mn mn mx mxr r       
, with the result that / ( )mn mxr      for mn mx    . As a consequence of the preceding 

inequalities,  
 

      
0

3 3( ) | / ( ) d ,
mx

mn
A BI r d d r




      



  


  (9.47) 

 
for 3  , which is the same as integral in Eq. (9.44). Membership of  in 4  requires that r() 
satisfies the inequalities ( ) ( )mn mn mx mxr r        , with the results that (i)

/ ( )mn mxr      for ( )mn mxr      and (ii) / ( )mx r    for ( ) mx mxr      . As a 

consequence of the preceding inequalities, the final form of the integral in Eq. (9.44) for 4   is 
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     

       

   

4 4

0 0
( )

( )

( )

( ) | / ( ) d

/ ( ) d / ( ) d

/ ( ) d .

mx

mn

mx mx

mn mx
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A B

r

A B A Br

r

A B

I r d d r

d d r d d r

d d r





  
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 



      

         
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 

 

 





 





 
  (9.48) 

 
The results in Eqs. (9.45)-(9.48) and their role in the definition of ( | )Ai id     for i = 1, 2, 3, 4 

are summarized in Table 5. 
 
 The core relationships established in Eqs. (9.45)-(9.48) can be summarized as 
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   (9.49) 

 
and will be useful in later derivations. 
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Table 5 Summary of density functions ( | )Ai id     and corresponding CDFs ( | )Ai iCDF     

for i = 1, 2, 3, 4 for variable  conditional on link failure at time  and resultant ratio r() = 
( ) / ( )q p  . 

______________________________________________________________________________  

 
   

 

   
( )

1 1 1 1

( ) ( )

( ) / ( ) d( ) ( )
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A BrA B
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d d r d d r



 
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   

       
   

         
   



 
 

   
 

 
for  1 : ( ) ( )mn mn mx mxr r          , r() = ( ) / ( )q p  , and  1 1( | ) ( ) ,mn mxr       
_____________________________________________________________________________  
 

 
   

 
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( )

2 2 2 2( ) ( )
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   



 
 

   
  

 
for  2 : ( ) ( )mn mn mx mxr r          , r() = ( ) / ( )q p  , and  

 2 2( | ) ( ) , ( )mn mxr r            

______________________________________________________________________________ 
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 

   
  

 
for  3 : ( ) ( )mn mn mx mxr r          , r() = ( ) / ( )q p  , and  3 3( | ) ,mn mx            

______________________________________________________________________________ 
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for  4 : ( ) ( )mn mn mx mxr r          , r() = ( ) / ( )q p  , and 

 4 4( | ) , ( )mn mxr          

______________________________________________________________________________ 
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 Once the density functions ( | )Ai id     and associated intervals of definition  

[ ( ), ( )]mn mx     are determined as indicated in Eqs. (9.34) and (9.45)-(9.48), the corresponding 

CDFs ( | )Ai iCDF     are defined by integration of ( | )Ai id     from ( )mn   to  for 

[ ( ), ( )]mn mx     . Specifically, 
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  (9.50) 

 
where, for i  , the corresponding sample space ( | )i i     for  and the integral

( | )i iI     are defined in Eqs. (9.34) and (9.49), respectively. Together with the density 

functions ( | )Ai id    ,  the CDFs ( | )Ai iCDF     are summarized in Table 5. 

   
 A partial check on the correctness of the density functions ( | )Ai id     can be obtained by 

verifying that the integrals of these functions over their domains of definition ( | )i i     are 

equal to 1.0. This partial check follows immediately from the CDFs defined in Eq. (9.50). 
Specifically, evaluation of ( | )Ai iCDF     for the maximum value ( )mx   of  in the set 

( | )i i     results in ( ( ) | )Ai mx iCDF      = 1.0 as a consequence of the numerator and 

denominator in defining expression for ( ( ) | )Ai mx iCDF      being equal. Thus, the integral of 

( | )Ai id     over the corresponding sample space ( | )i i     for  is equal to 1.0.  

