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Abstract

Probability of loss of assured safety (PLOAS) is modeled for weak link (WL)/strong link (SL)
systems in which one or more WLs or SLs could potentially degrade into a precursor condition to
link failure that will be followed by an actual failure after some amount of elapsed time. The
following topics are considered: (i) Definition of precursor occurrence time cumulative
distribution functions (CDFs) for individual WLs and SLs, (i1) Formal representation of PLOAS
with constant delay times, (iii) Approximation and illustration of PLOAS with constant delay
times, (iv) Formal representation of PLOAS with aleatory uncertainty in delay times, (V)
Approximation and illustration of PLOAS with aleatory uncertainty in delay times, (vi) Formal
representation of PLOAS with delay times defined by functions of link properties at occurrence
times for failure precursors, (vii) Approximation and illustration of PLOAS with delay times
defined by functions of link properties at occurrence times for failure precursors, and (viii)
Procedures for the verification of PLOAS calculations for the three indicated definitions of delayed
link failure.
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NOMENCLATURE

Abbreviation

Definition

CDF cumulative distribution function

CI confidence interval
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LOAS loss of assured safety

PLOAS probability of loss of assured safety
SB1 first sampling-based procedure
SB2 second sampling-based procedure
SL strong link

SNL Sandia National Laboratories

WL weak link




1. Introduction

As discussed in the Introduction to Ref. [1], weak link (WL)/strong link (SL) systems are
important parts of the overall operational design of high-consequence systems [2-7]. In such
designs, the SL system is very robust and is intended to permit operation of the entire system
under, and only under, intended conditions (e.g., by transmitting a command to activate the
system). In contrast, the WL system is intended to fail in a predictable and irreversible manner
under accident conditions (e.g., in the event of a fire) and render the entire system inoperable
before an accidental operation of the SL system. The likelihood that the WL system will fail to
deactivate the entire system before the SL system fails (i.e., degrades into a configuration that
could allow an accidental operation of the entire system) is referred to as probability of loss of
assured safety (PLOAS). The descriptor loss of assured safety (LOAS) is used because failure of
the WL system places the entire system in an inoperable configuration while failure of the SL
system, although undesirable, does not necessarily result in an unintended operation of the entire
system. Thus, safety is “assured” by failure of the WL system.

The present study investigates an accident context in which one or more WLs or SLs degrade
into a precursor condition to link failure that will be followed by an actual failure after some
amount of elapsed time. For example, the precursor condition might correspond to the beginning
of a degradation process that will inevitably lead to link failure after a fixed or possibly randomly
varying period of time (e.g., the precursor condition might correspond to a break in a boundary
condition that allowed the initiation of a corrosion process that will ultimately fail the link). As
another example, the precursor condition might correspond to a degraded condition of a link that
will then result in link failure when the link experiences some form of random stress or perturbation
(e.g., the precursor condition might correspond to a fracturing of a link that was later followed by
link failure due to the random occurrence of an additional stress on the weakened link).

This study includes the effects of aleatory uncertainty on the failure of WLs and SLs.
Specifically, aleatory uncertainty is assumed to be present in both (i) time-dependent property
values for individual links and (ii) property values (either constant or time-dependent) at which
individual links fail. As discussed in Refs. [8-20], aleatory uncertainty is used as a descriptor for
random variability in the properties or behavior of a system. Specifically, aleatory uncertainty is
distinct from epistemic uncertainty, which results from a lack of knowledge about the value of a
quantity that has a fixed (i.e., unique) but poorly known value.

The study reported in Ref. [1] also considers the effects of aleatory uncertainty on the failure
of both WLs and SLs but does not consider accident contexts in which one or more WLs or SLs
degrade into a precursor condition to link failure that will be followed by an actual failure after
some amount of elapsed time. Two earlier studies consider the effects of aleatory uncertainty in
link failure values but do not consider (i) time-dependent link failure values and (ii) aleatory in
link property values [21; 22]. Two other previous studies investigate verification procedures and
tests for use in conjunction with the calculation of PLOAS for WL/SL systems [23; 24].

The following topics are considered in this presentation: (i) Definition of precursor occurrence
time cumulative distribution functions (CDFs) for individual WLs or SLs (Sect. 2), (i) Formal
representation of PLOAS with constant delay times (Sect. 3), (iii) Approximation and illustration
of PLOAS with constant delay times (Sect. 4), (iv) Formal representation of PLOAS with aleatory



uncertainty in delay times (Sect. 5), (v) Approximation and illustration of PLOAS with aleatory
uncertainty in delay times (Sect. 6), (vi) Formal representation of PLOAS with delay times defined
by functions of link properties at occurrences times for failure precursors (Sect. 7), and (vii)
Approximation and illustration of PLOAS with delay times defined by functions of link properties
at occurrences times for failure precursors (Sect. 8). The presentation then ends with a summary
discussion (Sect. 9).

An important motivation for this work is the importance of having verification procedures for
delayed link failure results calculated with the CPLOAS program [25]. To this end, a variety of
verification procedures are described and illustrated in Sects. 4, 6 and 8. Fortunately, these
verification procedures showed that CPLOAS calculated all presented results correctly.
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2. Definition of Precursor Occurrence Time CDF for a Single WL or SL

The precursor occurrence time CDF for a single WL or SL is based on the following assumed
properties of that link for the time interval ¢,, <t <¢, :

p(t) = nondecreasing positive function defining nominal link property forz, <t <t ., (2.1)

g (t) = nonincreasing positive function defining nominal precursor failure value for

) (2.2)
link property for¢,, <t<t,
d (o) = density function for positive variable o used to characterize aleatoryy 23)
uncertaintyin link property, '
dz () = density function for positive variable £ used to characterize aleatory 2.4)
uncertainty in link precursor failure value, '
p(t|a)=ap(t) = link property forz, <t <¢, given a, (2.5)
and
q(t| B) = Pq(t) = link precursor failure value for¢,, <t <t _ given f. (2.6)

Further, d, () and d,z(f) are assumed to be defined on intervals [¢,,,,,,. ] and [5,,., 3, ] and
to equal zero outside these intervals.

The functions p(f|@) and ¢(#f) (i) define time-dependent values for a link property (e.g.,
temperature, pressure, ...) and the precursor failure values for that property (e.g., failure

temperature, failure pressure, ...) and (ii) have distributions that derive from the distributions for
a and f characterized by the density functions d ,(«) and dgz(f). For given values for o and £,

the link enters a precursor condition to failure at the time ¢ for which the equality
Ba(t)=q(t1B)=p(tla)=ap(t) 2.7

holds. In turn, the distributions for « and g result in a distribution of possible values for the
precursor failure time 7that can be summarized by

CDF, (t) = probability that precursor conditions to link failure occur at or before time 7, (2.8)

which is the CDF for the time at which precursor conditions to link failure occur.

