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Abstract

Representations for margins associated with loss of assured safety (LOAS) for weak link
(WL)/strong link (SL) systems involving multiple time-dependent failure modes are developed.
The following topics are described: (i) defining properties for WLs and SLs, (ii) background on
cumulative distribution functions (CDFs) for link failure time, link property value at link failure,
and time at which LOAS occurs, (iii) CDFs for failure time margins defined by (time at which SL
system fails) — (time at which WL system fails), (iv) CDFs for SL system property values at LOAS,
(v) CDFs for WL/SL property value margins defined by (property value at which SL system fails)
— (property value at which WL system fails), and (vi) CDFs for SL property value margins defined
by (property value of failing SL at time of SL system failure) — (property value of this SL at time
of WL system failure). Included in this presentation is a demonstration of a verification strategy
based on defining and approximating the indicated margin results with (i) procedures based on
formal integral representations and associated quadrature approximations and (ii) procedures
based on algorithms for sampling-based approximations.
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NOMENCLATURE

Abbreviation

Definition

CDF cumulative distribution function

DOE Department of Energy

LOAS loss of assured safety

NNSA National Nuclear Security Administration
PLOAS probability of loss of assured safety
QMU quantification of margins and uncertainty
SL strong link

SNL Sandia National Laboratories

WL weak link




1. Introduction

Representations for margins associated with loss of assured safety (LOAS) for weak link
(WL)/strong link (SL) systems [1-6] involving multiple time-dependent failure modes are
developed. As described in Ref. [7], LOAS occurs under accident conditions (e.g., a fire) when SL
failures place the overall system in a potentially operational mode before deactivation of the overall
system as a result of WL failures. Specifically, margins defined by the following differences are
considered:

(1) (time at which SL system fails) — (time at which WL system fails),
(i1) (property value at which SL system fails) — (property value at which WL system fails),
and

(ii1) (property value of failing SL at time of SL system failure) — (property value of this SL at
time of WL system failure).

The development of margins associated with LOAS in this presentation builds on previous
work in Refs. [7; 8]. Specifically, Ref. [7] develops representations for the probability of loss of
assured safety (PLOAS) for WL/ SL systems involving multiple time-dependent failure modes,
and Ref. [8] develops representations for property values associated with the failure of individual
links in a system with multiple WLs and SLs.

The following topics are described in this presentation: (i) defining properties for WLs and
SLs (Sect. 2), (ii) background on cumulative distribution functions (CDFs) for link failure time,
link property value at link failure, and time at which LOAS occurs (Sect. 3), (iii) CDFs for failure
time margins (Sect. 4), (iv) CDFs for system property values at LOAS (Sect. 5), (v) CDFs for
margins based on WL and SL property values (Sect. 6), and (vi) CDFs for margins involving only
SL property values (Sect. 7). The presentation then ends with a summary discussion (Sect. 8).

Verification is an important component of any analysis used to support important decisions [9-
13], where verification corresponds to “the process of determining that a model implementation
accurately represents the developers conceptual description of the model and the solution to the
model ” ([9], p. 3). An important part of this presentation is the demonstration of a verification
strategy based on defining and approximating the margin results of interest with (i) procedures
based on formal integral representations and associated quadrature approximations and (ii)
procedures based on algorithms for sampling-based approximations. The two procedures have
very different mathematical structures and are implemented independently of each other. As a
result, agreement between margin results obtained with the two procedures provides a strong
verification result that the procedures have both (i) correct mathematical derivations and (ii)
correct numerical implementations. Fortunately, the indicated agreement was observed and is
extensively illustrated.
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The presented work has been performed in support of the National Nuclear Security
Administration’s (NNSA’s) mandate for the quantification of margins and uncertainties (QMU) in
analyses of the United States’ nuclear stockpile (see Refs. [14-17] for summary discussions of
NNSA’s mandate for QMU, Refs. [18-28] for additional background on the development of

NNSA’s mandate for QMU, and Refs. [29-40] for recent work on the implementation of NNSA’s
mandate for QMU).
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2. WL/SL Properties

The failure time CDF for a single WL or SL is based on the following assumed properties of
that link for the time interval ¢,, <t <t _, where ¢, and 7,  define the endpoints of the time

interval considered for analysis:
p(t) = increasing positive function defining nominal link property for¢,, <t <¢, , 2.1

mn —

g (t) = decreasing or constant-valued positive function defining nominal failure

. (2.2)
value for link property forz,, <t<t¢, ,
d ,(ax) = density function for a positive variable o used to characterize aleatory
o (2.3)
uncertainty in link property,
dz () = density function for a positive variable B used to characterize aleatory (2.4)
uncertainty in link failure value, '
p(t|a)=ap(t) = link property value for¢,, <t <¢,  given a, (2.5)
and
q(t| B) = Bq(t) = link failure value for¢,, <t <t given f3. (2.6)

Further, d () and dgz(f) are assumed (i) to be defined on intervals [,,,,c,,.] and [B,,,, B, ]

and (ii) to equal zero outside these intervals. Although this does not have to be the case, it is
anticipated that o and £ will be assigned distributions with a mode of 1.0 in most analyses so that
p(t) and g(¢) will be the modes (i.e., most likely values) for p(#|@) and ¢(¢|f). For given values
of o and £, link failure occurs at the time ¢ at which ap(¢) = fq(t) .

As indicated in Egs. (2.3) and (2.4), the variables « and £ are used for the incorporation of

the effects of aleatory uncertainty into the analysis of a WL/SL system. Specifically, aleatory
uncertainty is used as a descriptor for random variability in the properties of a system and is distinct
from epistemic uncertainty, which results from a lack of knowledge about the value of a quantity
that has a fixed (i.e., unique) but poorly known value. Additional discussion of the role of aleatory
uncertainty and epistemic uncertainty in the analysis of complex systems is available in Refs. [16;
31; 41-51].

This presentation uses a notional WL/SL system with nWL = 2 WLs and nSL = 2 SLs to

illustrate margin calculations. Property definitions for the four links are summarized in Table 1
and illustrated in Fig. 1.
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Table 1 Defining properties for two WLs and two SLs used in the illustration of the definition and
calculation of margins for WL/SL systems.

| General Properties for Links in Fig. 1

___ p)p©) for all links
P(0)+[p(e0) - p(0)]exp(-r7)
q(7) constant-valued for WL 1 and SL 1

7(r)=—2O - WL2 and SL 2
1+ k"

p(r) =

Additional Properties of WL 1 in Fig. 1

() =950, p(0) =300, =0.02,g(7) = 650
d ,(a) triangular on [0.88, 1.15] with mode 1.0
d () triangular on [0.8, 1.15] with mode 1.0

Additional Properties of WL 2 in Fig. 1

p(0) =850, p(0) =300,7 = 0.02

7(0) =650,k =2.21x107",, =1.5

d ,(a) triangular on [0.85, 1.2] with mode 1.0
d 5 () triangular on [0.75, 1.2] with mode 1.0

Additional Properties of SL 1 in Fig. 1

() =1025, p(0) =300, =0.025,9(7) =775
d ,(a) triangular on [0.9, 1.15] with mode 1.0
d 5 (f) uniform on [0.8, 1.15]

Additional Properties of SL 2 in Fig. 1

p(0) =950, p(0) =300,7 =0.025

7(0) =750,k =1.41x107"*,r, =1.5

d , (o) triangular on [0.8, 1.1] with mode 1.0
d (/) uniform on [0.85, 1.3]

13



Fig. 1a: WL 1 Fig. 1b: WL 2
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Fig. 1 Summary plots of the properties of two WLs and two SLs used in the illustration of the
definition and calculation of margins for WL/SL systems with the dashed lines corresponding to

the boundaries defined by [«,,, p(?), 2, p(t)] and [S,,q(?), B,.9(®)]: (a) WL 1, (b) WL 2, (c) SL
1, and (d) SL2.
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3. Background: CDFs for Link Failure Time, Link Property Value at Link
Failure, and Time at which LOAS Occurs

The CDF for link failure time is defined by

CoF (1) =[] [ d, (8)dp |4, (a)da

o LB (3.1)
- I “" CDF,[F(a,1)dCDF ()
and extensively discussed in Ref. [7], where (i) the first integral is a Riemann integral with
Fla,t)=apt)/ q(t)=a/r(t) and r(t)=q(t)/ p(t) (3.2)
and (ii) the second integral is a Riemann-Stieltjes integral with
a - - p ~ o~
CDF (o) = J; d,(a)da and CDFy(p) = .[/; dy(p)dp. (3.3)

The CDFs for link failure time for the four links defined in Table 1 and illustrated in Fig. 1 are
shown in Fig. 2a. Quadrature and sampling-based procedures for the estimation of CDFs for link
failure time are discussed and illustrated in Ref. [7].

The CDF for link property at time of link failure is formally defined in Eq. (8.1) of Ref. [8] by

CDF,(p|[t,,-t,.]) = probability that link fails at a value less than or equal to p

in the time interval [z, .7, ]

= [ CDF, (p | THCDF; () (34

tmx
= [ CDF, (p | o) (0)d,

where (i) CDF,(p | 7)is the CDF for link property value p at link failure conditional on link failure
occurring at time 7, and (i1) d,(7) is the density function for link failure time defined by
d;(r) =dCDF,(r)/dr
=[d[7(z)/ p(r)]/d7] L "dyla ! ()] ad,(a)da (3.5)
=[d[1/ r(®)]/de]| " dylalr(n)]ad,(@)da

as shown in Eq. (8.2) of Ref. [8]. Sampling-based procedures for the estimation of
CDF,(p|[t ) are described in Sect. 6 of Ref. [8], and integral-based representations for

CDF, (p [t

mn? tmx ]

mn’tmx]

) are derived in Sects. 4 and 5 of Ref. [8] for the following two cases: (i) p(¢)

15



increasing and ¢(¢) decreasing, and (ii) p(¢) increasing and g (¢) constant-valued. The CDFs for

link property at time of link failure for the four links defined in Table 1 and illustrated in Fig. 1
are shown in Fig. 2b.

Cumulative Probability
Cumulative Probability

0 50 100 150 200 400 500 600 700 800 900

t: Link Failure Time p: Property Value at Link Failure
CDFrwii(t) CDFpywri(p|[tmn, mr])

-— - "‘CDFT:H,’LQ(t) — "ODFPH LQ(pH miy m D

""""" CDFT.SLl(t) RN ODFPbLl P [ STy rn.LD

_____ C-DFT.SLZ(t) —'_'_CDFPbLZ(pH s mJD

Fig. 2 Illustration of failure properties for links defined in Table 1: (a) CDFs for link failure time
(i.e., CDFy y;,(t), CDFy 5 (8), CDFy g (¢) and CDF; ;5 (%)), and (b) CDFs for link property

at time of link failure (e, CDFpy (Pl 0],  CDEpyy(p |t
CDFp 511 (P |ty ]) and CDFp g1, (p [ [2 D) with [z [0,200].

mn? mn? mx mn? mx]
The CDFs for the time at which LOAS occurs are defined by the probabilities summarized in
Table 2 for the four indicated failure patterns. Specifically, Table 2 shows representations for

PLOAS as functions pF;(¢) of time (i.e., pF,(¢)is the probability that LOAS occurs by time ¢ for

failure pattern 7). The listed verification tests are the outcomes of assigning the same properties to
all links as developed and described in Ref. [52]. The representations in Table 2 are derived and
extensively illustrated in Ref. [7]. The CDFs for the time at which LOAS occurs for the four links
defined in Table 1 and illustrated in Fig. 1 are shown in Fig. 3.
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Table 2 Representation of Time-Dependent Values pF(¢), i = 1, 2, 3, 4, for PLOAS and

Associated Verification Tests for Alternate Definitions of LOAS for WL/SL Systems with (i) n WL
WLs and nSL SLs and (i1) independent distributions for link failure time ([53], Table 10).

Failure Pattern 1: Failure of all SLs before failure of any WL (Egs. (2.1) and (2.5), Ref. [52])

Ph (t) = i('ﬁ"" {zﬁk CDFy g1, (ﬂ}{ﬁ [1 - CDFT,WL,j (T)]}dCDFT,SL,k (T)J

Verification test:  pF (o) = nWL!nSLY(nWL + nSL)!