9.5 Density Function ( | )Pd p   for Link Property Conditional on Link Failure at Time

    

 Now that the density functions ( | )Ai id    , i = 1, 2, 3, 4, for are defined as summarized 

in Table 5, the density functions ( | )Pi id p    for p on 
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( ), ( )  for 3 (see Eq. (9.7))

( ), ( )  for 4 (see Eq. (9.8))
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    (9.51) 

 
can be obtained as indicated in Eq. (9.35). Specifically, 
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  (9.52) 

 
where (i) the first equality follows from Eq. (9.35), (ii) the second equality follows from the 
definitions of ( | )Ai id     as summarized in Table 5 with the associated integrals represented 

by [ ( ) | ]i iI r      summarized in Eq. (9.49), and (iii) the third equality follows from an algebraic 

rearrangement of terms. The density functions ( | )Pi id p    defined in Eq. (9.52) are summarized 

in Table 6. 
 

As done in Eq. (9.50) to obtain the CDFs ( ( ) | )Ai mx iCDF      for , the CDFs

( | )Pi iCDF p   , i = 1, 2, 3, 4, for p can be obtained by integrations of ( | )Pi id p    over the 

corresponding sample spaces ( | )i ip     for p. Specifically,      
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  (9.53) 

 
for ( | ) [ ( ), ( )]i i mn mxp p p p      . The integral in the numerator of the final term in the 

preceding equality can be rewritten through a change of variables as 
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  (9.54) 

 
In turn, the representation 
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results by combining the final expressions in Eqs. (9.53)  and (9.54). 
 
Table 6 Summary of density functions ( | )Pi id p    and corresponding CDFs ( | )Pi iCDF p      

for system property p conditional on link failure at time  and resultant ratio r() = ( ) / ( )q p  . 
_____________________________________________________________________________________ 
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for  1 : ( ) ( )mn mn mx mxr r          ,  r() = ( ) / ( )q p  , and

 1 1( | ) ( ), ( )mn mxp p q p            
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 for  2 : ( ) ( )mn mn mx mxr r          , r() = ( ) / ( )q p  ,  and

 2 2( | ) ( ), ( )mn mxp p q q            

_____________________________________________________________________________________ 

     

   

 

   

/ ( )
2

3 3 3 3

( ) / ( ) d/ ( ) / ( ) / ( )
( | ) , ( | )

/ ( ) d / ( ) d

mn

mx mx

mn mn

p p
A BA B

P P

A B A B

d d rp p d p p d p q
d p CDF p

d d r d d r




 

 

      
 

         
   



 
     

for  3 : ( ) ( )mn mn mx mxr r          , r() = ( ) / ( )q p  , and

 3 3( | ) ( ), ( )mn mxp p p p             
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for  4 : ( ) ( )mn mn mx mxr r          , r() = ( ) / ( )q p  , and

 4 4( | ) ( ), ( )mn mxp p p q          

_____________________________________________________________________________________ 
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 Next, substitutions in Eq. (9.55) for ( )mnp   as indicated for the sets ( | )i ip      

summarized in Eq. (9.51) and the integrals ( | )i iI     defined in Eqs. (9.45)-(9.48) produce the 

following representations for ( | )Pi iCDF p   : 
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  (9.56) 

 
with  1 1( | ) ( ), ( )mn mxp q p       ; 
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  (9.57) 

 
with  2 2( | ) ( ), ( )mn mxp q q       ; 
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  (9.58) 

 
with  3 3( | ) ( ), ( )mn mxp p p       ; and 
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  (9.59) 

 
with  4 4( | ) ( ), ( )mn mxp p q       . Together with the density functions ( | )Pi id p   , the 

CDFs ( | )Pi iCDF p    are summarized in Table 6. 

 
 A partial check on the correctness of the density functions ( | )Pi iCDF p    can be obtained 

by verifying that the integrals of these functions over their domains of definition ( | )i ip      

are equal to 1.0. This partial check follows immediately from the CDFs in Eqs. (9.56)-(9.59). 
Specifically, evaluation of ( | )Pi iCDF p    for the maximum value ( )mxp   of  in the set 

( | )i ip     results in ( ( ) | ) 1.0Pi mx iCDF p      as a consequence of the numerator and 

denominator in defining expression for ( | )Pi id p    being equal. Thus, the integral of 

( | )Pi id p    over the corresponding sample space ( | )i ip     for p is equal to 1.0. 