The precursor time CDF in Eq. (2.8) can be represented as either a Riemann integral or a
Stieltjes integral. When represented as a Riemann integral, the CDF in Eq. (2.8) has the form

11



CDF (1) = [ [ j;;;“”) dy ﬂ)dﬂ} d,(a)da (2.9)
with
Fla,) = ap(t) | g(t) = a/ r(t) and r(t) = q(t) | p(2). (2.10)

Derivations and approximation procedures for CDF}, () are given in Ref. [1].

12



3. PLOAS with Constant Delay Times: Formal Representation

In this case, a constant delay time D >0 is assumed to exist between the time when the
precursor conditions for link failure occur and the actual time at which link failure occurs. This
results in the following CDF for delayed link failure time:

CDF,, (t) = probability that link failure occurs at or before time ¢ with

constant delay time D > 0
= [ 5[t~ (c + D)UCDF, () G.1)

j dCDF,(7) = CDF»(t—D) for0<t—D
0 for t—D<O,

where

ST DYl = lfor 0<t—(r+D) 39
=+ D=1 g {—(z+D)<0. (3-2)

and CDFp(t) is defined in Egs. (2.9).

In general, a WL/SL problem will involve nWL WLs and nSL SLs. In this case, delay times
Dy, ;5= 1,2,...,nWL,and Dg; ,,k=1,2, ..., nSL, can be defined for the individual links and

corresponding failure time CDFs CDFD’WL’j (®),j=1,2,...,nWL,and CDF}, 5 (1), k=1, 2,

nSL, for the individual links defined as in Eq. (3.1). In such a situation, it is likely that zero and
nonzero delay times will be present. As extensively discussed in Ref. [1], LOAS can be determined
with the relationships summarized in Table 1 once the indicated failure time CDFs are available.

The indicated verification tests in Table 1 are the known outcomes of assigning the same
properties to all links [24]. This is not a realistic physical problem but serves as a useful verification
test because it requires use of all the mathematics and programming underlying the calculation of
PLOAS while, at the same time, having a known solution.

13



Table 1 Representation of time-dependent values pF;(¢),i=1,2, 3, 4, for PLOAS and associated

verification tests for alternate definitions of LOAS for WL/SL systems with (i) nWL WLs and nSL
SLs and (i) independent distributions for link failure time defined by the CDFs
CDFy; ;, j=1,2,..,nWL, and CDFg; ;, k =1,2,...,nSL ([22], Table 10).

Case 1: Failure of all SLs before failure of any WL (Egs. (2.1) and (2.5), Ref. [24])

PF (1) = f( L’{ ﬁ CDFy, , (r)Hﬁ[l— CDFy, (r)}}dCDFSL’k (T)J

k=1 I=1,l%k j=1

Verification test: pF, (o) = nWL!nSLY/(nWL + nSL)!

Case 2: Failure of any SL before failure of any WL (Egs. (3.1) and (3.4), Ref. [24])

pFE, (1) = f( If { ﬁ [1-CDF,, (r)]Hnﬁ[l— CDFy, (r)}}dCDFSL,k (T)J

k=1\ " | =11k j=1

Verification test: pF, (o0) = nSL/(nWL + nSL)

Case 3: Failure of all SLs before failure of all WLs (Eqgs. (4.1) and (4.4), Ref. [24])

PF, (r)_nf( L’{ i1 cor,, (r)}{l—ﬁCDFWL, ; (r)}dCDFSL,k (r)}

k=1 I=1,l%k =1

Verification test: pFy (o) = nWL/(nWL + nSL)

Case 4: Failure of any SL before failure of all WLs (Egs. (5.1) and (5.4), Ref. [24])

pF4(t)='§L:( jt { ﬁ [1CDFSU(r)jHlﬁCDFWLJ(r)}dCDFSLk(T)J

t
k=1 " =1k j=1

Verification test: pF, () =1—[ nWL!nSLY/(nWL + nSL)!]

14



4. PLOAS with Constant Delay Times: Approximation and lllustration

As discussed in Sect. 4 of Ref. [1], a quadrature procedure provides one possibility for
evaluating the integrals in Table 1 that define the probabilities pF (¢), pF,(t), pF;(¢) and pF,(¢)

for LOAS. Specifically, the preceding probabilities can be approximated by

k=1 I1=1,1#k j=1

pFl(rwf["SZD{ i1 cor, (t,-_l)Hﬁ[l—CDFWL,( )]}ACDFSLk( )}, @.1)

sz(t)zlf(}i){ ﬁ [1-CDFy, (1, )]}{ﬁ[l—CDFWLJ( )]}ACDFSLk( )J, (4.2)

k=1 I=1,l2k J=1
nSL ( nSD nSL nWL

ng(t);z Z [1 ¢DFg, (1)1 CDFy, ;(t;) ACDFy , (£,) |, 4.3)
k=1\ i=1 |I=1,l#k j=1

and

nSL( nSD | nSL nWL
pﬂ(t);Z( {H [1-CDFy, (t, ]Hl—HCDFWL (1, )}ACDFSLk( )J, (4.4)

k=1 I=1,1#k

where ¢, =t, <t, <t, <---<t,, =t is a subdivision of [

mn’]

As discussed in Sect. 5 of Ref. [1], sampling-based procedures can also be used to approximate
pE (), pF,(t), pF;(¢t) and pF,(t). Specifically, pF;(¢),i= 1,2, 3 or 4, can be approximated by

pE(t) = ZI | l[t|t ]/nR

(4.5)
= S {1 [WLy WLy WLy o SLy 1Sy tSLy )} [R,
where
t = time at which PLOAS (i.e., pF;(#) in Table 1) is to be determined, (4.6)
tWLj = time at which WL fails, j =1,2,...,n WL, 4.7)
tSL; = time at which SL fails, j =1,2,...,nSL, (4.8)
t =[tWL tWL,,...tWL,y, ,1SL,,tSL,,...,tSL,g |, (4.9)

15



1 if max {SL,,SL,,...,tSL,g, } < min {¢,¢WL  ,tWL,,....tWL,g }
5 (11t)= . (4.10)
0 otherwise,
5 (1) = 1if min {SL,,tSL,,...,tSL,g, } < min{t,tWL ,tWL,,...,tWL,g | @.11)
: 0 otherwise, '
1if max {tSL,,tSL, ,...,tSL,g, } < min{t,max {{WL,tWL,,...,tWL,g }} “12)
0 otherwise, .
1if min {¢SL,,£SL,....,tSL,g | < min {t,max {tWL, ,tWL,.....tWL,g }} “.13)
0 otherwise, .
and
t, =[ WLy WLy st WLy 1SLy, ESLy, . tSLyy |21 = 1,2, mR, (4.14)

is a random sample from the possible values for t generated in consistency with the distributions
for the failure times tWLj,jZ 1,2, ..., nWL, and tSLj,jZ 1,2, ..., nSL.