Failure Pattern 2: Failure of any SL before failure of any WL (Egs. (3.1) and (3.4), Ref. [52])

- SL{J-{ ﬁ [1-CDF, g, )J}{ﬁ[l—CDFTWLJ (r)]}dCDFT’SL’k(r)}

=11k =1

Verification test: pF, (o0) = nSL/(nWL + nSL)

Failure Pattern 3: Failure of all SLs before failure of all WLs (Egs. (4.1) and (4.4), Ref. [52])

JF, (z)Jf( J { i CDFT,SLJ(r)}{l—’ﬁCDFTWLJ (T)}dCDFT’SL’k(T)J

k=1 I=1lk j=l

Verification test: pFy (o) = nWL/(nWL + nSL)

Failure Pattern 4: Failure of any SL before failure of all WLs (Egs. (5.1) and (5.4), Ref. [52])

t
k=1 meI=1,0#k Jj=1

pF4(t)=,§L:( j’ { ﬁ [1-CDF, g, (r)}}{l—ﬁCDFKWM (r)}dCDFT,SL,k (r)]

Verification test: pF, () =1—[ nWL!nSLY/(nWL + nSL)!]
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Fig. 3 Illustration of the CDFs pFi(¢),i =1,2,3,4, defined in Table 2 for the time at which LOAS

occurs for the four links defined in Table 1.
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4. CDFs for Failure Time Margins

4.1. Preliminaries: CDFs for Failure Time Margins

Suppose nL links are under consideration with CDFy, (7), k=1, 2, ..., nL, the failure time
CDF for link & (i.e., CDFy, (7) is the probability that link £ fails at or before time 7). Then, under
the assumption that the link failure times are independent,

nL ‘
pLLF(t) = Z( j[
k=1 m

{f[ CDFT,(r)}dCDFTk (T)}

I=1,1#k

(4.1)

nL

= HCDFTI ()
k=1

and
nlL ' nL
pFLF(t):Z( ) { I1 [l—CDFT,(r)]}dCDFTk(T)J
=1\ 1=,k 42)

=1 —ﬁ[l —CDFy (1) ],

=1

where pLLF(f) is the probability that the last link failure occurs at or before time ¢ and pFLF(¢) is
the probability that the first link failure occurs at or before time ¢z. The initial definitions for
PLLF(t) and pFLF(t) are the same as the definitions for pF (¢) and pF,(¢), respectively, in

Table 2 with the WL CDFs assumed to always have a value of 0 (i.e., CDFyy; ;(7) =0 for all

values of 7). The second definitions follow directly from the definitions of the CDFs CDF}, (7).
The equivalence of the pairs of definitions for pLLF(¢)and pFLF(¢) can be directly established
but the notation becomes very complex for nlL > 2.

Distributions for time margins corresponding to the difference between time when the failure
of WLs deactivate a system and the failure of SLs result in LOAS can be calculated for the four
WL/SL failure patterns defined in Table 2 with the use of results of the form shown in Egs. (4.1)
and (4.2).

4.2. Formal Representation: CDFs for Failure Time Margins

For a particular WL/SL configuration (i.e., one of the failure patterns defined in Table 2) let
(i) CDF; y; (8, ) be the CDF defined on the interval [¢,,,7,,, ] for the time 7, when the failure of

the system WLs potentially deactivates the system and (ii) CDF; g, (¢, ) be the CDF defined on

the interval [z

oL ] fOT the time 7, when the failure of the system SLs potentially results in

LOAS. The modifier “potentially” appears in the preceding sentence because the indicated failures
may or may not have the indicated effect because of the timing of the WL and SL failures.
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The desired distribution for the margin m defined by ¢y, —¢,, is given by

CDFTM (m | [tmn’tmx ]) = pVOb(lSL _tWL < I’I’l)

n

= lim Z} CDF; g (m+1,) ACDF; y, (1;)
" (4.3)
= [ CDFy g (m+1)ACDFyy, (1)

mn

tmx
- L CDFy g, (m+1t)| dCDF, ,, (1) /dt |d,

mn

where ¢,,i=0,1,---,n, is a subdivision of [¢,,,?,,]. In effect, the result in Eq. (4.3) corresponds

to the convolution of two probability distributions (e.g., see ([54], p.53).

The manners in which CDF; , (¢, ) and CDF; g, (¢) are defined for the failure patterns in
Table 2 are as follows for a WL/SL system with nWWL WLs and nSL SLs:

Failure Pattern 1: CDFy., (ty, ) = pFLF (t;, ) in Eq. (4.2)

) (4.4)
CDF; g (1) = pLLF (15, ) in Eq. (4.1),
Failure Pattern 2: CDF;., (ty, ) = pFLF (t,, ) in Eq. (4.2) @.5)
’ S5
CDF; g (tg,) = pFLF (tg, ) in Eq. (4.2),
Failure Pattern 3: CDFy., (ty, ) = pLLF (1, ) in Eq. (4.1) 46
CDF; g (tg; ) = pLLF (tg ) in Eq. (4.1), '
Failure Pattern 4: CDF;., (ty, ) = pLLF (1, ) in Eq. (4.1) @7

CDF; g (tg;) = pFLF (g ) in Eq. (4.2).

Examples of the link system failure probabilities  CDF; y, (fy, ) = pFLF (ty;),

two SLs and two WLs defined and illustrated in Table 1 and Fig. 1 are presented in Fig. 4a. The
values for pLLF(¢f) and pFLF(f) were obtained as indicated in Egs. (4.1) and (4.2) by the
multiplication of link failure time CDFs (see Eq. (3.1)) calculated by the CPLOAS program [55;
56].
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Fig. 4 Failure time margins for (i) the four failure patterns resulting in LOAS indicated in Egs.
(4.4)-(4.7) and (ii) the four links defined and illustrated in Table 1 and Fig. 1 with

(250 1=10,200]:  (a) link system failure probabilities CDFy y; (4, ) = pFLF(ty;),
pLLF(f) and pFLF(f) defined in Egs. (4.1)-(4.2), and (b) failure time margins
CDFyy, ,(m|[t,,,t,,]) for failure pattern i, i = 1, 2, 3, 4, defined in Eq. (4.3).

mn?

An illustration of the calculation of failure time margins CDFy,, ;(m|[t,,,t,. 1), i = 1,2,3,4,

for failure pattern i in Table 2 with the use of quadrature-based procedures to evaluate the final
integral in Eq. (4.3) is presented in Fig. 4b. Specifically, the margin results in Fig. 4b were obtained
for the two SLs and two WLs defined and illustrated in Table 1 and Fig. 1 with use of procedures
contained in the MATLAB numerical package [57] as summarized below. For a given failure
pattern, the corresponding CDFs CDF; y, (1, ) and CDF; g (f5, ) indicated in Egs. (4.4)-(4.7)

and illustrated in Fig. 4a were approximated with the spline and ppval functions to obtain the
spline approximations spCDF; g (tg;) and spCDF; y; (ty, ). Next, dCDFyy, (ty, )/dt,, was

obtained by differentiating spCDF} y, (¢, ) with the fnder function to obtain the derivative
derCDFy y; (ty, ) . Then, the product spCDF; g (m+ ty,; )derCDFy y, () was integrated over
(2,5t ] =[0,200] with the integral function to numerically evaluate the final integral in Eq. (4.3)
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. In turn, the indicated calculations were performed for multiple values of m to obtain the CDFs
CDFyy, ,(m|[t,,,t,. 1), 1= 12,34, for failure pattern i in Fig. 4b.

A brief elaboration on the nature of the results in Fig. 4 follows. As discussed in Ref. [58] and
illustrated in Fig. 4, the performance of a WL/SL system under accident conditions can be viewed
as a competing failure problem. In essence, there is a race to failure between the WL system and
the SL system, with (i) the WL system winning the race if it fails before or at the same time as the
SL system fails and (i1) the WL system losing the race if it fails after the SL system fails. The
margin m of winning the race by the WL system is defined by

m = (time tg, of SL system failure) — (time #,;, of SL system failure) @58)

=g~y
with a nonnegative margin corresponding to the WL system winning the race and a negative

margin corresponding to the WL system losing the race. In the problem under consideration, the
link system failure times f,, and ¢y, do not have fixed values but rather enter the analysis as

distributions of values as a result of the aleatory uncertainty associated with the property values
and failure values for the individual links.

The results in Fig. 4 are for 4 WL/SL systems, each with: (i) 2 WLs and 2 SLs, (ii) one of 2
possible definitions for WL system failure (i.e., first link to fail or last link to fail), and (iii) one of
2 possible definitions for SL system failure (i.e., first link to fail or last link to fail). As illustrated
in Fig. 4a, this results in (i) distributions (i.e., CDFs)

CDF;} yy (tyy ) = pPLLF (ty;) and CDFy yy, (8, ) = pFLEF (fy;) 4.9)
for WL system failure time 7, and (i1) distributions
CDFT,SL (tgy) = pLLF (t ) and CDFT,SL (ts,) = pFLF (tg) (4.10)

for SL system failure time. The indicated CDFs are obtained as indicated in Sect. 4.1.

In turn as illustrated in Fig. 4b, the 4 WL/SL systems and their associated CDFs for link system

failure time result in the following distributions (i.e., CDFs) for the failure time margin m in Eq.
(4.8):

CDFT,WL (ty,) = pFLF (ty,;), CDFT,SL (tg)=pLLF(ty ) > CDFTMJ (m|[t,,tn]) (4.11)
CDFT,WL (ty,) = PFLEF(ty;), CDFT,SL (ty,) = pFLF(tg ) —> CDFTM,Z (m|[t,, -t ) (4.12)
CDF; yy (tyy ) = pLLF (ty ), CDFy g (t5; ) = pLLF (15 ) = CDFpy 5(m |[1,,,,1,,. 1), (4.13)

CDF; yy (tyy ) = PLLF (8y;), CDF; g (t5; ) = pFLF (t5, ) > CDFyy, y(m|[2,,51,,. ] (4.14)
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The margin results CDFy, (m|lt,,.t,.1),i=12,3,4, in Egs. (4.11)-(4.14) summarize the

previously indicated “race” to failure for the 4 WL/SL systems under considerations and were
obtained by numerical evaluation of the integral in Eq. (4.3). As shown in Sects. 4.3 and 4.4. the
CDFs CDFyy, ;(m|[t 1),i=1,2,3,4, can also be obtained with sampling-based procedures.

mn? tmx

4.3. Sampling-based Estimation of CDF,,, (m |[t ) for Failure Time Margins

mn? mx]

A sampling-based determination of CDFy,, (m|l[t,,.t,.])=prob(ty —t,; <m) is now
considered. For this determination, the representation for prob(ty, —t,, <m) can be formulated
as

prob; (ts —ty, <m) _[ w (tsy =ty JACDFy g (5, ) dCDFy yyy (ty)

Ly

(4.15)

J. h tSL tWL )dT SL (tSL )dT,WL (tWL ) dtSL dtWL >

Ly

where (i) the subscripts i = 1, 2, 3, 4 indicate the definitions of CDF; g, (t5,) and CDF; y; (4y,)

for Patterns 1-4 in Eqgs. (4.4)-(4.7) and thus correspondingly for the four WL/SL failure patterns
in Table 2, (i) dy 5 (5, ) and dyy; (¢, ) are the density functions associated with CDF; g, (¢5;)

and CDF; y; (ty, ) , and (iii)

S, (tsy —tyy) ={ . (4.16)

0 otherwise.

In turn, the approximation

prob, (tg —ty, <m)= Z5m (tSLJ —ltyr, )/n (4.17)

r=1

results for a random sample [z, ..ty . 1,7=1,2, ..., n, from [z, .1, 1X[¢,, .2, ] obtained with use
of CDF; g, (t5;) and CDFy y; (8y;) -

Another possibility is to generate a sample of individual link failure times

S, =[ WL, WLy, -, tWL

n

Wiy 8Ly Ly, o tSLygy oy |27 = 1,2, (4.18)

directly from the corresponding link failure time CDFs and then define margins by
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max{tSLlr,tSLzr, . nSL,} min {tWL,, WLy, -+ tWL,y, .} fori=1
min{£SL,,,tSLy, .-+, tSL,g; , } —min{tWLy, (WL, -+, tWL,, .} fori=2
mi(8,)= max {1SL,,,SL,, .+, 1SLyg; , } — max {tWLy, ,tWLy, -+ tWL,yy; | fori =3
min {£SL,,,tSL,, -+, nSL,} max {tWLy, ,tWLy, - tWL,, .} fori=4

(4.19)
tSLi(r)r — WL, fori=1

8Ly, —tWLy ., fori=2
Ek(r),r _tWLl(r),r fOI' l = 3
8Ly oy, —tWLir),r fori=4

with (i) 7 indicating Patterns 1-4 in Eqgs. (4.4)-(4.7) and, correspondingly, the four WL/SL failure
patterns in Table 2, (ii) underscores and overscores indicating minimums and maximums,
respectively, and (iii) the subscripts k(r) and /(r) identifying the links that failed at the indicated
times. Specifically, k(r) identifies the SL whose failure potentially results in LOAS, and I(7)
identifies the WL whose failure potentially prevents LOAS. Then,

prob, (tg —ty, <m)= z5m [ml- (s, )}/n (4.20)
r=1

with 0, [m, (s, )]defined as in Eq. (4.16).
Yet another sampling approach is to (i) sample the defining parameters for the individual links

(i.e., the &’s and f’s) in consistency with their specified distributions as defined by the density
functions d ,(«) and d,z(f) for the individual links and (ii) then determine the resultant margins.

