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Abstract 

Probability of loss of assured safety (PLOAS) is modeled for weak link (WL)/strong link (SL) 
systems in which one or more WLs or SLs could potentially degrade into a precursor condition to 
link failure that will be followed by an actual failure after some amount of elapsed time. The 
following topics are considered: (i) Definition of precursor occurrence time cumulative 
distribution functions (CDFs) for individual WLs  and SLs, (ii) Formal representation of PLOAS 
with constant delay times, (iii) Approximation and illustration of PLOAS with constant delay 
times, (iv) Formal representation of PLOAS with aleatory uncertainty in delay times, (v) 
Approximation and illustration of PLOAS with aleatory uncertainty in delay times, (vi) Formal 
representation of  PLOAS with delay times defined by functions of link properties at occurrence 
times for failure precursors, (vii) Approximation and illustration of PLOAS with delay times 
defined by functions of link properties at occurrence times for failure precursors, and (viii) 
Procedures for the verification of PLOAS calculations for the three indicated definitions of delayed 
link failure.  
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1. Introduction 

 As discussed in the Introduction to Ref. [1], weak link (WL)/strong link (SL) systems are 
important parts of the overall operational design of high-consequence systems [2-7].  In such 
designs, the SL system is very robust and is intended to permit operation of the entire system 
under, and only under, intended conditions (e.g., by transmitting a command to activate the 
system).  In contrast, the WL system is intended to fail in a predictable and irreversible manner 
under accident conditions (e.g., in the event of a fire) and render the entire system inoperable 
before an accidental operation of the SL system. The likelihood that the WL system will fail to 
deactivate the entire system before the SL system fails (i.e., degrades into a configuration that 
could allow an accidental operation of the entire system) is referred to as probability of loss of 
assured safety (PLOAS).  The descriptor loss of assured safety (LOAS) is used because failure of 
the WL system places the entire system in an inoperable configuration while failure of the SL 
system, although undesirable, does not necessarily result in an unintended operation of the entire 
system. Thus, safety is “assured” by failure of the WL system. 
 
  The present study investigates an accident context in which one or more WLs or SLs degrade 
into a precursor condition to link failure that will be followed by an actual failure after some 
amount of elapsed time. For example, the precursor condition might correspond to the beginning 
of a degradation process that will inevitably lead to link failure after a fixed or possibly randomly 
varying period of time (e.g., the precursor condition might correspond to a break in a boundary 
condition that allowed the initiation of a corrosion process that will ultimately fail the link). As 
another example, the precursor condition might correspond to a degraded condition of a link that 
will then result in link failure when the link experiences some form of random stress or perturbation 
(e.g., the precursor condition might correspond to a fracturing of a link that was later followed by 
link failure due to the random occurrence of an additional stress on the weakened link). 
 
 This study includes the effects of aleatory uncertainty on the failure of WLs and SLs. 
Specifically, aleatory uncertainty is assumed to be present in both (i) time-dependent property 
values for individual links and (ii) property values (either constant or time-dependent) at which 
individual links fail. As discussed in Refs. [8-20], aleatory uncertainty is used as a descriptor for 
random variability in the properties or behavior of a system. Specifically, aleatory uncertainty is 
distinct from epistemic uncertainty, which results from a lack of knowledge about the value of a 
quantity that has a fixed (i.e., unique) but poorly known value.  
  

The study reported in Ref. [1] also considers the effects of aleatory uncertainty on the failure 
of both WLs and SLs but does not consider accident contexts in which one or more WLs or SLs 
degrade into a precursor condition to link failure that will be followed by an actual failure after 
some amount of elapsed time. Two earlier studies consider the effects of aleatory uncertainty in 
link failure values but do not consider (i) time-dependent link failure values and (ii) aleatory in 
link property values [21; 22]. Two other previous studies investigate verification procedures and 
tests for use in conjunction with the calculation of PLOAS for WL/SL systems [23; 24]. 
 
 The following topics are considered in this presentation: (i) Definition of precursor occurrence 
time cumulative distribution functions (CDFs) for individual WLs or SLs (Sect. 2), (ii) Formal 
representation of PLOAS with constant delay times (Sect. 3), (iii) Approximation and illustration 
of PLOAS with constant delay times (Sect. 4), (iv) Formal representation of  PLOAS with aleatory 
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uncertainty in delay times (Sect. 5), (v) Approximation and illustration of PLOAS with aleatory 
uncertainty in delay times (Sect. 6), (vi) Formal representation of  PLOAS with delay times defined 
by functions of link properties at occurrences times for failure precursors (Sect. 7), and (vii) 
Approximation and illustration of PLOAS with delay times defined by functions of link properties 
at occurrences times for failure precursors (Sect. 8). The presentation then ends with a summary 
discussion (Sect. 9). 
 
 An important motivation for this work is the importance of having verification procedures for 
delayed link failure results calculated with the CPLOAS program [25]. To this end, a variety of 
verification procedures are described and illustrated in Sects. 4, 6 and 8. Fortunately, these 
verification procedures showed that CPLOAS calculated all presented results correctly. 
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2. Definition of Precursor Occurrence Time CDF for a Single WL or SL 

The precursor occurrence time CDF for a single WL or SL is based on the following assumed 
properties of that link for the time interval mn mxt t t  : 

 
       ( ) nondecreasing positive function defining nominal link property for ,mn mxp t t t t     (2.1) 

 

      
( )  nonincreasing positive function defining nominal precursor failure value for 

  link property for ,mn mx

q t

t t t


 

 (2.2) 

 

      
( )  density function for positive variable  used to characterize aleatoryy 

   uncertaintyin link property,
Ad  

 (2.3) 

 

     
( )  density function for positive variable  used to characterize aleatory

   uncertainty in link precursor failure value,
Bd  

 (2.4) 

 
    ( | ) ( )  link property for  given ,mn mxp t p t t t t        (2.5) 

 
and 
 
     ( | ) ( )  link precursor failure value for  given .mn mxq t q t t t t        (2.6) 

 
Further, ( )Ad   and ( )Bd    are assumed to be defined on intervals [ , ]mn mx   and [ , ]mn mx   and 

to equal zero outside these intervals.  
 

The functions p(t|) and q(t|) (i) define time-dependent values for a link property (e.g., 
temperature, pressure, …) and the precursor failure values for that property (e.g., failure 
temperature, failure pressure, …) and (ii) have distributions that derive from the distributions for 
 and  characterized by the density functions ( )Ad   and ( )Bd  . For given values for  and , 

the link enters a precursor condition to failure at the time t for which the equality  
 
        | |q t q t p t p t       (2.7) 

 
holds. In turn, the distributions for  and  result in a distribution of possible values for the 
precursor failure time  that can be summarized by 
 
       probability that precursor conditions to link failure occur at or before time ,PCDF t t   (2.8) 

 
which is the CDF for the time at which precursor conditions to link failure occur. 
 