9.6 Representation of Joint Density Functions ( | ) ( )A Td d    and ( | ) ( )P Td p d    

 The joint density functions 
 
 ( , ) ( | ) ( )  and  ( , ) ( | ) ( )AT A T PT P Td d d d p d p d           (9.60) 

 
play a role in the derivation of several quantities of interest (e.g., cumulative distribution for link 
property at time of link failure in Sect. 10 and margins involving SL properties in Ref. [46]). As 
summarized below in Eqs. (9.61)-(9.63), the individual density functions ( | )Ad   , ( | )Pd p     

and ( )Td   have complicated forms that depend on the membership of  in one of the sets

1 2 3 4, , ,      defined and discussed in Sect. 9.2 and also listed in Table 4. Then, as shown in Eqs. 

(9.64) and (9.65), the effect of membership of  in one of the sets 1 2 3 4, , ,     is reduced for the 

joint density functions ( | ) ( )A Td d    and ( | ) ( )A Td d    defined in Eq. (9.60).        

  
 With the indicated restriction of  to 1 2 3 4, ,  or     , the representations for ( | )Ad   , 

( | )Pd p   and ( )Td   are 
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  (9.61) 

 
as indicated in Table 5, 
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  (9.62) 

 
as indicated in Table 6, and 
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  (9.63) 
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as a consequence of the definition of ( )Td   in Eq. (8.2) and the equalities summarized in Eq. 

(9.49). 
 
 Given the relationships in Eqs. (9.61)-(9.63), the joint density functions ( | ) ( )A Td d    and 

( | ) ( )P Td p d   can be expressed as 
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  (9.64) 
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  (9.65) 

 
with the final equalities in Eqs. (9.64) and (9.65) resulting from the cancellation of terms in the 
numerator and denominator of each of the products   
 
 ( | ) ( | )  and  ( | ) ( | ).Ai i Ti i Pi i Ti id d d p d               (9.66) 
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10. Double Integral Representation of ( | [ , ])P mnCDF p t t  Based on Time   and  

Failure Value p  

 The results in Table 6 for link properties at specific link failure times provide a basis for 
determining the cumulative probability ( | [ , ])P mnCDF p t t  for link property p at time   of link 

failure for link failure times in the time interval [ , ]mnt t . Specifically, the representation for 

( | [ , ])P mnCDF p t t  in Eq. (8.1) for ( )p   increasing and ( )q   either decreasing or constant-valued 

can be restated as 
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  (10.1) 

 
with (i) ( )mn p  = first time with a link failure value p , (ii) ( , )mx t p  = min{t, ( )mx p  = last time 

with a link failure value p }, (iii) ( , ) min{ , ( )}mx mxp p p p   for ( ) ( , )mn mxp t p    , (iv) 

( | )Pd p   is the density function for link failure value conditional on link failure at time , (v)

( )Td   defined in Eqs. (8.2) and (9.63), and (vi) the substitution producing Equality 4 following 

from Eq. (9.65). As shown in Eq. (12.9), the quotient 2/ ( )p p   in Eq. (10.1) can be removed by 
the change of variables ( ) / ( )p p p   . For convenience, the limits of integration in Eq. (10.1) 
are summarized in Table 7. 
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Table 7 Integration limits in Eqs. (10.1) and (10.10) for ( )p   increasing and ( )q   either 
decreasing or constant-valued. 
______________________________________________________________________________ 
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 Examples of the regions integrated over in Eq. (10.1) are presented in Fig. 13. In Fig. 13a, p = 
5.75 and the highlighted region corresponds to the region integrated over to determine  
 
 ( 5.75 | [ ( ), ( , )]) (5.75 | [ , ])  for  P mn mx P f l lCDF p p t p CDF t         (10.2) 

 
with the time-dependent property bounds defined by 
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The region integrated over to determine 
 