Specifically, a sample
pr = I:pWLlr)pWLzr""’pWLnWL’rapSLlrvaLlr3“'apSLnSL,r:'a r= 1,2,"',71 (421)
with

PWL,, =@y, Byr, | for 1=1,2,.nWL (4.22)

and

pPSL, =@, By, | for 1=1,2,---,nSL (4.23)

is generated from the distributions of the &’s and f’s for the individual links. Next, the link failure
times in Eq. (4.18) are determined as functions

WL, = WL, (PWL,,. ) = (WL, (@yy - By ) Tor 1=1,2,-,nWL (4.24)
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and

1L, = tSL,, (pSL,, ) = SL,, (s, ;> By yy ) for 1=1,2,--,nSL (4.25)

of elements of the sampled vectors p, in Eq. (4.21). At this point, prob,(ty, —t,, <m) can be
determined as indicated in Eqs. (4.19)-(4.20) with the redefinition of the elements of p,. described
in Egs. (4.24)-(4.25).

A more mathematically explicit description of the use of sampling-based procedures in WL/SL
analyses is given in Sect. 5 of Ref. [7]. This section also describes the use of importance sampling
in WL/SL analyses.

4.4. \Verification Results for CDF;,, (m |[¢ ) for Failure Time Margins

mn? tmx ]

As a verification test, Fig. 5 provides a comparison of CDFy, ;(m|[t,,,t,.]) for failure

pattern i, i = 1, 2, 3, 4, calculated with (i) version 2.10 of the CPLOAS program [55; 56], the
second sampling-based procedure indicated in Eqs. (4.18)-(4.20), and a sample of size n = 10° and
(1) the quadrature-based procedure described in Sect. 4.2. The sampling-based results in Fig. 5 are
essentially the same as the quadrature-based results in Fig. 4b. Further, careful comparison of the
quadrature-based CDFs in Fig. 4b and the sampling-based CDFs in Fig. 5 shows that
corresponding CDFs almost exactly overlay. This level of agreement provides a strong verification

that the procedures for obtaining CDF,, (m |[t ) described in Sects. 4.2 and 4.3 are correct

mn 2 tmx ]

in both (i) mathematical development and (ii) computational implementation.

4.5. Connection Between Failure Time Margins CDF;, (0|[¢
and PLOAS

The probabilities CDFyy, (01[¢,,,%,. 1), 1= 1,2, 3, 4, associated with the failure time margin

Zme])’ i=1729334!

mn?>

m =0 defined in conjunction with Eq. (4.3) are equal to the probabilities pF;(z,.),i=1,2,3,4,
for LOAS defined in Table 2 and illustrated in Fig. 3. Specifically,

th
pE(t,,) = CDFyy ;(0[2,,.1,,]) = , CDFy 5 (4, JACDEL yy (8 (4.26)

fori=1, 2,3, 4 with the appropriate values for CDF;. g, (¢, ) and CDFy. y, (¢, ) for failure pattern
i defined in Eqs. (4.4)-(4.7). This connection is (i) illustrated by the equality of pF;(200) and
CDFy,y, ;(0[0,200]) in Fig. 3 and Fig. 4b and (ii) provides an additional verification result that

the failure time margins in Figs. 4 and 5 have been calculated correctly.
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Fig. 5 Verification results for failure time margins CDFy,, ;(m|[t,,,t,.1),i =1,2,3,4, obtained

with quadrature-based procedures (see Sect. 4.2) and sampling-based procedures (see Egs. (4.21)
-(4.25) in Sect. 4.3) for (i) the four failure patterns resulting in LOAS indicated in Egs. (4.4)-(4.7)
and (ii) the four links defined and illustrated in Table 1 and Fig. 1 with [¢ =[0,200].

> |

4.6. Connection Between Failure Time Margins CDF;,, . (0|[¢,,.,. 1), i=1,2,3, 4,
and PLOAS

The probabilities CDFyy, ;(01[¢,,,2,. 1), 1= 1,2, 3, 4, associated with the failure time margin

m =0 defined in conjunction with Eq. (4.3) are equal to the probabilities pF;(¢,.),i=1,2, 3,4,
for LOAS defined in Table 2 and illustrated in Fig. 3. Specifically,

tmx
PE (1) = CDFpy (0][2,,,,8,,. 1) = L CDFy g (ty, ACDEy jyp (1) (4.27)

fori=1, 2,3, 4 with the appropriate values for CDF;. ; (¢, ) and CDF. y, (¢, ) for failure pattern
i defined in Eqs. (4.4)-(4.7). This connection is (i) illustrated by the equality of pF;(200) and
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CDFy,, :(0[0,200]) in Fig. 3 and Fig. 4b and (ii) provides an additional verification result that

the failure time margins in Figs. 4 and 5 have been calculated correctly.
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5. CDFs for System Property Values at LOAS

5.1. Formal Representation: System Involving Only One Type of Link

A system involving only one type of link is considered in this section (i.e., only WLs or only
SLs). Further, the links comprising the indicated system must have the same type of failure
property. For example, all links failing on the basis of temperature or all links failing on the basis
of pressure are acceptable possibilities. However, some links failing on the basis of temperature
and other links failing on the basis of pressure is not acceptable. Consistent with the failure modes
in Table 2, two failure possibilities are considered: (i) system failure occurs at the time of the last
link failure, and (i) system failure occurs at the time of the first link failure.

As in Sect. 4, nL links are under consideration with failure time CDFs CDFy, (7),k=1,2, ...,
nL. Further, as developed in Sect. 9 of Ref. [§],

CDF,, (p | ) = probability that link & fails at a property value < p conditional on
failure of link £ at time 7 (5.1)

Pmx ke (p,z‘) ~ ~

= Pk (7) dpk (p|7)dp,
where (i) dp, (p|7) is the density function corresponding to CDFy, (p | 7) defined in Eq. (9.63)
and Table 6 of Ref. [8], (i1) [p,,, 4 (7); P, 1 (7)] is the interval of property values at which link &

could fail at time 7 (see Table 3) and thus corresponds to the sample space associated with
dp(pl7), and (i) p,,;(p,7)=min{p,p, ,(7)}. Given the preceding, replacement of

dCDF;, (7) in Egs. (4.1) and (4.2) by CDF, (p | 7)dCDF;, (7) produces

CDFp ;1 r (P[5, ]) = probability that last link failure occurs at

a property value < p atatime 7 <t¢,,

N
~

nL

Iz{ I1 CDFT,(T)}CDFPk (p|T)dCDFTk(T)J (5.2)

t
e 1=1,02k

-
o

N
~

T U0) | i (P27 3 .
.[ et { H CDFT!(T)}{JP o de(P|T)dP}di(T)dTJ

Tmn,k (p) I=1.1%k pmn,k (‘[)

-
o

N
~

Cek o) | 15 i (P0) y
.[ s { H CDFT!(T)}{JP © de(P|T)di(T)dP}dTJ

Tmn,k (p) I=1.1%k pmn,k (‘[)

-
o

and, in like manner,
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CDFp 11 (P |[2,,,51,,,]) = probability that first link failure occurs at

a property value < p atatime 7 <¢,

nlL . nlL
- ( L { I1 [l—CDFT,(r)J}CDFPk(p|T)dCDFTk(r)] (5.3)
k=1 |I=1,l=k

nlL o i (s nlL . - 3 )
= Z(L ok p){ H |:1 — CDFy, (z‘)]}{]‘: ,Ak((:; )de (p| T)di(T)dp}dTJ
k=1 mn,k

mn,k (p) [:1,[7&/(

with (i) CDFy, (p|7) replaced by the representation in Eq. (5.1), (ii) dCDFj, (7) replaced by
dp (r)dz with dy (7)=dCDF, (7)/dr as defined in Eq. (8.2) of Ref. [8] and subsequently
defined in more detail in Eq. (9.64) of Ref. [8], (i) 7, , (¢, ,p)=min{, .7, ,(p)} with
T,k (p) = last time at which link & can fail at a property value < p, and (iv) the integral over
[t ] €qualto O forlink kand ¢, <7, . (p) with 7, (p) = first time at which link £ can fail

at a property value < p.

The definitions of the density functions dp, (p | 7) and dy; (7) are complicated (see Egs. (9.63)
and (9.64) in Ref. [8]). However, some simplification occurs when the product dp, (p | 7)dy (7)
is involved, as is the case in Egs. (5.2) and (5.3). Specifically,

1

1.(7)

dpy (7| 7)elyy () = H } / drH%)} 4o [P/ 5O)dy[F/3,@] (G4

pi (7

as developed in conjunction with Egs. (9.63), (9.64) and (9.65) of Ref. [8]. In turn, replacement of
dp (p|7)dp (7) in Egs. (5.2) and (5.3) with the preceding form produces the representations

nL Ty i (o nL
CDFy 1o 2ot :Z(j ok € p){H CDFTI(T)}{d[ z }/dr}

P QT2 Pl i 1 (7)
(5.5)
P (P5T) D ~ ) — -~ — ~
X{Lmk(r) {%} d g [P ! Dy (T)]dBk [P ! q, (T)]dp}dTJ
and
nL Tk (e oP) nL 1
CDFP,FLF(thmn’tmx]) :z J.T +(p) H I:I_CDFTZ (T):I d 7 (T) /dT
k=1\ "k I=1,l%k k
(5.6)

X{I ”{ : }dAk [5/ 7(0) [ﬁ/akm]dﬁ}dr]

pmn,k (T) 1_913 (’Z’)
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for CDFp 110 (p |[2

mn’tmx

D) and CDEp gy (P |12

mn > tmx

]) with the integral over [¢

mn ’tmx ]

equal to
]) and
CDFp 11 (p |25, ) in Egs. (5.5) and (5.6) are complicated, they are numerically simpler than

the representations in Egs. (5.2) and (5.3) due to the significant complexity in the definitions of
CDFp(p|7) and dp (7).

0 for link £ and 7, <z, ,(p). Although the representations for CDFp ;. (p|[f

mn’tmx

Table 3 Integration limits associated with a link in Egs. (5.1)-(5.6) with p(7) increasing and ¢(7)
either decreasing or constant-valued (adapted from Ref. [8], Table 7).

7,.,(p) = first time that link failure could occur at a property value p < p
7, :rfl(amx /Bu) for p, <p<p,.
- 7,(p)= g '(p!p,,) for p, <p< p; (not relevant for g(7) = ¢ because p,,,, = p,)

7, (p) = last time that link failure could occur at a property value p < p

{Tl = 7”71 (amn /ﬂmx) for P <p < P (not relevant for q(‘[) = ¢ because p = pmx)
7,(p)= l_fl(p/amn) for p,, < p<p,

7, (¢, p) =minit, 7, (p)}

[P, (T), P, (T)] = interval of link failure values p at time 7 for «,, / B,, <%,/ B
(B (D)@ P@O) for € B ={7:7, =17 (@ / B) ST <1 (@ | Bre) = Ty}
=108, 3@, B d@]for e P ={7:7,, =17 (@ / L) ST 1 (@ | Br) = T}
[, P(0), B, @ ()] for T € P, = {z: 2, =17 (@, | B) ST <77y, | Br) =71}

[ 2 (D), P, (7)] = interval of link failure values p at time 7 for «,,, / B, < %, / Bun
(B (D)@, PO for 1€ B ={z:7, =1 (A / B) STSF (@ ! Bn) = Ty}
=la,, p(r),a, D) forceP ={r:7, =r ' (a,, | B,,)<t<r (a, /B,.)="1,.}

e, p(7),B,.q()) forteP, ={r:7, = r_l(amx I B,)ST= r @y ! Boy) =71}

[P (D), P, (7)] = interval of link failure values p at time 7 for «,,, / B,,, = Qs / B
[Bun@(2)s @ PO for 1€ B ={z:7, =r (A / Br) ST S (@ / Pr) = Ty}

P (p,7)=min{p, p, (1)}
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For future use, it is noted that a derivation for the equality

P (P5T)

CDFp (p | 7)dp (7)d7 = {J-

1 Pk (PT) p o o i
{de (r)} / dr}{jpm,k(r) {ﬁi (T)}dAk [2/(]dp [P/ (T)]dp}dr

is embedded in the derivations leading to Egs. (5.5) and (5.6).

dp (5] D)y (r)dp}dr

mn,k )

J':::((:T){d{ : }dr}{%}d%[ﬁ/ﬁk(ﬂ]dﬂ[ﬁ/qk(f)]df?}dr (5.7)

1 (7) b (T

s b 1) a0d
CDFp 11 (P [t 5L D) with [2,,,2, 1=[0,200]) for systems with two WLs and systems with

mn - mx

two SLs links defined with the WLs and SLs described and illustrated in Table 1 and Fig. 1 are
presented in Fig. 6. With respect to notation,

As examples, CDFs for property value at link system failure (i.e., CDFp ;- (p|[?