 The precursor time CDF in Eq. (2.8) can be represented as either a Riemann integral or a 
Stieltjes integral. When represented as a Riemann integral, the CDF in Eq. (2.8)  has the form 
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      
( , )

d dmx

mn mn

F t

P B ACDF t d d
 

 
           (2.9) 

 
with 
 
 ( , ) ( ) / ( ) / ( )  and  ( ) ( ) / ( ).F t p t q t r t r t q t p t       (2.10) 
 
Derivations and approximation procedures for ( )PCDF t  are given in Ref. [1]. 
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3. PLOAS with Constant Delay Times: Formal Representation 

 In this case, a constant delay time 0D   is assumed to exist between the time when the 
precursor conditions for link failure occur and the actual time at which link failure occurs. This 
results in the following CDF for delayed link failure time: 
 

 

 

 
0

0

 probability that link failure occurs at or before time  with

   constant delay time 0

( ) d ( )

d ( ) ( )   for 0

0   for   0,  

D

t

P

t D

P P

CDF t t

D

t D CDF

CDF CDF t D t D

t D

  








  

    
  



 <

  (3.1) 

 
where  
 

   1 for  0 ( )
( )

0 for  ( ) 0.

t D
t D

t D


 


  

      
  (3.2) 

 
and ( )PCDF t  is defined in Eqs. (2.9). 

 
 In general, a WL/SL problem will involve nWL WLs and nSL SLs. In this case, delay times 

,WL jD , j = 1, 2, …, nWL, and ,SL kD , k = 1, 2, …, nSL, can be defined for the individual links and 

corresponding failure time CDFs , , ( )D WL jCDF t , j = 1, 2, …, nWL, and , , ( )D SL kCDF t , k = 1, 2, …, 

nSL, for the individual links defined as in Eq. (3.1). In such a situation, it is likely that zero and 
nonzero delay times will be present. As extensively discussed in Ref. [1], LOAS can be determined 
with the relationships summarized in Table 1 once the indicated failure time CDFs are available. 
 

The indicated verification tests in Table 1 are the known outcomes of assigning the same 
properties to all links [24]. This is not a realistic physical problem but serves as a useful verification 
test because it requires use of all the mathematics and programming underlying the calculation of 
PLOAS while, at the same time, having a known solution. 
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Table 1 Representation of time-dependent values ( )ipF t , i = 1, 2, 3, 4, for PLOAS and associated 

verification tests for alternate definitions of LOAS for WL/SL systems with (i) nWL WLs and nSL 
SLs and (ii) independent distributions for link failure time defined by the CDFs  

, , 1,2,..., ,WL jCDF j nWL  and , , 1,2,...,SL kCDF k nSL  ([22], Table 10). 

 
 

Case 1: Failure of all SLs before failure of any WL (Eqs. (2.1) and (2.5), Ref. [24]) 
 

       1 , , ,
1 1, 1

1 d
mn

nSL nWLnSL t

SL l WL j SL kt
k l l k j

pF t CDF CDF CDF  
   

                 
    

Verification test:     1 ! ! !pF nWL nSL nWL nSL    

 
Case 2: Failure of any SL before failure of any WL (Eqs. (3.1) and (3.4), Ref. [24]) 

 

       2 , , ,
1 1, 1

1 1 d
mn

nSL nWLnSL t

SL l WL j SL kt
k l l k j

pF t CDF CDF CDF  
   

                     
    

Verification test:     2pF nSL nWL nSL    

 
Case 3: Failure of all SLs before failure of all WLs (Eqs. (4.1) and (4.4), Ref. [24]) 

 

       3 , , ,
1 1, 1

1 d
mn

nSL nWLnSL t

SL l WL j SL kt
k l l k j

pF t CDF CDF CDF  
   

               
    

Verification test:     3pF nWL nWL nSL    

 
Case 4: Failure of any SL before failure of all WLs (Eqs. (5.1) and (5.4), Ref. [24]) 

 

       4 , , ,
1 1, 1

1 1 d
mn

nSL nWLnSL t

SL l WL j SL kt
k l l k j

pF t CDF CDF CDF  
   

                  
    

Verification test:     4 1 ! ! !pF nWL nSL nWL nSL       

______________________________________________________________________________ 
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4. PLOAS with Constant Delay Times: Approximation and Illustration  

 As discussed in Sect. 4 of Ref. [1], a quadrature procedure provides one possibility for 
evaluating the integrals in Table 1 that define the probabilities 1( )pF t , 2 ( )pF t , 3 ( )pF t  and 4 ( )pF t

for LOAS. Specifically, the preceding probabilities can be approximated by 
 

      1 , 1 , ,
1 1 1, 1

( ) 1 ,
nSL nWLnSL nSD

SL l i WL j i SL k i
k i l l k j

pF t CDF t CDF t CDF t
    

                   
      (4.1) 

 

      2 , 1 , ,
1 1 1, 1

( ) 1 1 ,
nSL nWLnSL nSD

SL l i WL j i SL k i
k i l l k j

pF t CDF t CDF t CDF t
    

                       
      (4.2) 

 

      3 , 1 , ,
1 1 1, 1

( ) 1 ,
nSL nWLnSL nSD

SL l i WL j i SL k i
k i l l k j

pF t CDF t CDF t CDF t
    

                 
      (4.3) 

 
and 
 

      4 , 1 , ,
1 1 1, 1

( ) 1 1 ,
nSL nWLnSL nSD

SL l i WL j i SL k i
k i l l k j

pF t CDF t CDF t CDF t
    

                    
      (4.4) 

 
where 0 1 2mn nSDt t t t t t < < < <  is a subdivision of [ , ]mnt t . 

