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Abstract

Representations are developed and illustrated for the distribution of link property values at the
time of link failure in the presence of aleatory uncertainty in link properties. The following topics
are considered: (i) defining properties for weak links and strong links, (ii) cumulative distribution
functions (CDFs) for link failure time, (iii) integral-based derivation of CDFs for link property at
time of link failure, (iv) sampling-based approximation of CDFs for link property at time of link
failure, (v) verification of integral-based and sampling-based determinations of CDFs for link
property at time of link failure, (vi) distributions of link properties conditional on time of link
failure, and (vii) equivalence of two different integral-based derivations of CDFs for link property
at time of link failure.
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NOMENCLATURE

Abbreviation

Definition

CDF cumulative distribution function

DOE Department of Energy

LOAS loss of assured safety

NNSA National Nuclear Security Administration
PLOAS probability of loss of assured safety
QMU quantification of margins and uncertainty
SL strong link

SNL Sandia National Laboratories

WL weak link




1. Introduction

Representations for the probability of loss of assured safety (PLOAS) for weak link
(WL)/strong link (SL) systems [1-6] involving multiple time-dependent failure modes in the
presence of both aleatory and epistemic uncertainty [7-17] are developed and illustrated in Ref.
[18]. As described in Ref. [18], loss of assured safety (LOAS) occurs under accident conditions
(e.g., a fire) when SL failures place the overall system in a potentially operational mode before
deactivation of the overall system as a result of WL failures. In the following, representations are
developed and illustrated for the distribution of link property values at the time of link failure in
the presence of aleatory uncertainty in link properties. The presented work has been performed in
support of the National Nuclear Security Administration’s (NNSA’s) mandate for the
quantification of margins and uncertainties (QMU) in analyses of the United States’ nuclear
stockpile (see Refs. [19-22] for summary discussions of NNSA’s mandate for QMU, Refs. [23-
33] for additional background on the development of NNSA’s mandate for QMU, and Refs. [34-
45] for recent work on the implementation of NNSA’s mandate for QMU).

The following topics are considered in this presentation: (i) defining properties for WLs and
SLs (Sect. 2), (i1) cumulative distribution functions (CDFs) for link failure time (Sect. 3), (iii)
integral-based derivation of CDFs for link property at time of link failure (Sects. 4, 5, 8 and 10),
(iv) sampling-based approximation of CDFs for link property at time of link failure (Sect. 6), (v)
verification of integral-based and sampling-based determinations of CDFs for link property at
time of link failure (Sects. 7 and 11), (vi) distributions of link properties conditional on time of
link failure (Sect. 9), and (vii) equivalence of two different integral-based derivations of CDFs for
link property at time of link failure (Sect. 12). The presentation then ends with a concluding
discussion (Sect. 13).

The results for link failure properties developed in this presentation will be extensively used
in following reports on (i) time and failure property margins for systems involving multiple WLs
and SLs [46] and (i) delays in link failure time that are functions of link property value at the time
of precursor link failure [47].

This report and the two associated reports [46; 47] are part of a sequence of results related to
WL/SL systems [18; 48-51]. The earlier results deal primarily with the time at which WL/SL
systems fail and the resultant probability that LOAS will occur. The probability that LOAS will
occur is usually the outcome of greatest interest in the analysis of a WL/SL system. However, an
over concentration on the final outcome of a complex analysis can lead to (i) loss insights and
understanding with respect to the overall analysis and (ii) a possible failure to recognize errors that
are present in the analysis. For these reasons, this report and the two indicated following reports
deal with internal analysis results and additional summary results that can provide additional
information in an analysis of a WL/SL system, including (i) times and property values at which
individual links fail [18], (ii) times and property values at which systems of WLs or SLs fail [46],
(i11) SL property values at which LOAS occurs [46], (iv) time and property value margins related
to the occurrence of LOAS [46], and (V) a variety of verification procedures including comparisons
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of LOAS related results obtained with quadrature-based procedures and sampling-based
procedures [46; 47].
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2. Link Properties

In a prior publication [18], representations for PLOAS are developed for systems in which the
failure time CDF for a single WL or SL is based on the following assumed properties of that link
for a time interval ¢, <¢<t¢ _, where ¢, and ¢, define the endpoints of the time interval

considered for analysis:

p(t) = nondecreasing positive function defining nominal link property forz, <t<¢ ., (2.1)

g (t) = nonincreasing positive function defining nominal failure value for link property

2.2

for¢,, <t<t,., 22)

d ,(ax) = density function for a positive variable o used to characterize aleatory 23)
uncertainty in link property, '

dz () = density function for a positive variable B used to characterize aleatory 2.4)
uncertainty in link failure value, '

p(t|a)=ap(t) = link property value forz, <t <¢ _given a, (2.5)

and
q(t| B) = Pq(t) = link failure value for ¢, <t <t given f. (2.6)

Further, d ,(a) and dg (/) are assumed (i) to be defined on intervals [e,,,,,,. ] and [B,,,, 5, ]

and (ii) to equal zero outside these intervals. Although this does not have to be the case, it is
anticipated that o and £ will be assigned distributions with a mode of 1.0 in most analyses so that
p(t) and g(¢) will be the modes (i.e., most likely values) for p(¢|«) and g(¢|5).

For given values for & and /£, link failure occurs at the time ¢ at which

ap(t) = pq (1), (2.7)

which corresponds to the time at which the property value curve ap(¢) and crosses the failure
value curve [q(?).

As indicated in Egs. (2.3) and (2.4), the distributions associated with the density functions
d ,(a) and dgz(f) are used to characterize aleatory uncertainty (i.e., random variability associated

with the property value and failure value functions p(¢) and g(¢)). However, if desired for a
specific analysis, d ,(a) and d,z(f) could, as an alternative, be defined and used to characterize

epistemic uncertainty (i.e., lack of knowledge about the appropriate value for a quantity that has a
fixed but poorly known value in the context of the analysis under consideration). In a previous
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example analysis involving 5 SLs and 2 WLs, each link was assumed to have associated aleatory
uncertainty characterized by independent density functions d,(«) and dg(f). Further, each
distribution for aleatory uncertainty was assumed to be epistemically uncertain due to epistemic
uncertainty with respect to a parameter used in its definition (i.e., an epistemically uncertain
standard deviation for normal distributions and an epistemically uncertain mode for triangular
distributions; see Ref. [18], Sect. 10, for details). Thus, many possibilities exist for the possible
use of d ,(a) and dgz(f) in future analyses.

To avoid excessively complex notation, two important special cases of the definitions for p(¢)
and g(¢) in Egs. (2.1) and (2.2) are considered in this presentation for the derivation of closed-

form integral representations for the distribution of property values at which an individual link
could fail:

Case 1 ~ p(¢) increasing and ¢(¢) decreasing (2.8)
and

Case 2 ~ p(¢) increasing and g (¢) constant valued. (2.9)

Further, d[g(¢)/ p(¢)]/dt is assumed to exist on [z, ¢ _] except for at most a finite number of

values for ¢. In addition to closed-form integral representations for the distribution of property
values at which an individual link could fail, sampling-based procedures for the estimation of the
distribution of property values at which an individual link could fail are also presented. The
sampling-based procedures are valid for the general definitions of p(¢) and ¢(¢) in Egs. (2.1) and

2.2).

As examples, Case 1 in Eq. (2.8) corresponds to a situation in which a sealed region is
undergoing time-dependent pressurization from heating while the strength of the region’s
boundary is degrading with increasing temperature. Case 2 in Eq. (2.9) corresponds to a situation
in which a component is being heated until it reaches a constant but randomly variable failure
temperature.

Three notional links that will be used for illustration are defined in Table 1 and shown in Fig.
1. As indicated for Link 1 in Fig. 1, the curves «,, p(r) and «,,,p(7) are represented by dotted

lines above and below p(7), and the curves B,,.q(7r) and f,,q(7) are represented by dotted lines
above and below ¢(7).
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Table 1 Defining properties of example Links 1, 2 and 3 used to illustrate the calculation of the
probability that a link fails at a property value less than or equal to p at a time prior or equal to .

\ General Properties for Links 1, 2 and 3

p(*)p(0) a(z) = q(0)

T s P —— I+ ke

Properties of Link 1

(o) =875, p(0) =300, =0.035

7(0) =725k =1.41x10"*,r, =1.8

d ,(a) uniformon[¢,, ., 1=[0.6, 1.3]

d g (p) triangular on [S,,,,5,,. 1=[0.7, 1.2] with mode 1.0
Corresponds to Case 1 (i.e., @, / B,, <,/ B, )1in Sect. 9.3

Properties of Link 2

() =900, p(0) =300,7 =0.025

7(0) =775k =3.0x107,r, =2.0

d (o) triangular on [¢,,, ., ]=[0.85, 1.25] with mode 1.0

d g (p) triangular on S, .0, ]=[0.65, 1.4] with mode 1.0
Corresponds to Case 2 (i.e., @, / B, < Oy ! B,y 10 Sect. 9.3

Properties of Link 3

(o) =850, p(0) =150, = 0.045

7(0) =900,k =2.21x107*,r, =1.6

d ,(a) uniformon [¢,, ., . ]=[0.76, 1.3]

dz () uniformon [S,,,.5,, 1=[0.76, 1.3]

Corresponds to Case 3 (i.e., «,,,, / B,,, = %, / B,) 10 Sect. 9.3
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Fig. 1e: Link 3 Fig. 1f: Link 3
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Fig. 1 Summary plots of the example Links 1, 2 and 3 defined in Table 1 used to illustrate the
calculation of the probability that a link fails at a property value less than or equal to p at a time
prior or equal to ¢ with (i) r(z), 7., 7,,, 7,,and 7, defined in Egs. (4.2)-(4.9) and (ii)

R.,P, P, and P, defined and discussed in Sects. 9.2 and 9.3.

The analytic representations for p(¢) and ¢(¢) defined in Table 1 and illustrated in Fig. 1 are
used for representational convenience. In a real analysis, p(¢) and g(#) would most likely be

obtained as the discretized outcomes of complex numerical calculations rather than as simple
continuous functions. In this situation, the options would be to (i) fit a continuous curve to the
discretized results or (ii) deal directly with the discretized results. To maintain a level of realism,
the numerical results obtained in this presentation with quadrature-based procedures using the
MATLAB numerical package [52] and sampling-based procedures using the CPLOAS program
[53] start with discretizations of the analytic representations for p(#) and g(¢) in Table 1.
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3. CDF for Link Failure Time

The definition of cumulative distribution functions (CDFs) for link failure time is now briefly
summarized (see Ref. [18] for additional details). Suppose ¢ is a potential link failure time and «;

is an element of the subdivision «,, =¢, <, <--<a, =a,, of [«

mn’

amx] . For p(t| a; )
nondecreasing and ¢(¢) nonincreasing, link failure prior to time ¢ conditional on ¢; can occur at

or before time ¢ only for values of f satisfying
Ba(t)=a(t1 B)=< p(t1a) = 4,5(0), G.1)
which in turn implies the inequality
B<ap(t))q(t)=F(a;:t). (3.2)
As a consequence,

CDF; (1) = probability that link fails in the time interval [z, ,]

-3 [IF(ai’t)dB (ﬂ)dﬂl I:dA (O‘i)AO‘i]z’

i=1 mn

(3.3)

where (i) [~], is the probability that /3 is less than or equal to F(¢;,t), and (ii) [~], is an
approximation of the probability that « is in the interval [¢;_,«;]. In turn,

CDF (1) = | “[

Q,

J.;(j’t)dB ( ,B)dﬂ}dA (a)dex (3.4)

in the limit as Aa; — 0. On a technical note, the inequality B, < F(e, ?) is possible in the inner
integrals in Egs. (3.3)-(3.4) but does not present a problem as d ( p )= 0 for g > B, . In effect,
the upper limit of integration for the inner integral in Egs. (3.3)-(3.4) is min{F(a,1),/,,} -

An alternative to the Riemann integral representation for CDF} (¢) in Eq. (3.4) is the Stieltjes
integral representation

CDF, (1) = :‘ CDF,[F(a,t)]dCDF (), (3.5)

n

where
CDF ,(a) = j:‘ d (@)@ and CDF,(f) = j /i n d,(B)df (3.6)

are the CDFs for o and f, respectively. In computational practice, it may be easier to evaluate
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CDEF,.(t) with the Stieltjes integral representation in Eq. (3.5) and precalculated values for the
CDFs for aand S than to evaluate CDF.(¢) with the Riemann integral representation in Eq. (3.4)

and use of the density functions for « and S.

Another possibility is to use a sampling-based (i.e., Monte Carlo) procedure to estimate
CDEF,.(t). With this approach, (i) a sample

S; z[aiaﬂi]aizlaza"'ona (37)

1

is generated from [a,,,, @, | X[ B> B ] 18 consistency with the distributions for o and £, and (ii)
the associated results

7; = time of link failure = ril(al. 1 B;) (3.8)
obtained from

ap(t;)=pq() = o /B =qx) pr)=r(r;) = 71 :’”71(05[ ! B;) (3.9

are determined for i =1,2,---,n. Then, CDF} (¢)is approximated by

CDFT(t);zn:@(r,.)/n with &,(z;) = (3.10)

i=1

{1 for 7, <t

0 otherwise.

With respect to the definition of z; in Eq. (3.8), ' (e, / ;) will have a unique value if p(z) is

increasing and g(r) is nonincreasing. However, »~'(«; / §,) may not have a unique value if p(z)
is assumed to be nondecreasing and ¢(7) is assumed to be nonincreasing. In this case, the curves
a,;p(r) and f.q(7) must tracked to determine the time 7; at which they initially intersect, which is

equivalent to defining »~' (o / ) by

rY(a/ B)=min{r:ap(r) = fg(r)} (3.11)

when a p(7) = fqg(r) holds for an interval of time rather than for a single point in time. This has
the potential to occur only if p(7)and g(7) are constant valued for overlapping intervals of time.

Additional details on the definition and numerical evaluation of CDFs for link failure time is
available in Ref. [18]. Further, the link failure time CDFs for the three links described and
illustrated in Table 1 and Fig. 1 are shown in Fig. 2.
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Fig. 2 Link failure time CDFs (i.e., CDF}; (t) defined in Egs. (3.4) and (3.5) for Links 1, 2 and 3
described and illustrated in Table 1 and Fig. 1.
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4. CDFs for Link Property at Time of Link Failure for Case 1: p(r) Increasing
and g(+) Decreasing

4.1 Preliminaries: CDFs for Link Property at Time of Link Failure

The following property for an individual link is now investigated:

CDF,(p|[t,,-t]) = probability that link fails at a value less than or equal to p @1
in the time interval ¢, ,¢]. '

Possible link definitions and values for property value p at link failure are illustrated in Fig. 1 for
Links 1, 2 and 3 defined in Table 1.