CDFEp yyy 117 (P | st D) = CDFp 115 (P | (251, 1) Tor WL systems, (5.8)
CDFp i 1 (P st ) = CDEp gy (P [ (852, 1) for WL systems, (5.9)
CDFp sp 107 (P | [ty st D) = CDFp 115 (P [ {2, 1) for SL systems, (5.10)
CDFp g1 pir (P | >t 1) = CDFp g (P [ {158, 1) fOr SL systems. (5.11)

Quadrature-based evaluation of the defining integrals in Egs. (5.5) and (5.6) for
CDFp 111 (P2t ) and CDFp 1y (p 11,5, 1) Was performed with the MATLAB program

TwoD [59]. In the development of the integrand, (i) representations for the density functions
d,(a) and dg (B) were obtained with use of the makedist and pdf functions, (ii) the

representation for the derivative was obtained with use of the diff and matlabFunction functions,
and (ii1) representations for the expressions involving products of CDFs were obtained with use of
the spline function.

The double integrals in Egs. (5.5) and (5.6) have time 7 as the outer variable of integration
and property value p as the inner variable of integration. If desired, the integrals in Egs. (5.5) and
(5.6) can be rewritten with p as the outer variable of integration and 7 as the inner variable of
integration.
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p: Property Value at System Failure

——— CDFpwrrrr(D|[tmm, tm])
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"""""" C'fDP‘P._L‘i'L-J"LJ"(p;[tum s t”r:rj)
————— CDJ*‘P,SL.LL-F(IJE [tnm; tm.-e.z )

Fig. 6 Property value at link system failure CDFs (i.e., CDFpyy 110 (P [E,,50,.])

CDFp yy prr (P | st D) s CDFp gy 115 (P | [Lyns ) and  CDFp g gy e (p|l2,,,.8,, 1)  with
[£,>L ] =[0,200]) obtained by quadrature-based evaluation of the integrals in Egs. (5.5) and

(5.6) for systems with two WLs and systems with two SLs links defined with the WLs and SLs
described and illustrated in Table 1 and Fig. 1.

Another possibility is to remove the term p / ﬁ,f (7) in Egs. (5.5) and (5.6) through the change
of variables o, (p) = p/ p, (r). This produces the representations

Tk (P) | 1 1(7)

nL ‘-, nL
CDFp 117 (P |ty by ]) = Z{j ek p){ H CDF, (I)}{d{ ! }/dr}
= (5.12)
P i (P57 D (T)
x{ j ad (Q)dg (a1, (T)]da}drj

Pmnk (T)/ﬁk (T)

and
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nlL nL
Trnx, (tm,\"p) 1
CDFp g1 (P [ty st D) = Z _[ k Il I:l —CDF, (T)] d{ }/df
jo | Tk (P) I=1,1%k 1.(7)
(5.13)
Pmx, (]7,1')/[7 (7)
X {J‘pmn’kk(r)/pk(:) ad y (a)dy [alrn (T)]da;drj
for CDFp ;17 (P |[t,,-t ) and CDFp 1 - (p|[t,,,,2,, ]) With the integral over [z, .2, ] equal to

0 for link kand 7, <7, ,(p).

5.2. Sampling-based Estimation of CDF;, ;. (p|[t,,
CDFP,FLF (p | [tmn ’tmx ])

Another possibility is to use a sampling-based procedure to estimate CDFp ;- (p |[2,,50,,])
and CDFp g p(p|[2

mn?>

) and

t,.]) . This procedure involves (i) generating a sample from the defining

parameters for the individual links (i.e., the &’s and f’s) in consistency with their specified
distributions as defined by the density functions d () and d,(f) for the individual links and

(i1) then determining the resultant failure times and associated failure values. Specifically, a sample
p, = [ler,pLZV,---,anL,r],r =1,2,--,n (5.14)

with
pL, =[ay.. B ] forl=12,---,nL (5.15)

is generated from the distributions of the &’s and #’s for the individual links. Next, the link failure
times tL;, and failure values pl;,. are determined as functions

Ly, = tLy, (ler ) =tly, (alr By ) (5.16)
and

pLy = pLy (PLyy ) = pLy, (g, By ) = g, py[tLy, (05 B )] (5.17)
of elements of the sampled vectors p, in Eq. (5.14).

The following additional expressions are now introduced for use in estimating
CDFp 115 (P | [ty sty ]) and CDEp gy (P | [ 80 ] -

S (r) = link designator for ¢L,, , =min{tLy,,tL,,,---,tL,; .}, (5.18)

1r>

I(r) = link designator for 7L, ,,, = max{tL,,,tL,,,---,tL,; .} (5.19)
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PLy v = Q00 Py Wy ) PLiys = Gy Picry (i) (5.20)

and
, 1 forf<t, and p<p
o, (t,p)= " 5.21
p (- P) {0 otherwise. (>-21)
In turn,
CDFP,LLF (p | [tmn ’tmx ]) = Zé‘tp (tLl(r),r ’ le(r),r) /n (522)
r=1
and
CDFp oy (P | Uy stye D) = D8y (L 5 PL 0, ) 1. (5.23)
r=1

5.3. Verification Results for CDF, ;- (p|[t,,,t,.]) @and CDFy, ;- (p|[t,,:t,.])

As a verification test, Fig. 7 presents a comparison of CDFs for property value at link system
failure (i.e., CDFp ;- (p (5t ]) and CDFp - (p|[1,,,,2,, 1)) for systems with two WLs and

systems with two SLs links obtained by (i) quadrature-based evaluation of the integrals in Egs.
(5.5) and (5.6) as described in Sect. 5.1 and (ii) a sampling-based calculation as defined in Egs.
(5.22) and (5.23) performed with the CPLOAS program [55; 56] and a sample of size n = 10°. The
CDFs CDFp;1r(p|[t,,-t,]) and CDFp 1 (p|[2 ]) are not defined outputs of the

mn? tmx
CPLOAS program but (i) these CDFs are calculated as indicated in Sect. 5.2 as part of the SL-SL
margin analysis described in Sect. 7.3 and (ii) were obtained for this analysis by adding a few lines
of code to CPLOAS to write them to a saved output file. The results obtained with the two
evaluation procedures are essentially identical. This level of agreement provides a strong
verification that the two procedures for obtaining CDFp ;- (p|[t,,.t,,]) and

mn?

CDFp (P |22, ]) are correct in both (i) mathematical development and (ii) computational

implementation.
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Fig. 7 Verification results for property value at link system failure (i.e., CDFp ;117 (P[22, ])

s CDFp yyp pp (P [t ste D) s CDFp gy 115 (P | [Eyys 1) @nd - CDFp g gy (P {1580 1) With

(£t ] =[0,200]) obtained with quadrature-based procedures (see Sect. 5.1) and sampling-
based procedures (see Sect. 5.2) for the four links defined and illustrated in Table 1 and Fig. 1.

5.4. Formal Representation: System Involving Multiple WLs and SLs

Distributions (i.e., CDFs) for SL system failure values (i.e., property value at link failure for
SL whose failure results in LOAS) for systems involving multiple WLs and SLs have
representations that are similar to the representations for CDFy ;. (pl|lt,,,t,.]) and

CDFp 11 (p |[2,,52,,: 1) developed in Sect. 5.1. As in Sect. 5.1, all SLs must have the same type

of failure property (e.g., temperature for all SLs or pressure for all SLs). However, WLs do not
have this restriction (e.g., some WLs could fail on the basis of temperature while other WLs fail
on the basis of pressure). The starting points for these representations are the probabilities for
LOAS in Table 2. For notational convenience, let

CDFp g ; (P |25t ]) = probability that LOAS occurs at a SL value < p ata (5.24)

time 7 <¢, _ for failure pattern i =1,2,3,4 defined in Table 2.
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Representations for CDFj 5 (p |[2,,,,4,,: 1) > © =1,2,3,4, that are analogous to the representations
for CDFp ;1 (P |25t ) and CDFp 1y (p 112,51, 1) developed in in Egs. (5.2)-(5.6) of Sect.
5.1 result by replacing dCDF;. ¢; , (7) in the representations for pF(¢,,.), pF,(t,,.), pF;(t,,) and
pF,(t,,) in Table 2 with

mn? mn?

CDFp g (p | T)ACDFr g 4 (7), (5.25)

or equivalently, with

CDF p g 4 (p | D)dr g 17

- 5 5.26
=H ; }/MHV’”’“M{ P }dAk[ﬁ/ﬁkv)]dgk[ﬁ@(ﬂ]dfo}dr (20

I’k (T) pmn,k (T) ﬁl? (T)

as defined in Eq. (5.7). Specifically, replacement of dCDF; g , () with the expressions in Egs.
(5.25) and (5.26) produces the representations for CDFp g (p|[t,,.t,.])), i=12,3,4,
summarized in Table 4.

Table 4 Representation of CDFy g, ;(p |[t,,,,t,.1),1= 1, 2,3, 4, for (i) SL system property at time

of LOAS, (i1) nWL WLs and nSL SLs, (ii1) independent distributions for link failure time, and (iv)
the integral over [¢,,.7,. ] equal to 0 for SL k and ¢, <7, ,(p) with 7, ,(p) and other

mn > mx mx —

integration limits defined in Table 3.

\ Failure Pattern 1: Failure of all SLs before failure of any WL \

CDFP,SL,I (p | [tmn > L ])
t’llX
t

nSL nSL nWL
=2 [J. { [1 ¢pFr g, (T)HH [1_ CDFr 1, (T)]} CDFp g 1 (p|7)dCDFy g1 (7)]
k=1

1=1,1#k Jj=1
WSLE ) | 1SE nWL .
:/; f,mn"}((p)' [T oFr 5 (o)t TT[1- CDFp . ; (7)] {d{ }/dr}

mn

I=11%k j=1 7% (7)
% Pk (ps7) ]~? -~ — ~ = ~
{ [ {—ﬁ% (T)}dAk [/ 5] dpi [7174 (7)) dp}er
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Table 4 Continued

Failure Pattern 2: Failure of any SL before failure of any WL

CDFp 51,2 (P | [tmn >t D

nSL ‘ nSL nWL
=2 me I [I_CDFT,SL,I (T)J Il I:l_CDFT,WL,j (f)J CDFp g1 4 (p | 7)dCDFy g 4 (7)
] R ey

Jj=l1
nSL T i (e P) nSL nWL 1
= z J.T ’ » H I:I_CDFT,SL,[ (T)] H |:1— CDFT,WL,j (T)j| d /dr
k=1 I=11%k j=l 1 (7)
Pk (ps7) ]~? -~ — ~ = ~
X{Ipmmk(f) {ﬁ;% (T)}dAk [P/pk (7)] dpk [P ! gk (T)]dp}dTJ

Failure Pattern 3: Failure of all SLs before failure of all WLs

CDFp 51.3(P [ty stz D)

nSL ‘ nSL nWL
= me [1 CDFr g, (2)p31=1] CDFr . ; () { CDFp g1 4 (p | ©)dCDFr g 4 (7)
k:1 mn

I=1,1%k j=l1
8 st | ol alf
= ke CDF SL.I T 1- CDF A\T d |: :| / dT
k=1 Tmn‘k(p) l=1,l¢k T.SL, j=1 T’WL’] }’k (T)
pmx,k (PJ) ﬁ ~ = ~ = ~
X{Ipmk(,) {1713 (T)}dAk [P/ Pk ()] dpi [P/ 35 (7)] dp}dTJ

Failure Pattern 4: Failure of any SL before failure of all WLs \

CDFP,SL,4 (2 | >t D

nSL ‘ nSL nWL
= me 11 [I_CDFT,SL,I (T)] 1= [ 1 CDFr 1 ; (7) } CDFp sy 4 (p | ©)ACDFr g1 4 (7)
fe=t " =1k

J=1

nSL . i (s D) nSL nWL 1
= e 1-CDF; 1- CDF; ; d /d
/; J.fmn‘k(p) l=E[¢k[ T,SL.I (T)] g e (7) Lk (r)} v

me,k(P,T) ]~? -~ — ~ = ~
X{Ipmk(r) {171? (T)}dAk [/ Dk (O] dpy [P/ 1 (7)] dp}dTJ

As an example, the CDFs CDFy g, ;(p |[2,,,,1,. 1) > 1 =1,2,3,4, for SL property value at LOAS

determined over all possible times of link failure as indicated in Table 4 are illustrated in Fig. 8.
The results in Fig. 8 were obtained by use of numerical (i.e., quadrature) procedures to evaluate
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the integrals in Table 4 with the MATLAB program TwoD [59] in a manner similar to that
described in Sect. 5.1.