 
 As discussed in Sect. 5 of Ref. [1], sampling-based procedures can also be used to approximate 

1( )pF t , 2 ( )pF t , 3 ( )pF t  and 4 ( )pF t . Specifically, ( )ipF t , i = 1, 2, 3 or 4, can be approximated by 

 

 
 

 
1

1 2 , 1 2 ,1

( ) |

| , ,..., , , ,..., ,

nR
i i ll

nR
i l l nWL l l l nSL ll

pF t t nR

t tWL tWL tWL tSL tSL tSL nR











   




t
  (4.5) 

 
where 
 
  time at which PLOAS (i.e., ( ) in Table 1) is to be determined,it pF t  (4.6) 

 
  time at which WL  fails,  1, 2,..., ,jtWL j j nWL   (4.7) 

 
  time at which SL  fails,  1,2,..., ,jtSL j j nSL   (4.8) 

 
  1 2 1 2, ,..., , , ,..., ,nWL nSLtWL tWL tWL tSL tSL tSLt  (4.9) 
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      1 2 1 2
1

1 if max , ,..., min , , ,...,
|

0 otherwise,
nSL nSLtSL tSL tSL t tWL tWL tWL

t
  


t  (4.10) 

 

      1 2 1 2
2

1 if min , ,..., min , , ,...,
|

0 otherwise,
nSL nSLtSL tSL tSL t tWL tWL tWL

t
  


t  (4.11) 

 

       1 2 1 2
3

1 if max , ,..., min , max , ,...,
|

0 otherwise,

nSL nSLtSL tSL tSL t tWL tWL tWL
t

  


t  (4.12) 

 

       1 2 1 2
4

1 if min , ,..., min ,max , ,...,
|

0 otherwise,

nSL nSLtSL tSL tSL t tWL tWL tWL
t

  


t  (4.13) 

and 
  
 1 2 , 1 2 ,, ,..., , , ,..., , 1, 2,..., ,l l l nWL l l l nSL ltWL tWL tWL tSL tSL tSL l nR   t   (4.14) 

 
is a random sample from the possible values for t generated in consistency with the distributions 
for the failure times jtWL , j = 1, 2, …, nWL, and jtSL , j = 1, 2, …, nSL. 

 
 The example WL/SL system defined in Table 2 and shown in Fig. 1 is used for illustration. 
Specifically, this example involves a WL/SL system with 2 WLs and 2 SLs. For consistency, this 
is the same example used in an earlier article on margins related to LOAS for WL/SL systems 
([26], Table 1). 
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 Table 2 Defining properties of two WLs and two SLs used in the illustration of the definition and 
calculation of delayed failure for WL/SL systems ([26], Table 1).

 
 

General Properties for Links  
  

             

2

1

( ) (0)
( )   for all links

(0) [ ( ) (0)]exp( )

( )  constant-valued for WL 1 and SL 1

(0)
( )   for WL 2 and SL 2

1 r

p p
p

p p p r

q

q
q

k












   




 

 
Additional Properties of WL 1  

    

  
1( ) 950, (0) 300, 0.02, ( ) 650

( ) triangular on [ , ] [0.88, 1.15] with mode 1.0

( ) triangular on [ , ] [0.8, 1.15] with mode 1.0
A mn mx

B mn mx

p p r q

d

d


  
  

    




  

 
Additional Properties of WL 2 

 

       

1

4
2

( ) 850, (0) 300, 0.02

(0) 650, 2.21 10 , 1.5

( ) triangular on [ , ] [0.85, 1.2] with mode 1.0

( ) triangular on [ , ] [0.75, 1.2] with mode 1.0
A mn mx

B mn mx

p p r

q k r

d

d

  
  



   

   





 

 
Additional Properties of SL 1 

 

       
1( ) 1025, (0) 300, 0.025, ( ) 775

( ) triangular on [ , ] [0.9, 1.15] with mode 1.0

( ) uniform on [ , ] [0.8, 1.15] 
A mn mx

B mn mx

p p r q

d

d


  
  

    




 

 
Additional Properties of SL 2 

 

       

1

4
2

( ) 950, (0) 300, 0.025

(0) 750, 1.41 10 , 1.5

( ) triangular on [ , ] [0.8, 1.1] with mode 1.0

( ) uniform on [ , ] [0.85, 1.3] 
A mn mx

B mn mx

p p r

q k r

d

d

  
  



   

   





 

_______________________________________________________________________ 
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Fig. 1 Summary plots of the properties of two WLs and two SLs used in the illustration of the 
definition and calculation of delayed failure for WL/SL systems: (a) WL 1, (b) WL 2, (c) SL 1, 
and (d) SL 2 ([26], Fig. 1). 
 
 For purposes of illustration, the following delay times are assumed for the WLs and SLs 
indicated in Table 2: 
 
 1 25.0 and 8.0 WL WLD D    (4.15) 

 
for WLs 1 and 2, and 
 
 1 212.0  and  14.0 SL SLD D    (4.16) 

 
for SLs 1 and 2.  
  
 For comparison, PLOAS values obtained with and without the inclusion of the indicated delay 
times for the individual links are presented in Fig. 2 for each of the four failure patterns in Table 
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1 (i.e., for ( ), 1,2,3,4ipF t i  ). If the delays in Eqs. (4.15) and (4.16) were all equal to zero, then 

what is indicated as precursor results in Fig. 2 with subscript “P’s” would be the actual PLOAS 
results. 
 
 Verification of the correctness of numerical calculations is an important part of any analysis 
[27-34]. For the present analysis, one approach to verification is to determine PLOAS with both 
the quadrature procedures indicated in Eqs. (4.1)-(4.4) and the sampling-based procedures 
indicated in Eqs. (4.5)-(4.14). Additional verification can be obtained by using several different 
sampling-based procedures. For illustration, results obtained with two different sampling-based 
procedures for the estimation of PLOAS are compared with the quadrature-based results in Fig. 
2d. The two sampling-based procedures differ only in how the vector lt  in Eq. (4.14) is sampled.  

 
 For the first sampling-based procedure (SB1), the link failure times are sampled directly from 
the failure time CDFs in Fig. 2c (i.e., from the final CDFs for link failure time that have 
incorporated the delay times in Eqs. (4.15) and (4.16)). For the second sampling-based procedure 
(SB2), values for  and  are sampled for each link and used to determine precursor failure times; 
then, the delay time for each link is added to the link’s sampled precursor failure times to obtain 
the vectors lt  in Eq. (4.14). Of the two sampling-based procedures, SB2 is the more effective 

verification procedure as it does not use the failure time CDFs that are used in the quadrature 
procedures indicated in Eqs. (4.1)-(4.4). 
 
 As shown in Table 3 for t = 200, the quadrature procedure and the two sampling procedures 
produce what are effectively the same values for PLOAS. This is a strong verification result 
indicating that all three procedures are correctly defined and implemented. 
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Fig. 2 Time-dependent PLOAS results obtained (i) with the quadrature procedures indicated in 
Eqs. (4.1)-(4.4) and a subdivision of [0, 200] of size nSD = 104 and (ii) with and without inclusion 
of the constant delay times in Eqs. (4.15) and (4.16) for the individual links: (a) CDFs , 1( )P WLCDF t

, , 2 ( )P WLCDF t , , 1( )P SLCDF t  and , 2 ( )P SLCDF t  for occurrence time for precursor to link failure time 

(i.e., for link failure times obtained with delay times of zero), (b) CDFs ( ), 1, 2,3,4,PipF t i   for 

PLOAS obtained without inclusion of delay times, (c) CDFs , 1( )D WLCDF t , , 2 ( )D WLCDF t ,

, 1( )D SLCDF t  and , 2 ( )D SLCDF t  for link failure time obtained with inclusion of delay times, and (d) 

CDFs ( ), 1,2,3,4,DipF t i   for PLOAS obtained with inclusion of delay times.  
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Table 3 Comparison of PLOAS results at t = 200 with inclusion of the constant delay times in Eqs. 
(4.15) and (4.16) obtained with (i) quadrature procedures in Eqs. (4.1)-(4.4) with nSD = 104, and 
(ii) sampling-based procedures SB1 and SB2 with nR = 106. 
 