  ( 5.75 | [ ( ), ( , )]) (5.75 | [ , ])  for  P mn mx P f f lCDF p p t p CDF t t          (10.5) 

 
is the subset of the highlighted region in Fig. 13a bounded on the right by a vertical line originating 
at t on the time axis (e.g., as illustrated by 1 2 3 4, , ,t t t t  in Fig. 13a). In Fig. 13b, p = 4.5 and the 

highlighted region corresponds to the region integrated over to determine  
 
 ( 4.5 | [ ( ), ( , )]) (4.5 | [ (4.5), ])  for  P mn mx P f l lCDF p p t p CDF t         (10.6) 

 
with ( )mnp   defined the same as in Eq. (10.3) and 
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  (10.7) 

 
The region integrated over to determine 
 
 ( 4.5 | [ ( ), ( , )]) (4.5 | [ (4.5), ])  for  (4.5)P mn mx P f f lCDF p p t p CDF t t          (10.8) 

 
is the subset of the highlighted region in Fig. 13b bounded on the right by a vertical line originating 
at t on the time axis (e.g., as illustrated by 1 2 3, ,t t t  in Fig. 13b). 
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Fig. 13 Illustration of regions integrated over to obtain ( | [ , ])P mnCDF p t t  in Eq. (10.1) for Link 9 

defined by ( ) 2 0.4p    , ( ) 8 0.6q    , [ , ] [0.67,1.65]mn mx   , and [ , ]mn mx    

[ , ]mn mx    [0.75,1.25] : (a) Link 9 with 5.75p  ,  and (b) Link 9 with 4.5p  .  

 
The representation for ( | [ , ])P mnCDF p t t  in Eq. (10.1) and the representations for 

( | [ , ])P mnCDF p t t  developed in Sect. 4 and summarized in Table 2 do not look very similar. 

However, they are equivalent as shown in Sect. 12.  
 

Most use of the representation for ( | [ , ])P mnCDF p t t  in Eq. (10.1) will probably be for 

 
 ( )  last time with a link failure value .mxt p p     (10.9) 

 
In this case, the representation for ( | [ , ])P mnCDF p t t  in Eq. (10.1) becomes 
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  (10.10)  

  
 Although the representation for ( | [ , ])P mnCDF p t t  in Eq. (10.1) looks very complicated, it 

probably provides a more efficient structure for a quadrature procedure to evaluate the CDF 
defined by 
 
  , ( | [ ( ), ( , )])P mn mxp CDF p p t p    (10.11) 

 
for 
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 1 1[ ( / )] [ ( / )]mn mn mn mn mx mx mx mxp r p p p p r            (10.12) 

 
than the integral representations for ( | [ , ])P mnCDF p t t  developed in Sect. 4 and summarized in 

Table 2. This statement is made because evaluation of the integral in Eq. (10.1) involves integrating
( , )PTd p   over a subregion ( )p  of the region   defined by the curves ( )mn p  , ( )mx p  ,

( )mnq   and ( )mxq   as illustrated in Fig. 1 with time  on the abscissa and property value  p on 

the ordinate. Specifically, (i) the upper boundary of ( )p  is defined by a horizontal line 
originating from a value of p on the ordinate and (ii) the right boundary is defined by a vertical 
line originating from a value t on the abscissa. As a result, the numerical evaluation of

( | [ ( ), ( , )])P mn mxCDF p p t p   can make full use of the calculations performed to obtain

( | [ ( ), ( , )])P mn mxCDF p p t p     for mnp p p   as this evaluation for increasing values of  p simply 

involves systematically increasing the upper limit of integration for p. A similar relationship holds 
for increasing values for t. However, the need to include the derivatives d[1/ ( )] / dr    in the 
integrand could pose a numerical challenge. 
 