0.7 e
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e . P
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p: SL Property Value at LOAS
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- — =CDFp 2812 P [ by f:m-)
----------- CDFpgr, i(p [ )
————— CDFpsra(pl| )
® LOAS

TIHN flr?!

TIJ’?N $ tUH"

Fig. 8 Property value of SL at LOAS CDFs CDFp g, ;(p|[t,,,t,,.]) determined over all possible
times of link failure as indicated in Table 4 for (i) failure pattern i, i = 1, 2, 3, 4, resulting in LOAS
as indicated in Eqgs. (4.4)-(4.7) and Table 2, (i1) the four links defined and illustrated in Table 1
and Fig. 1 with [z [0,200], and (iii) quadrature-based evaluation of the integrals in Table
4.

mn? mx]

As should be the case, the CDFs in Fig. 8 have structures that are similar to the corresponding
CDFs in Fig. 3 for PLOAS.

5.5. Sampling-based Estimation of CDF, g, .(p|[t,,,t,.]) for System Involving
Multiple WLs and SLs
Another possibility is to use a sampling-based procedure to estimate CDF} g, ;(p |[2,,5L,.]) -
Similarly to the sampling-based procedure to estimate CDFj ;- (p|[t,,,t,,]) and
CDFp 11 (p |[2,,52,,]) described in Sect. 5.3, this procedure involves (i) generating a sample

from the defining parameters for the individual links (i.e., the «’s and £’s) in consistency with
their specified distributions as defined by the density functions d,(a) and d,(f) for the

individual links and (i1) then determining the resultant failure times and associated failure values.
Specifically, a sample
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pr :[pWLlrapWLZra“'apWLnWL,rapSLlr’pSLlra"'apSLnSL’r]5 r :1,2,"',7’1 (527)
with

PWL,, =[ ayy iy By e | for 1=1,2,-,n WL (5.28)

and
PSLy, =[ sy ir-Bsp e | for 1=1,2,--,nSL (5.29)

is generated from the distributions of the &’s and f’s for the individual links. Next, the link failure
times (i.e., tWL;,. and £SL;.) and SL failure values (i.e., pSL;.) are determined as functions of

elements of the sampled vectors p,. in Eq. (5.27) as indicated below:
WLy, =tWLy, (pWLlr ) = Wiy, (aWL,lr ’/BWL,lr )> (5.30)

tSLy, = tSLy, (PSLy,. ) = tSLy, (aSL,lr BsLir ) (5.31)
and

pSL,. = pSL, (pSL,,) = pSL,. (A, s Bsi i) = sy ir P s [8SLy (Csy s B )] (5.32)
with /[ =1,2,---,nWL for WLsand [ =1,2,---,nSL for SLs.

Once the results in Egs. (5.30)-(5.32) are available, the next step is to define the following
quantities:

WL(r) = link designator for tWLy; ,,, = min{tWL,, ,iWL,,,---,tWL,; .}, (5.33)
WL(r) = link designator for 1. FLryr = max {{WL,, ,tWL,,, -, tWL,; .}, (5.34)
SL(r) = link designator for #SL; ), = min{sSL,,,tSL,, ,--+,tSL,; , }, (5.35)
SL(r) = link designator for 1SLg; (1 = TAX {#SL,,,¢SL,, ,--+,1SL,; . }, (5.36)
and
PSLsiryr = Csiryr Psiir) OSLsiir.r ) PSLig ) = Oy, Pz WLy, 5:37)

Further, the indicator function 6, (tWL,SL, pSL) is defined by
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1 for tSL <min{tWL,t, } and pSL<p
6, tWL,tSL, pSL) = ] (5.38)
0 otherwise,

where (i) p is a WL property value, (ii) tWL is a time at which WL failure potentially prevents
LOAS, (iii) #SL is a time at which SL failure potentially results in LOAS, and (iv) pSL is the
property value at time £SL of the SL whose failure at time #SL potentially results in LOAS.

Given the results in Egs. (5.33)-(5.38), CDF,gq (p|lt,, tm])), i=1,2,3,4, can be
approximated by

CDFp g1 (0 |yt ) = D8, Wiy, 8SL o pSLgs ) VI, (5.39)
r=1

CDFP,SL,Z (p | [tmn ’ tmx ]) = z 5tp (tWL@(r),r ’ tSLSi(r),r ’ pSLSi(r),;‘ ) / n, (540)
r=1

CDFP,SL,3 (p | [tmn ’tmx ]) = Z 5tp (tWLﬁ(},)’r > tSLSj(}‘),r » pSLSj(r),r ) /'n (541)
r=1

and

CDFp g, 4 (p |yt ) = D8, (WL 8Ly, PSLgy1),) 1. (5.42)

r=1

5.6. Verification Results for CDF, ; ,(p|lt,,,,t,.])

As a verification test, Fig. 9 presents a comparison of CDFs CDFy g, . (p|[,,,,t,. 1), i =1, 2,

3, 4, for SL property value at LOAS for a system with two WLs and two SLs links obtained by (i)
quadrature-based evaluation of the integrals in Table 4 as described in Sect. 5.4 and (ii) a sampling-
based calculation as described in Sect. 5.5 and performed with the CPLOAS program [55; 56] and
a sample of size n = 10°. The CDFs CDFj g, (P |[t,y-1,,1)» i = 1,2, 3, 4, are not defined outputs

of the CPLOAS program but (i) these CDFs are calculated as indicated in Sect. 5.5 as part of the
SL-SL margin analysis described in Sect. 7.3 and (ii) were obtained for the present analysis by
adding a few lines of code to CPLOAS to write them to a saved output file. The results obtained
with the two evaluation procedures are essentially identical. This level of agreement provides a
strong verification that the two procedures for obtaining CDFjp ;- (pl[t,,,t,]) and

CDFp 11 (p |22, 1) are correct in both (i) mathematical development and (ii) computational

mn?

implementation.
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Fig. 9 Verification results for property value of SL at LOAS CDFs CDFy g, . (p|[t,,,-t, 1) i =1,

2, 3, 4, obtained with quadrature-based procedures (see Sect. 5.4) and sampling-based procedures
(see Sect. 5.5) for (i) the four failure patterns resulting in LOAS indicated in Egs. (4.4)-(4.7) and
(i1) the four links defined and illustrated in Table 1 and Fig. 1 with [¢ =[0,200].
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6. CDFs for Margins Based on WL and SL Property Values

6.1. Formal Representation: CDFs for Margins Based on WL and SL Property
Values
For a particular WL/SL configuration (i.e., one of the failure patterns defined in Table 2), let
(1) CDFp y; (pyy 2,51, 1) Tepresent the CDF defined on the interval [pWL,, , pWL, ] for the
property value py, at which the failure of the system WLs in the time interval [¢,,.7,, ]

mn?°~“mx

potentially deactivates the system and (i) CDF}, 5; (pg; |[ ]) represent the CDF defined on
the interval [pSL,,, pSL

the time interval [z

mn?> mx

] for the property value pg, at which the failure of the system SLs in

mx

] potentially results in LOAS. The modifier “potentially” appears in the

mn ’
preceding sentence because the indicated failures may or may not have the indicated effect because
of the timing of both WL and SL failures. The CDFs CDFpy, (py, |t,,,t,.]) and

CDFy g (pgy 2,51, 1) are defined and illustrated in Sect. 5.1.

The desired CDF CDFy,, (m|[t
Ds. — Py, =m is defined similarly to the time margin CDF CDFy,, (m |[¢

) for property value margin m defined by
t,.]) in Eq. (4.3).

mn? mx]

mn?

Specifically,

CDFPM (l’}’l| mn > mx]) prOb(pSL Pwr S m|[tmn’ mx])

= 111’nzc’l)F'PSL (m+pz |[tmn9 mx ])ACDFPWL (pz ‘[tmn’ mx ])

n—w "
(6.1)
= ;’WLW CDFp g (m+ P |[ty>tu ) ACDFp (P | Ly s Ly 1)
WL,
- jWL CDFP SL (I’l’l +p | [tmn’ mx])[dCDFP WL (p | [tmna mx]) / dp:|dp

with p,,i=0,1,---,n, a subdivision of [pWL

mn >

pWL, 1. However, for this margin to be

meaningful, the WLs and SLs must be defined on the basis of the same type of system property
and with use of the same units (e.g., temperature in degrees Kelvin).

At this point, the analysis is conceptually the same as the analysis in Sect. 4.3 for failure time
margins. However, the challenge is to determine the CDFs CDF,y, (p|[t,,,t,,]) and

CDFp g (P2 ])in Eq. (6.1). If only one WL (i.e., nWL = 1) and one SL (i.e., nSL = 1) are

involved, then the desired CDFs can be determined as indicated in conjunction with Egs. (3.4) and
(3.5). However, the situation is more complex for nWL > 1 and/or nSL > 1. Integral-based and
sampling-based procedures to determine CDFjy, (p|[t,,,t,.]) and CDF, g (p|lt,,,t,,]) for

nWL > 1 and nSL > 1 are described in Sects. 5.1 and 5.2. If CDFpy, (p|[t ])and
CDFp 5 ;(p|[t,,-t,,]) can be determined for each of the four failure patterns in Eqgs. (4.4)-(4.7)

mn?> mx

mn?> mx
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and Table 2, then the corresponding margin CDFs CDF,), (m|[t ]) can be obtained by

mn?> tmx

evaluating the integral

Wme,i
" ) CDFP,SL,I' (m + p | [tmn ’tmx])dCDFP,WL,i (p | [tmn ’tmx])

'mn,i (62)
CDFp g (m+ P |yt ) dCDFp . (P [t 1)/ dp Jip,

CDFPMZ(mHmn’ W]):ijL

_J‘pWme,i
pWL

‘mn,i

which is the integral in Eq. (6.1) with CDF}y, . (p|[t,,,t,,
replacing CDFP,WL (p | [tmn ’tmx ]) and CDFP,SL (p | [tmn ’ Zme ]) :

D and CDEpg ,(p|lt

mn? mx])

As an example, property margin CDFs CDFy,, ;(m |[¢,,.t,,. 1), i =1, 2, 3, 4, for systems with

two WLs and two SLs links defined with the WLs and SLs described and illustrated in Table 1
and Fig. 1 are presented in Fig. 10. The associated CDFs CDFp g ;(pl[t,,,t,.]) and

CDFpy, (p|lt,,,t,]) in Eq. (6.2) are defined and illustrated in conjunction with Fig. 6.
]) in Eq. (6.2) were
performed with the MATLAB numerical package [57] as summarized below in a manner similar

to that described in Sect. 4.2 for time margins. Specifically, (i) dCDF, ; ;(p |[2 1)/ dp was

mn?> tmx

mn?>

Quadrature-based evaluations of the defining integrals for CDFp,, ;(m | [z

mn > mx

initially approximated with use of the diff function and then represented as fiderCDF, y; ;(p)

with use of the fit function and the ‘gaussl’ model option, (ii) CDFy g ;(p|[f ) was

mn?> mx

represented as fiCDF) ; ;(p) with use of the fit function and the ‘gauss1’ model option, and (iii)
the integral of fiCDF), g ;(p)x fiderCDFy y, (p) over [pWL,, ., pWL

mei] Was evaluated with

the integral function.