For use in this section and additional parts of this presentation, the following notation is
introduced:

r(t)=q(z)/ p(r) (4.2)
7, = first possible time for link failure defined by «,, p(7) = f3,,,9(7)

(4.3)
= }/'71 (amx /Ian)
py = property value at which link failure occurs at time 7,
— . ‘ (4.4)
= amxp(z-f) = amxp[r 1(Otmx /ﬂmn )]
7, = last possible time for link failure defined by o, p(7) = 5,,.4(7)
4 (4.5)
=r (alﬂl’l /ﬂmx)
p, = property value at which link failure occurs at time 7, “.6)
= @, D(7)) = @, DI (@, / B,)] |
7,,, = time of minimum possible property value at link failure defined
by a,,,p(7) = f,,4(7) (4.7)
= 7"71 (amn /ﬂmn)
P, = property value at which link failure occurs at time 7, “8)

= amnﬁ(rmn) = amnﬁ[}/ﬁl (amn / /B"‘H’l )]
7, = time of maximum possible property value at link failure defined
by @,,.p(7) = f,.4(7) (4.9)
= 7’71 (amx /ﬂmx)

P, = property value at which link failure occurs at time 7,,, 4.10)
= 0y P(7) = G U (@ | B )] |
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first time that link failure could occur at property value p
{al (P! B,y) from p=p,,4lz (P for p,, <p<p, (@.11)

P (p/a,,) from p=a, plr,(p)] for p, <p<p,
7,(p) = last time that link failure could occur at property value p

Ty (p)

) {171 (p!a,,) from p=a,, plr (p)] for p,, <p<p, (4.12)
g '(p! B, from p=p,.4l5(p)l for p<p<p,,
7,,,(p) = first time that link failure could occur at a property value p < p
_ Tf(p):q_l(p/lgmn) for pmn Sp<pj (413)
T, = r_l(amx !/ B,,) for Py <SPS Py
7,..(p) = last time that link failure could occur at a property value p < p
_ {r, (P =P "'(p!a,,) for p,, <p<p (4.14)

T, = r_l(amn /B,.) for p,<p<p, .
a,,. (p) = largest o value resulting in link failure at a property value p < p

=p/ plz,(p)] from p =a,, (p)pl7,(p)] (4.15)
_|\p/Pla (p! By for p,, <p<p;
p/ﬁ[ﬁil(p/amx)] = amx for pf S p S pmx'

Further, the results derived in Sect. 4 are for p(7)increasing and g (7) decreasing (i.e., for Case 1

as defined in Eq. (2.8)), which assures that p'(z), g ' (z) and r~'(z) exist.

The CDF CDF,(p|[t,,,t]) for link property at time of link failure defined in Eq. (4.1) can be
formally represented by integrals involving the link parameters & and f. Consistent with the
examples in Fig. 1, the configurations

Configuration 1: p, < p<p, with 7, <t <7,(p), (4.16)
Configuration 2: p,,, < p < p, with 7,(p) <t <7,(p), (4.17)
Configuration 3: p, < p< p, with 7,(p) <t <7, (4.18)

involving ¢ and p result in different integral representations for CDF,(p|[¢,,,t]) in terms of o
and f. The indicated representations for CDF,(p]|[¢,,.t]) are derived in the following three

subsections. Further, the derivations are illustrated with the two links (i.e., Links 4 and 5) defined
in Fig. 3.

21



Fig. 3a: Link 4 Fig. 3b: Link 5
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Fig. 3 Example Links 4 and 5 used to illustrate the derivation of integral representations of
CDF,(p.,lt,,.t]) for Configurations 1, 2 and 3 defined in Eqs. (4.16)-(4.18): (a) Link 4 with

p(r)=2.0+0.6r, (r)=8.0-0.67, [, ] =[0.5,2.1], and[ B, B, 1 =[0.75,1.7] , and (b)

Link 5 with p(r)=2.0+7, g(r)=10.0-087, [a,,.a,, ]1=[0.6,125], and [B,,.B,.]=
[0.35,1.7].

4.2 Integral Representation of CDF,(p|[t,,.t]) for Configuration 1

Given the conditions imposed on ¢ and p for Configuration 1 (ie., p, <p<p, with

7, <t<7,(p)), a failure value p < p can only occur for curves o p(r) that cross the vertical
line L illustrated in Fig. 4 connecting the points

t p]=[t,a,, p()] and [t Hp(t)] = - Sy @ (O] for 1<z, 4.19
[t, e, (P PO]=[t,2,,p(®)] and [t,a,, (1) p()] = e, 5] for 7, <t, (4.19)
where (i) «,, (p) = «,, asindicated in Eq. (4.15) and (ii) «,,,(¢) defined by
o (0= {ﬂmn 4/ Pt = f,r(®) for t <z, from a,, (PO =F,70
a,, for r, <tfrom «,, (t)p()=c,,p(t)

is the o value such that the curve «,,, (#) p(7) passes through the point [t,/,,9(¢)] for t <z, as
illustrated in Fig. 4a and the point [t,e,,, p(?)] for z,, <t as illustrated in Fig. 4b. In turn, the set

A={a:a, ()<a<a,,} (4.21)
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contains the « values for the curves crossing the line L.

10

10

Fig. 4b: Link 5

.
_____ 7},- ...“' —_—— [3(1’)
£ N atr)

p: Property Value
p: Property Value

Fig. 4 Illustration of regions (i.e., colored areas) integrated over to obtain CDF,(p,[t,,,t]) for
Configuration 1 defined in Eq. (4.16): (a) Link 4 with ¢, =0, p=9, and ¢ =3, and (b) Link 5
with ¢, =0, p=85,and t =4.

For the following, a subdivision
a,,O=a,<a <a,<--<a,=a,.(p) (4.22)

of [e,, (1), (p)] is assumed. For «; € A, (i) the value S, for which S.q(t) =, p(t) is given
by

B =a,p(t) q(t)=a; / r(t) = F(a;,1), (4.23)
and (i1) as a consequence of the monotonicity of p(r)and ¢(7),

prob(f < B;|a; € A) = probability that link fails at p < p conditionalon «; € A

@ 4.24
=], dy(BXp. @

In turn, given the results in Egs. (4.23) and (4.24),
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CDFp(p |[t,,,,t]) = CDFp(p |[7,,t]) for 7, <t <7,(p)

mn?

- tim 31 [}y (pp 1 (@0

n— mn

= 0 dp s ada

mn

(4.25)

=0 Ly i @a

with F(a,t) = a/ r(t) as defined in Eq. (4.23).

4.3 Integral Representation of CDF,(p|[t,,.t]) for Configuration 2

mn?

Given the conditions imposed on ¢ and p for Configuration 2 (i.e., p,, < p < p,. Wwith
t,(p)<t<7/(p)), a failure value p<p can only occur for curves ap(r) that cross the

horizontal line £ illustrated in Fig. 5 connecting the points

(2, (). |=] 7/ ()2, (P) Lz ()] and [t, p] =[t,(t, p) B(1)] (4.26)
or the vertical line £, also illustrated in Fig. 5 connecting the points

(4, B,,9(®)] for t <z, asinFig. 5a

t,pland [t,a,, (Op()] =3~ ™_ o 427
24 [ OP()] {[t, a,,p(t)] for z,, <tasinFig. 5b, 4.27)

where (i) «,, (p) defined by

A, (p)=p/ plr,(p)]
{p/ Bla " (p/ Bl for p,, < p<p, asinFig. 5a (4.28)

p/plp " (p/ &, )] =a,, for p, < p<p,. asinFig. 5b

in Eq. (4.15) is the « value such that the curve a,,, (p)p(7) passes through the point [z, (p), p],
(i1) a(t, p)defined by

p=at,p)pt)y = alt,p)=p/p() (4.29)

is the o value such that the curve a(¢, p) p(r) passes through the point [¢, p], and (iii) «,,,(¢) is
defined the same as in Eq. (4.20). In turn, the sets

A =la:a,,)<a<a(t,p)} and A ={a:a(t,p)<a<a,.(p)} (4.30)
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contain the o values for the curves o p(r) crossing lines £, and £, respectively.

Fig. 5a: Link 4 Fig. 5b: Link 5
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Fig. 5 Illustration of regions (i.e., colored areas) integrated over to obtain CDF,(p|[¢,,.t]) for
Configuration 2 defined in Eq. (4.17): (a) Link 4 with ¢, =0, p=5,and ¢ =5.5, and (b) Link 5
with ¢, =0, p=6,and t =5

For the following, a subdivision

a,,O=a,<a <a,<--<a,=a,.(p) (4.31)

of
[2,, (D), a,, (P)]=[a,, (®),at, p)lulat, p)a, (p))=A4 VA (4.32)

is assumed with «,, = a(t, p).

For a; € A, and similarly to Egs. (4.23) and (4.24), (i) the value S, for which £,q(¢) = o; p(¢)
is given by

B =o;p()/ q(t) = a; [ r(t) = F(a;,1), (4.33)
and (ii) as a consequence of the monotonicity of p(z)and ¢(7),

prob(f < f.|la; € A,) = probability that link fails at p < p conditional on ¢; € A,

ot 4.34
;( 'd, (B)p. (339
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For a; € A, (i) the time 7; at which a,p(z;) = p is givenby 7, = p"'(p/ ), (ii) the value S
for which f.g(r;) = pis given by

B =p/q@)=p/qp (p/a)l=GCla.p), (4.35)
and (ii1) as a consequence of the monotonicity of p(r)and ¢(7),

prob(f < fi|a; € A,) = probability that link fails at value p < p conditional

on the occurrence of a; € A (4.36)
G(a;.p)
=" d,(BWB.

ﬁmn

In turn, given the assumption 7 ,(p) <7 <7,(p) and the results in Egs. (4.34) and (4.36),

CDEp(p |[t5t]) = CDER(p |[7,,(p),t]) for z,(p) <t <7,(p)

= lim {"f“;(ai D4 (,g)dﬂ}d (a,)Aa; +ZU &y (,B)dﬂ}d (a)Aq; }

n—o0 'mn

i=1

R 437
J’ ( p)UF( )d (,B)dﬂ}d (@)da + J’ mx(p)[J- (a ’p)dg(ﬂ)dﬂ}d/l(a)da ( )

Oy (t ) mn mn

_Ip/p(t)|:J-a/l(l)d (ﬂ)dﬂ}d (a)da + J mY(P)[J‘p/q[P (P/a)]d (ﬂ)dﬂ}dA (a)de

erl (t) mn (t) WlVl

with a,, (), a,.(p), alt,p)=p/pt), Fla,t)=a/r@) and G(a,p)=p/qlp (p/a)]
defined in Eqgs. (4.20), (4.28), (4.29), (4.33) and (4.35), respectively.

Further, the preceding representation for CDF,(p |[t

mn?

t]) simplifies to

J-p Iqlp~" (pla]

CDFy(p |[ty1]) = || '”‘“”{ dy <ﬂ)dﬂ}dA (@) (4.38)

mn

for t =7,(p) and p,, < p < p, as aresult of (i) the relationships

z-l(p) = ﬁ_l(p/amn)7 amn[rl(p)]zamn and p/ﬁ[rl(p)] = p/l_j[[_)_l(p/amn)] =a,, (439)

that exist when [z,(p),p]=[p '(p/a,,), p] is a point on the curve «,, p(r) and (ii) the
consequent equality
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L [ g e =[] [y (08 iy (@da 0. @40)

4.4 Integral Representation of CDF,(p|[t,,.t]) for Configuration 3

Given the conditions imposed on ¢ and p for Configuration 3 (i.e., p, < p<p, with
7,(p) <t<r1,), afailure value p < p can only occur for curves ap(r) that cross the horizontal

line £ illustrated in Fig. 6 connecting the points

[, (p). 1 =7/ ()2 (P)PLT (P)]] and [7,(p), p] = [, (p).alz,(p). PIB(1)],  (4.41)

the curve £, illustrated in Fig. 6 corresponding to S, g (7) connecting the points

[7:(p), P]=[7,(P): Bedlz, (p)]] and [t,alt, B, GO1P(O)] = [t B,.7(D)], (4.42)
or the vertical line £; also illustrated in Fig. 6 connecting the points

[t,8,,9@)] for t <z, asinFig. 6a

[t.alt, B, a(®]p(1)] and [t’am”(t)ﬁ(t)]:{[t,amnﬁ(t)] for 7. <1 asin Fig. 6b, (4.43)

mn —

where (i) «,, (p) defined in Egs. (4.15) and (4.28) is the « value such that the curve «,,. (p)p(7)
passes through the point [z, (p), p], (ii) a[7;(p), p] and a[t, 5,,q(1)] defined by

alz,(p), plple,(P)=p = alr,(p).pl=p/ple,(p)l=p/plg ' (p/Bu)] (444)
and

alt, B, aOlp(®) = B, q(t) = alt, B, qO] = F,.q(1)/ p(t) = f,,r(t) (4.45)

are the a values such that the curve a[z;(p), p]p(r) passes through the point [7,(p), p] and the
curve alt, B,,.q(1)]p(r) passes through the point [z, 5, .q(¢)], and (iii) ,,,(¢) is defined the same
as in Eq. (4.20). In turn, the sets

A ={a:a,, () <a<alt, B, g0}, (4.46)
A, ={a:alt, B, GO <a<alr,(p), pl} (4.47)

and
A ={a:alr(p),pl<a<a,.(p)} (4.48)
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contain the o values for the curves ap(r) crossing lines £;, £, and L, respectively.

Fig. 6a: Link 4

Fig. 6b: Link 5
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Fig. 6 Illustration of regions (i.e., colored areas) integrated over to obtain CDF,(p,[t,,,t]) for
Configuration 3 defined in Eq. (4.18): (a) Link 4 with 7, =0, p=8.5,and ¢# =6, and (b) Link 5
with ¢, =0, p=85,and t=7.

For the following, a subdivision

amn(t):a0<al<a2<”'<an:amx(p) (449)
of
[ (1), 0, (P)] = [ @2,,,, (D), 2, B, G D] V[ alt, B, (D], ez, (p), p]]
Ulalz(p), pl. @, (P)] (4.50)
=A,UA UA
1s assumed with
a, =alt,B,,.q0)= B,/ p(?) and «a, =alr,(p), pl= p/ plz;,(p)]- (4.51)

For a; € A; and similarly to Egs. (4.23) and (4.24), (i) the value S, for which £,q(¢) = o; p(¢)
is given by

Bi=a,p()/ qt)=c; /r(t) = F(a;,1), (4.52)
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and (ii) as a consequence of the monotonicity of p(z) and ¢(7),

prob(f < f.|la; € Ay) = probability that link fails at p < p conditional on «; € A,

F(ay.t) (4.53)

= . dg(B)p.

For o; € A,, (1) B,,4(7;) =, p(z;), where 7; is the time at which ;p(7) crosses the curve £,
and (ii) as a consequence of the monotonicity of p(7)and g(7),

Prob(f < .l € A) = [ dy (NP

= probability that link fails at p < p conditionalon «; € A, (4.54)
=1.0.