  If desired, ( | [ , ])P mnCDF p t t  can also be defined with the order of integration in Eq. (10.1) 

reversed so that the outer integral is on property value p and the inner integral is on time  . The 
result of this reversal is  
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  (10.13) 

 
with the limits of integration defined in Table 8. As the outer variable of integration in Eq. (10.13)  
is property value, the double integral in Eq. (10.13)  may be more convenient for approximating 
the CDF indicated in Eq. (10.11) than the double integral in Eq. (10.1). 
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Table 8 Integration limits in Eq. (10.13) for ( )p   increasing and ( )q   either decreasing or 
constant-valued. 
______________________________________________________________________________ 
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11. Illustration and Verification of Double Integral Representation of 
( | [ , ])P mnCDF p t t  Based on Time   and Failure Value p 

 As an example, two evaluations of the CDFs defined by ( | [ , ( )])P mn mxCDF p p   for

mn mxp p p   and the links defined in Table 1 and illustrated in Fig. 1 are shown in Fig. 14, with 

(i) one evaluation obtained with sampling as indicated in Eq. (6.1) with samples of size nS = 106 
and (ii) the other evaluation obtained by numerical approximation of the double integral in Eq. 
(10.10) with the MATLAB program TwoD [55]. The similarity of the CDFs obtained with the two 
evaluation procedures provides a strong verification result that the representations for

( | [ , ])P mnCDF p t t  and ( | [ , ( )])P mn mxCDF p p   in Eqs. (10.1) and (10.10) have been correctly 

derived. Further, as shown by the essentially identical match of the results for the sampling-based 
procedure and the quadrature-based procedure in Fig. 11a, the numerical approximations of the 
double integral in Eq. (10.10) also matches the numerical approximations of the integrals derived 
in Sect. 4 and summarized in Table 2. 
 

    
 
Fig. 14 Two evaluations of the CDFs defined by ( | [ , ( )])P mn mxCDF p p    for mn mxp p p   and 

Links 1, 2, 3 defined in Table 1 and illustrated in Fig. 1, with (i) , ( | [ , ( )])PQ i mn mxCDF p p   for 

Link i obtained by numerical approximation of the double integral in Eq. (10.10) and (ii)

, ( | [ , ( )])PS i mn mxCDF p p   for Link i obtained with sampling as indicated in Eq. (6.1).  

 
 An important aspect of the positive verification results for Eqs. (10.1) and (10.10) is that a 
number of results obtained as parts of their derivation will be important components of results 
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obtained in later analyses [46; 47]. The verification of Eqs. (10.1) and (10.10) provides a strong 
indication that results underlying their derivation have also been derived correctly.    
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12. Equivalence of Different Representations for ( | [ , ])P mnCDF p t t  

12.1 Preliminaries: Equivalence of Different Representations for ( | [ , ])P mnCDF p t t  

 The equivalence of the representation for ( | [ , ])P mnCDF p t t  in Eq. (10.1) and the 

representations for ( | [ , ])P mnCDF p t t  developed in Sect. 4 and summarized in Table 2 (i.e., for the 

three configurations defined in Eqs. (4.16)-(4.18) is now established. As in sect. 4, the results are 
derived for ( )p   increasing and ( )q   decreasing (i.e., for Case 1 as defined in Eq. (2.8)), which 

assures that 1( )p  , 1( )q   and 1( )r    exist. Establishing this equivalence provides an additional 

verification of the correctness of both (i) the representations for  ( | [ , ])P mnCDF p t t  derived in Sect. 

4 and (ii) the representation for ( | [ , ])P mnCDF p t t  in Eq. (10.1). 

   
 In concept, the desired equivalence can be obtained with use of the change of variables theorem 
for double integrals (see Ref. [68], Sect. 14.4, for technical details). Specifically, this theorem 
states that 
 

 [ ( , ), ( , )] | ( , ) | d d ( , )d df x u v y u v D u v u v f x y x y 
 

  (12.1) 

 
for (i) the mapping 
 
 ( , ), ( , )x x u v y y u v    (12.2) 
 
from the space ~ {( , )}u v  to the space ~ {( , )}x y  and (ii) 
 

 
( , ) / ( , ) /

( , ) .
( , ) / ( , ) /

x u v u x u v v
D u v

y u v u y u v v

   

   

  (12.3) 

 
Use of the indicated change of variables theorem with the integral in Eq. (10.1) defining 

( | [ , ])P mnCDF p t t  produces 

 

       

        
 

( , ) ( , ) 2

( ) ( )

( , ) ( , )

( ) ( )