 

Case 1: Failure of all SLs before failure of any WL 
 

 

    1

0.0283   Quadrature

(200) 0.0284   Sampling SB1, 95% CI=[0.0280,0.0287]

0.0283   Sampling SB2, 95% CI=[0.0280,0.0286]

pF


 



  

 
 

Case 2: Failure of any SL before failure of any WL  
 

 

    2

0.2159   Quadrature

(200) 0.2161   Sampling SB1, 95% CI=[0.2153,0.2169]

0.2153   Sampling SB2, 95% CI=[0.2145,0.2161]

pF


 



 

 

 
Case 3: Failure of all SLs before failure of all WLs  

 
  

    3

0.1605   Quadrature

(200) 0.1614   Sampling SB1, 95% CI=[0.1607,0.1621]

0.1603   Sampling SB2, 95% CI=[0.1596,0.1611]

pF


 



 

 

 
Case 4: Failure of any SL before failure of all WLs  

 

  

    4

0.5572   Quadrature

(200) 0.5569   Sampling SB1, 95% CI=[0.5559,0.5578]

0.5575   Sampling SB2, 95% CI=[0.5566,0.5585]

pF


 



 

______________________________________________________________________________ 
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 As indicated in Table 1, an additional verification procedure is provided by evaluating the 
probabilities ( ), 1,2,3,4,ipF t i   with the same properties assigned to all links. Although this is not 

a physically realistic problem, it has value as a verification test because (i) it requires use of all the 
programmed calculations employed in the determination of ( )ipF t  and (ii) the correct asymptotic 

value ( )ipF   for ( )ipF t  is known as stated in Table 1. For the example considered in this section 

with 3nWL  , 2nSL   and the same properties assigned to all links, the resultant possibilities are 
 

 

   
   
   
   

1

2

3

4

! ! ! 1 /10 0.1  for 1

2 / 5 0.4  for 2
( )

3 / 5 0.6  for 3

1 ! ! ! 9 /10 0.9  for 4.

i

pF nWL nSL nWL nSL i

pF nSL nWL nSL i
pF

pF nWL nWL nSL i

pF nWL nSL nWL nSL i

     


       
     

       

  (4.17) 

 
As shown in Fig. 3, the verification condition 
 
 lim ( ) ( )i i

t
pF t pF


    (4.18) 

 
is satisfied for ( )DipF t  determined with (i) the constant link failure delays defined in Eqs. (4.15) 

and (4.16), (ii) 3nWL   and 2nSL  , and (iii) the properties of WL 1 in Table 2 used for all links. 
 
 The results presented in Fig. 2, Table 3 and Fig. 3 were obtained with use of the CPLOAS 
program [25; 35] and thus provide verification results that indicate that CPLOAS is correctly 
implementing constant delays in link failure in the calculation of the PLOAS values 

( ), 1,2,3,4.DipF t i   
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   Fig. 3 Verification test for ( ), 1,2,3,4,DipF t i   with (i) the constant link failure delays defined 

in Eqs. (4.15) and (4.16), (ii) 3nWL   and 2nSL  , and (iii) the properties of WL 1 in Table 2 
used for all links. 
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5. PLOAS with Aleatory Uncertainty in Delay Times: Formal Representation 

 Similarly to link properties and link precursor occurrence times, aleatory uncertainty can also 
be incorporated into the definition of failure delay time. Specifically, this involves specifying the 
following quantities for individual links: 
 

 
nominal delay time between the occurence of precursor conditions to link failure 

  and the time of link failure,

D 
  (5.1) 

 

 
( ) density function defined on [ , ] with 0 for variable  used to  

 characterize aleatory uncertainty in delay time ,
G mn mx mnd

D

     
  (5.2) 

 
  delay in link failure time given .D    (5.3) 
 
This results in the following CDF for link failure time: 
 

 

 

 0

 probability that  link failure occurs at or before time for

   a variable delay  

( ) ( )d d ( ),
mx

mn

D

t

G Pt

CDF t

D

t D d CDF



     



     

   (5.4) 

  
with ( )   defined as in Eq. (3.2). The preceding representation for ( )DCDF t reduces to the 

representation for ( )DCDF t  in Eq. (3.1) when ( )Gd   is a suitably defined Dirac delta function 

(i.e., if there is a single value for   with a probability of 1.0). 
 
 As a consequence of the relationships 
 
 ( ) 0  for  ( ) 0 ( ) /t D t D t D                   (5.5) 

 
and 
 
 ( ) 1.0  for  0 ( ) ( ) / ,t D t D t D                   (5.6) 

   
the inner integral in Eq. (5.4) can be expressed as 
 

 
( )/

1.0  for ( ) /

( ) ( )d ( )d   for ( ) /  

0  for  ( ) / .

mx

mn mn

mx

t D

G G mn mx

mn

t D

t D d d t D

t D

 

 

 

         

 



  
     

  

  < <   (5.7) 
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 As discussed in Sect. 3, nominal delay times and associated density functions characterizing 
aleatory uncertainty can be defined for the individual links in a problem involving multiple WLs 
and SLs. Then, CDFs for the individual links defined as indicated in Eq. (5.4) can be used with the 
representations in Table 1 in the calculation of LOAS (e.g., as indicated in Eqs. (4.1)-(4.4)). 
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6. PLOAS with Aleatory Uncertainty in Delay Times: Approximation and 
Illustration 

 As in Sec. 4, the WL/SL system defined in Table 2 and Fig. 1 is used for illustration. For this 
illustration, the nominal delay time D  for each link is taken to be the same as the corresponding 
constant delay time defined in Eqs. (4.15) and (4.16) (i.e., 1WLD = 5.0, 2WLD = 8.0, 1SLD = 12.0, 

2SLD = 14.0). Further, the density function ( )Gd   for each link characterizing the aleatory 

uncertainty associated with the delay in link failure is defined as follows:  uniform on [0.5, 1.5] 
for WL 1, uniform on [0.5, 1.5] for WL 2, triangular on [0.6, 1.4] with mode = 1.0 for SL 1, and 
triangular on [1.0, 3.0] with mode = 1.0 for SL 2. 
 