For ¢; € A, and similarly to Egs. (4.35) and (4.36), (i) the time 7; at which ¢;p(z;) = p is given
by 7, =p '(p/a,), (ii) the value B for which Bg(z,) = p is given by

B =p/q@)=p/qp (p/a)l=Gla:.p), (4.55)
and (ii1) as a consequence of the monotonicity of p(r)and ¢(7),

prob(f < B;|a; € A) = probability that link fails at p < p conditional on ¢; € A,

a;, 4.56
=[, " ayprap. 420

mn

In turn, given the assumption 7,(p) <? <7, (p) and the results in Egs. (4.53), (4.54) and (4.56),

29



CDFp(p |[t,-t])) = CDFp (p|[7,,(p).1]) for 7,(p) <t <7

~ lim {Z’:[I;(ai,t)dB(ﬁ)dﬂ}dA(al.)Aal. + i Uj"”’ dB(ﬂ)d,B}dA(a,.)Aai

i=1 L Fmn i=r41 L7 Fmn

£ 2| (ﬁ)dﬂ}dA(ai)Aai}

i=s+1

alt. B GO [ F(at) [7/(p).p]
_Iamnm U - 3 ()P }d (@)da J ALt ()] d,(a)da (4.57)

Qe (D) G(a,p)

d d  (a)da

a[q(p),p]U P ('B)dﬂ} 4(@)
p/plr(p)]

:,[j:;()t)[j;:(t)d (,B)dﬂ}l' (a)da + I d (a)da

i (P) Ip/ci[ﬁ’ (p/a)]
p/plr;(p)]

mn

dp (ﬂ)dﬁ}d/l (a)da

with @, (1), @,.(p), alz(p),pl=p/ Plr,(P)], ©(P) =G (P! B » et B,,G(O] = B,,1(1),
F(a,t)=a/r(t) and G(a,p)=p/g[p ' (p/a)]defined in Eqs. (4.20), (4.28), (4.44), (4.12),
(4.45), (4.52) and (4.55), respectively.

Further, the preceding representation for CDF,(p,[t,,,t]) simplifies to

mn?

/ )
CDF (p|[t J-ppfz(p]

d (e)da jp

mn’

/p[T] (p)] ﬂmn

mn

(D) [Ip/q[pl(p/a)]dB (,B)dﬁ}d/l (a)da (4.58)

for t = 7; as a result of (1) the equalities

Oy (1) = @y = Bt (@) fort =1, =1"(, / B ) (4.59)

as discussed in conjunction with Eqgs. (4.37)-(4.40) and (ii) the consequent equality

jﬂm"“)[ [ a, (ﬂ)dﬁ} d (@)da = [ [ [, (ﬂ)dﬂ}dA (@da=0.  (4.60)

[ (t) mn mn

4.5 Summary and lllustration of CDFs for Link Property at Time of Link Failure for
Case 1

The integral representations for CDF,(p,[t,,,t]) derived in Sects. 4.2-4.4 are summarized in
Table 2. Further, the CDFs CDF,(p,[t,,,7;]) for the three links defined in Table 1 and illustrated

in Fig. 1 are shown in Fig. 7 . The CDFs in Fig. 7 are obtained by numerically evaluating the
integrals in the following representations for CDF,(p,[t,,,.7;]) :
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CDFy(p|lt,,.7;]) = CDFp(p |[2,,,,7,(P)])

| j:jj(”{ a, (ﬁ)dﬂ}dA (@)da

for Configuration 2 in Table 2 and p,, < p < p,;, and

J-p/é[ﬁ'l(p/a) (4.61)

ﬂmn

P/ Pl (p)] @y (D) plalp (pla)]
CDFp(p|[ty,o]= [ """ d ((e)da+ | [j

A P/ﬁ[T/(P)]

dy (ﬂ)dﬂ}dA (@)da  (4.62)

mn

for Configuration 3 in Table 2 and p, < p < p, .. Numerical evaluation of the preceding integrals

was performed with the MATLAB software package [52; 54] with (i) the fit function with the
spline option used to fit property value functions and inverse functions and (ii) the TwoD function
[55] used for integration.
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Table 2 Summary of integral representations for CDF,(p,lt,, .t]) derived in Sects. 4.2-4.4 for

Configurations 1-3 defined in Egs. (4.16)-(4.18).

\ Selected Notation

{ﬂmnq(t)/ﬁ(t) =B,,r@) for t<z,,
a,,(t)=

a,  for ¢ <t

p/plp (pla,)l=a,, for p, <p<p,.
A \P)= o
p/plad ' (p/ B for p,, <p<p,

Configuration I: p, < p<p, with 7, <t <7,(p)

CDFy(p[t,,1]) = CDFp(p |[z,.,1]) for 7, <t<z,(p)

L[ e s

mn

Configuration 2: p,,, < p < p,,. with 7,(p) <t <7,(p)

CDFp(p |[ty-1]) = CDFp(p |[7,,(p).t]) for z,(p) <t <7,(p)

_ y’/’“’)[ [ B(ﬂ)dﬂ}dA(a)da [ mx“’)[ [ dB(ﬂ)dﬂ}dA (a)dar

mn (t) mn (Z)

_j ’"X(p)|:.[p/q ” (p/a)]d (ﬂ)dﬂ}d/l (@)da fort =17,(p) and p,, <p < p

mn

Configuration 3: p, < p< p, with 7,(p) <t <7,

CDF,(p|lt,,.t])) = CDFy,(p|l[7,,(p).t]) for 7,(p)<t<rt,
_J' mxr(z)Da/m) B(,B)dﬂ}d (@)da .[p p(ll)(p)d (@)da

Oy (t ) mn mx

(p) | p/alF (pla)]
d d
p/p[rz(p)]U - s (P)f }H’A(a) “
P/l (p)] w0 [ ppials (pla)
= [77"d (o)da+ [ [ | dBw)dﬁ}dA(a)da for ¢ =7,
[ p P[TI(P)] mn
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Fig. 7 Property value at link failure CDFs (i.e., CDFy,. (p|l[t,,.t]1) = CDFp;(p|[t,,,7;]) for Link
i, i=1,2,3) determined over all possible times of link failure (i.e., for time ¢ =17, defined by
a,,p@) = p,q() in Eq. (4.5)) obtained as indicated in Table 2 for Links 1, 2 and 3 described
and illustrated in Table 1 and Fig. 1.
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5. CDFs for Link Property at Time of Link Failure for Case 2: p(¢) Increasing
and 7(r) Constant-Valued

The special, but important, case with g(7) equal a constant k (i.e., g(r)=k) is now
considered. Examples of links with this property are defined in Table 3 and shown in Fig. 8.

Table 3 Defining properties of Links 6, 7 and 8 used to illustrate the calculation of the probability
that a link fails at a property value less than or equal to p at a time prior or equal to ¢ for g(7)

constant-valued.

\ General Properties for Links 6, 7 and 8

p(0)p(0)
P(0) +[p(e0) — p(0)]exp(~7i7)

p(r) = g(7) constant valued

Properties of Link 6

() =1400, p(0) = 225,1 =0.06,9(7) =725
d ,(a) triangular on [e,,,,, @, ] =[0.77, 1.15] with mode 1.0
dy(p) unifromon [B,,,5,.1=[0.8, 1.35]

Properties of Link 7

() =1600, p(0) = 200,7 =0.09,g(7r) =700
d (o) triangular on [¢,,,, «,,. ] =[0.6, 1.7] with mode 1.0
dgz(p) triangularon [S,,,, B,.]1=1[0.65, 1.25] with mode 1.0

Properties of Link 8

P(0) = 2000, p(0) =200,7 =0.05,g(7) =550
s O 1 =[0.65, 1.4]
dg(p) triangularon [S,,,, B,.]1=[0.65, 1.4] with mode 1.0

d ,(a) uniform on [
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Fig. 8a: Link 6 Fig. 8b: Link 7
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Fig. 8 Summary plots for Links 6, 7 and 8 defined in Table 3 and used to illustrate the calculation
of the probability that a link fails at a property value less than or equal to p at a time prior or equal
to ¢t with ¢g(7) constant-valued (i.e., g(7) = k): (a) Link 6 properties, (b) Link 7 properties, (c)
Link 8 properties, and (d) link failure time CDFs (i.e., CDF}; (¢) defined in Eqs. (3.4) and (3.5) for
Link 7) for Links 6, 7 and 8.

As before, the function
r(r)=q(z)/ p(r)=k/ p(7) (5.1)

is a decreasing function and thus has an inverse 7. As indicated in Fig. 8, (i) the lower boundary
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of possible link failure times has constant value of f,,q(7) = kf3,, over the time interval

L7 (@ B )7 (@ ! Ba) | =[5 | = (B T (5.2)

and (i) the upper boundary of possible link failure times has constant value of S, .q(7)=kp,,
over the time interval

|:7"_1 (amx /'BMX)’F_I (amn /lex)i| = [me’z.l] = [me,Zme]. (53)

The times 7,,7,,,7,,,7; as defined above have the same definitions with # as in Sect. 4.1.

However, as examination of Fig. 8 shows, they correspond to slightly different properties of a link
when ¢(¢) = k. Specifically with g(¢) =k, (i) 7, = z,, corresponds to both the first possible time

for link failure and the first time at which the smallest possible value for link failure could occur,
(i) r,, =7, corresponds to the last time at which the smallest possible value for link failure

could occur, (1i1) 7,,, = 7, corresponds to the first possible time at which the largest value for link
failure could occur, and (iv) 7; = 7,,. corresponds to both the last possible time at which the largest

value for link failure could occur and the last possible time at which any link failure could occur.
The changed notations

T = Zoms> Ton = Touns> Tonxe = Toes T = T (54

—mn?’ “mn mn?> “mx —mx >

in Egs. (5.2) and (5.3) are introduced to provide an indication of what the times 7,7

mn?>

T 7

mx >

correspond to for a constant-valued ¢(¢).

As summarized below, the derivation of CDF,(p|[t,,,t]) for g(t) =k is similar to the
derivations of CDF,(p|[t,,,t])in Sects. 4.2 and 4.3 for link configurations 1 and 2 defined in
Egs. (4.16) and (4.17). Specifically, the following two cases with

7, (p)=p"'(p/a,,) and 7,(p)=p"'(p/a,,) (5.5)

as defined in Egs. (4.11) and (4.12) need to be considered: (i) z,, <t<7,(p) and
t,(p)<t<7(p).

For z,, <t<7,(p), a derivation similar to the one in Sect. 4.2 results in the following form
for CDF,(p|[t,,.t]):
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CDF,(p|[t,,.t]) = CDFs(p|[z,,.t]) forz,, <t<Tt

-1, mme Za’t)dg (ﬂ)dﬂ}a’A (a)da (5.6)
[ [ ay s e,
with
F(a,0)=alr(t)=ap(t)/k, (5.7)
and

" 0~ {kﬁm /) from ap) = B (O) = Pk for g, <t<F, o

a,, fort, <t<7T,

mn

With respect to Egs. (5.7) and (5.8), (i) the role of F(e,?) is described in Egs. (4.23)-( 4.25) and
(i1) «,,,(¢) is defined to incorporate the effects of the curves

z.8,,9(t) =B,k z,, <t<7,,, and [7,a,,D(7)],T,, <t<T,., (5.9
on lower limits of integration for « .

For 7,(p) <t <7,(p), aderivation similar to the one in Sect. 4.3 results in the following form
for CDFp(p [[2,,,1]):

CDFp(p|[t,,,t]) = CDF, (p |[7,,(p),t]) for 7,(p) <t<7,(p)

ot A A o | M TS P AT

mn (t) mn mn

- W(’)[ [ Wk (ﬂ)dﬂ}d (a)da+ [™

mn (Z) mn

1 a4y st (i

p/p)

with (i) F(a,t) and «,, (¢) defined in Egs. (5.7) and (5.8), (ii) a(¢, p) = p/ p(¢) defined in Eq.
(4.29), and (iii) G(a, p)= p/q[p ' (p/a)] defined in Eq. (4.35)-(4.36). Further, the preceding

representation for CDF,(p|[t,,,t]) simplifies to

mn?

e | [PTE
CDF (pltyaeD =[] [ dy (P8 [ (@10 = [ 4, (P15 (5.11)
for ¢ = 7,(p) as indicated in conjunction with Eqgs. (4.38) and (4.39). A further simplification to

CDFP(p | [tmn’t]) :[p/k_ﬂmn]/[lgmx _ﬁmn] (512)
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results for # = 7,(p)and B uniformon [B,,,, 5, ]-

As an example, the results of evaluating CDF,(p |[t,,,t]) for Links 4, 5 and 6 defined in

Table 3 with the integral representation in Eq. (5.11) are shown in Fig. 9. The integrals defining
the CDFs in Fig. 9 were evaluated with the same numerical procedures used to evaluate the
integrals defining the CDFs in Fig. 7.

Cumulative Probability
o o o
EY 02} (o]

=
N

200 400 600 800 1000
p: Property Value at Link Failure

CDFpg(pl[tmn, 1))
R — CDFPT(thmn: TID
----- CDFpg(thm:U TlD

Fig. 9 Property value at link failure CDFs (i.e., CDFy,(p|[¢,,.t]) = CDFy.(p|[t,,.7;]) for Link
i, i =06, 7, 8) determined over all possible times of link failure (i.e., for time ¢ =17, defined by

a,,p@) = p,4q(@) in Eq. (4.5)) obtained as indicated in Eq. (5.11) for Links 6, 7 and 8 described
and illustrated in Table 3 and Fig. 8.

mn?
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6. Sampling-based Procedure to Estimate CDF,(p|[t,,.t])

Another possibility is to use a sampling-based (i.e., Monte Carlo) procedure to estimate
CDF,(p|[t,,-t]). This approach uses (i) a sample of the form s, =[e,,5.],i =1,2,---,n, of the
form indicated in Eq. (3.7), (ii) the corresponding link failure times z; defined in Egs. (3.8)-(3.11)
, and (iii) the link failure values p, = &, p(7;). Then,

CDFy(p [ty = Y6, (p; 1)/ 0 with 8, (p, |1)= 6.1)

i=1

{1 forp, <p and 7, <t

0 otherwise.

As an example, CDFs for link property value at link failure obtained with use of samples of size
nS = 10° as indicated in Eq. (6.1) are illustrated in Fig. 10.

Fig. 10a: Links 1,2,3 Fig. 10b: Links 6,7,8
1F | ' 1f ' ————
£ 0.8 208
o o)
© ©
o o
© 06 Q067
o o
[0 )
= =
B 047 § 04
= >
g =
3 0.2 302t
0 . . 0 . . ‘
400 600 800 1000 200 400 600 800 1000
p: Property Value at Link Failure p: Property Value at Link Failure
CDFPL(;UHtH.tu'- Tn’” CDFPG (p‘ [tmn: T!])
- _CDFPE(J)Htmu-. Tl’]) = == -CDFPT(th'mn:TI])
_____ CDFP;}(Fthm-. Tl’]) =t CDFI“S(F‘ [t?m“ T!])

Fig. 10 Property value at link failure CDFs (i.e., CDFy,(p|[t,,.t]) = CDF,,(p|[t,,.7;]) for Link
i,i=1,2,3,6,7,8)determined over all possible times of link failure (i.e., for time ¢ = 7, defined
by a,,p(t) = f,.q(t) in Eq. (4.5)) obtained with use of samples of size nS = 10° as indicated in

Eq. (6.1) for (a) Links 1, 2 and 3 described and illustrated in Table 1 and Fig. 1 and (b) Links 6, 7
and 8 described and illustrated in Table 3 and Fig. 8.
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7. Verification and the Estimation of CDF,(p|[¢,,.t])

As discussed and illustrated in Refs. [49; 50] for WL/SL systems and in Refs. [56-65] for many
additional contexts, model/analysis verification based on the comparison of results obtained in two
independent analyses is an important part of the assessment of models and software used in the
analysis of high consequence systems. Model verification and model validation are two related,
but different and often confused, concepts. Two widely used definitions are (Ref. [65], p. 3):

Verification: The process of determining that a model implementation accurately represents the
developers’ conceptual description of the model and the solution of the model.