( | [ , ]) ( | [ ( ), ( , )])  for ( | [ , ]) 0

d 1 / ( ) / d / ( ) / ( ) / ( ) d d

| ( , ) | [ ( , ), ( , )]d d

mx mx

mn mn

mx mx

mn mn

P mn P mn mx P mn

t p p p

A Bp p

t p p p

p p

CDF p t t CDF p p t p CDF p t t

r p p d p p d p q p

D f p p p

d

 

 

 

 

 

     

      

 







 

 

   

  
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  (12.4) 

 
with 
 
 ( , ) / ( ), ( , ) / ( ),p p p p p q                (12.5) 
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 [ ( , ), ( , )] [ / ( ), / ( )] [ / ( )] [ / ( )],A Bf p p f p p p q d p p d p q                (12.6) 
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  (12.7) 

  
and   defined by the transformation of 
 
 [ ( ), ( , )] [ ( ), ( , )]mn mx mn mxp t p p p p       (12.8) 

 
as indicated in Eq. (12.5). The integrand in the final integral in Eq. (12.4) matches the integrands 
in the representations for ( | [ , ])P mnCDF p t t  developed in Sect. 4 and summarized in Table 2. 

However, deriving the corresponding limits of integration that in effect define the set  is 
difficult. Fortunately, the change of variables leading to the final integral in Eq. (12.4) can be 
derived using specific properties of the first integral in Eq. (12.4) in a manner that leads to 
definitions for  that correspond to specific definitions for  . 
 
 The indicated change of variables is developed in the following manner starting from the 
representation for ( | [ , ])P mnCDF p t t  in Eq. (10.1): 
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where: 
 
 (i) Equalities 1 and 2 follow from Eq. (10.1) with  
 
 ( , ) min{ , ( )}  for  ( ) ( )mx mx mn mxt t p t p p t p     <   (12.10) 

 
as indicated in the definition of ( , )mx t p  following Eq. (10.1). As examples, regions potentially 

being integrated over are illustrated by the high-lighted areas in Fig. 13a and Fig. 13b with the 
limits of integration for   defined by the intervals 
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for ( )mn p t   . 
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 (ii) Equalities 3 and 4 result from a change of variables with ( ) / ( )p p p   . In continuation 
of the example in Fig. 13a, the region potentially being integrated over is transformed into the 
region shown in Fig. 15a. The limit of integration for  defined by the interval [ ( ), ] [ , ]mn fp t t    

on the abscissa is unchanged, but the limits of integration for   on the ordinate are now defined 
by the intervals 
 
 [ ( ), ( , )] [ ( ) / ( ), ( , ) / ( )]mn mx mn mxp p p p p p          (12.14) 
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  (12.16) 

 
The examples in Fig. 13a and Fig. 15a are for Link 9 with f mxp p p  . Additional examples for 

Link 9 with mn fp p p< <  are given in Fig. 13b and Fig. 15b. For this example, ( )mn   is defined 

the same as in Eq. (12.15), and ( , )mx p   is defined by 
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  (12.17) 

 
This distinction is important because it affects the range of  values that can result in link failure 
as illustrated in Fig. 15a and Fig. 15b. 
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Fig. 15 Illustration of change of variables ( ) / ( )p p p    in Equalities 3 and 4 of Eq. (12.9): (a) 
Link 9 with 5.75p  ,  and (b) Link 9 with 4.5p  .  
 
  (iii) Equality 5 results from a reversal in the order of integration. After this reversal, the outer 
integral is over an interval [ ( ), ( )]mn mxt p   of values for  and the inner integral is over intervals

[ ( ), ( , )]mn mx t     of values for  . As illustrated by the examples in Fig. 15, [ ( ), ( )]mn mxt p    is 

an interval of values for   on the ordinates of Fig. 15a and Fig. 15b, and  [ ( ), ( , )]mn mx t     is an 

interval of values for   on the abscissas of Fig. 15a and Fig. 15b. The definitions of ( )mn   and 

( , )mx p   in Eqs. (12.15)-(12.17) lead to the following definitions ( )mn   and ( )mx p : 
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from Eq. (12.15), and 
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consistent with Eqs. (12.16) and (12.17) as previously indicated in Eq. (4.15). Further, the 
minimum and maximum possible values ( )mn   and ( )mx   for  conditional on a specific value 

for  are 
 
 1( ) ( / )  from  = ( ) ( ) for ( )mn mn mn mn mn mxr r p                 (12.20) 
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and 
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 In turn, the value of ( , )mx t   depends on the values for t,   and ( )mx  . Specifically, 