6.2. Sampling-based Estimation of CDF, ,(m|[¢
Property Values

The CDFs CDFyy; (p| [t

based procedure to estimate CDFy,), ;(m |[t

) Based on WL and SL

mn? mx]

]) and CDFp g ,(p | [t

]) that is analogous to the sampling-based

]) canalso be used in a sampling-

mn?> mx mn? mx

mn?> mx

procedure in Eq. (4.17) to estimate CDFy,, . (m |[f ]) . Specifically,

mn > mx

prob; (PSL — Py Sm|[t,,,t,, z (pSL,r ~ Pwir )/” (6.3)

for (i) a random sample [py; ., py; .1, 7= 1.2, ..., n, from [pSL,, ., pSL
obtained with use of CDF} g, . (p|[f ) and CDFpy,; (p|[2
as in Eq. (4.16).

mxi]x[pWLmniﬁpWL
1), and (i) J,,(~) defined

mxi]

mn?> mx mn?> mx
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Fig. 10 Property margin CDFs CDFy,), . (m|[t,, 1,

in LOAS as indicated in Table 2, (i) the four links defined and illustrated in Table 1 and Fig. 1
with [z [0,200], and (iii) quadrature-based evaluation of the integrals in Eq. (6.2).

]) for (i) failure pattern i, i =1, 2, 3, 4, resulting

mn? mx]

]) and CDFy g ;(p|[2 1), their

direct use in the determination of the distribution for the margin m defined by pg, — py,; may not

mn > mx mn? mx

However, given the complexity of CDF}y, ;(p [t

be computationally convenient. Instead, a procedure based on sampling the defining parameters
for the individual links (i.e., the ’s and £’s) and then determining the resultant margins may be
more practicable. Specifically, a sampling-based procedure similar to the procedure described in
conjunction with Eqs. (4.21)-(4.25) to determine prob,(t;, —t,; <m) can also be used to

determine prob,(py — py, <m|lt,,.t,.]) for the margin m defined by py —py, with i

indicating Patterns 1-4 described in Eqs. (4.4)-(4.7) and correspondingly the four WL/SL failure
patterns in Table 2.

The indicated procedure to determine prob,(pg — py, <m ) begins with (i) a

’ mn? mx]

sample s,,7 =1,2,---,n of the form indicated in Eqgs. (4.21)-(4.23), (i1) the associated link failure

times

tWL,,1=12,---,nWL, and tSL

Ir >

[=1,2,---,nSL, (6.4)

defined in Eqgs. (4.24)-(4.25), and (iii) the resultant link system failure times
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Ek(r),r a@k(r),r a%l(r),r ’ﬂ/(r),r (6.5)

defined in Eq. (4.19). Once the link system failure times are available, the desired property margins
are given by

aSL,k(r),rﬁSL,k(r) 1SLk(r).r _aWL,l(r),rﬁWL,z(r)

—= Oy (). P acr)

(6.6)

Z‘S_Lk (r),r

st k(rr PSLk(r) (ZSLk(r),r
aSL,k(r),rﬁSL,k(r) (

N S N S

(L)
(L)

—= Oy 10y P i) (%l(r),r) fori=3
(%l(r) r )

st k(ryr PsLk(r) fS_Lk(r),r = Uy 1y P acr)

and the resultant approximation to prob,(py — py; <ml|[t,,,t,.]) is obtained as in Eq. (4.20)

for prob,(tg —t,, <m).

6.3. Verification Results for CDF,,, (p|[t,,,t,.])

As a verification test, Fig. 11 presents a comparison of CDFs CDFp,, . (p |[Z,,,,t,.]),i= 1,2,

3, 4, for property value margins for a system with two WLs and two SLs obtained by (i) quadrature-
based evaluation of the integrals in Eq. (6.2) as described in Sect. 6.1 and (ii) a sampling-based
calculation as described in Sect. 6.2 and performed with the CPLOAS program [55; 56] and a
sample of size n = 10°. The CDFs CDFpy i (p | [t58, 1) > i = 1, 2, 3, 4, are not defined outputs of

the CPLOAS program but (i) these CDFs are calculated as indicated in Sect. 6.2 as part of the SL-
SL margin analysis described in Sect. 7.3 and (ii) were obtained for the present analysis by adding
a few lines of code to CPLOAS to write them to a saved output file. The results obtained with the
two evaluation procedures are essentially identical. This level of agreement provides a strong
verification that the two procedures for obtaining CDFpy, ;(p|[t,,,t,,]) are correct in both (i)

mn?

mathematical development and (ii) computational implementation.
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Fig. 11 Verification results for property value margin CDFs CDF, v (P | [ D,i=1,2,3,4,

obtained with quadrature-based procedures (see Sect. 6.1) and sampling-based procedures (see
Sect. 6.2) for (i) the four failure patterns resulting in LOAS indicated in Table 2 and (ii) the four
links defined and illustrated in Table 1 and Fig. 1 with [z, ,¢,,.]1=[0,200].

mn? tmx
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7. CDFs for Margins Involving Only SL Property Values

7.1. Preliminaries: CDFs for Margins Involving Only SL Property Values

Margins involving only SL property values for a WL/SL configuration involving nWL WLs
and nSL SLs are now considered. For the situation in which WL failures potentially deactivate the
system at time #;;, and SL failures potentially result in LOAS at time g; , the margin of interest

1s defined to be the difference
Pi(tsy | @)= p(tyy | @) = apy (tg) — apy By, ) = my (a’tSL st ) (7.1)

between the property value p,(fy | @) =ap,(ty ) of the SL (i.e., SL k) whose time of failure
corresponds to ¢y, and the property value p,(¢,, | &) = ap,(t;;) of this SL at the time that the
WL failure potentially deactivates the system (i.e., #;; ). The following entities are used in the
derivation of the CDF CDFy,), ; (m |2

(7.1) for link failures in the time interval [z

mn?

t,.]) for the SL property value margin m defined in Eq.
t

mn?

]’

CDF; y, (1) = CDF defined on [2,,,,7,, ]

averts LOAS (i.e., at last WL failure or first WL failure as defined  (7.2)
in Egs. (4.1) and (4.2)),

for time at which WL failure potentially

CDF; g , (1) = CDF defined on [¢,,,,7,, ] for time at which SL & fails with

mn?

7.3
corresponding density function d; g; , (¢), (7.3)
and
CDF,, (a | tp)= CDF for « values for SL k that could result in failure of SL £ at time
tr conditional on SL & having failed at time ¢, with corresponding (7.4)

density function d ,, (a | t).

The CDF CDFyy, (¢t) is defined in Eq. (4.1) or (4.2) as appropriate. A derivation for
CDF . (a|ty) is presented in Sect. 9.4 of Ref. [8], and the resultant values for CDF , (« | ¢ )and
d . (a|ty) are summarized in Table 5 of Ref. [8]. Further, the ranges of & values associated with

CDF, (a|tp) and d  (a|t;) are summarized in Tables 4 and 5 of Ref. [8]and reproduced in
this presentation as Table 5.
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Table 5 Intervals [, (7),a,, ()] of values for o resulting in link failure conditional on link

failure at time 7 with p(7) increasing and g(z) either decreasing or constant-valued (adapted
from Ref. [8], Tables 4 and 5).

e, (7),a,,(7)] = interval of avalues resulting in link failure conditional on link failure at time

for a,, /B, <%/ B
[Bur(@sa, N for teR ={r:7, =r (A | ) STSF (U / B) =Ty}
=B (@), B (] for 7€ Py ={7: 7, =17 Qe / Bre) ST T (O ! Brn) = Ty}
[a,, B, (O] for 1P ={r:7, =r'(a,, ! B,,)<t<r (a,, B, =1
e, (7),a,,(7)] = interval of avalues resulting in link failure conditional on link failure at time 7
fora,,. /B, <%, ! B
[Bur (@) a1 for te B ={r:7, =r (A | Br) ST (U / Brn) = Ty
=la, a, forreR ={c:t,, =r'(a,, B,,)<t<r ' (a,/B,)="7,}
(a,, B, (O] for e ={r:r, . =r(a, /B, )<t<r (a,, B, =1}
e, (7),a,,(7)] = interval of « values resulting in link failure conditional on link failure at time ¢
for a,, /B, =%/ P
B {[ﬂmnr(r),amx] forreR={r:7, = rNa,, | B, )<t<r (a, /p,.)=1,"

(e, BF(D)]forceP, ={r:7, = ril(amx B )ST= r’l(amn ! B) =1}

7.2. Formal Representation: CDFs for Margins Involving Only SL Property Values

]) are complex. As a result of

mn?> tmx

The integral representations for CDFpy, g (m ][t

mn > “mx

a,tg and fy; each having a distribution, the integral representations for CDFyy, ¢, (m |[2,,,,1,,. 1)

will involve triple integrals. As indicated in Table 2, definition of LOAS involves two possible
definitions of WL system failure and two possible definitions of SL system failure, with the two
possible definitions for each type of link corresponding to (i) time of first link failure and (ii) time
of last link failure. In the following, the two possible definitions of WL failure are assumed to
have been appropriately incorporated into the definition of CDFr yp (¢) as indicated in Egs. (4.1)

and (4.2). The effects of the two link failure definitions for SLs are introduced into the
representations for CDFp,, o, (m|[t,,,t,.]) through the notation

mn?

nSL

B ()= H [1 —CDF; g, (r)] for LOAS associated with first SL failure (7.5)
1=1,1%k
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and

nSL
P.(7r)= H CDF; g ,(7) for LOAS associated with last SL failure.
1=1,1k

(7.6)

In addition, (i) possible values m <0, m = 0, and 0 < m are considered for m in the definition of

CDFpy o (m|[2,,,1,, 1), (ii) the notation

d (z,1) = pr (7) — pr (¥)

(7.7)

is used to simplify some of the following expressions, and (iii) a subdivision ¢;,i =0,1,---,n, of

the time interval [¢,,,,¢, ] with

t,y = first time at which SL £ fails
= rki1 (amx /ﬂmn)

=T
and

tzw = last time at which SL k fails

mn > tmx]

{rk_l (a,, ! B,.) 1f SL k always fails in time interval [¢

t, . 1f SL k may not fail in time interval [z, .t ]

mx mn?® “mx

=T
1s under consideration.

Form <0, CDFy, 5 (m |[t

mn?>

t,.]) can be approximated by

CDFPM,SL (m | [tmn 7tmx] with m < 0)

nSL o min{i-Li(k)}
zlimz Z Z [probAk(a:aﬁk(tj)—aﬁk(tl.)Smﬂ

"R pli=n(k)+2  j=n(k)+]
X [Pk (t;)x ACDEF} g 4 (2; )] ACDFr yy, (t;)

aSL n min{i-La(k)}
:hmz z z [probAk (a:aﬁk(tj)—aﬁk(ti)ﬁmﬂ
N0 k=lizn(k)+2  j=n(k)+]

x| B(t;)x dr g  (t,)At; |ACDE, y, (1)),

with
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prob (a rap(t;)—ap () < m) = probability of a negative SL time margin < m

conditional on (i) failure of SL k at time ¢; resulting in LOAS and (i1) failure of (7.11)

the WL system at time £,>7 ,

ACDFr g ,(t;) = probability that SL £ fails in time interval Az, (7.12)

Pk (tj ) X ACDF;,SL,k (tj) = Pk (tj ) X dT,SL,k (tj )Atj
= probability that failure of SL £ in time interval A¢; (7.13)
could result in LOAS,

ACDFy y, (t;) = probability that WL system fails in time interval Az,, (7.14)

and the indicated offsets involving i and j defined to produce negative margins and also to avoid
the potential for a later division by =zero. Part of the preceding approximation to
CDFpy g (m|[t,,,,t,,] with m <0) can be simplified as follows:

prob (05 rap (1) —ap(t) < m)dT,SL,k (t;)
= proby (a:ad, (t;.) <m)dy g ;)

= prob (a:m/dk (1;,8;) < a)dT’SL,k(tj)
= CCDF ;; (m/ d; (t;,8,) | ;)dp g 1 () (7.15)

amx,k (tj)

= [ A e 1) g, 1)de

=[d[p, (1) /g, (0)]/ dr]m/ [ L‘jk((:i) ad 4 (@)dy (afr ))da} :
where (i) the equality
dy(@|t)dr g, () =[d][p (D) g (D)]/ drl:tj ad 4 (@)dy (afr, (tj)) (7.16)
is derived in Sect. 9.6 of Ref. [8], (ii)
Qs (t51) = Max{ @, (t,).m/ di(t;,t,)} and @, ,(t;) (7.17)
together define the intervals over which the associated integral is nonzero provided the inequality

m il d(t1;) < Gy 1)) (7.18)

J2
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is valid, and (ii1) the interval [e,,, , (¢,), @, (¢;)] for each SL is defined in Table 5. Additional

details on the definitions of the intervals [a,, ,(7,1),2,, ,(7)] are given in Egs. (7.21) and
(7.22).