 
 
Fig. 4 Time-dependent PLOAS results for aleatory variation in link failure time obtained with (i) 
the quadrature procedures indicated in Eqs. (4.1)-(4.4) and a subdivision of [0, 200] of size nSD = 
104 and (ii) 1WLD = 5.0 and ( )Gd   uniform on [0.5, 1.5] for WL 1, 2WLD = 8.0 and ( )Gd   uniform 

on [0.5, 1.5] for WL 2, 1SLD = 12.0 and ( )Gd   triangular on [0.6, 1.4] with mode = 1.0 for SL 1,  

and 2SLD = 14.0  and ( )Gd   triangular on [0.5, 1.5] with mode = 1.0 for SL 2: (a) CDFs 

, 1( )D WLCDF t , , 2 ( )D WLCDF t , , 1( )D SLCDF t  and , 2 ( )D SLCDF t  for link failure time, and (b)  CDFs 

( ), 1,2,3,4,DipF t i   for PLOAS. 
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 The PLOAS results obtained with the inclusion of the indicated aleatory variation in the delay 
times for the individual links are presented in Fig. 4 for each of the four cases in Table 1 (i.e., for 

( )DipF t , i = 1, 2, 3, 4). The corresponding results for no delay in link failure time are presented in 

Fig. 2a,c. 
 
 As in Table 3 of Sect. 4, results obtained with two different sampling-based procedures for the 
estimation of PLOAS are compared in Table 4 with the quadrature-based results in Fig. 4b. The 
sampling-based procedures differ only in how the vector lt  in Eq. (4.14) is sampled. For the first 

sampling-based procedure (SB1), the link failure times are sampled directly from the failure time 
CDFs in Fig. 4a (i.e., from the final CDFs for link failure time that have incorporated the aleatory 
variability in the failure delay times). For the second sampling-based procedure (SB2), (i) values 
for  and   are sampled for each link and used to determine precursor failure times, (ii) delay 
times are sampled from the distributions characterizing aleatory uncertainty in delay time for the 
individual links, and (iii) each determined precursor failure time (i.e., for a sampled ,  pair) is 
added to a sampled delay time to obtain the vectors lt  in Eq. (4.14). As shown in Table 4, the 

quadrature procedure and the two sampling procedures give what are effectively the same values 
for PLOAS. 
 

The verification procedure indicated in Table 1 and discussed in conjunction with Eqs. (4.17) 
and (4.18) is also applicable to PLOAS determined with aleatory variability in link failure delay 
times. As shown in Fig. 5, the verification condition ( ) ( )i ipF t pF   as t   described in Eqs. 

(4.17) and (4.18) is satisfied for ( )DipF t  determined with (i) aleatory variability in link failure 

delay times, (ii) 2nWL   and 3nSL  , (iii) the properties of SL 1 in Table 2 and Fig. 4 used for 
all links, and 
 

 

   
   
   
   

1

2

3

4

! ! ! 1 / 10 0.1  for 1

3 / 5 0.6  for 2
( )

2 / 5 0.4  for 3

1 ! ! ! 9 /10 0.9  for 4

i

pF nWL nSL nWL nSL i

pF nSL nWL nSL i
pF

pF nWL nWL nSL i

pF nWL nSL nWL nSL i

     


       
     

       

  (6.1) 

  
as stated in Table 1. 
 
 The results presented in Fig. 4, Table 4 and Fig. 5 were obtained with use of the CPLOAS 
program [25; 35] and thus provide verification results that indicate aleatory variability in link 
failure delay times in the calculation of the PLOAS values ( ), 1,2,3,4,DipF t i   is implemented 

correctly in CPLOAS. 
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Table 4 Comparison of PLOAS results at t = 200 with inclusion of aleatory variability in link 
failure delay times obtained with (i) quadrature procedures in Eqs. (4.1)-(4.4) with nSD = 104, and 
(ii) sampling-based procedures SB1 and SB2 with nR = 106. 
 
 

Case 1: Failure of all SLs before failure of any WL 
 

 

1

0.0104   Quadrature

(200) 0.0105   Sampling SB1, 95% CI=[0.0103,0.0107]

0.0104   Sampling SB2, 95% CI=[0.0102,0.0106]

pF


 



 

 
 

Case 2: Failure of any SL before failure of any WL  
 

 

2

0.1263   Quadrature

(200) 0.1271   Sampling SB1, 95% CI=[0.1265,0.1278]

0.1263   Sampling SB2, 95% CI=[0.1256,0.1269]

pF


 



 

 

 
Case 3: Failure of all SLs before failure of all WLs  

 
 

     3

0.0865   Quadrature

(200) 0.0865   Sampling SB1, 95% CI=[0.0859,0.0870]

0.0864   Sampling SB2, 95% CI=[0.0859,0.0869]

pF


 



 

 

 
Case 4: Failure of any SL before failure of all WLs  

 

 

4

0.4226   Quadrature

(200) 0.4226   Sampling SB1, 95% CI=[0.4216,0.4235]

0.4230   Sampling SB2, 95% CI=[0.4221,0.4240]

pF


 


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Fig. 5 Verification test for ( ), 1,2,3,4,DipF t i   with (i) aleatory variability in link failure delay 

times, (ii) 2nWL   and 3nSL  , and (iii) the properties of SL 1 in Table 2 and Fig. 4 used for all 
links. 
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7. PLOAS with Delay Times a Function of Link Property at Time that 
Precursor Failure Occurs: Formal Representation 

 Another possibility is that the delay time D(p) from precursor occurrence to link failure is a 
function of the link property value p that exists at the time of precursor occurrence. In this situation, 
the CDF for link failure time is given by 
 

 

 

  ( )

( )

 probability that link failure occurs at or before time  for

   a delay ( ) that is a function of the link property value  

   at the time of precursor occurrence

( ) ( | )d
mx

mn

D

p

Pp

CDF t t

D p p

t D p d p p



  



   0
d ( ),

t

PCDF  

  (7.1) 

 
where (i) the interval [ ( ), ( )]mn mxp p   contains the link property values that could potentially 

result in precursor occurrence at time  , (ii) ( | )Pd p   defined on [ ( ), ( )]mn mxp p   is the density 

function for link property values p that could result in precursor occurrence conditional on the 
assumption that precursor occurrence has taken place at time  (i.e., conditional on precursor 
occurrence at time  the density function ( | )Pd p   corresponds to the distribution of link 

property values p at which the precursor occurrence could have taken place) and  (iii)  { }  is 
defined as in Eq. (3.2). 
 