The example WL/SL system defined in Table 2 and shown in Fig. 1 is used for illustration.
Specifically, this example involves a WL/SL system with 2 WLs and 2 SLs. For consistency, this
is the same example used in an earlier article on margins related to LOAS for WL/SL systems
([26], Table 1).

16



Table 2 Defining properties of two WLs and two SLs used in the illustration of the definition and
calculation of delayed failure for WL/SL systems ([26], Table 1).

| General Properties for Links

B(r) = —PIPO) for all links
Dp(0) +[p(0) — p(0)]exp(-77)

q(7) constant-valued for WL 1 and SL 1

7(r)=—2O - WL2 and SL 2
1+ k"

Additional Properties of WL 1

P () =950, p(0) =300, =0.02,g(7) = 650
d ,(a) triangular on [«,,,, @t,,. ] =[0.88, 1.15] with mode 1.0

mn?’ ~"mx

dg(p) triangularon [ S, ., B3,.]1=[0.8, 1.15] with mode 1.0

Additional Properties of WL 2

Pp(0) =850, p(0) =300,7 =0.02

7(0) =650,k =221x10",r, =1.5

d ,(«) triangular on [e,,,,«,,. ] =[0.85, 1.2] with mode 1.0
dy(p) triangularon [B, ., B,.]1=[0.75, 1.2] with mode 1.0

Additional Properties of SL 1

() =1025, p(0) =300, =0.025,g(7) =775
d (o) triangular on [¢,,,, @,,. ] =[0.9, 1.15] with mode 1.0

mn?> ~"mx

d,(B) uniformon [, ., B,.1=[0.8, 1.15]

Additional Properties of SL 2

p(0) =950, p(0) =300,7 =0.025

7(0) =750,k =1.41x107*,r, =1.5

d (o) triangular on [¢,,,, «,,. ] =[0.8, 1.1] with mode 1.0
dgz(f) uniformon [B,,, B,.1=10.85, 1.3]

17



Fig. 1a: WL 1 Fig. 1b: WL 2
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Fig. 1 Summary plots of the properties of two WLs and two SLs used in the illustration of the
definition and calculation of delayed failure for WL/SL systems: (a) WL 1, (b) WL 2, (¢) SL 1,
and (d) SL 2 ([26], Fig. 1).

For purposes of illustration, the following delay times are assumed for the WLs and SLs
indicated in Table 2:

Dy, =5.0 and Dy, , =8.0 (4.15)
for WLs 1 and 2, and

Dy, =12.0 and Dy, =14.0 (4.16)
for SLs 1 and 2.

For comparison, PLOAS values obtained with and without the inclusion of the indicated delay
times for the individual links are presented in Fig. 2 for each of the four failure patterns in Table
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1 (ie., for pF.(¢),i =1,2,3,4). If the delays in Eqgs. (4.15) and (4.16) were all equal to zero, then

what is indicated as precursor results in Fig. 2 with subscript “P’s” would be the actual PLOAS
results.

Verification of the correctness of numerical calculations is an important part of any analysis
[27-34]. For the present analysis, one approach to verification is to determine PLOAS with both
the quadrature procedures indicated in Eqs. (4.1)-(4.4) and the sampling-based procedures
indicated in Eqgs. (4.5)-(4.14). Additional verification can be obtained by using several different
sampling-based procedures. For illustration, results obtained with two different sampling-based
procedures for the estimation of PLOAS are compared with the quadrature-based results in Fig.

2d. The two sampling-based procedures differ only in how the vector t; in Eq. (4.14) is sampled.

For the first sampling-based procedure (SB1), the link failure times are sampled directly from
the failure time CDFs in Fig. 2c (i.e., from the final CDFs for link failure time that have
incorporated the delay times in Eqs. (4.15) and (4.16)). For the second sampling-based procedure
(SB2), values for « and f are sampled for each link and used to determine precursor failure times;
then, the delay time for each link is added to the link’s sampled precursor failure times to obtain
the vectors t;, in Eq. (4.14). Of the two sampling-based procedures, SB2 is the more effective
verification procedure as it does not use the failure time CDFs that are used in the quadrature
procedures indicated in Egs. (4.1)-(4.4).

As shown in Table 3 for ¢ = 200, the quadrature procedure and the two sampling procedures

produce what are effectively the same values for PLOAS. This is a strong verification result
indicating that all three procedures are correctly defined and implemented.
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Fig. 2b: PLOAS CDFs, No Delay
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Fig. 2 Time-dependent PLOAS results obtained (i) with the quadrature procedures indicated in
Egs. (4.1)-(4.4) and a subdivision of [0, 200] of size nSD = 10* and (ii) with and without inclusion
of the constant delay times in Eqs. (4.15) and (4.16) for the individual links: (a) CDFs CDF, (1)

sCDFp ;5 (1) ,CDFp ¢, (1) and CDF} g, (¢) for occurrence time for precursor to link failure time
(i.e., for link failure times obtained with delay times of zero), (b) CDFs pFp, (¢),1=1,2,3,4, for
PLOAS obtained without inclusion of delay times, (c) CDFs CDF},y;,(2), CDEp ;5 (1),
CDFy, g, (¢) and CDFy, ¢, (¢) for link failure time obtained with inclusion of delay times, and (d)
CDFs pFy,(t),i=1,2,3,4, for PLOAS obtained with inclusion of delay times.
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Table 3 Comparison of PLOAS results at # =200 with inclusion of the constant delay times in Egs.
(4.15) and (4.16) obtained with (i) quadrature procedures in Eqgs. (4.1)-(4.4) with nSD = 10*, and
(ii) sampling-based procedures SB1 and SB2 with nR = 106,