In turn, substitution of the result in Eq. (7.15) into the representation for
CDFp, (m|lt,,,,t,,]1 withm <0) in Eq. (7.10) produces the result

CDFPM,SL (m | [tmn ’tmx] with m < 0)

nSL  n  min{i-1i(k)}

=limy > ¥ RE)[d[F @/ @]/ dr]

n—»o T=t;

k=li=n(k)+2  j=n(k)+1 '

3 { [ ad @)y (a]n ))da} AT ACDF ()

amn‘k (tj ’ti)

1Sk t min{t,7y _ _ 7.19
S [ (el @) ] (7.19)
k=1 ¢

X Uam’k(r) OtdAk (a)dBk (a/l”k (T))daDdT}dCDFT,WL "

amn‘k(n[)
nSL .
I min {7,z } Ly, (7)
:ZI J- ! J A Ji(a,7,t)dadrdt
k=1 Tfk Tfk amn,k (T>t)

with
fila,r,0)=[ad  (@)dy (a/r,(0) | B(@)[d[ 5, (2)/ g, (1)]/ d7 | dCDFyy, (1) /di] - (7.20)
and the second equality resulting in the limit as n» — .

With use of the definitions of the intervals [e,,, (7),a,,(7)] in Table 5, it follows that the
integration limits for the inner integral over « in Eq. (7.19) are given by

[max{pB,, ;% (v),m/d, (t,0)},,, ;] for reR
[max{p,, .7 (0).,m/d; (z,0)}, B, ;1 (7)] for 7€

(@ (1), ()] = 2D
[max{a,,, ;,m/ d(7,0)}, 0. i ] for reP,
[maX {amn,k » 1M / dk (T7 t)} > ﬂmx,krk (T)] for 7€ 7)4-

with the definitions of the sets P, i =1,2,3,4, conditional on the relationships

Ay ! Bon <o ! Brs X ! Boe <% ! By and . /B, =, /B, (7.22)

Further, for
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Qe (T) Sm/ dy (7,1), (7.23)
the integral over « in Eq. (7.19) is equal to 0.

Because the SL property value functions p,(7) are increasing, a SL temperature margin

m < 0 can only occur if failure of the SL system occurs before or at the same time as failure of the
WL system. As aresult, CDFpy, o, (0][2,,,2,,]) is defined by

mn?>

nSL n min{i—1,n(k)}

CDFpyy 50 O [tyotie D=1im > > 3 [R(t))xACDF; g, (t;) |ACDF (1)
k=li=n(k)+2 j=n(k)+

1
=1~ S
nSL

=3 [ g (e

k=1~ TR

[ B ()ICDFy g1, (r)}dCDFT,WL 0 (7.24)

Tk

with (i) the second equality resulting in the limit as n — o and (ii)
g, (z.1) = P(2) dCDFy g, , (v) / dz |[ dCDFy y, (1) dt ] (7.25)

in the third equality. The preceding representation for CDFyy, ¢, (0([2,,,2,,]) is the same as the
representation for CDFpy, o (m |[t,,,,,1,, ] with m <0) in Eq. (7.10) with prob , (---) replaced by

1.0,
For m >0, CDFypy, g (m |[t

mn?> tmx

]) can be approximated by

CDFPM,SL (m | [tmn 9tmx] with 0 < m)

nSL n(k)-1 n(k)
= CDFpyy (0|1t t,, D+ lim DS 3 Y | proby (a:aB () - ap () <m)]

k=1l i=l j=max{i+l,n(k)}

x| B(1;)x ACDFy. g, (1,) |ACDFy y, (1)) (7.26)
) nSL n(k)-1 n(k)
= CDFpyy Oltyyoty D+ im Y 37 Y, | proby(a:ap(t)-ap, () <m)]

k=1 i=l j=max{i+l,n(k)}
X I:Pk () > dp s 4 (1AL, } ACDFr yy, (t;)

with (i)
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prob (a rap(t;)—ap, () < m) = probability of a positive SL time margin
< m conditional on (i) failure of SL k attime 7; corresponding to LOAS and (7.27)
(i1) failure of the WL system at time £, <7,

(ii) ACDFy g 4 (t,), Pt )< ACDFy g, ( (t,), By(t;) % dys; 1 (¢,)At, and ACDFy y; (1) defined in

Egs. (7.12)-(7.14), and (iii) the indicated offsets involving i and j defined to produce positive
margins and also to avoid the potential for a later division by zero. Similarly to the development
in Eq.(7.15), part of the preceding approximation to CDFp,, (m|0<m) can be simplified as

follows:
proby, (a:ap,(t;)—ap,(t) <m)dy ()
= proby (o ad, (t;.4) <m)dy (t,)

= prob (a ca<mld, (tj,tl.))di(tj)
= CDF , (m/ d, (t;,1,) | 1,)dy (t;) (7.28)

mldi(t;.t;)
= dy(alt;)dp (t;)da

Qi (1)
_ [d[ﬁk )13, @]/ dflzt/ Uamx‘k(t,/,zf) ad , (a)dy, (a/rk (tj))da} ,

amn,k (tj)

where (i) the substitution for d ,, (« | ;)dy (¢;) is defined in Eq. (7.16), (i)
Ui (1) a0d @, (t;,8) = minfa,,  (;),m/d(t;.t)) (7.29)

together define the intervals over which the associated integral is nonzero provided the inequality

O ;) <m/ di(1;,1) (7.30)

is valid, and (ii1) the interval [e,,, , (¢,), @, (¢;)] for each SL is defined in Table 5. Additional
details on the definitions of the intervals [«,,, ; (7,1),2,, , (7)]are given in Egs. (7.32) and (7.22).

In turn, substitution of the result in Eq. (7.28) into the representation for
CDFpyy 5 (m|[t,,,1,,] with m <0) in Eq. (7.26) produces the result
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CDFp) o (m|[2, ] with 0 < m)

nSL n(k)-1 n(k)
= CDFpyy g Ol oty D+ i Y >0 >0 B[R/ g@]/d7]

k=1 i=l j=max{i+l,n(k)}

n ’tmx

s, (tj,tl-)
X [J' k ad . (a)dy, (a/rk (¢ ))da} At , ACDFy y, (2;)

o k (tj)

(7.31)

Tk
t

nSL ™ _ _
= CDFppy 5. (0| [typotync D+ | { [ (B@[d[p.(0)/ )]/ dr]
k:1 mn

max{,7 g }

Ak (T)

y [J‘am’k(r’t}“dﬁtk (@)dy (a1, (r))daD dT}dCDFT,WL ()

nSL T Ty a T,
= CDFppy 5 Oyt D+ [ [ [ fy (@ ru)dad s

k=] mn max {tﬂ'ﬂr } pn ke (T)

with the second equality resulting in the limitas n — o and f, (&, 7,t) defined the same as in Eq.
(7.20).

With use of the definitions of the intervals [e,,, (7),a,,(7)] in Table 5, it follows that the
integration limits for the inner integral over « in Eq. (7.31) are given by

[Ian,k rk (T)’ min {amx,k sMm / dk (Ta t)}] for 7 e 7)1
[ kT 7), min — T,m/d T,t for e P
[amn,k (T)a amx,k (Ta t)] = lB o ( ) {ﬂ o ( ¢ ( )})] ’ (732)
[amn,k , Min {amx,k s / dk (Tat)}] for 7 e 733
[amn,k ’ min {ﬂmx,k T (T)am / dk (Ta t)}] for 7 e H

with the definitions of the sets P,i=1,2,3,4, conditional on the relationships in Eq. (7.22).
Further, for

m/d, (z,6) <, , (7), (7.33)

the integral over « in Eq. (7.31) is equal to 0.

As a reminder, the preceding derivations for

CDFpy; g (m|[t,,,t,, ] with m < 0)
CDFpyy o (m|[2,,,51,, 1) =< CDFpy,  (01[2,,,58,.1) (7.34)
CDFPM,SL (m | [tmn 7tmx] with 0 < m)
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define CDFypy, o (m|[t,,,t,,]) for the four failure patterns corresponding to the definition of
pE(1),i =1,2,3,4, in Table 2. The four definitions for CDFypy, g (m|[t,,,t,,]) denoted by
CDFpy o ;(m|[t,,,,t,.1),i=1,2,3,4, are determined by the definitions used in Egs. (7.19) and

(7.31) for CDFy y,; (¢) (see Eq. (7.2)) and B, (¢) (see Egs. (7.5) and (7.6)). Specifically,

CDFpy; 511 (m|[2,,,1,,]) ~ Failure Pattern 1 in Table 2 with CDF} , (¢) and B, (k) (735)
defined in Egs. (4.2) and (7.6), '

CDFpy g1, (m|[2,,,1,, 1) ~ Failure Pattern 2 in Table 2 with CDF;. ; (¢) and F, (k) (7:36)
defined in Egs. (4.2) and (7.5), '

CDFpy 51 5(m|[t,,,,,]) ~ Failure Pattern 3 in Table 2 with CDF;. , (¢) and B, (k) (737)
defined in Eqs. (4.1) and (7.6), '

and
CDFpys sp.4(m|[2,,,1,, 1) ~ Failure Pattern 4 in Table 2 with CDF}. , (¢) and F, (k) (738)

defined in Eqgs. (4.1) and (7.5).

As an example, SL property margin CDFs CDFy,), i (m|[t,,,,t,,. 1), 1= 1,2, 3, 4, for systems

with two WLs and two SLs links defined with the WLs and SLs described and illustrated in Table
1 and Fig. 1 are presented in Fig. 12. Quadrature-based evaluations of the defining triple integrals
for CDFpyy 5, (m | [2 ]) in Egs. (7.19) and (7.31) were performed with procedures contained

in the MATLAB numerical analysis package [57]. Both integrals have the function f, (a,7,?)

mn > tmx

defined in Eq. (7.20) as an integrand, the components of which were evaluated as follows: (i) the
density functions d ,, (a) and dg, (f) were defined with the makedist, fitdist and pdf functions,

(ii) the failure time CDFs associated with the products in B, (7) were defined with the spline and
ppval functions, (iii) the derivative d[p,(r)/g,(r)]/dr was defined with use of the diff and
matlabFunction functions, and (iv) the derivative dCDF;y, (f)/dt was obtained by first

constructing a spline representation for CDFy, (¢) with the spline function and then differentiating
this representation with the fnder function. The limits of integration were defined with the min
and max functions. The overall calculation was performed for each margin value m by (i)
discretizing the time domain into 150 evenly spaced times and (ii) calculating the inner two
integrals at each time with the TwoD program [59]. This defined a function over time that was
approximated with the spline function and then integrated with the integral function to obtain the
value for the triple integral. The process was repeated for multiple values of m to obtain the SL
property margin CDFs CDFpy, o ;(m|[2,,,,.1),i=1, 2, 3, 4, in Fig. 12. The approximation of

the double integral in Eq. (7.24) defining CDF},), 5 (0|[¢,,,,2,, 1), i=1,2, 3, 4, for the four failure

patterns can be performed with the TwoD program and appropriate representations for the three
functions whose product defines the associated integrand g, (z,¢) defined in Eq. (7.25).
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Fig. 12 Strong link (SL) property margin CDFs CDFp,, o ;(m |[t

mn?> tmx

=1, 2, 3, 4, resulting in LOAS as indicated in Table 2, (ii) the four links defined and illustrated in
Table 1 and Fig. 1 with [z, ,¢,..]1=[0,200], and (ii1) quadrature-based evaluation of the integrals

in Egs. (7.19), (7.24) and (7.31).