 The density function ( | )Pd p   and the corresponding interval of definition [ ( ), ( )]mn mxp p 
are defined in Table 5. As indicated in Table 5, the definitions of ( | )Pd p   and [ ( ), ( )]mn mxp p   

are conditional on the ratio r() = ( ) / ( )q p  , which results in four possibilities (i.e., 

( | )pi id p   , i = 1, 2, 3, 4) for (i) the definition of ( | )Pd p   and (ii) the corresponding  definition 

of the interval [ ( ), ( )]mn mxp p   for ( | )Pd p  . A summary of the sets i  and associated intervals 

[ ( ), ( )]mn mxp p   is provided in Table 6. 

  



 

31 
 

Table 5 Summary of density functions ( | ) ( | )P Pi id p d p    for link property values p that 

could potentially result in precursor occurrence at time i   ([36], Table 6). 

____________________________________________________________________________ 
 

     

   

2

1 1

( )

/ ( ) / ( ) / ( )
( | )
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P

r

p q d p p d p q
d p

d d r

 


  

  


    
 


   

 for  1 : ( ) ( )mn mn mx mxr r          and  1 1( | ) ( ), ( )mn mxp p q p         

_____________________________________________________________________________ 
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p q d p p d p q
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 

 
  

  


    
 


    

for  2 : ( ) ( )mn mn mx mxr r          and  2 2( | ) ( ), ( )mn mxp p q q           

______________________________________________________________________________ 

     

   

2

3 3

/ ( ) / ( ) / ( )
( | )
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P

p q d p p d p q
d p

d d r

 
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  


    
 


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for  3 : ( ) ( )mn mn mx mxr r          and  3 3( | ) ( ), ( )mn mxp p p p           

______________________________________________________________________________ 

 
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/ ( ) d
mx

mn
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p q d p p d p q
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d d r
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 
 
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

    
 


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for  4 : ( ) ( )mn mn mx mxr r          and  4 4( | ) ( ), ( )mn mxp p p q       
______________________________________________________________________________ 
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Table 6 Summary of the intervals of definition [ ( ), ( )]mn mxp p   for the density functions 

( | )Pi id p   , i = 1, 2, 3, 4, defined in Table 5 with  increasing and  either decreasing 

or constant-valued (adapted from Ref.[36], Table 7).  
______________________________________________________________________________ 
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
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______________________________________________________________________________ 
  

The representation for ( )PTCDF t  in Eq. (7.1) can also be expressed in the equivalent form 
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
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     

    

    

  

  

  

  

 

 

 

 

  (7.2) 

 
 where ( )Pd   is the density function associated with ( )PCDF  . As shown in Eq. (9.65) of Ref. 

[36], 
 

    2

1
( | ) ( ) d / d / ( ) / ( ) ,

( ) ( )
P P A B

p
d p d d p p d p q

r p
    

 
   

    
   

  (7.3) 

 

( )p  ( )q 
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with ( ) ( ) / ( )r q p   . In turn, substitution of the preceding representation for ( | ) ( )P Pd p d  into 

Eq. (7.2) produces the following representation for ( )DCDF t :  
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     
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       

   
         

 

 

  (7.4)    

 
Although it looks complicated, the preceding representation for ( )DCDF t  is actually simpler from 

a numerical implementation perspective than the representation for ( )DCDF t  in Eq. (7.1) because 

it removes the complex structure associated with the definition of ( | )Pd p   summarized in Table 

5. Except for the limits of integration and the indicator function { [ ( )]}t D p   , the integral in 
Eq. (7.4) is the same as the integral in Eq. (10.10) of  Ref. [36]. 
 
 Some simplification of the inner integral in Eq. (7.4) is possible if D(p) is an increasing 
function of p or a decreasing function of p. Specifically, 
 

 

 
1

1
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  (7.5) 

 
and 
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  (7.6) 

 
In turn, the inner integral in Eq. (7.4) can be expressed as 
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and 
 

 
1

1

0  for  ( )
( , )   for  ( )  decreasing.

1  for  ( )

p D t
F p D p

D t p









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  (7.9) 

 
 Once the CDFs for the individual links developed in Eqs. (7.1)-(7.4) are available, they can be 
used with the approximations in Eqs. (4.1)-(4.4) in the determination of PLOAS. Another 
possibility is to numerically approximate the corresponding integrals in Table 1 with procedures 
contained in the MATLAB numerical package [37]. However, approximation of the defining 
integrals for ( )DCDF t can be a numerically challenging undertaking. 
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8. PLOAS with Delay Times a Function of Link Property at Time that 
Precursor Failure Occurs: Approximation and Illustration 

 As in Sects. 4 and 6, the example defined and illustrated in Table 2 and Fig. 1 is used for 
illustration. Further, the delay time D(p) from precursor occurrence to link failure is a function of 
the system property p that exists at the time of precursor occurrence and is assumed to be of the 
form 
 

 

1

2

1

2

10,000 / ( )  for WL1

10,500 / ( )  for WL2
( )

11,000 / ( )  for SL1

11,500 / ( )  for SL2.
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SL

SL

p D p

p D p
D p

p D p

p D p


   
 

  (8.1) 

 
The evaluation of the integral in Eq. (7.4) for the four links described and illustrated in Table 2 
and Fig. 1 is considered first. Then, the evaluation of the four integrals in Table 1 for PLOAS for 
the indicated four links is considered. 
 
 Two approaches for the evaluation of the integral in Eq. (7.4) are considered: (i) a quadrature-
based procedure using the MATLAB numerical package [37] and (ii) a sampling-based procedure. 
 
 The quadrature-based procedure using the MATLAB numerical package is described first. 
Evaluation of the integral in Eq. (7.4) for each of the four links requires the incorporation of the 
indicator function { [ ( )]}t D p    into the integration process. As indicated in Eqs. (7.5)-(7.9), 
some simplification of the inner integral is possible when D(p) is an increasing or decreasing 
function of p. In this example, 
 
 ( ) /   with  10,000;10,500;11,000  or  11,500D p k p k    (8.2) 
 
is a decreasing function of p. Thus, consistent with Eq. (7.9),  { [ ( )]}t D p    can be replaced 
by the function 
 

 
1

1

0  for  ( ) / ( )
( , )

1  for  / ( ) ( )

p D t k t
F p

k t D t p

 

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



     
   

  (8.3) 

  
in the inner integral in Eq. (7.4) to produce an inner integral of the form shown in Eq. (7.7). To the 
best of our knowledge, MATLAB does not have an option for the inclusion of functions of the 
form { [ ( )]}t D p    as part of the integrand in the numerical evaluation of an integral. Thus, as 
described in the next paragraph, some additional development is required rather than simply 
evaluating the integral in Eq. (7.4) with a MATLAB integration routine such as TwoD [38]. 
 