Case 1: Failure of all SLs before failure of any WL

0.0283 Quadrature
pF(200) =40.0284 Sampling SB1, 95% CI=[0.0280,0.0287]
0.0283 Sampling SB2, 95% CI=[0.0280,0.0286]

Case 2: Failure of any SL before failure of any WL

0.2159 Quadrature
pF,(200) =40.2161 Sampling SB1, 95% CI=[0.2153,0.2169]
0.2153 Sampling SB2, 95% CI1=[0.2145,0.2161]

Case 3: Failure of all SLs before failure of all WLs

0.1605 Quadrature
pF;(200) =40.1614 Sampling SB1, 95% CI=[0.1607,0.1621]
0.1603 Sampling SB2, 95% CI=[0.1596,0.1611]

Case 4: Failure of any SL before failure of all WLs

0.5572 Quadrature
pF,(200) =40.5569 Sampling SB1, 95% CI=[0.5559,0.5578]
0.5575 Sampling SB2, 95% CI=[0.5566,0.5585]
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As indicated in Table 1, an additional verification procedure is provided by evaluating the
probabilities pF;(t),i =1,2,3,4, with the same properties assigned to all links. Although this is not

a physically realistic problem, it has value as a verification test because (1) it requires use of all the
programmed calculations employed in the determination of pF;(¢) and (ii) the correct asymptotic

value pF;() for pF(¢) is known as stated in Table 1. For the example considered in this section
with nWL =3, nSL = 2 and the same properties assigned to all links, the resultant possibilities are

PF; ()= nWL!nSLY(nWL+nSL)!=1/10=0.1 fori =1

PF, () =nSL/(nWL+nSL)=2/5=0.4 fori=2
PF, () = (4.17)
pFy () =nWL/(nWL+nSL)=3/5=0.6 fori=3
pF, (oo) =1 —nWL!nSL!/(nWL + nSL)! =9/10=0.9 fori=4.
As shown in Fig. 3, the verification condition
lim pF (1) = pF; () (4.18)
[—0

is satisfied for pF), (¢#) determined with (i) the constant link failure delays defined in Eqgs. (4.15)
and (4.16), (i1)) nWL =3 and nSL =2, and (iii) the properties of WL 1 in Table 2 used for all links.

The results presented in Fig. 2, Table 3 and Fig. 3 were obtained with use of the CPLOAS
program [25; 35] and thus provide verification results that indicate that CPLOAS is correctly
implementing constant delays in link failure in the calculation of the PLOAS wvalues
pFy(1),1=1,2,3,4.
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Fig. 3 Verification test for pFj, (¢),i =1,2,3,4, with (i) the constant link failure delays defined
in Egs. (4.15) and (4.16), (i1)) nWL =3 and nSL =2, and (ii1) the properties of WL 1 in Table 2

used for all links.

23



5. PLOAS with Aleatory Uncertainty in Delay Times: Formal Representation

Similarly to link properties and link precursor occurrence times, aleatory uncertainty can also
be incorporated into the definition of failure delay time. Specifically, this involves specifying the
following quantities for individual links:

D = nominal delay time between the occurence of precursor conditions to link failure

. . . (5.1)
and the time of link failure,
d (y) = density function defined on [y,,,,7,, ] with ,, >0 for variable y used to (5.2)
characterize aleatory uncertainty in delay time D, .
7D = delay in link failure time given . (5.3)

This results in the following CDF for link failure time:

CDF,, (t) = probability that link failure occurs at or before time for
a variable delay D (5.4)

B jo( o ofi=y 5>]dc<7)d7)dCDFpt (2),

with o6(~) defined as in Eq. (3.2). The preceding representation for CDFj,(¢) reduces to the
representation for CDF,(¢) in Eq. (3.1) when d;(y) is a suitably defined Dirac delta function
(i.e., if there is a single value for y with a probability of 1.0).

As a consequence of the relationships
S[t—(r+yD)|=0 for t—(z+yD)<0 = (t-7)/D<y (5.5)
and
S[t—(r+yD)]|=1.0 for 0<t—(r+yD) = y<(i—7)/D, (5.6)
the inner integral in Eq. (5.4) can be expressed as

1.0 fory, <(t-7)/D
(t-7)/D

[ olt-@+yD)]d(rdy =4[

mn

dg(y)dy fory,, <(t-1)/D<y,, (5.7)

0 for (t-7)/D<y,,.
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As discussed in Sect. 3, nominal delay times and associated density functions characterizing
aleatory uncertainty can be defined for the individual links in a problem involving multiple WLs
and SLs. Then, CDFs for the individual links defined as indicated in Eq. (5.4) can be used with the
representations in Table 1 in the calculation of LOAS (e.g., as indicated in Egs. (4.1)-(4.4)).
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6. PLOAS with Aleatory Uncertainty in Delay Times: Approximation and
lllustration
As in Sec. 4, the WL/SL system defined in Table 2 and Fig. 1 is used for illustration. For this
illustration, the nominal delay time D for each link is taken to be the same as the corresponding
constant delay time defined in Eqgs. (4.15) and (4.16) (i.e., Dy;,= 5.0, Dy,,= 8.0, Dy, = 12.0,
Dy;,= 14.0). Further, the density function d(y) for each link characterizing the aleatory

uncertainty associated with the delay in link failure is defined as follows: uniform on [0.5, 1.5]
for WL 1, uniform on [0.5, 1.5] for WL 2, triangular on [0.6, 1.4] with mode = 1.0 for SL 1, and

triangular on [1.0, 3.0] with mode = 1.0 for SL 2.

Fig. 4a: Link CDFs Fig. 4b: PLOAS CDFs
Aleatory Delay Aleatory Delay
1 : : 0.5 - : .
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Fig. 4 Time-dependent PLOAS results for aleatory variation in link failure time obtained with (i)
the quadrature procedures indicated in Egs. (4.1)-(4.4) and a subdivision of [0, 200] of size nSD =
10* and (ii) Dy;,;=5.0 and d(¥) uniform on [0.5, 1.5] for WL 1, D,;,,=8.0 and d () uniform

on [0.5, 1.5] for WL 2, Dg;,=12.0 and d(y) triangular on [0.6, 1.4] with mode = 1.0 for SL 1,
and Dg,= 14.0 and d(y) triangular on [0.5, 1.5] with mode = 1.0 for SL 2: (a) CDFs
CDFy, yp(8), CDFp (1), CDF) g,(¢) and CDF, g, (¢) for link failure time, and (b) CDFs
pFy(1),1=1,2,3,4, for PLOAS.
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The PLOAS results obtained with the inclusion of the indicated aleatory variation in the delay
times for the individual links are presented in Fig. 4 for each of the four cases in Table 1 (i.e., for
pFy (1), i=1,2,3,4). The corresponding results for no delay in link failure time are presented in

Fig. 2a,c.