 
 ( , )   for  ( ) ( )mx mn mx mxt t t p           (12.22) 
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by 1t ;    

 

 
1

  for  ( ) ( , ) / ( )
( , )

( ) ( / )  for  ( , ) ( )

mn mx
mx

mx mx mx

t t p t p p t
t

p p p t p

  
 

     

   
  

  (12.23) 

 
 for mn mxp p p   and ( ) ( )f lp t p <  as illustrated by (i) the region in Fig. 15a bounded on 

the right by 2t , and (ii) the regions in Fig. 15b bounded on the right by 1t  and 2t ; and 
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  (12.24) 

 
for l mxp p p   and ( )l lp t <  as illustrated by (i) the regions in Fig. 15a bounded on the 

right by 3t  and 4t , and (ii) the region in Fig. 15b bounded on the right by 3t . 

 
 (iv) Equalities 6 and 7 result from a change of variables with ( ) / ( )r    . After the change 

of variables, the outer integral is still over an interval [ ( ), ( )]mn mxt p   of values for  and the 

inner integral is over intervals  / [ ( )], / [ ( , )]mn mxr r t       of values for  . Specifically,

/ [ ( )]mnr    is defined by 

 
 1/ [ ( )] / [ ( / )]  for ( )mn mn mn mn mxr r r p               (12.25) 

 
with ( )mn   defined in Eq. (12.20), and / [ ( , )]mxr t      is defined by (a) 

 
 / [ ( , )] / ( )  for  ( ) ( , )mx mn mx mxr t r t t p t             (12.26) 
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with ( , )mx t   defined in Eq. (12.22)  for f mxp p p   and ( )f ft p   , (b) 

 

     
1 1
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  (12.27) 

 
 with ( , )mx t  defined in Eq. (12.23)  for mn mxp p p   and ( ) ( )f lp t p < , and (c) 
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  (12.28) 

 
with ( , )mx t  defined in Eq. (12.24) for l mxp p p   and ( )l lp t < . 

12.2 Representation of ( | [ , ])P mnCDF p t t  for Configuration 1 in Eq. (4.16) 

The equivalence of the representations for ( | [ , ])P mnCDF p t t  in Eqs. (4.25) and (12.9) for the 

conditions imposed on t and p for Configuration 1 (i.e., f mxp p p   with ( )f ft p   ) is 

now established. The indicated conditions on t and p for Configuration 1 exactly match the 
conditions in the example in  Fig. 13a and Fig. 15a used to illustrate Eq. (12.9) when t is assumed 
to satisfy the equality ( )f ft p   . In this case, the final representation for ( | [ , ])P mnCDF p t t  

in Eq. (12.9) is 
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<

  (12.29) 

 
with (i) ( )mn t  defined the same in Eqs. (4.20) and (12.18), (ii) ( , )mx mxt p   defined in Eq. 

(12.19), (iii) / [ ( )]mn mnr     defined in Eq. (12.25), and (iv) / [ ( , )] / ( )mxr t r t     defined 

in Eq. (12.26) and the notation ( , ) / ( )F t r t    used in Eq. (4.25). As comparison of the results 
in Eqs. (4.25) and (12.29) shows, the derivations for Eqs. (4.25) and (12.9) produce equivalent 
representations for ( | [ , ])P mnCDF p t t  for Configuration 1 (i.e., f mxp p p   with   

( )f ft p   ). 
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12.3 Representation of ( | [ , ])P mnCDF p t t  for Configuration 2 in Eq. (4.17) 

The equivalence of the representations for ( | [ , ])P mnCDF p t t  in Eqs. (4.37) and (12.9) for the 

conditions imposed on t and p for Configuration 2 (i.e., mn mxp p p   with ( ) ( )f lp t p < ) is 

now established. The integral in Equation 7 of Eq. (12.9) can be divided into two integrals with 
the result that ( | [ , ])P mnCDF p t t  then has the form 