Validation: The process of determining the degree to which a model is an accurate representation
of the real world from the perspective of the intended uses of the model.

Thus, verification relates to assessing the correctness of the mathematical development and
implementation of a model. It is in this sense that verification is used in this presentation. Further,
verification is interpreted broadly enough to include a checking of the correctness of the formal
mathematical derivation of a model. In contrast, validation relates to assessing the degree to which
a model represents the actual behavior of the processes under consideration. In general, validation
involves the comparison of model predictions with experimental results. Such comparisons are not
part of this presentation.

The explicit integral-based representations for CDF,(p |[t,,,,t]) derived in Sects. 4.2.2-4.2.3
are summarized in Table 2. These integrals can be estimated with quadrature procedures. Due to
the changing forms of the integrals for different values of p and ¢, this can be a complex and
inefficient way to estimate the CDF for link failure values that occur prior to time ¢ (i.e., the CDF
defined by (p,CDF,(p|[t,,,t])) for all link failure values p that occur prior to time ¢).

mn?

However, the integral representations for CDF,(p |[t,,,,t]) in Table 2 do have a useful role to
play in analysis verification. Specifically, for selected values of p and ¢, the corresponding integral
from Table 2 can be evaluated and used to verify that the sampling-based procedure in Eq. (6.1) is
providing a correct and reasonably accurate approximation to CDF,(p |[t,,,,t]). As is the case
here, the existence of two independent procedures to calculate a specific analysis result is a
significant verification capability.

As an example, estimates for CDF,(p|[t,,,t]) are presented in Fig. 11 for the links in Fig. 1
and Fig. 8 obtained by (i) numerical evaluation of the integrals in Egs. (4.61), (4.62) and (5.11)
and (ii) sampling-based evaluation as indicated in Eq. (6.1). The overlay of the CDFs obtained
with the two procedures provides a strong indication that both procedures are correctly derived
and implemented. This is a particularly strong verification result as the two procedures differ in
both conceptual (i.e., mathematical) basis and computational implementation.
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Fig. 11a: Links 1,2,3 Fig. 11b: Links 6,7,8
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Fig. 11 Comparisons of quadrature-based evaluations CDFp;(p|[t,,,7,]) and sampling-based
7,]) for CDFy,(p|lt,,.t]) = CDFp (p|[t,,.7;]) forLinki,i=1,2,

3,6,7,8,1in Figs. 7,9 and 10: (a) Comparisons for Links 1, 2 and 3, and (b) Comparisons for Links
6, 7 and 8.

evaluations CDFpg; (p|[t

mn?
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8. Integral Representation of CDF,(p|[t,,.t]) Based on Time r and Failure
Value p

An alternate form for the definition of CDF,(p|[t,,,.t]) is

CDEyp(p Uyt = || CDFy(p | TXCDE (7)

t (8.1)
=], CDFy(p|o)dy(0)de.

where (i) CDF,(p|7) is the CDF for link property value p at link failure conditional on link
failure occurring at time 7, (i) CDF,(r)is the CDF defined in Eq. (3.4) for link failure

time, and (iii) d,(7)1is the density function for link failure time defined by
d;(r)=dCDF,(7)/dr
J«F(a,r)

d (pom
=l ()48, ()
with F(a,7)=ap(r)/q(t) =a/r(r) and r(7r) =q(r)/ p(r)

- j:"”di[ 7y ( ﬁ)dﬁ} d,(a)da

T mn

= .[: dg[F(a,0)]|[dF (a,7)/d7]d  (a)da (8.2)

_ Ia dy [a / r(f)][adi[l / r(r)]}dA (a)da
A T
=[d[1/ 7]/ de][ " dy[a ) r(D)]ad, (@) da

=[d[p(r)/q(®)]/ d7] j: dyla/r(@)]ad,(a)da.

The derivation of CDF,(p |7) is rather complex and is presented in Sect. 9.5. Then, in Sect. 11,

it is shown that the representation for CDF,(p|[¢,,,t]) in Eq. (8.1) is mathematically equivalent

to the representations for CDF,(p |[t,,,,t]) summarized in Table 2. The equivalent outcomes of
two different derivations for CDF,(p |[t,,,,t]) provide an additional verification result indicating

that CDF,(p|[t,,,t]) has been derived correctly.

mn?

42



9. Distribution for Link Property Conditional on Time of Link Failure

9.1 Preliminaries: Distribution for Link Property Conditional on Time of Link
Failure

For systems of WLs and SLs, the distributions for link property values conditional on time of
link failure play an important role in the formal representation of system properties such as (i)
distributions of link property values at time of link system failure for WL systems and SL systems,
(i1) distributions of WL link property values and SL property values at the time that LOAS occurs
for a WL/SL system, (iii) distributions of margins for a WL/SL system defined by the difference
of SL property value at time of SL system failure and WL property value at the time of WL system
failure, (iv) distributions of margins for a WL/SL system defined by the difference of SL property
value at time of SL system failure and SL property value at the time of WL system failure, and (v)
delays in link failure time that are functions of link property value at the time of precursor link
failure. The indicated system properties are developed in two following reports [46; 47]. \

This section considers a single link (i.e., a WL or a SL) with properties as described in Sect. 2.
Derivations follow for

dp(p | 7) = density function for link property p conditional on link failure ©.1)

occurring at time 7

and the interval of definition [p,,,(7), p,.(7)] for d,(p|7). Further, values for a number of
additional closely related quantities are also obtained.

9.2 Sample Space [p,,(7), p,. ()] Associated with Density Function d,(p|7)

Values for d,(p|7)and its interval of definition [p,,, (7), p,.(7)] are determined by (i) the

positive-valued density functions d,(a) and dz(f) defined on intervals [e,,,« and

mn?> mx]

[B,n> B, ] indicated in Sect. 2 and (ii) the ratio 7(7) = g () / p(r) for the functions p(z) and g(7)
defined in Sect. 2 (see Egs. (2.1) -(2.2)). In set notation, the interval [p,, (7), p,,. (7)] is defined
by

[P (D), P (D)) = S(p | 7)

B B (9.2)
={p:p=ap(r) =), a cla,,. 1. B €L Bl

In turn, membership in the set S(p|7), which is the sample space for p, is determined by the values

for o and f that satisfy the equalities

a =[q(z)/ p()] B =r(0)p. (9.3)
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As illustrated in Fig. 12, the preceding linear relationship between « and £ for a fixed value for
7 leads to four possibilities for the definition of S(p| 7). In correspondence with Line 1 in Fig. 12,
the first possibility is

Sl(p|re731):{p:p:aﬁ(r)foraeAl(a|TePl):{a:r(r),6’mn < aéamx}}

= [r(z-)ﬁmn ]_9(2-)9 amxﬁ('[)] (94)
=[B,,3().a,,p(7)]
with
R = {2' ca,, <r(0)p,, <a,. < r(z')ﬂmx}, (9.5)

Specifically, if 7 € B, then (i) the possible values for « fall in the interval [7(7) a,. ], (ii) the

corresponding interval of values for £ consistent with the equality o =r(7)f in Eq. (9.3) is

mn?

[B,n O ! 7(7)], and (iii) the resultant interval of values for p is [,,9(7),,,, p(7)].

(nmr/rlsﬂmr (nmr/r?:ﬂmr

N\

(Hmn.u O’m‘r)
Linel
(ﬁmm Tlﬁ-mn) a=r03

(Hm.r 3 O’m‘r)

(ﬁm;r, s T2 ﬁmr )

]
é Line 4 7
(ﬁmn ’ ’r"wﬁnm) / (ﬁm.xa '.'“4,8,73_;;;)
(i(j’mn.s a’mn) 3 . (Hm:ra a’mn)
/‘ 3 axis ‘\
(a-mn /TS: a-mn) (a-mn /T4, a-mn)

Structure: ap(r) = 8q(7) = /3 =q(r)/p(r) =r = a =714
Line 1: B, <3 < Q'm:r/r-"l for apy < T18mn < Gz < r1Bma
Line 2: ﬁmn < .H < .Bm:r. for QX < TZﬁmn < TZﬁm:x < K

Line 3: “mn/T"} & B < “rm/r? for T?ﬁmn < MXnn g Mg < TSﬁm:r.
Line 4: Fmn /T-l d < dmr for T-lﬁmn g M == < T-lﬁmr = Cmg

No line in box for a = r3 if any < 78 OF P0me < Gnn

Fig. 12 Possible relations between o and g for «,, <a<«,., B, <P=<p, and

=[a(@)/ p@O]B=r(@®)p.

Similarly, S,(p|7€B), S;(plreB) and S,(p|7 €F,) are defined by
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S(plreB)={p:p=ap() foracA(alreB)={a: r(0)B,, < a<r@)p,}}

B B (9.6)
= [ﬂmnq(f),ﬂqu(‘[)]
with B, ={r:«,, <r(r)B,, <r()p,. <a,,} in correspondence with Line 2 in Fig. 12;
83(p|re733):{p:p:aﬁ(r) forae A(a|reR)={a:a,, < aéamx}} ©7)

= [amn ﬁ(f), amxl_)(r)]
with B ={r:r(v)p,, <,, <a,. <r(r)p,} incorrespondence with Line 3 in Fig. 12; and

SiplreR)={p:p=ab(t) foracA(a|rcP)={a: a,, < a<r()p,,})

(9.8)
=|a,, P(2), B,.7(7)]

with B, ={r:r(v)B,, < a,, <r(0)B,, <a,,} incorrespondence with Line 4 in Fig. 12. If either
of the inequalities «,,, <r(r)p,, or r(v)p,, <a,, holds, then S(p|7) is the null set.

9.3 Exact Nature of and Relationships between Sets 7,7,,P and 7,

The exact nature of and relationships between the sets

B = {z' 2, Sr(0)B, Sa,, < r(r)ﬁmx} (9.9)

B = {r 1, SH(T)B,, ST, < amx} (9.10)

P ={t:7(0) By < Uy < e S7(T) 1 | (9.11)
and

Py ={7:r(0) By S Upy 7 (T) B S i | (9.12)

is not immediately apparent from the preceding definitions. However, consideration of the cases

Case 1: a,,, / By < U ! B> (9.13)

Case2: a,, /| B, <y ! Bom (9.14)
and

Case3: a,, / B, = ! B (9.15)

provides both (i) simple definitions for the sets F,P, 73 and B, and (ii) a clear description of the
relationships between these sets.
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and

For Case 1 (i.e., @,,, / B, <, ! B, ), the definitions for H,P,,P, and B, become

731 mn S r(T)ﬁmn mx S r(‘[)ﬂmx}
mn /ﬂmn < r(r) r(T) < amx / mn’amx /IBmx < 7"(2’)}
max{ U | B W ! B } S PO, (D) S 0ty By |

{r:
{r:
r
(€0 | B <O S | )
{r:
{

/ﬂm Sr(z-)<am)c/18mn}
2 (@ B ) ST (e B )}

{T a,, <r()p,, <r(@)p,, < amx}

{710, ! By <1(0)r(D) <@, 1 B, )
={r:0, | By <r(®) <ty | B}

{r 7 (@ B ) ST (A B )},

{r r@)B,, <a,, <a,. <r()p, }
={7:1(0) <y | B> Uy | B <7(7)}
(T B <r(@) <ty B}

a,

{r (D) By S Uy ST(T) B < amx}
{7:7(0) Sy | Brns Qo | B S7@),1(T) S Uy | B}
{r: o ! Bx S7(@),r(7) <min{a,,, | B, % /ﬂmx}}
={r:a,, /B <r@),r(@)<a,, | B}
{70 | B <T@ <y | B}

{r ! [/ B | S 1(7) < P [ ! B ]}

In turn, the inequalities

and

amn /ﬂmx S’/’(2—4)Samn /ﬂmn Sr(’[Z)Samx /ﬂmx Sl/'(’rl)samx /ﬂmn
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(9.17)

(9.18)

(9.19)

(9.20)



€R P eP,
-1 ~_ o —_ -1 — _ -1
P (@ ! B ) ST S8 (U ! B ) S 7o S (@ / B ) S T4 S0 (@ ! B)  (921)
—_ —_ —_— R —
Tr Tmx Tnn Qi

with 7; indicating membership in P for i = 1, 2 and 4 provide summaries for Case 1 (i.e.,
Lo | B <O | By) of (1) the definitions of the nonnull sets A, and B,and (ii) the
relationships between these sets.

The relationships formally summarized in Egs. (9.20) and (9.21) are illustrated in Fig. 1a,b for
a notional link defined in Table 1 with properties consistent with Case 1 (i.e., for
Ay | Bon <% | B )- Specifically, Fig. 1b shows the relationships between the function 7(7) =

and 7; defined in Eqgs. (4.3)-(4.9). Further, the indicated

times and their relationships to link failure properties are illustrated in Fig. la,b. The sets
R, P and P correspond to the intervals [z ,,7,, 1, [7,,,7,,]and [7,,,7,]on the abscissas in Fig.

mx?> " mn
la,b.

q(r)/ p(r) and the times 7., 7,

mx > Tmn

For Case 2 (i.e., a,, / B,, <a,, ! B,.), derivations analogous to those shown in Eqgs. (9.16)-
(9.19) for Case 1 establish the following forms for B, P, and F;:

R={r:0,, /B <r(®)<d, !B}

{0 @/ Byn) PO <17 (e | B ) 2
Py = {10 | Bom 7)< Wy | B} = D, (9.23)
Po=A{r: ) B <10 < | B
{77 (@ ! Bun) ST (0 1 )} 029
and
Py ={r:0, | B <r@) </ P}
e [ B ] S < [t/ ]} ©-2%)
In turn, the inequalities
Ay ! B ST, | B <r(ty)<e,, | B, <rt)<a,, !B, (9.26)

and
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P (e ! B ) ST ST (@ ! B ) S T3 ST (A / B ) S T4 S7 7 (A / Br)  (9:27)

T_ f Timn Tmx 7

with 7; indicating membership in P for i = 1, 3 and 4 provide summaries for Case 2 (i.e.,

Ao | Bre <y | Bon) Of (1) the definitions of the nonnull sets B, and B, and (ii) the
relationships between these sets.