As in Table 3 of Sect. 4, results obtained with two different sampling-based procedures for the
estimation of PLOAS are compared in Table 4 with the quadrature-based results in Fig. 4b. The

sampling-based procedures differ only in how the vector t; in Eq. (4.14) is sampled. For the first
sampling-based procedure (SB1), the link failure times are sampled directly from the failure time
CDFs in Fig. 4a (i.e., from the final CDFs for link failure time that have incorporated the aleatory
variability in the failure delay times). For the second sampling-based procedure (SB2), (i) values
for a and f are sampled for each link and used to determine precursor failure times, (ii) delay
times are sampled from the distributions characterizing aleatory uncertainty in delay time for the
individual links, and (iii) each determined precursor failure time (i.e., for a sampled «, £ pair) is
added to a sampled delay time to obtain the vectors t;, in Eq. (4.14). As shown in Table 4, the

quadrature procedure and the two sampling procedures give what are effectively the same values
for PLOAS.

The verification procedure indicated in Table 1 and discussed in conjunction with Eqgs. (4.17)
and (4.18) is also applicable to PLOAS determined with aleatory variability in link failure delay
times. As shown in Fig. 5, the verification condition pF;(¢#) — pF,() as t — oo described in Egs.

(4.17) and (4.18) is satisfied for pF),;(¢) determined with (i) aleatory variability in link failure

delay times, (ii) nWL =2 and nSL =3, (iii) the properties of SL 1 in Table 2 and Fig. 4 used for
all links, and

pF, () =nWL!nSLY(nWL+nSL)!=1/10=0.1 fori=1
F, () =nSL/(nWL+nSL)=3/5=0.6 fori=2
D (o) = PF, () =nSL/(n nSL) orz' 6.1)
pFy () =nWL/(nWL +nSL)=2/5=0.4 fori=3
PF, () =1=nWLnSLY(nWL +nSL)!=9/10=0.9 fori =4

as stated in Table 1.

The results presented in Fig. 4, Table 4 and Fig. 5 were obtained with use of the CPLOAS
program [25; 35] and thus provide verification results that indicate aleatory variability in link
failure delay times in the calculation of the PLOAS values pFj,(?),i=1,2,3,4, is implemented

correctly in CPLOAS.
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Table 4 Comparison of PLOAS results at # = 200 with inclusion of aleatory variability in link
failure delay times obtained with (i) quadrature procedures in Eqs. (4.1)-(4.4) with nSD = 10*, and
(ii) sampling-based procedures SB1 and SB2 with nR = 106,

Case 1: Failure of all SLs before failure of any WL

0.0104 Quadrature
pF(200) =40.0105 Sampling SB1, 95% CI=[0.0103,0.0107]
0.0104 Sampling SB2, 95% CI=[0.0102,0.0106]

Case 2: Failure of any SL before failure of any WL

0.1263 Quadrature
pF,(200) =40.1271 Sampling SB1, 95% CI=[0.1265,0.1278]
0.1263 Sampling SB2, 95% CI=[0.1256,0.1269]

Case 3: Failure of all SLs before failure of all WLs

0.0865 Quadrature
PF;(200) =40.0865 Sampling SB1, 95% CI=[0.0859,0.0870]
0.0864 Sampling SB2, 95% CI=[0.0859,0.0869]

Case 4: Failure of any SL before failure of all WLs

0.4226 Quadrature
pF,(200) =40.4226 Sampling SB1, 95% CI=[0.4216,0.4235]
0.4230 Sampling SB2, 95% CI=[0.4221,0.4240]
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Fig. 5 Verification test for pFj,(¢),i=1,2,3,4, with (i) aleatory variability in link failure delay
times, (i1) nWL =2 and nSL =3, and (iii) the properties of SL 1 in Table 2 and Fig. 4 used for all

links.
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7. PLOAS with Delay Times a Function of Link Property at Time that
Precursor Failure Occurs: Formal Representation

Another possibility is that the delay time D(p) from precursor occurrence to link failure is a
function of the link property value p that exists at the time of precursor occurrence. In this situation,
the CDF for link failure time is given by

CDF;, (t) = probability that link failure occurs at or before time ¢ for

a delay D(p) that is a function of the link property value p
at the time of precursor occurrence (7.1)

- ( [ ’”"”((T)’ {t~[r+D(p)]}d, (p|r)dp)dCDFP(r),

where (i) the interval [p,,,(7), p,, ()] contains the link property values that could potentially
result in precursor occurrence at time 7, (ii) dp(p|7) defined on [p,,, (7), p,..(7)] is the density

function for link property values p that could result in precursor occurrence conditional on the
assumption that precursor occurrence has taken place at time 7 (i.e., conditional on precursor
occurrence at time 7, the density function d,(p|7) corresponds to the distribution of link

property values p at which the precursor occurrence could have taken place) and (iii) oJ{~}is
defined as in Eq. (3.2).

The density function d,(p|7) and the corresponding interval of definition [p,,,(7), p,. (7)]
are defined in Table 5. As indicated in Table 5, the definitions of d,(p|7) and [p,,, (7), p,,. (7)]
are conditional on the ratio n(7) = ¢(r)/ p(r), which results in four possibilities (i.e.,
dpi(plreF),i=1,2,3,4) for (i) the definition of d (p | 7) and (ii) the corresponding definition
of the interval [p,, (7), p,,. (7)] for dp(p| 7). A summary of the sets P and associated intervals

[2,n (D), P, ()] 18 provided in Table 6.
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Table 5 Summary of density functions d,(p|7)=dp,(p|7€F) for link property values p that

could potentially result in precursor occurrence at time 7 € P ([36], Table 6).

(p/@*@)d,[p/ p®)]ds[p/3(2)]

jr(j;ﬁm ad, ()ds(a/r(r))da

dp(plreR) =

for B ={z:a,, <r(0)f,, <, <r(@)f,}and peS(p|reR)=[A,,4(r).2,,p(7)]

(p1@*@)d,[p/ p©)]ds[p13()]

(%) B
L@)ﬁm ad, (a)dy(a/r(r))da

dp,(plreP)=

for P, ={z:a,, <r(0),, <r(®)pf,, <a,tand peS(plreP)=[4,,q(). B4 ()]

(p/@*@)d, [P/ P@®)]ds[p /2]

dps(plTreR)= p
[ ad, (a)dg(a/r()da

for Py = {7 :7(0) By < Uy S @ <1(0)B, fand p e Si(p|7 € B) =[a,, (1), 0, P(7)]

(p/@*@®)d, [P/ P@)]ds[p /3]

j’(”ﬂ"’” ad, (a)d,(a/r(r))da

Q,

dP4(P|T€7)4):

mn

for P ={z:r(D)B,, <, <r()f,, <a,fand  peS,(plreR)=|a,,r(),B,q(7)]
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Table 6 Summary of the intervals of definition [p,,(7),p,,(7)] for the density functions
dp(plreP),i=1,2,3,4, defined in Table 5 with p(7) increasing and g(7) either decreasing
or constant-valued (adapted from Ref.[36], Table 7).