 The computational strategy used is to initially consider the integral in Eq. (7.7) with ( , )F p  
defined in Eq. (8.3) as a function 
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of   conditional on t. For each of the four links under consideration, the values for mn , mx , mn  

and mx  satisfy the inequality / /mx mx mn mn    . Thus, integration limits ( )mnp   and ( )mxp   

are defined by the second possibility in Table 6. When the integration limits ( )mnp   and ( )mxp   

are combined with the effects of ( , )F p , the form of ( | )I t  becomes 
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  (8.5) 

 
At this point, the integral in Eq. (7.4) can be viewed as being of the form 
 

 
1

( ) d / d ( | )d
( )mn

t

D t
CDF t I t

r
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
  

   
  

   (8.6) 

 
with  ( | )I t  defined in Eq. (8.5). 
 
 The representation for ( )DCDF t  in Eq. (8.6) can be evaluated with the integral function in 

MATLAB provided the two terms in the integrand can be defined in an appropriate manner. The 
derivative d[1 / ( )] / dr    can be defined with use of the MATLAB functions diff and 
matlabFunction. The definition of ( | )I t  is more complex and involves a spline fit to ( | )I t . 

Specifically, a subdivision , 0,1,..., 200,i i nS    of [ , ]mnt t  with ( ) /i mnt t nS    is defined, 

and ( | ), 1,2,..., ,iI t i nS  is obtained by evaluating the integrals in Eq. (8.5) with MATLAB 

procedures. For these evaluations, the density functions in the integrand are defined with the 
makedist and pdf functions and the integrations to obtain ( | ), 1,2,..., ,iI t i nS  are performed 

with the integral function. Then, to obtain ( | )I t  for use in the evaluation of the integral defining 

( )DTCDF t  in Eq. (8.6), the function spline is used to fit a function to the values   

( | ), 1,2,...,iI t i nS  . At this point, the function integral is used to evaluate ( )DTCDF t  with the 

indicated representations for d[1 / ( )] / dr    and ( | )I t . The outcome of this calculation is shown 
in Fig. 6 for the four links defined in Table 2 and illustrated in Fig. 1. 
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Fig. 6 Time-dependent PLOAS results for delay in link failure time dependent on link property 
value at precursor failure obtained with (i) quadrature-based procedures and (ii) the failure time 
delays 1( )WLD p , 2 ( )WLD p , 1( )SLD p  and 2 ( )SLD p  for each link defined in Eq. (8.1): (a) CDFs 

, 1( )D WLCDF t , , 2 ( )D WLCDF t , , 1( )D SLCDF t  and , 2 ( )D SLCDF t  for link failure time, and (b) CDFs 

( ), 1,2,3,4,DipF t i   for PLOAS. 

 
 Given that the  CDFs , 1( )D WLCDF t , , 2 ( )D WLCDF t , , 1( )D SLCDF t  and , 2 ( )D SLCDF t  for link 

failure time are available, the CDFs ( ), 1,2,3,4,DipF t i   for PLOAS can be obtained by evaluating 

the approximating sums in Eqs. (4.1)-(4.4) as done for the PLOAS results in Sects. 4 and 6. 
Another possibility is to obtain the CDFs ( ), 1,2,3,4,DipF t i   by using procedures in MATLAB 

to evaluate the integrals in Table 1. For variety and illustration, quadrature procedures based on 
MATLAB functions will be used to obtain the CDFs ( ), 1,2,3,4,DipF t i   for delay in link failure 

time dependent on link property value at precursor failure. To accomplish this, the function spline 
is used to provide a spline representation for each of the CDFs , 1( )D WLCDF t , , 2 ( )D WLCDF t , 

, 1( )D SLCDF t  and , 2 ( )D SLCDF t  for link failure time. Then, the spline representations in conjunction 

with the ppval function are used to obtain representations for the integrands in each of the Stieltjes 
integrals in Table 1. Next, the Stieltjes integrals are converted to Riemann integrals by 
differentiating , 1( )D SLCDF t  and , 2 ( )D SLCDF t  with the fnder function and then applying the ppval 
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function to the results of these differentiations. At this point, the original Stieltjes integrals in Table 
1 are now Riemann integrals and can be evaluated with the integral function. The results of these 
evaluations to obtain the CDFs ( ), 1,2,3,4,DipF t i   for delay in link failure time dependent on 

link property value at precursor failure are shown in Fig. 6b. 
 
 As a verification check, the results in Fig. 6 can be obtained with sampling-based calculations 
that are independent of the quadrature-based calculations used to obtain the results presented in 
Fig. 6. The sampling-based procedure used is similar to the second sampling-based procedure 
(SB2) used in the verification of quadrature-based results in Sects. 4 and 6. Specifically, (i) values 
for l  and l  1, 2,..., ,l nR are randomly sampled for each link and used to determine precursor 

failure times lt  and corresponding property values lp  at precursor failure, (ii) delay times ( )lD p  

are determined individual links, and (iii) each determined precursor delay time ( )lD p is added to 

the corresponding sampled delay time lt  to obtain the vectors 

 
  1 2 1 2, , , , 1,2,..., ,l l l l ltWL tWL tSL tSL l nR t   (8.7) 

 
 for link failure time as indicated in Eq. (4.14). Then, , 1( )D WLCDF t  can be approximated by 

 

 1
, 1 1 1

11

1  for  
( ) ( ) /   with  ( )

0  for  

nR
l

D WL t l t l
ll

tWL t
CDF t tWL nR tWL

t tWL
 




   
   (8.8) 

 
and , 2 ( )D WLCDF t , , 1( )D SLCDF t  and , 2 ( )D SLCDF t  can be approximated similarly. Further, the 

CDFs ( ), 1,2,3,4,DipF t i   for delay in link failure time dependent on link property value at 

precursor failure can be approximated as shown in Eq. (4.5). 
 
 For comparison, the results of the quadrature-based calculations and the just discussed 
sampling-based calculations are shown in Fig. 7. As examination of Fig. 7 shows, the results 
obtained with the two procedures are essentially identical. Given the independence of the 
implementations of both procedures, this provides a strong verification result that both procedures 
are correct in both mathematical structure and computational implementation. 
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Fig. 7 Time-dependent PLOAS results for delay in link failure time dependent on link property 
value at precursor failure obtained with (i) quadrature-based procedures, (ii) sampling-based 
procedures, and (iii) the failure time delays 1( )WLD p , 2 ( )WLD p , 1( )SLD p  and 2 ( )SLD p  for each 

link defined in Eq. (8.1): (a) CDFs , 1( )D WLCDF t , , 2 ( )D WLCDF t , , 1( )D SLCDF t  and , 2 ( )D SLCDF t  for 

link failure time, and (b) CDFs ( ), 1,2,3,4,DipF t i  for PLOAS. 