The relationships formally summarized in Egs. (9.26) and (9.27) are illustrated in Fig. 1c,d for
a notional link defined in Table 1 with properties consistent with Case 2 (i.e., for

Ay | B < U | By )- Specifically, Fig. 1d shows the relationships between the function 7(7) =
q(r)/ p(zr) and the timesz,,7,, , 7,,and 7,. Further, the indicated times and their relationships
to link failure properties are illustrated in Fig. lc,d. The sets 7,73 and P, correspond to the
intervals [7,,7,, 1, [7,,,7,,]and [7,,,7,] on the abscissas in Fig. l1c,d. Althoughz,, 7, , 7, and

7;are defined the same for Case 1 and Case 2, their ordering in time is different (i.e.,

Ty <Tp <7,, <7, forCaseland 7, <7, <7, <7, for Case2).

mn

For Case 3 (i.e., «,,, / B,, =, | B,.), derivations analogous to those shown in Egs. (9.16)-
(9.19) for Case 1 establish the following forms for B, P, P, and

7)1 :{T:amn /ﬂmn :amx/ﬂmx Sr(r)gamx/ﬂmn}

9.28
={r:r_1 (amx/ﬂmn)érér_l (amx/ﬂmx)}, ©.28)
P=F={t:0 /B <r(@) S0 | By}
9.29
:{r:r:ril(am/ﬂmx)}, ©-29)
and
Py ={r:0, | B <HT) </ P}
9.30
={r:r_1 [amx/ﬂmx]ﬁrér_l [, /,Bmx]}. ©-39)
In turn, the inequalities
A | B ST <0, | B, <1(t))0, | Bon (9.31)

and
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R S

= =
P (e ! Bon ) S 71 ST (@ / B ) S T4 ST (A ! B ) (9.32)
Ty Fmx &

with 7; indicating membership in P for i = 1 and 4 provide summaries for Case 3 (i.e.,
o | B = O | By) Of (i) the definitions of the nondegenerate sets 7 and B, and (ii) the

relationships between these sets. Similarly to the examples for Cases 1 and 2 in Fig. la-d, the
relationships formally summarized in Egs. (9.31) and (9.32) for Case 3 are illustrated in Fig. le,f
with B and 7, corresponding to the intervals [z ,,7,, =7,,] and [z, =7,,,7,]on the abscissas

mx

in Fig. le, f.

Definitions of the sets 7,P,, P and P, initially defined in Egs. (9.9)-(9.12) for Cases 1, 2, 3
defined in Eqgs. (9.13)-(9.15) are summarized in Table 4. The role of B, P, and P, is to identify
the intervals of definition for [p,, (7), p,,. ()] with

an(T) amxp(T) for 7 e 731

[ ]

[8,n@(0), B,,q(2)] for z € Py

(2 (), P (T)] = [, 7(ea, 5()] for £ € P, (9.33)
[ ]

a,,0(7), B,,.4(7)

for r e B,

as summarized in Egs. (9.4)-(9.8) and illustrated in Fig. 1 and Fig. 8.

9.4 Density Function for « Conditional on Link Failure at Time ~
The density function dp,(p |7 €P) for p defined on S;(p|reP) fori=1, 2, 3,4 can be

obtained from the corresponding density function d ,,(a |z € P) for o, where

Al(a|reP)=]a,,(),a,,(r)] for re R,
[F(2) B>y | fOr 7€ R, (see Eq. (9.4))

[r(r)ﬂmn ,r(z‘)ﬂmx] for 7 € P, (see Eq. (9.6)) (9.34)
[&n> | fOr 7€ B, (see Eq. (9.7))
[

mn

amn,r(r)ﬂmx] for 7 € P, (see Eq. (9.8))

is the corresponding sample space for a. Specifically, given that p is defined by p(a) = ap(7),
the density function dp,;(p | 7 € P) for p defined on S;(p |7 € P)fori=1,2, 3, 4 is given by

dp(plreB)=(1/B(@)d (p/ B() |7 €P) (9.35)
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through an application of the relationship
dy(u=cx)=(1/c)d(u/c) (9.36)

for (i) a constant ¢ > 0, (ii) d, (x) the density function for x on [x

s> Xy 1> and (iii) d; (u) the
density function for # on [cx,,,,cx,,. ] ([66], Table 7.1, p. 381).

Table 4 Definition of sets H,P,, 3 and B, initially defined in Eqgs. (9.9)-(9.12) for Cases 1, 2, 3
defined in Egs. (9.13)-(9.15) with (i) 7,= first possible time for link failure, (ii) 7, = time of
maximum possible property value at link failure, (ii1) 7,,,= time of minimum possible property

value at link failure, and (iv) 7, = last possible time for link failure.

Case 1: a,,, / By <! By

B =l tl= {2' ! (Cpy ! B ) ST < P! (s /ﬂmx)}

732 :[me’rmn] = {Tﬁ’il (amx /ﬂm)c)S T< 7'71 (amn /ﬁmn)}
B=0
Py =0t 1= {7177 (@ | B) 7@ <77 (@ )}

Case2: a,, / B, <% ! Bun

B =lrst,l= {r ! (U ! B ) S7(7) < r! (! B )}
B =0

By =[5 = {77 (@ / B ) ST <7 (@ B )]
Py =le,nl={r:r (e, / Bu]<r<r e,/ B,

Case 3: a,,, / By = Oy ! By
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As indicated in Eq. (9.35), the determination of dp,; (p | 7 € F) is straight forward provided the
density function d,(a|r€P) for a defined on A(a|reP) can be determined. The
determination of d ;(a |7 € P) is now addressed. There is a certain level of complexity to this
determination because the conditionality on the ratio » = (1) = ¢(z)/ p(r) that derives from the
required equality ap(r) = fq(r) results in d, (a|7€P) being dependent on the density

functions d () and dz(f) and their associated intervals of definition [e,,,c and

(B B 1-

mx]

The derivation for d ;(a |7 €P) starts with a determination of the joint density function
du=a/p,a) for u= a/f and a. In general, the joint density function d(x, y) for variables x
and y with densities d, (x) and d, () is given by ([67], p. 88)

d(x,y) =dy (x| y)dy(y) = dy (X)dy (¥ ] x). 9-37)

In consistency with Eq. (9.37), d(u =« / B,a) can be represented in two forms:

duma) By |r@=a! By u=alf) 038)
T d@dyu=al Bla). '

Further, the density function d;, (v = o/ ) is defined by
dU(u=a//3)=j:::(a/u2)dA (a)dy(a/u)da (9.39)
as stated in ([66], Table 7.2, p. 385), and the density function d,,(u =/ B | &) is defined by
dy(u=a/pla)=(alu’)ds(a/u) with fu)=a/u (9.40)

through an application of the relationship

dy(u) = |dx(u) / du|dX [x(u)] for u = u(x)

9.41
=(c/u2)dX[c/u] foru(x)=c/x,x(u)=c/u,c>0, ©41)

where d, (x) and d;,(u) are the density functions for x and u, respectively ([66], Eq. (2.93a, p.

377). Eq. (9.36) is a special case of the first equality in Eq. (9.41).

Representations for the density function d (o |u = a/ f)in Eq. (9.38) are given by
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d(alu=alp)y=du=al/p,a)/d,u=alp)
= d(@dyw=alf|a) dyw=alp)
d (o) /u*)dg(a/u)
_J‘:W(a/uz)d/l (a)dy(a/u)da (9.42)
3 : ad,(a)dg(a/u)
_J‘jmad/{ (a)dB(a/u)da,

where (i) the first two equalities follow from Eq. (9.38), (ii) the third equality follows from Egs.

(9.39) and (9.40), and (iii) the fourth equality follows from the cancellation of u®. In turn, the
desired density function

dylalteR)=d(alu=al f=q(r)/ p(r)=r(z) for 7€ R)
ad (a)dgla /r(7)] (9.43)
J.:m ad,(a)dzla/r(r)]da

mn

is obtained for a p(7) = fq(r) from the final equality in Eq. (9.42) by replacing u with (7).

The final forms of the integral

1(r(0) =" ad,(a)d, (a/r())da (9.44)
in the denominator of Eq. (9.43), and hence the final forms for d ,;(a |7 € P), depend on which
of the sets H,B,R,P, defined in conjunction with Egs. (9.4)-(9.8) ¢ belongs to. This
membership also determines the sample space associated withd ,;(a | 7 € F); specifically, the
sample space for d ;(a |7 € P) istheset A (|7 € P) as indicated in Egs. (9.4)-(9.8). The final

forms of the integral /(r(7)) are now obtained and will depend on the subsets of [«

mn?

a

o] O

which either a /r(r) < S, or B, <a/r(r) holds and, consequently, dz(a/r(r))=0.

Membership of ¢ in B requires that 7(7) satisfies the inequalities
Ay S0P, < @ < 1(7) B, » With the results that (i) a/r(r)< g, for a,, <a<r(r)p,,
and (ii)) B, <a/r(r)<p, for r(r)B,, <a<ea,. . As a consequence of the preceding

inequalities, the final form of the integral in Eq. (9.44) for 7 € F is
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L(r@|reR)=[""ad,(a)dy(a/r(F))da

mn

r(z.)ﬂﬂln f__zJ\O_ﬁ am.x r_—j>£)_—
=] ad,(a)dy(a/r(r))da + Iy ad,(a)dy (a/r(7))da (9.45)
= [ ad,(a)dy(a/r(@@))da.

B 7(7) Bon

Membership of 7 in P, requires that 7( 7) satisfies the inequalities «,,, <r(7)f,, <r(@)B,, < A,
, with the results that (i) a/r(r)< g, for «a,, <a<r(0)p,,, (i) B, <a/r(t)< B, for
rB,., <a<r(r)B,,, and (iii)) B, <a/r(r) for r(r)B,,. <a<a,,. As a consequence of the

preceding inequalities, the final form of the integral in Eq. (9.44) for 7 € P is

L(r(t)|zePR)= _[:mx ad,(a)dy(a/r(r))da

mn

) — o 0
:J' ad, (a)d, (a/r(r))da+j ad,(a)dy (a/r(r))da
o ) B
(9.46)
Apx ,_;L
* J-r(r)ﬁmx ad,(a)dy(a/r(7))da
= J‘"((T))ﬂﬂmx ad, (a)dB (0( / l’)(z')da.

Membership of 7in 7 requires that r(7) satisfies the inequalities 7(7)S,, < ,,, <&, <7(7)B,,
, with the result that 8, <a/r(r)< B, for a,, <a <a,, . As aconsequence of the preceding
inequalities,

>0
———

L(r@)|reR)= J:m ad,(a)dy(a/r(r))da, (9.47)

for 7 € B, which is the same as integral in Eq. (9.44). Membership of zin P, requires that 7(7)
satisfies the inequalities r(7)8,, <«a,, <r(t)B,. <a,. , with the results that (i)
o salr(t)y<p, . fora, <a<r(r)p, and (i) B, <a/r(r) for r(r)B,. <a<a, .Asa

consequence of the preceding inequalities, the final form of the integral in Eq. (9.44) for 7 € B, is
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L(r@)reR)=["ad,(a)d;(a/r(F))da

mn

jr(r)ﬂ”"‘ P o 0
= ad,(a)dy(a/r(r))da + o ad,(a)dy (a/r(r))da

- jr(r)ﬂmx ad,(a)dy(a/r(r))da

(9.48)

The results in Egs. (9.45)-(9.48) and their role in the definition of d (o |t €P) fori=1, 2,3, 4

are summarized in Table 5.

The core relationships established in Egs. (9.45)-(9.48) can be summarized as

1(r(®) = [ ad,(a)dy (a/ r(x))da

mn

J-V(T)ﬁ

Q

d,(a)dy(a/r(r))da forreR

I’((:)jm ad , (a)dB (a / r(r))da forreP
Ia (a)dB ((l/l"(r))da fOrz'e’P3
J-;(T)ﬂmf ad,(a)dy(a/r(r))da for reP,
L(r()|7eR)

| L(r@)|reR)
L(r(0)|reR)
]4(I”(T)|z'e’]34)

and will be useful in later derivations.
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Table 5 Summary of density functions d ,,(« | 7 € F) and corresponding CDFs CDF,;(a |7 € F)

for i = 1, 2, 3, 4 for variable « conditional on link failure at time 7 and resultant ratio »(7) =
q(7)/ p(7).

4 (ad " ad@dy(a)r(0)da
dylalreR)= P ¥d4() B(a/r(r)) , CDF(a|teR)= a( L
oy ady(a)dg (@) r()da L(";;ﬂ ad,(a)dy (a/r(7))da

for B ={7:0t, <r(7) By Sy 1Oy}, (D)= q(2)/ p(2), anda € A (a |7 € R) =[1(2) By s U |

® ad,(@)dy(alr(o)da
dtale ey CHOGD 1oy Do, S
[ ad,(a)dg (a/r(z))da "ad,(a)dy(a/r(@))da
(7) By 7(7) By
for Py ={7: 0 S1(0) By S1(0) By Sy, 1(7) = (1) / P(2), and
a €Ay (a|reR)=[r(0) B (D). ]
* ad (@)dy(alr(o))da
d (e eR)=— ad (@)dg (a/r(7)) \CDF (al e Py) = IZW" ANE)CB
[ ady(@)dy (a! r(@)da [ ad(@)dy (a! r(@)da

mn

for By ={7:7(0) Byp < Uy S Uy <7(0) B} () = q(z)/ P(7), and @ € Ay (a |7 € By) =[py» Uy |

d . (alreP) = ad ;(@)dg (a/r(7)) CDF (alre B Ia ad ((@)dg (a/r(r))da
J';(r)ﬂ"“ ad,, (a) dy (a / r(r)) da ;(T),B”“ ad, (a) dg (a / r(r))da

for P ={7:7(2) By < Uy <10 B S}, (1) = q(7)/ P(7), and
0!EA4(6¥|T€,P4):[amn’r(T)ﬁmx]
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Once the density functions d, (a|r€P) and associated intervals of definition
e, (7),a,, (7)] are determined as indicated in Eqgs. (9.34) and (9.45)-(9.48), the corresponding
CDFs CDF,(a|r€P) are defined by integration of d ,(a|r€P) from «,,(r) to «a for
a<la,,(r),a,,(r)]. Specifically,

CDF, (a|reR)=" o

« {ddA (@)d, (d/r(r))}dd

am@ | 1 (r()|7eR)

d,(a|reP)a

(9.50)
[[ @y @ a 1 (0| 7).

where, for 7€ P, the corresponding sample space A (a|r€P) for a and the integral
I,(r|r€P) are defined in Eqgs. (9.34) and (9.49), respectively. Together with the density
functions d ;(a |t € R), the CDFs CDF,;(a |t € F) are summarized in Table 5.

A partial check on the correctness of the density functions d ,;,(« | 7 € P) can be obtained by

verifying that the integrals of these functions over their domains of definition A.(a |7 € P) are

equal to 1.0. This partial check follows immediately from the CDFs defined in Eq. (9.50).
Specifically, evaluation of CDF (|7 € P) for the maximum value «,, (r) of « in the set

A(a|7e€P) results in CDF (e, (r)|7€P) = 1.0 as a consequence of the numerator and
denominator in defining expression for CDF (e, () |7 € F) being equal. Thus, the integral of

d (|7 €P) over the corresponding sample space A (a |7 € P) for ais equal to 1.0.