[P, (T), P, (T)] = interval of link failure values p at time 7 for «,, / B,, <%,/ B
(B (D)@ P@O) for € B ={7:7, =17 (@ / B) ST <1 (@ | Bre) = Ty}
=108, 3@, B (@] for e P ={7:7,, =17 (@ / L) ST 1 (@ ! Br) = T}
[, P(0), B, @ ()] for T € P, = {z:2,, =17 (@,, | B) ST <77y, | Br) =71}

(2, (T), P, (T)] = interval of link failure values p at time 7 for «,,, / B,,, < %,, ! B
[Bn@ (7)., D] for 1€ B ={r:7, =r (A / ) ST (@ Brn) = Ty}
= [y (D). BT fOr 7€ By = {012, =1 (s | B) ST <17 @ | ) = T}
[0 P(2). @ (D] for € By = {727, =17 (@ / B) ST <7 (@, | Br) =171}

[P, (T), P, (T)] = interval of link failure values p at time 7 for «,,, / B,, = % ! B
[Bn@(7). 0, D) for 1€ B ={7:7, =1 (A / B) ST (@ / Br) = Ty}
[a,, D(7),B,.q(@)] for teP, ={r:7, =r(a, /B, )<t<r (a,, |B,)=1"

The representation for CDFp;(¢) in Eq. (7.1) can also be expressed in the equivalent form

CDF, (1) = j’ (I:,:((T))5 t~[c+D(p)] dp (p|r)dp)dCDF ()
d (p|z')dp) dCDFP(T)/dz')dr

j’ (j""”(”at [+ D(p)
(7.2)
)

{

P (T) {
- (J.::((T))é'{t 7+ D(p
{

mn

I}
o1 )b i, (0107
j’ (j”"”( 's{t~[r+ D)} dplp | ) (r)dp)d

P (T)

where d,(7) is the density function associated with CDF, (7). As shown in Eq. (9.65) of Ref.
[36],

1 — _
dp(pl7)dp(7) = {d{%} / deﬁfzr)}dA [P/ P®]ds[p/3(D)], (7.3)
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with 7(7) = q(7)/ p(7) . In turn, substitution of the preceding representation for d, (p|7)dp(7)into
Eq. (7.2) produces the following representation for CDF},(?) :

CDF, (1) =’ (j"””"(”é{z—[HD(p)]}

tmn Pmn (T)

rt

X{d{%}dr}{p/ﬁz(”}@ [P/ P(®)]dy [p/a(r)]ddef 74)

r(7) Pon (7)

- [{d[L} / dr} [t~z + D) p! P @) ds[p! BO)]dy [p/ c?(r)]dp]dr.

Although it looks complicated, the preceding representation for CDF},(¢) is actually simpler from
a numerical implementation perspective than the representation for CDF},(¢) in Eq. (7.1) because
it removes the complex structure associated with the definition of d,(p | 7) summarized in Table

5. Except for the limits of integration and the indicator function o{¢t —[7 + D(p)]}, the integral in
Eq. (7.4) is the same as the integral in Eq. (10.10) of Ref. [36].

Some simplification of the inner integral in Eq. (7.4) is possible if D(p) is an increasing
function of p or a decreasing function of p. Specifically,

S[t—(r+D(p))]=0 for t—(r+D(p)) <0
D '(t-1)< p for D(p) increasing (7.5)

=>t-7<D(p)=>
p<D ' (t—-7) for D(p) decreasing

and

5[t—(r+D(p))] =1.0 for 0<t—(7+ D(p))
p<D'(t—7) for D(p) increasing (7.6)

=>D(p)s(t-17)=>
D '(t-7)< p for D(p) decreasing.

In turn, the inner integral in Eq. (7.4) can be expressed as

IPW(T)F(T,p){P / p* (z‘)} d, [p / ﬁ(r)]dB [p / (?(z')]dp (7.7)

P (T)

with

0 for D_l(t—r)<p ) .
F(r,p)= » for D(p) increasing (7.8)
1 for p<D (t—7)
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and

0 for p< D' (t—7) ,
F(r,p)= » for D(p) decreasing. (7.9)
1 for D" (t—7)<p

Once the CDFs for the individual links developed in Egs. (7.1)-(7.4) are available, they can be
used with the approximations in Egs. (4.1)-(4.4) in the determination of PLOAS. Another
possibility is to numerically approximate the corresponding integrals in Table 1 with procedures
contained in the MATLAB numerical package [37]. However, approximation of the defining
integrals for CDF},(¢) can be a numerically challenging undertaking.
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8. PLOAS with Delay Times a Function of Link Property at Time that
Precursor Failure Occurs: Approximation and lllustration
As in Sects. 4 and 6, the example defined and illustrated in Table 2 and Fig. 1 is used for
illustration. Further, the delay time D(p) from precursor occurrence to link failure is a function of

the system property p that exists at the time of precursor occurrence and is assumed to be of the
form

10,000/ p = Dy (p) for WL1

10,500/ p = Dy (p) for WL2

D(p) = 8.1
(P)=111,000/ p = Dy (p) for SLI &1

11,500/ p = Dg;»(p) for SL2.

The evaluation of the integral in Eq. (7.4) for the four links described and illustrated in Table 2
and Fig. 1 is considered first. Then, the evaluation of the four integrals in Table 1 for PLOAS for
the indicated four links is considered.

Two approaches for the evaluation of the integral in Eq. (7.4) are considered: (i) a quadrature-
based procedure using the MATLAB numerical package [37] and (ii) a sampling-based procedure.

The quadrature-based procedure using the MATLAB numerical package is described first.
Evaluation of the integral in Eq. (7.4) for each of the four links requires the incorporation of the
indicator function o{t —[7 + D(p)]} into the integration process. As indicated in Egs. (7.5)-(7.9),

some simplification of the inner integral is possible when D(p) is an increasing or decreasing
function of p. In this example,

D(p)=k/ p with k =10,000;10,500;11,000 or 11,500 (8.2)

is a decreasing function of p. Thus, consistent with Eq. (7.9), Jo{t—[r+ D(p)]} can be replaced
by the function

1o, _ _
F(z.p) = {O for p< D (t T)_1 k/(t—1) 83)
l for k/(t—-7)=D (t—7)<p

in the inner integral in Eq. (7.4) to produce an inner integral of the form shown in Eq. (7.7). To the
best of our knowledge, MATLAB does not have an option for the inclusion of functions of the
form o{t —[7+ D(p)]} as part of the integrand in the numerical evaluation of an integral. Thus, as

described in the next paragraph, some additional development is required rather than simply
evaluating the integral in Eq. (7.4) with a MATLAB integration routine such as TwoD [38].