       
 The verification procedure indicated in Table 1 and discussed in conjunction with Eqs. (4.17) 
and (4.18) is also applicable to PLOAS determined with the delay in link failure time dependent 
on link property value at precursor occurrence. As shown in Fig. 8, the verification condition 

( ) ( )i ipF t pF   as t   described in Eqs. (4.17) and (4.18) is satisfied for ( )DipF t  determined 

with (i) the delay in link failure time dependent on link property value at precursor occurrence, (ii) 
3nWL  and 2nSL  , and (iii) the properties of SL 2 in Table 2 and Fig. 6 used for all links. For 

this example, the asymptotic values for ( ), 1,2,3,4,DipF t i   are the same as shown in Eq. (4.17). 
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Fig. 8 Verification test for ( ), 1,2,3,4,DipF t i   with (i) the delay in link failure time dependent on 

link property value at precursor occurrence, (ii) 3nWL  and 2nSL  , and (iii) the properties of 
SL 2 in Table 2 and Fig. 6 used for all links. 
 
 The sampling-based results in Fig. 7 were calculated with the CPLOAS program [25; 35]. 
Similarly, the verification results in Fig. 8 were also calculated with sampling-based procedures in 
CPLOAS. At present, the use of property-dependent delay times in the calculation of the PLOAS 
values ( ), 1,2,3,4,DipF t i   is not a formally defined capability of CPLOAS. However, the 

sampling-based results in Fig. 7 and Fig. 8 were obtained by making a few simple coding additions 
within the overall structure of CPLOAS. Thus, the verification results in Fig. 7 and Fig. 8 indicate 
that (i) these additions to CPLOAS are producing correct values for property-dependent link failure 
delay times in the calculation of the PLOAS values ( ), 1,2,3,4,DipF t i   and (ii) if desired at some 

point in the future, it would be possible to make calculations of this type a formal option within 
CPLOAS. Further, the agreement of the quadrature-based and sampling-based results in Fig. 7 
provides a strong indication that the very complex derivations that produced Eq. (7.4) are correct. 
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9. Summary Discussion 

 Two primary topics are addressed in this presentation: (i) Implementation and illustration of 
three possible definitions for delays between the occurrence of link precursor conditions and link 
failure in LOAS analyses for WL/SL systems, and (ii) Verification of the numerical correctness of 
the implementation of the three indicated delay definitions in the CPLOAS program.  
 

The three delay definitions are (i) a constant delay between the occurrence of link precursor 
conditions and link failure, (ii) aleatory variability in the delay between the occurrence of link 
precursor conditions and link failure, and (iii) delay in link failure time dependent on link property 
value at time that link precursor conditions occur. 

 
Verification tests for constant delays and aleatory delays in link failure in the calculation pf 

PLOAS values are formal parts of the CPLOAS program. Specifically, the following independent 
options for the calculation of the four definitions of PLOAS in Table 1 are available:  
 

(i) Quadrature evaluations that determine PLOAS as indicated in Eqs. (4.1)-(4.4), 
 
(ii) Sampling-based evaluations that involve sampling link failure times from the link failure 

time CDFs after incorporation of the delays and then determining PLOAS as indicated in Eqs, 
(4.5)-(4.14), and 

  
(iii) Sampling-based evaluations that involve sampling the variables   and   that 

characterize aleatory uncertainty in the time of link precursor occurrence and the variables   that 
characterize aleatory uncertainty in link failure delay time, determining the resultant failure times 
for each link based on the sampled values for  ,   and  , and then determining PLOAS  as 
indicated in Eqs. (4.5)-(4.14). 
 
As shown in Table 3 and Table 4, all three numerical procedures provide what is effectively (i.e., 
within a small amount of numerical variability) the same PLOAS values for constant delays and 
aleatory delays in link failure, which is a strong verification result that CPLOAS is implementing 
these delays and associated PLOAS calculations correctly. 
 
 The third delay definition (i.e., delay in link failure time dependent on link property value at 
time that link precursor conditions occur) is not a formally implemented option in CPLOAS. 
However, it was possible to implement this delay definition with small programming additions in 
CPLOAS to what is indicated above as the second sampling approach (i.e.,   and   are sampled, 
property value p at time precursor occurrence and delay D(p) are obtained, and link failure time is 
determined). With these additions, the CDFs for link failure after delay are obtained as indicated 
in Eq. (8.8) and PLOAS values are obtained as indicated in Eqs. (4.5)-(4.14).  
 

However, this calculation with the modified version of CPLOAS does not supply any 
additional results for verification of calculations with delay in link failure time dependent on link 
property value at the time that link precursor conditions occur. To obtain verification results for 
this delay definition, Eq. (7.4) for link failure time delay dependent on link property value at 
precursor failure was (i) derived, (ii) approximated with a quadrature procedures contained in the 
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MATLAB numerical package, and (iii) used to defined CDFs for link failure time. Next, the link 
failure CDFs were used in conjunction with MATLAB quadrature procedures to evaluate the four 
PLOAS integrals in Table 1 corresponding to different definitions of LOAS. As shown in Fig. 7, 
sampling-based results obtained from modified CPLOAS and the quadrature results for the integral 
in  Eq. (7.4) and the integrals in Table 1 produce essentially identical results for both the link 
failure time CDFs and the PLOAS CDFs the four definitions of LOAS. This is a very strong 
verification result that both sets of calculations are correct. 

 
The primary emphasis of this presentation is on the description and verification of results that 

have been implemented in the CPLOAS program. However, agreement of quadrature results 
obtained for the integral in Eq. (7.4) with sampling-based results obtained with the modified 
CPLOAS program are also relevant to the  work that underlies the derivation of this integral. The 
integral in Eq. (7.4) is based on very complicated mathematical derivations in Ref. [36] that are 
tedious and difficult to check. Thus, the agreement of the results in  Fig. 7 also provides an 
important verification result for derivations in Ref. [36]. 

 
An additional verification test was applied to PLOAS results calculated with CPLOAS for each 

of the three link failure delay definitions. This test involves the unphysical and counter intuitive 
assigning of the same properties to all links. However, as shown in Ref. [24], summarized in Table 
1, and illustrated in Eqs. (4.17) and (6.1), this assignment results in the WL/SL system having a 
limiting (i.e., asymptotic) PLOAS value that is a function of the numbers nWL and nSL of WLs 
and SLs comprising the system. Although not physically realistic, the indicated assignments 
provide a problem that both (i) uses the mathematical and algorithmic structures involved in the 
calculation of PLOAS and (ii) has a known solution. As shown in Figs. 3, 5 and 8 for the three 
link failure delay definitions, these assignments result in the correct limiting PLOAS values and 
thus provide another verification result indicating that PLOAS values are calculated correctly in 
CPLOAS. 
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