9.5 Density Function d,(p|r) for Link Property Conditional on Link Failure at Time
T
Now that the density functions d ;(a |7 €P),i=1, 2,3, 4, for o are defined as summarized

in Table 5, the density functions dp, (p |7 €P) for p on

Bnd (7)., p(r)] fori =1 (see Eq. (9.4))

[
q q fori= . (9.
S(P17 € B) = [y (0). P (0)] = {ﬂ A O PO fori =2 (e Ea. 0.0 5,
[

a,,p(7),a,,p(r)] fori =3 (see Eq. (9.7))
@, P(2), B,,,4(7)] for i = 4 (see Eq. (9.8))

can be obtained as indicated in Eq. (9.35). Specifically,
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dp(plreP)=(1/p())d, (p/ p(z)|7€R)
W (plp@)d, [/ p(D)]dy[p ] P()x 1/ r(7)]
_(l/p(f))( Ii(l"(T)|T€7DI~)
(p/PP@)ds[p/ P®]ds[p/ 7]
B Il.(r(r)|re77i)

J (9.52)

5

where (i) the first equality follows from Eq. (9.35), (ii) the second equality follows from the
definitions of d ,;(a |7 € P) as summarized in Table 5 with the associated integrals represented

y I,[r(r)| 7 € P] summarized in Eq. (9.49), and (iii) the third equality follows from an algebraic

rearrangement of terms. The density functions dp,; (p | 7 € ) defined in Eq. (9.52) are summarized
in Table 6.

As done in Eq. (9.50) to obtain the CDFs CDF,(«,, (r)|r€P) for o, the CDFs
CDFp(plrePR),i=1,2,3,4, for p can be obtained by integrations of dp,(p|7 €P) over the
corresponding sample spaces S;(p |7 € F) for p. Specifically,

CDFPl(p|re'P) dp; p|re73)dp

(5/P*@)d,[p/ P@)ds[p/7(@D)]|
P (7) r(r) |7 e 73)

WIVI(T)

(9.53)

pmn(r)( (T))d [p/p(r)]d [p/Q(T)]dP/ (T|T€'Pl.)

for peS(p|lteP)=[p,, (7). P, ()]. The integral in the numerator of the final term in the
preceding equality can be rewritten through a change of variables as

Lfm(f)(ﬁ [P @)d,[p/ 5(D)]d,s [B/a(0))dp

=7 @@, [ap)]d, [a(p) rO][datp) | 4p)dp for a(p) = 5/ F(0)

(9.54)
= j “) ©) adA (a)dy (o / r(7))da by change of variables
pmn T
p/p(7)
= pmn(r)/ﬁ(r)adA (a)dg (a / r(r))da
In turn, the representation
p/p(7)
CDF, (p |7 e 731) :J o )adA(a)dB (a/r(r))da/li (T |7 e 771) (9.55)
Ppn\T)/ P(T
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results by combining the final expressions in Egs. (9.53) and (9.54).

Table 6 Summary of density functions dp,;(p | 7 € F) and corresponding CDFs CDF,.(p |7 €P)

for system property p conditional on link failure at time 7and resultant ratio (7) = g(7)/ p(7).

( !B (T))d Lp! B@)dy[p!3(@)] I}Z/ f;” ad [(a)dy (a/ r(r))da
dn(pleR) =" (CDFy(pl reR) ==
Ir(r)ﬂ ad, (@)dy(a!r(z))da Ir(r)ﬂ ad(a)dg(a/r(r))da
for 7 ={7: @y <H(0) By < Uy <D} > 1(D)= G(x)/ P(7), and
JZAS 81 (p | re 7Dl) = [ﬂmnq(r)vamxﬁ(r)]
/5(z)
(P! P’ @)dsp! p@)]dy [P/ 7)) ey eda(@dy (a/ r()de
dpPlTeR) =05 LDFpy (plreR) =208
[ e (a)dp (a/ r(0))de " ad (@) dy (/D) da
for 7y ={7: @y, <H(0) By <F(E) By <@} - (D)= G(2)/ B(r), and
JZAS 82 (p | re 732) = [ﬂmnq(r)v ﬂqu(’[)]
2 _ _ p/p(7)
(p/P*®)ds[p/ P©)dy [P/ 7] ad y(@)dy (a /(7)) da

dps(plteR)= ,CDFpy(p|7eRy)=""m

[ ad (@) dy () r(z))dar

aﬂlﬂ

[ ad,(a)dy (a! () da

for By ={7:1(7) By < Uy < e <7 (0) B} - ()= G(7) / P(r), and
pbe 83 (plre B)= [amnﬁ(r)7amxﬁ(7)]

p/p(7)

(p/P°@)du[p! P@)ds[p /()] " ad (@dy () r(7))da
dP4(p‘T€P4): 1) 7CDFP4(p’T€P4): r(’;’;ﬂ
[ ad, (a)dg (@) () da M ad (@) dy (a) r(0)da

for B, ={7:7(t) By < gy <7(0) B S} ()= G(7) / P(r), and
pbe 84 (p | re 734) = [amnﬁ(z—)a ﬂmxa(z-)]

58



Next, substitutions in Eq. (9.55) for p,,(r) as indicated for the sets S(p|7€P)
summarized in Eq. (9.51) and the integrals /(7| 7 € P) defined in Egs. (9.45)-(9.48) produce the
following representations for CDFy,, (p|r€P):

J-p/ﬁ(f)

CDF, (p|lteR)= P () B(7)

j ”Z*:;ﬁ ad,(a)dy(a/r(r))de

J'P/ﬁ(f)
7(2) B

j"(‘"ﬁ;ﬂ ad,(a)dy(a/r(7))da

ad (a)dg (a/r(7))da

(9.56)
ad (a)dy (a/r(r))da

with S, (p |7 € R) = [Bnd(2), 2, ()]

p/p(7)

CDF,,(p|r e P,) = LwlPD

Ir;?jmx ad,(a)dy(a/r(r))da

J‘P/ﬁ(f)

— 7(7) Bun
J'r(r)ﬂmx
7(7) Bun

ad (a)dy (a/r(r))da

(9.57)
ad (a)dy (a/r(7))da

ad,(a)dy(a/r(r))da

with S,(p| 7€ B) =[ B (7). Bd(7)];

J-p/p((r))/( )adA (Of)dB (a / r(z‘))da
CDF,(plteP)= P TP

j:"” ad,(a)dy(a/r(r))da

. 9.58)
["77 ad (@), (o] r(D)de

mn

" ad,(a)dy (el r(r))da

amn

with S;(p|z e R) =|a,, p(7),a,,p(r)]; and
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J'p/ﬁ(f)

CDF,,(plteP,)= Pn:,((rf))ﬂ/ﬁ(r)
I “ad,(a)dg(a/r(r))da

a,

ad (a)dy (a/r(r))da

mn

" (9.59)
["77 ad (a)dy (a1 r(2))der

mn

- Ir(r)ﬂm

[

ad,(a)dy(a/r(r))da
with S,(p |7 e R,) =|a,, P(7), B,.4(7)]. Together with the density functions d;(p |z € F), the
CDFs CDFy,(p |t € F) are summarized in Table 6.

A partial check on the correctness of the density functions CDF,;(p |7 € P) can be obtained
by verifying that the integrals of these functions over their domains of definition S;(p|7€P)

are equal to 1.0. This partial check follows immediately from the CDFs in Egs. (9.56)-(9.59).
Specifically, evaluation of CDFy,.(p |7 € F) for the maximum value p, (7) of f in the set

S (p|lreP) results in CDF,.(p,, . (r)|7€P)=1.0 as a consequence of the numerator and
denominator in defining expression for dp(p|r€’P) being equal. Thus, the integral of

dp;(p| 7 €P) over the corresponding sample space S;(p |7 €P) for p is equal to 1.0.

9.6 Representation of Joint Density Functions d,(a|7)d;(r) and d,(p|7)d,(7)

The joint density functions
d(a,v)=d,(a|7)d,(r) and dp,(p,7)=dp(p|7)d(7) (9.60)

play a role in the derivation of several quantities of interest (e.g., cumulative distribution for link
property at time of link failure in Sect. 10 and margins involving SL properties in Ref. [46]). As
summarized below in Egs. (9.61)-(9.63), the individual density functions d,(a|7), dp(p|7)

and d,(r) have complicated forms that depend on the membership of 7 in one of the sets
R.,P,B,P, defined and discussed in Sect. 9.2 and also listed in Table 4. Then, as shown in Eqs.
(9.64) and (9.65), the effect of membership of 7in one of the sets ,R,, 73, P, is reduced for the
joint density functions d ,(a | 7)d, () and d ,(a | t)d,(r) defined in Eq. (9.60).

With the indicated restriction of 7z to H,P, 7 or B, the representations for d (a|7),
dp(p|7) and d;(7) are
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dy(a|7)=

as indicated in Table 5,

dp(pl7)=

as indicated in Table 6, and

dp(r|7eR)=]

dr(7)=

dp,(c|7eB) =[d[p(0)/q()]/dr]|

dy(a|reR)=— adA(a)dB(a/r(r))
L(’;‘;ﬁ ad,(a)dy(a!r(r))da
dp(alre )= a0 (@ 1D)
j "ad,(a)dy(a/r(r))da
e ) 9.61)
dp(a|reR) = a@dn (@ 1(D)
ja’”" ad,(a)dy(a/r(r))da
A (a| v e B =— 244l (a/r@)
.[a "ad,(a)dy(a/r(r))da
p/ P @)d,[p/P@)]ds[p/ ()
dPl(p|TE7D1)=( p ) A[ ] B[ ]
L(j;ﬁmn ad,(a)dg(a/r(r))da
p/ P @)d,[p! p(®))ds[p/q(r)
dpz(mre?z):( — Joul Lat)
[ ad, (a)dy (a /() da
7(7) Byun (962)
p/ P (@))d,[p/p(@)]ds[p/7()
dP3(P|TE733):( p )A[ ]B[ ]
J‘amxadA (a)dy(a/r(r))da
p!P*(@)d, [p! P@)]ds[p/q(2)
dp4(p|re7>4)=( - Jeu Lo 7N Lo 1)
[ ad,(a)dy (@) r@)da
d[B(0)/ q(n)]/dr] j::’:ﬁ ad ,(a)dy (a/r(r))da
:;:Z " ad, (@)dy () r(0)da
(9.63)

dps(r|z e R) =[d[p(r)/ q(r)]/d7 ] j:’ ad,(a)dy(a/r(z))da;

dry(c| 7 e P) =[A[p(©)/7@)]/dr]]) ™ ad, (@)dy (a/ () da
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as a consequence of the definition of d,(7) in Eq. (8.2) and the equalities summarized in Eq.
(9.49).

Given the relationships in Egs. (9.61)-(9.63), the joint density functions d ,(a | 7)d,(7) and
dp(p|7)d;(7) can be expressed as

dyr(a,7)=d,(a|7)d (7)
d(@|reR)dn(r|reR) forren
Jdp(alteR)dp(z|reP) forreP,
|ds(@lreR)dp(c|reR) forre,
dy(alreR)dry(r|rePy) forrel,

{d[?} / dr}adA ()dy (] (7))

(9.64)

q(7)
and

dpr(p,7)=dp(p|7)d;(7)
dp(plteR)dy(t|reR) forreR
_ dp,(plteR)dp(r|reP) forreP, ©.65)
dp;(pltePR)dpy(r|reP) forreR

dpy(plteR)dry(t|reF)) forr el

HM}MH‘Z]Z )}d/‘ [p/ P@]dy[p/7(D)].

q(7) D (z

with the final equalities in Egs. (9.64) and (9.65) resulting from the cancellation of terms in the
numerator and denominator of each of the products

di(a|tePR)d,(t|teP) and dp(plrePR)d,(r|reP). (9.66)
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10. Double Integral Representation of CDF,(p|[t,,,.t]) Based on Time r and

Failure Value p

The results in Table 6 for link properties at specific link failure times provide a basis for
determining the cumulative probability CDF,(p|[t,,,t]) for link property p at time 7 of link
failure for link failure times in the time interval [f,,,7]. Specifically, the representation for
CDF,(p|[t,,-t]) in Eq. (8.1) for p(7r) increasing and g(r) either decreasing or constant-valued

can be restated as

CDFP(thmn’t]) =1 CDFP(p |[Tmn(p)az—mx(tap)]) fOI‘ CDFP(thmn’t]) >0

T (D) | [ P (P5T) - ~
= [ [0 a0y (e

Ty (D) P (7)

T (L) | £ Py (P5T) ~ ~
S [T [ (51 )y () dp o 101

T (D) P ()

- j:mx((;,;ﬁ){jpm(p,f){d [_7(7)} / dr}{ p }dA [[9 / ﬁ(r)]dB [[9 / q_(T)]dﬁ}dT

@ 14(7) P’ ()
T (6,P) i (25T) i 1 ~ o o i
“Jow {ffm(f; {d_@} de]_jf;)}dA [2/7(D)]d, [p/q(r)]dp}dr,

with (i) 7, (p) = first time with a link failure value < p, (ii) 7, (¢, p) =min{t, 7, (p) = last time

with a link failure value < p}, (iii) p,,(p,7)=min{p,p,. (7)} for 7, (p)<7<7, (2,p), (V)
dp(p|7) is the density function for link failure value conditional on link failure at time 7, (V)
d;(7) defined in Egs. (8.2) and (9.63), and (vi) the substitution producing Equality 4 following
from Eq. (9.65). As shown in Eq. (12.9), the quotient 5/ p*(z) in Eq. (10.1) can be removed by

the change of variables a(p)= p/ p(r). For convenience, the limits of integration in Eq. (10.1)
are summarized in Table 7.
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Table 7 Integration limits in Eqgs. (10.1) and (10.10) for p(r) increasing and g(7) either
decreasing or constant-valued.