The computational strategy used is to initially consider the integral in Eq. (7.7) with F(z, p)
defined in Eq. (8.3) as a function
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P (7)
Iz =]

P (T)

F.p){p/ p*(0}d,[p/ p()]ds[p/(2)]dp (8:4)

of 7 conditional on 7. For each of the four links under consideration, the values for «,,, ,,,., B,
and g, satisfy the inequality «,,. / B,, <a,,, / B, - Thus, integration limits p,, (r) and p,, (7)
are defined by the second possibility in Table 6. When the integration limits p, () and p, (7)

are combined with the effects of F(z, p), the form of /(7 | ) becomes

0 for p, (7)<k/(t—7)

1610 =4[ p 1 B @) [/ B©]ds [p/T@]dp for p,, (D) <k (1=7) < p, (1) (8.5)

[ B @) d,[p/ B@)]ds [p/@]dp for kI G=2)% p,,, (7).

pmn (T)

At this point, the integral in Eq. (7.4) can be viewed as being of the form

CDF, (1) = j[’ {d{ (1 )} / dr} I(r| )t (8.6)

r(r
with /(7 |¢) defined in Eq. (8.5).

The representation for CDF},(¢) in Eq. (8.6) can be evaluated with the integral function in

MATLAB provided the two terms in the integrand can be defined in an appropriate manner. The
derivative d[l1/7(r)]/dr can be defined with use of the MATLAB functions diff and

matlabFunction. The definition of /(7 |¢) is more complex and involves a spline fit to /(7 |?).
ot] With Az, =(¢—t,,)/nS is defined,
and I(7; |?),i =12,...,nS,is obtained by evaluating the integrals in Eq. (8.5) with MATLAB
procedures. For these evaluations, the density functions in the integrand are defined with the
makedist and pdf functions and the integrations to obtain I(z; |?),i =1,2,...,nS, are performed

Specifically, a subdivision 7,,i =0,1,...,nS =200, of [¢

with the integral function. Then, to obtain /(7 | ) for use in the evaluation of the integral defining
CDF,,(t) in Eq. (8.6), the function spline is used to fit a function to the values
I(z; |t),i =1,2,...,nS . At this point, the function integral is used to evaluate CDF,; (t) with the

indicated representations for d[1/7(z)]/dz and I(z |¢). The outcome of this calculation is shown
in Fig. 6 for the four links defined in Table 2 and illustrated in Fig. 1.
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Fig. 6a: Link CDFs Fig. 6b: PLOAS CDFs
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Fig. 6 Time-dependent PLOAS results for delay in link failure time dependent on link property
value at precursor failure obtained with (i) quadrature-based procedures and (ii) the failure time
delays Dy, ,(p), Dy, (p), Dg,(p) and D, (p) for each link defined in Eq. (8.1): (a) CDFs

CDFy, yp(8), CDFy, 5 (8), CDFy, g1 (¢) and CDFj, g, (¢) for link failure time, and (b) CDFs
pFp(1),i=1,2,3,4, for PLOAS.

Given that the CDFs CDFy, (1), CDFy,y,,(t), CDFy, o1 (2) and CDF), g, (¢) for link

failure time are available, the CDFs pF, (?),i =1,2,3,4, for PLOAS can be obtained by evaluating

the approximating sums in Eqgs. (4.1)-(4.4) as done for the PLOAS results in Sects. 4 and 6.
Another possibility is to obtain the CDFs pFj,.(¢),i=1,2,3,4, by using procedures in MATLAB

to evaluate the integrals in Table 1. For variety and illustration, quadrature procedures based on
MATLARB functions will be used to obtain the CDFs pF}, (¢),i =1,2,3,4, for delay in link failure

time dependent on link property value at precursor failure. To accomplish this, the function spline
is used to provide a spline representation for each of the CDFs CDFy, y,,(¢),CDF) y,(1),

CDFy, g,(t) and CDF, g, (t) for link failure time. Then, the spline representations in conjunction

with the ppval function are used to obtain representations for the integrands in each of the Stieltjes
integrals in Table 1. Next, the Stieltjes integrals are converted to Riemann integrals by
differentiating CDF}, 5;,(¢) and CDFj, g;,(¢) with the fnder function and then applying the ppval
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function to the results of these differentiations. At this point, the original Stieltjes integrals in Table
1 are now Riemann integrals and can be evaluated with the integral function. The results of these

evaluations to obtain the CDFs pF,(¢),i=1,2,3,4, for delay in link failure time dependent on
link property value at precursor failure are shown in Fig. 6b.

As a verification check, the results in Fig. 6 can be obtained with sampling-based calculations
that are independent of the quadrature-based calculations used to obtain the results presented in
Fig. 6. The sampling-based procedure used is similar to the second sampling-based procedure
(SB2) used in the verification of quadrature-based results in Sects. 4 and 6. Specifically, (i) values

for ¢, and B, [ =1,2,...,nR, are randomly sampled for each link and used to determine precursor
failure times #, and corresponding property values p, at precursor failure, (ii) delay times D(p,)
are determined individual links, and (iii) each determined precursor delay time D(p,)is added to

the corresponding sampled delay time ¢, to obtain the vectors
t, =[tWLy,,tWL,,,tSLy;,1SLy, |1 =1,2,...,nR, (8.7)

for link failure time as indicated in Eq. (4.14). Then, CDFy, ;,,(¢) can be approximated by

nR
CDFpyy, (t) = Y 6,(tWLy,) / nR with &,(tWL,,) = (8.8)

/=1

1 for tWL,, <t
0 for t <tWL,

and CDFy, ,,(t), CDFp g ,(t) and CDFj, g, (¢) can be approximated similarly. Further, the

CDFs pFp,(t),i=1,2,3,4, for delay in link failure time dependent on link property value at
precursor failure can be approximated as shown in Eq. (4.5).

For comparison, the results of the quadrature-based calculations and the just discussed
sampling-based calculations are shown in Fig. 7. As examination of Fig. 7 shows, the results
obtained with the two procedures are essentially identical. Given the independence of the
implementations of both procedures, this provides a strong verification result that both procedures
are correct in both mathematical structure and computational implementation.
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Fig. 7a: Link CDFs Fig. 7b: PLOAS CDFs
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Fig. 7 Time-dependent PLOAS results for delay in link failure time dependent on link property
value at precursor failure obtained with (i) quadrature-based procedures, (ii) sampling-based
procedures, and (iii) the failure time delays Dy;,(p), Dy, (p), Dg,(p) and Dy, ,(p) for each

link defined in Eq. (8.1): (a) CDFs CDFy, y;(2), CDFp, 5 (1) , CDF) g (¢) and CDF, g, (2) for
link failure time, and (b) CDFs pF,(¢),i=1,2,3,4, for PLOAS.