 

   ( , ) / [ ( , )] ( ) / [ ( , )]
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<

  (12.30) 

 
with (i) ( )mn t   defined in Eq. (12.18), (ii) ( , ) / ( )mx p t p p t    defined in Eq. (12.16), (iii) 

/ [ ( )]mn mnr      defined in Eq. (12.25), (iv) / [ ( , )]mxr t    defined in Eq. (12.27), and (v) 

( )mx p  defined the same in Eqs. (4.15) and (12.19). Substituting the values for 

( , ) / ( )mx p t p p t  , / [ ( )]mn mnr      and / [ ( , )]mxr t    into Eq. (12.30) produces 
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  (12.31) 

 
As comparison of the results in Eqs. (4.37) and (12.31) shows, the derivations for Eqs. (4.25) and 
(12.9) produce equivalent representations for ( | [ , ])P mnCDF p t t  for Configuration 2 (i.e., 

mn mxp p p   with ( ) ( )f lp t p < ). 

12.4 Representation of ( | [ , ])P mnCDF p t t  for Configuration 3 in Eq. (4.18) 

The equivalence of the representations for ( | [ , ])P mnCDF p t t  in Eqs. (4.57) and (12.9) for the 

conditions imposed on t and p for Configuration 3 (i.e., l mxp p p   with ( )l lp t < ) is now 

established. The integral in Equation 7 of Eq. (12.9) can be divided into three integrals with the 
result that ( | [ , ])P mnCDF p t t  then has the form 
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  (12.32) 
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with (i) ( )mn t  defined in Eq. (12.18), (ii) / [ ( )]mn mnr      defined in Eq. (12.25), (iii) 

( , ) / ( )mx p t p p t  , [ , ( )] / [ ( )]mx l lp p p p p    and / [ ( , )]mxr t    defined in Eq. (12.28) and 
1( ) ( / )l mxp q p   defined in Eq. (4.12), and (iv) ( )mx p  defined in Eq. (12.19). Substituting 

the indicated values for / [ ( )]mnr   , ( , )mx p t , [ , ( )]mx lp p   and / [ ( , )]mxr t    into Eq. 

(12.32) produces 
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  (12.33) 

 
which is the same as the representation for ( | [ , ])P mnCDF p t t  in Eq. (4.57). As comparison of the 

results in Eqs. (4.57) and (12.31) shows, the derivations for Eqs. (4.57) and (12.9) produce 
equivalent representations for ( | [ , ])P mnCDF p t t  for Configuration 3 (i.e., l mxp p p   with 

( )l lp t < ). 
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13. Summary Discussion  

Weak link/strong link (WL/SL) systems are important components in the overall design of 
high consequence systems. In such systems, loss of assured safety (LOAS) occurs under accident 
conditions (e.g., a fire) when SL failures place the overall system in a potentially operational mode 
before deactivation of the overall system as a result of WL failures. In this presentation, multiple 
representations are developed and illustrated for the distribution of link property values at the time 
of link failure in the presence of aleatory uncertainty in link properties. Specifically, two integral-
based representations and one sampling-based representation for the distribution of link property 
values at the time of link failure are developed. 

The derivation and numerical implementation of the three representations are independent of 
each other even though they are intended to produce the same distribution of link property values 
at the time of link failure. As demonstrated, all three derivations and their associated numerical 
implementations result in the same distributions of link failure. This agreement provides a strong 
verification result that all three derivations are correct. 

Of the three derivations, the sampling-based (i.e., Monte Carlo) procedure is the easiest to 
understand and implement. However, verification of sampling-based procedures can be difficult. 
Thus, even though the integral-based representations may not be the preferred representations from 
an explanatory and implementation perspective, their existence provides a way to provide 
independently obtained results for use in verifying the correctness of the sampling-based 
procedure. 

In addition to the distributions for link property values at the time of link failure, a number of 
intermediate results are also obtained that will be extensively used in two following reports on (i) 
time and failure property margins for systems involving multiple WLs and SLs [46] and (ii) delays 
in link failure time that are functions of link property value at the time of precursor link failure 
[47] . 
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