7,.,(p) = first time that link failure could occur at a property value p < p
_{rf = (@ | Bo) for p, <p<p,.

t,(p)= 7 ' (p/ B) for p,, < p<p, (notrelevant for g(z) = c because p,,, = p )

7, (p) = last time that link failure could occur at a property value p < p

_ {Ti = r_l(amn /' B,.) for p, < p<p, . (notrelevant for g(z) = c because p, = p,,.)
o(p)=p'(pla,,) for p,, <p<p,

T (t, p) = min{t, 7, (p)}

[P (T), P, (T)] = interval of link failure values p at time 7 for «,,, / B, < % ! Box
[B,n@(2), @, D@ for 1€ R = {77, =1 (@ / Br) ST <7 (@ | Br) = T
=18 d(@), B @] for te P ={z:7,, =r (@ | Bu) ST <1 (A | Br) = Ty}
(@ P(0), BT (D] fOr 1€ Py = {720, =1 (@ / Boy) STS0 (@ | B) =7}

[P (T), P, (£)] = interval of link failure values p at time 7 for «,,. / B,, < %, ! Bun
(B (D)., D@ for 1€ R ={r:7y =1 (@ / Bu) ST S0 @y | i) = Ty}
=1le,, () a, b)) forreP ={c:7,, =r'(a,, /B,,)<t<r ' (a, /B, )=",

[amnﬁ(r)’ﬂqu(r)] for Te 7)4 = {Z- : me = r_l (amx /ﬁmx) S T S r_l(amn /ﬂmx) = Tl}

[ D (D), D (7)] = interval of link failure values p at time 7 for «a,,, / B,, = Qe / B
(B (D). D] for e R ={z:7, =" (A / B) ST (@ / Br) =T}
[a,, p(2), B,.q(0)) forreP, ={r:7, =r(a, /B, )<t<r (a,, | B,)=1

P (p,7)=min{p, p, (7)}
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Examples of the regions integrated over in Eq. (10.1) are presented in Fig. 13. In Fig. 13a, p =
5.75 and the highlighted region corresponds to the region integrated over to determine

CDFp(p =5.75][7,,(P),7,,(t, p)]) = CDFp(5.75|[7;,7,]) for t =7, (10.2)

mx

with the time-dependent property bounds defined by

B..q(r) for s <7157,,

a,,p(r) for 7, <r<7

P () = { (10.3)

and

@, p(7) for 7, <7 <7,(5.75)
P (P =5.757)=1p for 7,(p) <7 <7/(5.75) (10.4)
B..q(r) for 7,(5.75) <z <1,

The region integrated over to determine

CDFp(p =5.75[[7,,(P), 7, (t, P)]) = CDFp(5.75 [z, 2]) for 7, <t<7, (10.5)

is the subset of the highlighted region in Fig. 13a bounded on the right by a vertical line originating
at ¢ on the time axis (e.g., as illustrated by ¢,,f,,%;,¢, in Fig. 13a). In Fig. 13b, p = 4.5 and the

highlighted region corresponds to the region integrated over to determine

CDFp(p =4.5|[7,,(p),7,,(t, p)]) = CDF(4.5|[7,(4.5),7,]) for t =7, (10.6)
with p,,.(7) defined the same as in Eq. (10.3) and

p for 7,(4.5) <7 <7,(4.5)

— (10.7)
B,.q(7) for 7,(45)<7<71,.

Pm(p=45,7)= {

The region integrated over to determine

CDFp(p =4.5|[7,,(p),7,,(t, p)]) = CDFp(4.5|[7,(4.5),t]) for 7,(4.5)<t<7, (10.8)

mx

is the subset of the highlighted region in Fig. 13b bounded on the right by a vertical line originating
at ¢ on the time axis (e.g., as illustrated by ¢,,1,,¢, in Fig. 13b).
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Fig. 13a: Link 9, p=5.75 Fig. 13b Llnk9 p=45
' e ' ‘ e - = =p(r)

* '0. o
" - = =p(7)
*

)
L

3 — § 75
<D= BIS -
-

wn
wn
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p: Property Value
N

3r b 3t
| r
2 | 20 L
p | o] : d R
1 Tt |t I3 e | | 1 Tf T (1)) ) | Tmn |t2 ;
2 Tr (p)4 g (1))6 Tmn 8 10 ) 4 6 T (p) 8 10
7: Time 7: Time

Fig. 13 Illustration of regions integrated over to obtain CDF,(p|[t,,.t]) in Eq. (10.1) for Link 9
defined by p(r)=2+04r, gq(r)=8-0.67, [a,,.a, ]1=[0.67,1.65], and [B,,.B,.]1=
[Bons B 1= [0.75,1.25]: (a) Link 9 with p =5.75, and (b) Link 9 with p =4.5.

The representation for CDF,(p|[t,,.t]) in Eq. (10.1) and the representations for

CDF,(p|[t,,-t]) developed in Sect. 4 and summarized in Table 2 do not look very similar.
However, they are equivalent as shown in Sect. 12.

Most use of the representation for CDF,(p |[t,,,,¢]) in Eq. (10.1) will probably be for
t=17, (p)= last time with a link failure value < p. (10.9)
In this case, the representation for CDF,(p |[t,,,,t]) in Eq. (10.1) becomes
CDFp(p |[tyys T (P)]) = CDE (P [[7,,(P): T, (P)]) for CDFp(p (2,57, (P)]) > 0

(T (P) | P (P57) 1 }3 o o ) (1010)
h T (P) {J’pmn(z‘) {d{r(r)}/dr}{m}df‘ [p/p(f)]dB [p / q(r)]dp}dr.

Although the representation for CDF,(p|[t,,.t]) in Eq. (10.1) looks very complicated, it

probably provides a more efficient structure for a quadrature procedure to evaluate the CDF
defined by

[2:CDFL (P | (2 () T (2, D] (10.11)

for
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amn]_?[ril(amn /ﬂmn)] = p”‘ll’l S p S pmx = amxl_)[ril(amx /ﬂmx)] (10'12)

than the integral representations for CDF,(p|[t,,.t]) developed in Sect. 4 and summarized in

mn?

Table 2. This statement is made because evaluation of the integral in Eq. (10.1) involves integrating
dpr (p,7) over a subregion R(p) of the region R defined by the curves «,,p(7), «,, p(7),
B.,q(7) and B, q(7) asillustrated in Fig. 1 with time 7 on the abscissa and property value p on
the ordinate. Specifically, (i) the upper boundary of R(p) is defined by a horizontal line
originating from a value of p on the ordinate and (ii) the right boundary is defined by a vertical
line originating from a value ¢ on the abscissa. As a result, the numerical evaluation of
CDF,(p|[z,,(P),7,,(t,p)]) can make full use of the calculations performed to obtain
CDF,(p|[z,,, (D)7, (t, p)]) for p,, < p < p asthis evaluation for increasing values of p simply

involves systematically increasing the upper limit of integration for p. A similar relationship holds
for increasing values for ¢. However, the need to include the derivatives d[1/r(7)]/d7 in the

integrand could pose a numerical challenge.

If desired, CDF,(p |[t,,,t]) can also be defined with the order of integration in Eq. (10.1)

reversed so that the outer integral is on property value p and the inner integral is on time 7. The
result of this reversal is

CDFp(p|lt,,.t]) = CDF(p|l7,,(p),7,, (t p)]) for CDF,(p|lt,,,t]) >0
e (Do) | T (1) 1 _ _
- :m,l(j,z) {Lmn(;z) {({@} / dr}{ﬁ;zr)}dA [p / P(T)]dB [P / Q(T)]dr}dp

with the limits of integration defined in Table 8. As the outer variable of integration in Eq. (10.13)
is property value, the double integral in Eq. (10.13) may be more convenient for approximating
the CDF indicated in Eq. (10.11) than the double integral in Eq. (10.1).

(10.13)
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Table 8 Integration limits in Eq. (10.13) for p(r) increasing and g(7) either decreasing or

constant-valued.

Pun (p’ t) =

D (P51) =

T (D51) =

T (D51) =

undefined forp,, < p<p,andt<t,(p)
B (@) for () p,,<p <p,and 7,(p)<t<rz,, (notrelevant forg(r)=c
becausep,,=p,) or(i)p, <p<p, and7,<t<7,,

Py Tor 7, <min{z (p),t}

undefined forp,, < p<p I and ¢ < ty (p)
Q,, p(t) forp, <p<p, andi, <1<t (p)
p fort (p)<t

undefined forp,, < p<p,and?<t,(p)
q_l(p/ﬂmn) for p,,<p <p, and 7,(p) <7 (not relevant for g(z) = ¢
because p,,,=p,)

p'(pla,) forp, <p<p, andz, <t

undefined forp,, <p<p,andz<t,(p)

min{t, 5 (p/a,,)} for p,, < p <p,
min{t,g ' (p/ B, forp, < p<p (notrelevant for g(r) =c

because p,=p,,.)
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11. lllustration and Verification of Double Integral Representation of
CDF,(p|[t,,.t]) Based on Time r and Failure Value p

mn?

As an example, two evaluations of the CDFs defined by CDF,(p|[7,, .7, (p)]) for
DPun < P < P, and the links defined in Table 1 and illustrated in Fig. 1 are shown in Fig. 14, with

(i) one evaluation obtained with sampling as indicated in Eq. (6.1) with samples of size nS = 10°
and (ii) the other evaluation obtained by numerical approximation of the double integral in Eq.
(10.10) with the MATLAB program TwoD [55]. The similarity of the CDFs obtained with the two
evaluation procedures provides a strong verification result that the representations for

CDF,(p|[t,,-t])) and CDF,(p|l[z,, 7, (P)]) in Egs. (10.1) and (10.10) have been correctly

derived. Further, as shown by the essentially identical match of the results for the sampling-based
procedure and the quadrature-based procedure in Fig. 11a, the numerical approximations of the
double integral in Eq. (10.10) also matches the numerical approximations of the integrals derived
in Sect. 4 and summarized in Table 2.

o o
o) o

Cumulative Probability
o
.9

200 400 600 800 1000
p: Property Value at Link Failure

CDFPQ:I (P| [Tmn: Tmaz (p)])
CDFp ’Q, 9(p|[7—mn Tmb( )])
CDFPQ 3(p|[7—mm Tmr( )])
® CDFps(pl[Tinn; Trma(p)])
® CDFPS 2(19‘ [Tmn: Tm;t(p)])
L GDFPS (1)‘ [Tmns Tma:(p)])

Fig. 14 Two evaluations of the CDFs defined by CDF,(p |[7,,,,7,..(P)]) for p,. <p<p,. and
Links 1, 2, 3 defined in Table | and illustrated in Fig. 1, with (i) CDFp;(p|[7,,,,7,.(p)]) for

Link i obtained by numerical approximation of the double integral in Eq. (10.10) and (ii)
CDFpg ;(p |77, (p)]) for Link i obtained with sampling as indicated in Eq. (6.1).

An important aspect of the positive verification results for Egs. (10.1) and (10.10) is that a
number of results obtained as parts of their derivation will be important components of results
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obtained in later analyses [46; 47]. The verification of Eqs. (10.1) and (10.10) provides a strong
indication that results underlying their derivation have also been derived correctly.
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12. Equivalence of Different Representations for CDF,(p|[¢,,.t])

12.1 Preliminaries: Equivalence of Different Representations for CDF,.(p|[t,,,.t])

The equivalence of the representation for CDF,(p|l[t,,.t]) in Eq. (10.1) and the

representations for CDF,(p|[t,,t]) developed in Sect. 4 and summarized in Table 2 (i.e., for the

three configurations defined in Egs. (4.16)-(4.18) is now established. As in sect. 4, the results are
derived for p(r) increasing and g(7) decreasing (i.e., for Case 1 as defined in Eq. (2.8)), which

assures that ' (7), g '(z) and r~'(r) exist. Establishing this equivalence provides an additional
verification of the correctness of both (i) the representations for CDF,(p|[t,,,,t]) derived in Sect.
4 and (ii) the representation for CDF,(p|[t,,.t]) in Eq. (10.1).

In concept, the desired equivalence can be obtained with use of the change of variables theorem
for double integrals (see Ref. [68], Sect. 14.4, for technical details). Specifically, this theorem
states that

” fIx(u,v), y(u,v)]| D(u,v) | dudv = ” f(x,y)dxdy (12.1)

N M
for (i) the mapping
x=x(u,v),y=yu,v) (12.2)
from the space N ~ {(u,v)} to the space M~ {(x,y)} and (ii)

ox(u,v)/ou ox(u,v)/ ov

D(u,v) =
W) = vy /o Sy(uv) ) ov

, (12.3)

Use of the indicated change of variables theorem with the integral in Eq. (10.1) defining
CDF,(p|[t,,,t]) produces

mn?

CDFp(p |ty »t]) = CDFp(p | (7,0, (), 7, (&, P)]) fOr CDF(p |[2,,,,2]) > 0

_ :(<;)p> { I::;:T){d[l 1@/ de} (B P @V, [ P©)dy [5/7(0)] dﬁ}dr
= ){I "D, p)| flatr. p).A. f?)]dﬁ}dr (12.4)
= [[d.(@)d, (B)dpda
g
with
a=a(t,p)=plp),p=ptp)=p/q(), (12.5)
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ez, p), Bz, p)l = flp/ p(©),p/q(D]=d[p/ p(D)dg[p/ q(7)], (12.6)

oa(r,p)/ ot oa(r,p)/ op
oB(r,p)/ 0t 0B(r,p)/ p
dp/p@)]/or dp/p(z)]/ op
dp/q(r)/or op/q(®)]/ b
@ P VEe| {ﬁ'(r)=dﬁ(f)/df
—-pg'(0) /g% (r) 1/q(r) q'(r)=dq(z)/dr
=[-p7'()/ > @I/ p(D)]-[-pp'(2)/ p* (D][1/ §(2)] (12.7)
_| P07’ (0)+3(0)p'x) { P }
7 () L@
{d[l/r(z‘)]/dr}{ﬁ/ﬁz(r)}>0 from {

=|D(a,p) |,

D(a, ) =

1/r(z) = p(z)/ q(7)
1/r(r) increasing

and M defined by the transformation of

N =[7,, (2T, (t, PIIX[ Py (D), Py (2, 7)] (12.8)

as indicated in Eq. (12.5). The integrand in the final integral in Eq. (12.4) matches the integrands
in the representations for CDF,(p |[t,,,t]) developed in Sect. 4 and summarized in Table 2.
However, deriving the corresponding limits of integration that in effect define the set M is
difficult. Fortunately, the change of variables leading to the final integral in Eq. (12.4) can be
derived using specific properties of the first integral in Eq. (12.4) in a manner that leads to
definitions for M that correspond to specific definitions for N .