The verification procedure indicated in Table 1 and discussed in conjunction with Eqgs. (4.17)
and (4.18) is also applicable to PLOAS determined with the delay in link failure time dependent
on link property value at precursor occurrence. As shown in Fig. 8, the verification condition
PE.(t) = pF, () as t — o described in Eqs. (4.17) and (4.18) is satisfied for pF}, (t) determined
with (i) the delay in link failure time dependent on link property value at precursor occurrence, (ii)
nWL =3 and nSL =2, and (iii) the properties of SL 2 in Table 2 and Fig. 6 used for all links. For
this example, the asymptotic values for pF),;(¢),i=1,2,3,4, are the same as shown in Eq. (4.17).
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Fig. 8 Verification test for pFj), (¢),i =1,2,3,4, with (i) the delay in link failure time dependent on
link property value at precursor occurrence, (ii)) nWL =3 and nSL =2, and (iii) the properties of
SL 2 in Table 2 and Fig. 6 used for all links.

The sampling-based results in Fig. 7 were calculated with the CPLOAS program [25; 35].
Similarly, the verification results in Fig. 8 were also calculated with sampling-based procedures in
CPLOAS. At present, the use of property-dependent delay times in the calculation of the PLOAS
values pfFp,;(1),i=1,2,3,4, is not a formally defined capability of CPLOAS. However, the

sampling-based results in Fig. 7 and Fig. 8 were obtained by making a few simple coding additions
within the overall structure of CPLOAS. Thus, the verification results in Fig. 7 and Fig. 8 indicate
that (i) these additions to CPLOAS are producing correct values for property-dependent link failure
delay times in the calculation of the PLOAS values pFj, (¢),i =1,2,3,4, and (ii) if desired at some

point in the future, it would be possible to make calculations of this type a formal option within
CPLOAS. Further, the agreement of the quadrature-based and sampling-based results in Fig. 7
provides a strong indication that the very complex derivations that produced Eq. (7.4) are correct.
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9. Summary Discussion

Two primary topics are addressed in this presentation: (i) Implementation and illustration of
three possible definitions for delays between the occurrence of link precursor conditions and link
failure in LOAS analyses for WL/SL systems, and (ii) Verification of the numerical correctness of
the implementation of the three indicated delay definitions in the CPLOAS program.

The three delay definitions are (i) a constant delay between the occurrence of link precursor
conditions and link failure, (ii) aleatory variability in the delay between the occurrence of link
precursor conditions and link failure, and (iii) delay in link failure time dependent on link property
value at time that link precursor conditions occur.

Verification tests for constant delays and aleatory delays in link failure in the calculation pf
PLOAS values are formal parts of the CPLOAS program. Specifically, the following independent
options for the calculation of the four definitions of PLOAS in Table 1 are available:

(1) Quadrature evaluations that determine PLOAS as indicated in Egs. (4.1)-(4.4),

(i1) Sampling-based evaluations that involve sampling link failure times from the link failure
time CDFs after incorporation of the delays and then determining PLOAS as indicated in Egs,
(4.5)-(4.14), and

(ii1)) Sampling-based evaluations that involve sampling the variables « and f that
characterize aleatory uncertainty in the time of link precursor occurrence and the variables y that

characterize aleatory uncertainty in link failure delay time, determining the resultant failure times
for each link based on the sampled values for &, f and y, and then determining PLOAS as

indicated in Egs. (4.5)-(4.14).

As shown in Table 3 and Table 4, all three numerical procedures provide what is effectively (i.e.,
within a small amount of numerical variability) the same PLOAS values for constant delays and
aleatory delays in link failure, which is a strong verification result that CPLOAS is implementing
these delays and associated PLOAS calculations correctly.

The third delay definition (i.e., delay in link failure time dependent on link property value at
time that link precursor conditions occur) is not a formally implemented option in CPLOAS.
However, it was possible to implement this delay definition with small programming additions in
CPLOAS to what is indicated above as the second sampling approach (i.e., ¢ and £ are sampled,

property value p at time precursor occurrence and delay D(p) are obtained, and link failure time is
determined). With these additions, the CDFs for link failure after delay are obtained as indicated
in Eq. (8.8) and PLOAS values are obtained as indicated in Egs. (4.5)-(4.14).

However, this calculation with the modified version of CPLOAS does not supply any
additional results for verification of calculations with delay in link failure time dependent on link
property value at the time that link precursor conditions occur. To obtain verification results for
this delay definition, Eq. (7.4) for link failure time delay dependent on link property value at
precursor failure was (i) derived, (ii) approximated with a quadrature procedures contained in the
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MATLAB numerical package, and (iii) used to defined CDFs for link failure time. Next, the link
failure CDFs were used in conjunction with MATLAB quadrature procedures to evaluate the four
PLOAS integrals in Table 1 corresponding to different definitions of LOAS. As shown in Fig. 7,
sampling-based results obtained from modified CPLOAS and the quadrature results for the integral
in Eq. (7.4) and the integrals in Table 1 produce essentially identical results for both the link
failure time CDFs and the PLOAS CDFs the four definitions of LOAS. This is a very strong
verification result that both sets of calculations are correct.

The primary emphasis of this presentation is on the description and verification of results that
have been implemented in the CPLOAS program. However, agreement of quadrature results
obtained for the integral in Eq. (7.4) with sampling-based results obtained with the modified
CPLOAS program are also relevant to the work that underlies the derivation of this integral. The
integral in Eq. (7.4) is based on very complicated mathematical derivations in Ref. [36] that are
tedious and difficult to check. Thus, the agreement of the results in Fig. 7 also provides an
important verification result for derivations in Ref. [36].

An additional verification test was applied to PLOAS results calculated with CPLOAS for each
of the three link failure delay definitions. This test involves the unphysical and counter intuitive
assigning of the same properties to all links. However, as shown in Ref. [24], summarized in Table
1, and illustrated in Eqgs. (4.17) and (6.1), this assignment results in the WL/SL system having a
limiting (i.e., asymptotic) PLOAS value that is a function of the numbers nWL and nSL of WLs
and SLs comprising the system. Although not physically realistic, the indicated assignments
provide a problem that both (i) uses the mathematical and algorithmic structures involved in the
calculation of PLOAS and (ii) has a known solution. As shown in Figs. 3, 5 and 8 for the three
link failure delay definitions, these assignments result in the correct limiting PLOAS values and
thus provide another verification result indicating that PLOAS values are calculated correctly in
CPLOAS.
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