]) for (i) failure pattern i, i

7.3. Sampling-based Estimation of CDFs CDF,, . (m|l[t,,.t,.]) for Margins
Involving Only SL Property Values

Given the complexity of the integrals in Egs. (7.19) and (7.31), it is likely to be more
practicable to estimate CDFy,, g, ;(m|[t,,,,,]) by a sampling-based procedure than by numerical

evaluation of these integrals. Specifically, the same procedure described in conjunction with Eqgs.
(6.4)-(6.6) can be used to estimate CDFpy, g .(m|[t,,,t,.]) with the only difference being a

change in the definition of m. (S, ) in Eq. (6.6) to

Ot k(r)r PSLk(r) (fSLk(r) r ) st k(r)r PSL k() (tWLl(r),r ) fori=1
m(s,) - st k(r).r PSLk(r) (ZSLk(r),r ) ALk (r)r PSLk(r) (@m),r) fori=2 (7:39)
T OsL k() PSLk (1) (f k(r),r ) ~ O k(). PSLA(r) (Wl(r),r) fori=3 |
OsL k() PSLk(r) (tSLk(r),r ) ~ 0L k(). PSLA(r) (Wl(r),r ) fori=4

56



with the subscripts &(7) and /(r) defined the same as in Eq. (4.19). Specifically, k(r) identifies the
SL whose failure potentially results in LOAS, and /() identifies the WL whose failure potentially
prevents LOAS. The resultant approximations to CDFyy, o ;(m |[2,,,,t,,]) for the four indicated

cases are then obtained as in Eq. (4.20).

7.4. \Verification Results for CDF},, g, ;(m [t

mn > mx])

As a verification test, Fig. 13 presents a comparison of CDFs CDFy), ; ;(m|[t,,,t,,. 1), i=1,

2, 3, 4, for SL property value margins for a system with two WLs and two SLs obtained by (i)
quadrature-based evaluation of the integrals in Egs. (7.19), (7.24) and (7.31) as described in Sect.
7.2 and (i1) a sampling-based calculation as described in Sect. 7.3 and performed with the CPLOAS
program [55; 56] and a sample of size n = 10°. The results obtained with the two evaluation
procedures are essentially identical. This level of agreement provides a strong verification that the
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Fig. 13 Verification results for SL property value margin CDFs CDF; Py L. (M [t D) i =1,
2, 3, 4, obtained with quadrature-based procedures (see Sect. 7.2) and sampling-based procedures
(see Sect. 7.3) for (i) the four failure patterns resulting in LOAS indicated in Table 2 and (ii) the
four links defined and illustrated in Table 1 and Fig. 1 with [¢,,,,7,,.]=[0,200].

mn’
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two procedures for obtaining CDFyy, g ;(m|[t,,,t,,]) are correct in both (i) mathematical

mn?

development and (ii) computational implementation.

7.5. Connection Between Failure Property Margins CDF;), g ;(0[[2,,,t,.]);
i=12,3,4, and PLOAS

The probabilities CDFyy, o (0|[2,,,2,. 1) i = 1, 2, 3, 4, associated with the failure property

margin m = 0 defined in conjunction with Eq. (7.24) are equal to the probabilities pF(¢, ), i=
1, 2, 3, 4, for LOAS defined in Table 2. Establishing the indicated equalities is based on the
following change in order of integration for a function f and CDFs CDF;, i =1, 2, defined on

[tmn 9tmx] :

tm mn

J.zm: [ Ln f(z,)dCDF, (z, )} dCDF, (z, [ L’l dCDF, (z, )} f(z,)dCDF, (1)

(7.40)

="
- L’ [l - CDF, (7)) f (+)dCDF, (7).

With use of the preceding relationships, the representation for CDFyy, o (0|[¢,,,2,.]) in Eq.
(7.24) becomes

nSL ' T
CDFpys 510 [2,,58,. D = ZL Uf ' P(7,)dCDFy, (r, )} dCDFy, (7))

:;2 mn mn (7.41)
= ["[1-CDFy, (1) B (£)dCDFy ()
=1 "
and thus corresponds to failure patterns i =1,2,3,4 in Table 2 with
il j|-110 ]
1-|1- 1-CDF} y; (7) j = 1-CDF} yy; ,(7) | fori=1,2
1= CDF} y, (7) = =1 =1 (7.42)
1-T1"" CDFy () fori=3,4
and
nSL
I1 ¢pF; g, fori=1,3
1=1,1#k
B.(r)= o (7.43)
[T [1-CDF; g, ()] fori=2,4.
1=1,12k
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This correspondence is (i) illustrated by the equality of pF;(200) and CDFp), 5 ;(0[0,200]) in

Fig. 3 and Figs. 12 and 13 and (ii) provides an additional verification result that the SL property
value margins in Figs. 12 and 13 have been calculated correctly.
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8. Summary Discussion

The results of many complex analyses can be reduced to a single number (e.g., probability of
loss of assured safety (PLOAS) in analyses of LOAS for WL/SL systems). However, it is very
unwise to rely on a single number as the sole summary result of a complex analysis. Specifically,
unless this number is egregiously wrong (e.g., a probability that is > 1.0 or < 0), it is often not
possible to tell if this single number is a reasonable analysis result. Therefore, it is prudent to
employ procedures that provide perspective on the reasonableness of summary results for complex
analyses. Such procedures include (i) examination of intermediate results that underlie a final
summary result, (ii) performance of verification analyses to establish that results are being
calculated correctly, and (iii) performance of uncertainty and sensitivity analyses to determine both
the uncertainty in analysis results and the sources of this uncertainty. The indicated procedures are
discussed below in the context of the present analysis

Examination of intermediate results. The primary motivation for the present study was to
define and illustrate intermediate and summary results that can be examined to provide perspective
on PLOAS results in analyses of LOAS for WL/SL systems. To this end, the following results
associated with the analysis of LOAS are defined and illustrated: (i) CDFs for link failure time,
link property value at link failure, link system failure time, property value at which a link system
fails, and time at which LOAS occurs, (ii) CDFs for failure time margins defined by (time at which
SL system fails) — (time at which WL system fails), (iii) CDFs for SL system property values at
LOAS, (iv) CDFs for WL/SL property value margins defined by (property value at which SL
system fails) — (property value at which WL system fails), and (v) CDFs for SL property value
margins defined by (property value of failing SL at time of SL system failure) — (property value
of this SL at time of WL system failure). Examination of these results can help provide
perspectives on the nature and reasonableness of the final outcomes of an analysis of LOAS for a
WL/SL system.

Performance of verification analyses. An additional motivation for the present study was to
obtain verification results for the margins associated with LOAS for WL/SL systems calculated
with sampling-based procedures implemented as part the CPLOAS program [55; 56]. As is the
case with most sampling-based analyses, verification is difficult because the correct result is not
known. Specifically, if a closed form solution was known, then there would be little reason to
perform a sampling-based analysis.

Tedious checking of coding line by line and examination of intermediate results that are
combined in various ways to produce the final result of interest is one way to provide “verification”
for a sampling-based analysis. However, with this approach, it is not possible to be completely
confident that an error in model structure or implementation has not been overlooked.

For the preceding reasons, it was decided to try to derive closed-form integral representations
for the probabilities defining the CDFs for the three margin results calculated in CPLOAS: (1)
failure time margin defined by (time SL system fails) — (time WL system fails), (ii) property value
margin defined by (property value at which SL system fails) — (property value at which WL system
fails), and (iii) SL property value margin defined by (property value of failing SL at time of SL
system failure) — (property value of this SL at time of WL system failure). In addition, integral
representations were also sought for the probabilities defining the CDFs for two additional results
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related to margins associated with LOAS: (iv) property value at which a system of WLs or SLs
fails and (v) SL property value at which LOAS occurs. After significant effort, the desired integral
representations were obtained.

However, the closed-form integral representations required numerical (i.e., quadrature-based)
evaluation to obtain values that could be compared with the sampling-based results produced by
CPLOAS. These evaluations were obtained with use of the MATLAB numerical package [57]. In
some cases, implementation of the desired integral evaluations with MATLAB turned out to be
quite complex and computationally inefficient compared to sampling-based evaluations.

Fortunately, the quadrature-based calculations using MATLAB and the sampling-based
calculations using CPLOAS produced CDFs for the 5 cases under consideration that matched with
high precision for a test problem with 2 SLs and 2 WLs (see Figs. 5, 7, 9, 11, 13). This level of
agreement provides a strong verification that the two procedures for obtaining CDFs for the five
indicated results are correct in both (i) mathematical development and (ii) computational
implementation.

With respect to ease of implementation, the sampling-based implementations in CPLOAS were
easier to derive and implement than was the case for deriving and numerically implementing the
integral-based representations. Specifically, the sampling-based procedures were developed and
implemented before the possibility of developing integral-based procedures was even considered.

Another positive aspect of the verification results in this study is the independence of the
development of the three components of the verification results by the three study authors: (i)
Development of integral representations for margin results (performed by Jon Helton), (ii)
Development and implementation of quadrature-based procedures for the evaluation of integral
representations for margin results (performed by Dusty Brooks), and (iii) Development and
implementation of sampling-based procedures for the calculation of margin results (performed by
Cédric Sallaberry). Such independence is always desirable, but not always possible, in a
verification study.

Performance of uncertainty and sensitivity analyses. Although not performed as part of the
present study, uncertainty analysis and sensitivity analysis are important components of analyses
for complex systems [60-67]. Uncertainty analysis provides an assessment of the uncertainty in
analysis results, which is an essential part of an appropriately supported decision. Sensitivity
analysis provides an assessment of the contribution of the uncertainty associated with individual
analysis inputs to the uncertainty in analysis results. Specifically, sensitivity analysis provides
information that supports (i) decisions on where to invest resources to reduce the uncertainty in
the analysis outcomes of greatest interest (e.g., PLOAS) and (ii) verification of analysis results.
Sensitivity analysis can be used as an important part of analysis verification because an analysis
error is revealed when an individual analysis input is shown to have an effect that it should not
have.

The uncertainty associated with the analysis of complex systems is usually divided into

aleatory uncertainty and epistemic uncertainty, with (i) aleatory uncertainty corresponding to an
inherent variability in the behavior of the system under study and (ii) epistemic uncertainty
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corresponding to a lack of knowledge with respect to the actual value of a quantity that has a fixed
value rather than a randomly varying value [16; 31; 41-44; 46-51]. Uncertainty analysis and
sensitivity analysis are typically used in the investigation of the effects of epistemic uncertainty;
in addition, uncertainty analysis and sensitivity analysis are also used to investigate the combined
effects of aleatory uncertainty and epistemic uncertainty when both are included in an analysis
(e.g., Refs. [41; 68-71]).

With respect to terminology, the descriptors aleatory uncertainty and epistemic uncertainty
came into wide use in the mid 1990’s. The alternative descriptors stochastic uncertainty and
subjective uncertainty (e.g., as used in Refs. [42; 44; 70; 72; 73]) for aleatory uncertainty and
epistemic uncertainty are no longer widely used.

The distributions for the variables & and £ defined in Egs. (2.3) and (2.4) were originally

introduced into the representation of WLs and SLs to characterize random variability (i.e., aleatory
uncertainty) that arises from random variability in manufactured components or possibly in
environmental conditions. In an analysis in which the a's and f's characterize aleatory

uncertainty, their distributions must be defined and most likely there will be epistemic uncertainty
with respect to how these distributions should be defined (e.g., epistemic uncertainty in the
definition of the three parameters in a triangular distribution used to characterize aleatory
uncertainty; see Sects. 8-11 of Ref. [7] for notional examples of analyses of the type indicated in
this paragraph). In a real analysis for a WL/SL system with the structure defined in this
presentation, it is also likely that there will be multiple epistemically uncertainty quantities
involved in the determination of the property value and failure value functions defined in Egs.
(2.1) and (2.2). Thus, an uncertainty/sensitivity analysis would be appropriate to determine the
effects of the indicated epistemically uncertain quantities. In turn, an assessment of the extent to
which the sensitivity analysis results are consistent with the known effects of the individual
variables would constitute part of a verification analysis.

If desired, the 's and 'S together with their associated distributions could also be used to

represent epistemic uncertainty in the functions defined in Egs. (2.1) and (2.2). However, when a
probability distribution is used to represent uncertainty in an input to an analysis, it is very
important to be clear on whether the distribution is intended to represent aleatory uncertainty or
epistemic uncertainty. Further, when an analysis involves both aleatory uncertainty and epistemic
uncertainty, it is important that the analysis be designed in a way that maintains a clear distinction
between the effects of aleatory uncertainty and the effects of epistemic uncertainty (e.g., Refs. [41;
70; 71; 73-75])).
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