The indicated change of variables is developed in the following manner starting from the
representation for CDF,(p |[t,,,t]) in Eq. (10.1):

mn?
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CDF (p | [ mn? ]) = CDFP(p | [Tmn(p)at]) for 2-mn(p) <t< me(p)

= ﬂ,,,,,(p){ {d[1/ r@)]/def{p/ P @) d, [/ P(@)]dy [ 5/ a(r)]dia}dr

. Itm(p){Ia[pmua,r)]{01[1/r(r)]/dr}mzA(a)dB (a/r(r))da}dr for a(p) = p/ p(r)

z, A Py (7)]
t { J'PW(PJ)/ﬁ(f)
Tmn (p)

J‘amx(p)
amn (t)

|
J-am(p){J-ﬂ[fm(f a4 (ﬂ)dﬂ}d (a)a for B(r)=a/r(r)
|

j‘pmx(p,r)
pmn (r)

= {d[1/r(@)]/dr}ad (a)dy (a r(r))da}dr (12.9)

Pun (D) p(7)

Lm(t “ l/r(z')]/dz'} adg (a / r(z‘))dr}dA (a)da

mn (a)
amn (t) ﬂ Yllﬂ( )]
aﬂL\’(p) a/r[fmx(t a)
J‘amn (t) j

where:

Bw)dﬁ}d (a)a,

a/r Tm)1 ( )]

(1) Equalities 1 and 2 follow from Eq. (10.1) with
=2, (t, p) = min{t,7,,(p)} for 7,,(p)<t<7,.(p) (12.10)

as indicated in the definition of 7, (¢, p) following Eq. (10.1). As examples, regions potentially

being integrated over are illustrated by the high-lighted areas in Fig. 13a and Fig. 13b with the
limits of integration for 7z defined by the intervals

[7,,2] forp, <p<p,, inFig. 13a

=1 12.11
(] {[rf(p),r] for p,, < p < py inFig. 13b o

on the abscissa and the limits of integration for p on the ordinate defined by the intervals

[Py (D)s Do (2, 7)] With

_ (12.12)
a,,p(r) for 7, <t<7

Pon ( )={ /
and

@, p(r) for 7, <7<7,(p)
Puc(PsT) =1 P for 7,(p)<z<7(p) (12.13)
ﬂqu(r) for 7 (p) <7< 7

forz,, (p)<7<t.
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(i1) Equalities 3 and 4 result from a change of variables with a(p) = p/ p(7) . In continuation
of the example in Fig. 13a, the region potentially being integrated over is transformed into the
region shown in Fig. 15a. The limit of integration for 7 defined by the interval [z, (p),¢]=[7,,7]

on the abscissa is unchanged, but the limits of integration for & on the ordinate are now defined
by the intervals

[, (D), &, (P, D] = [ 2, (7) / (D), P (P, 7) 1 P(7)] (12.14)
with
_ Bwq (D) p(7) = B, r(z) for 7, <7<7,,
= = 12.1
A (T) = P, (7) ] P(7) {amnﬁ(r)/ﬁ(r) . for 7 <r<z, (12.15)
and

a,.p) p(t)=«,, for z,, <7<7,(p)
%y (P, 7) = Py (P, 7) / P(2) =y p/ P(7) = p/ p(7) for 7,(p)<z<7(p)  (12.16)
Bxd(0) ! p(7) = B,,r(7) for 7,(p) <z <7

The examples in Fig. 13a and Fig. 15a are for Link 9 with p, < p < p, . Additional examples for
Link 9 with p,, < p < p, are given in Fig. 13b and Fig. 15b. For this example, ¢,,,(7) is defined
the same as in Eq. (12.15), and «,,, (p,7) is defined by

p/p(r)=p/p) for 7,(p)<7<7/(p)

- (12.17)
B4 (t) ! p(r) = B,,r(r) for 7,(p)<r<7,.

amx(p,z') = pmx(p,f)/[_)(‘[) :{

This distinction is important because it affects the range of « values that can result in link failure
as illustrated in Fig. 15a and Fig. 15b.
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Fig. 15a: Link 9, p=5.75 Fig. 15b: Link 9, p=4.5

2
(B, 7) = B (7) nn (P 7) = By (7) Bl
Qe (P, 7) = 1.35 =0.67
Oz - + T e (p,‘i") =@ar=1.08 Oz | O—'ma‘(p: T) _ p/;ﬁ(‘l’)
CT! 15t <. (p,7) = p/B(7) CT! 15t o (0, 7) = Bt (1)
= N =135 =
= . e a Qe (0, () = 0.91
= Dy (P; T) = ,f’)i,,¢;‘;7"('7) =
3 l 3
= : / =
~l:' 1 r I &0 (P; T) = Qiypn ‘l:' 1 [
I, [ I =0.67 e, & 4
é I I d b
| I I
X |- | I [ I X |- [ [
0.5 t l . to l Itg Itq . 05 i Tf(P) t | Trnn |t2 ltiﬂ T
27t 1)y TPl T g M g 2 4 6 mlr)g 10
7: Time 7:Time

Fig. 15 Tllustration of change of variables a(p) = p/ p(r) in Equalities 3 and 4 of Eq. (12.9): (a)
Link 9 with p =5.75, and (b) Link 9 with p =4.5.

(i11) Equality 5 results from a reversal in the order of integration. After this reversal, the outer
integral is over an interval [, (¢),,,. (p)] of values for & and the inner integral is over intervals

[7,.,(@),T,.(t,a)] of values for 7. As illustrated by the examples in Fig. 15, [«,,, (¢),,,. (P)] is
an interval of values for & on the ordinates of Fig. 15a and Fig. 15b, and [7,,(@),7,, (t,)] is an
interval of values for 7 on the abscissas of Fig. 15a and Fig. 15b. The definitions of «,,,(r) and

a,.(p,7) in Egs. (12.15)-(12.17) lead to the following definitions «,,,(7r) and «,,. (p):

Bt (@0) for 7, <t<z,,

() = D,y (1) P(2) ={ (12.18)

n for 7,, <t<rt,

from Eq. (12.15), and

a,. (p)=max{a, (p,7):7,,(p) <7<t}
o 10Py <P 5 P (12.19)
p/ple,(p=p/plg " (p/ B, )] forp,, <p<p,

consistent with Eqgs. (12.16) and (12.17) as previously indicated in Eq. (4.15). Further, the
minimum and maximum possible values 7,, (o) and 7, () for z conditional on a specific value

for « are
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and

P (p/a) from a=a,. (p.7)=p/p() for a,[p.7(p) < a<a,(p)
Ty (@) = (12.21)
r (@l B, from a=a,, (p,7) = f,1, () fora,, <a<a,l[p.7(p)]
In turn, the value of 7, (¢,&) depends on the values for ¢, ¢ and 7, («) . Specifically,
. (ta)=t for o, () <a<a, (p)=qa,, (12.22)

for p, <p<p,, and 7, <t <7,(p) asillustrated by the region in Fig. 15a bounded on the right
by 13

t for a,, ()< a<a,(p.n=pl )

-1 (12.23)
r,.(@)=p (p/a) for a, (p.)y <a<a, (p)

T, (t,a)= {

for p,, <p<p,, and 7,(p) <t <7,(p) as illustrated by (i) the region in Fig. 15a bounded on
the right by #,, and (ii) the regions in Fig. 15b bounded on the right by ¢, and ¢, ; and

r,.(a)fora, (pt)<a<a,. (p)

t fore,,(t)<a<a,. (pt)=p,7() (12.24)
=1 (@)=r(a/p,) for a,(p)<a<a,lp,5(p)l=p/ plz(p)]

T (@) =7 (p/la) for a,[p5(pl<a<a,.(p)

{t for @, (1) < & < &, (p.1) = f,,7(0)
me (t’ ) =

for p < p<p,, and 7,(p) <t <7, as illustrated by (i) the regions in Fig. 15a bounded on the
right by ¢; and ¢,, and (ii) the region in Fig. 15b bounded on the right by ¢, .

(iv) Equalities 6 and 7 result from a change of variables with £(7) = a / r(r). After the change
of variables, the outer integral is still over an interval [, (?),,, (p)] of values for « and the

inner integral is over intervals [a/ rr,, (@), a/rlt,, (¢, a)]] of values for f. Specifically,

a/Hr,,(a)] is defined by
alrz, ()] =al/r'(a/B,)]=p4,, fora, <a<a,. (p) (12.25)
with 7, (o) defined in Eq. (12.20), and « /{7, (¢,a)] is defined by (a)

alrr, ta)=alr@®) for a,,()<a<ea, . (pt)=qa,, (12.26)

76



with 7, (¢,&) defined in Eq. (12.22) for p, < p<p,, and 7, <t <7,(p), (b)

alr@) for a,,()<a<a,. (p,t)=p/p)

al iz, (t,a)]= { (12.27)

alrp(p/a))=p/qlp  (pla)] for @, (p<as<a,(p)
with 7, (¢,a) defined in Eq. (12.23) for p,, <p<p,, and 7,(p) <t <7,(p),and (c)

alrr, (t,a)]
alr() fore,, () <a<a,. (pt)= 1)
=sa/rr i (al B, )}]= By for a,.(p.0)<a<a,l[p.7,(p)]=p!plr,(p)]
alrp(pla))=p/qlp " (p/a)] for a,[p.7(pl<a<a,.(p)

(12.28)

with 7, (¢,) defined in Eq. (12.24) for p, < p<p,. and 7,(p)<t<7,.

12.2 Representation of CDF,(p|[t,,.t]) for Configuration 1 in Eq. (4.16)

The equivalence of the representations for CDF,(p |[t,,,.t]) in Eqgs. (4.25) and (12.9) for the
conditions imposed on ¢ and p for Configuration 1 (ie., p, <p<p,, with 7, <1<7,(p))is

now established. The indicated conditions on ¢ and p for Configuration 1 exactly match the
conditions in the example in Fig. 13a and Fig. 15a used to illustrate Eq. (12.9) when ¢ is assumed
to satisfy the equality 7, <7 <7,(p). In this case, the final representation for CDF,(p |[t,,,.1])

in Eq. (12.9) is

CDFp(p |[t,,,t]) = CDFp(p|[7,,t]) forz, <t<7.(p)

_ J-:mx(t,p){Ia/r[rmx(t,a)] dB (ﬂ)dﬂ}dA (a)da (12.29)

- .[: W(t)

mn

mn?

alr(t)
" dy(prapld (ania
with (i) «,,,(t) defined the same in Egs. (4.20) and (12.18), (ii) «,, (¢, p) = a,, defined in Eq.
(12.19), (i) a / [z, ()] = B,,, defined in Eq. (12.25), and (iv) a / r[z,, . (t,a)] = a/ r(t) defined
in Eq. (12.26) and the notation F(«,t) =a /r(t) used in Eq. (4.25). As comparison of the results

in Egs. (4.25) and (12.29) shows, the derivations for Egs. (4.25) and (12.9) produce equivalent
representations  for  CDFp(pl|[t,,,t]) for Configuration 1 (ie, p,<p<p,  with

T, St<7.(p)).

77



12.3 Representation of CDF,(p |[¢

mn?

t]) for Configuration 2 in Eq. (4.17)

The equivalence of the representations for CDF,(p|[¢,,,t]) in Egs. (4.37) and (12.9) for the

conditions imposed on 7 and p for Configuration 2 (i.e., p,, < p < p,, with 7,(p) <t <7/(p))is

mn?

now established. The integral in Equation 7 of Eq. (12.9) can be divided into two integrals with
the result that CDF,(p|[¢,,,t]) then has the form

mn?

CDEp(p |ty 5t]) = CDFR (p |17, (p):t]) for z,(p) <t <7,(p)

_ A (Po1) B(ﬂ)dﬂ dA(a)da+ A (p) | palrls W(ta)d (ﬂ)dﬂ d (a)da
Oy (1)

A (p1) |/, ()]
with (i) «,,,(¢) defined in Eq. (12.18), (ii) «,,(p,t)=p/ p() defined in Eq. (12.16), (iii)
a/rr,,(a)]=p,, definedin Eq. (12.25), (iv) a/r[r,, (t,a)] defined in Eq. (12.27), and (v)
a,,.(p) defined the same in Eqs. (4.15) and (12.19). Substituting the values for
a,. (p.t)=p/pt), alrr,, (x)]=p4,, and a/r[r, (t,a)] into Eq. (12.30) produces

J-a/r T (1,2)] (1230)

a/r[Tmn (a)]

CDFy (p |[t,,-1]) = CDFp(p |[7,,(p).t]) for z,(p) <t<7,(p)

_ P/P(t){ja/r(t)d (ﬂ)dﬂ}d (a)Xa J. (12.31)

amn (t) ﬂ)nn /p(t)

mn

Mp){ Ip/q[p (pla)] 4. (p)d ,B} 4 (axa.

As comparison of the results in Egs. (4.37) and (12.31) shows, the derivations for Egs. (4.25) and
(12.9) produce equivalent representations for CDF,(p|l[t,,.t]) for Configuration 2 (i.e.,

Pun S P = Dy With 7,(p) <t <7,(p)).

mn?

12.4 Representation of CDF,(p |[¢

mn?

t]) for Configuration 3 in Eq. (4.18)

The equivalence of the representations for CDF,(p |[t,,,,t]) in Eqgs. (4.57) and (12.9) for the
conditions imposed on ¢ and p for Configuration 3 (i.e., p, < p < p, . with 7,(p) <t <17,)is now

established. The integral in Equation 7 of Eq. (12.9) can be divided into three integrals with the
result that CDF,(p|[t,,,t]) then has the form

mn?

CDFp (p | [t-t]) = CDEp (p|[7,,, (p),t]) for 7;(p) <t <7,

A, (pt) | palrlr,, (t.a)]
1 d5(P)Ap|d (aa

amn (t)

. J.a,m[p,z'[(p)] {Ia/r[ﬂm(f’a)] dB (,B)dﬂ} dA ((Z)da

G (P31) alr(zy,, (@)

e d,(pap)d axa,

amx[p’z—[(p)] a/r[r)nn (Ll)]

alr[t,,, ()]

(12.32)
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with (i) «,,(t) defined in Eq. (12.18), (ii)) a/r[z,,(a)]=p,, defined in Eq. (12.25), (iii)
a,.(p,0)=p/ p), a,.[p,7,(p)= p/ pl7;(p)] and a /r(z,, (1,@)] defined in Eq. (12.28) and
,(p)=q ' (p/ p,,) defined in Eq. (4.12), and (iv) @, (p) defined in Eq. (12.19). Substituting

the indicated values for «/r(7,, ()], «,,(p.t), a,.[p.7;(p)] and a/r(r, (t,a)] into Eq.
(12.32) produces

CDFy(p|[t,,,t]) = CDFy(p|[z,,(p),t]) for 7;(p) <t<r7,

_ B () | palr(t) p/plr(p)]
- {Jﬁm dgw)dﬂ}dA(a)da o {J d (ﬂ)dﬁ}d (a)la
a " (pla
+ () {j platy el )]dB(ﬂ)dﬂ}dA(a)da (12.33)
p/plr;(p)] i
Bt (1) | pa/r(2) p/plr(p)]
- {Jﬂm d (ﬂ)dﬂ}d @da+ [ 4, @xia
Uy (D) 17/5[17_ (pla)]
d dfBrd
+Ip/p[r,(p)]{jﬁm 5 (A)p } a(ape.

which is the same as the representation for CDF,(p |[t,,,,t]) in Eq. (4.57). As comparison of the

results in Egs. (4.57) and (12.31) shows, the derivations for Eqs. (4.57) and (12.9) produce

equivalent representations for CDF,(p|[t,,.t]) for Configuration 3 (i.e., p, < p<p,. Wwith
r(p)<t<z).
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13. Summary Discussion

Weak link/strong link (WL/SL) systems are important components in the overall design of
high consequence systems. In such systems, loss of assured safety (LOAS) occurs under accident
conditions (e.g., a fire) when SL failures place the overall system in a potentially operational mode
before deactivation of the overall system as a result of WL failures. In this presentation, multiple
representations are developed and illustrated for the distribution of link property values at the time
of link failure in the presence of aleatory uncertainty in link properties. Specifically, two integral-
based representations and one sampling-based representation for the distribution of link property
values at the time of link failure are developed.

The derivation and numerical implementation of the three representations are independent of
each other even though they are intended to produce the same distribution of link property values
at the time of link failure. As demonstrated, all three derivations and their associated numerical
implementations result in the same distributions of link failure. This agreement provides a strong
verification result that all three derivations are correct.

Of the three derivations, the sampling-based (i.e., Monte Carlo) procedure is the easiest to
understand and implement. However, verification of sampling-based procedures can be difficult.
Thus, even though the integral-based representations may not be the preferred representations from
an explanatory and implementation perspective, their existence provides a way to provide
independently obtained results for use in verifying the correctness of the sampling-based
procedure.

In addition to the distributions for link property values at the time of link failure, a number of
intermediate results are also obtained that will be extensively used in two following reports on (i)
time and failure property margins for systems involving multiple WLs and SLs [46] and (i1) delays
in link failure time that are functions of link property value at the time of precursor link failure
[47] .
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