
Final Report for

DEGAS: Dynamic Exascale Global Address Space Programming Environments

Sponsoring DOE Entity: Office of Advanced Scientific Computing Research
(OASCR)

Grant DE-FC02-12ER26090/DE-SC0008700

Reporting Period 9/1/16 - 8/31/17

Grant Period 9/1/12-8/31/17

Principal Investigator: James Demmel

Research Organization involved: UC Berkeley

Abstract:

The Dynamic, Exascale Global Address Space programming environment
(DEGAS) project will develop the next generation of programming models and
runtime systems to meet the challenges of Exascale computing.

The Berkeley part of the project concentrated on communication-optimal code
generation to optimize speed and energy efficiency by reducing data movement.
Our work developed communication lower bounds, and/or communication
avoiding algorithms (that either meet the lower bound, or do much less
communication than their conventional counterparts) for a variety of algorithms,
including linear algebra, machine learning and genomics.

Summary:

Runtime Data Layout Scheduling for Machine Learning Dataset
 Yang You and James Demmel
ICPP’17 (Intern. Conf. Parallel Proc.)
Abstract:
Machine Learning (ML) approaches are widely-used classification/regression
methods for data mining applications. However, the time-consuming training
process greatly limits the efficiency of ML approaches. We use the example of
SVM (traditional ML algorithm) and DNN (state-of-the-art ML algorithm) to
illustrate the idea in this paper. For SVM, a major performance bottleneck of
current tools is that they use a unified data storage format because the data
formats can have a significant influence on the complexity of storage and
computation, memory bandwidth, and the efficiency of parallel processing. To
address the problem above, we study the factors influencing the algorithm’s
performance and conduct auto-tuning to speed up SVM training. DNN training is
even slower than SVM. For example, using a 8-core CPUs to train AlexNet
model by CIFAR-10 dataset costs 8.2 hours. CIFAR-10 is only 170 MB, which is
not efficient for distributed processing. Moreover, due to the algorithm limitation,
only a small batch of data can be processed at each iteration. We focus on
finding the right algorithmic parameters and using auto-tuning techniques to
make the algorithm run faster. For SVM training, our implementation achieves
1.7 – 16.3x speedup (6.8x on average) against the non-adaptive case (using the
worst data format) for various datasets. For DNN training on CIFAR-10 dataset,
we reduce the time from 8.2 hours to only roughly 1 minute. We use the
benchmark of dollars per speedup to help the users to select the right deep
learning hardware.

Performance Characterization of De Novo Genome Assembly on Leading
Parallel Systems
M. Ellis, E. Georganas, R. Egan, S. Hofmeyr, A. Buluc, B. Cook, L. Oliker, K.
Yelick
Euro-Par’17, August 2017
Abstract.
De novo genome assembly is one of the most important and challenging
computational problems in modern genomics; further, it shares algorithms and
communication patterns important to other graph analytic and irregular
applications. Unlike simulations, it has no floating point arithmetic and is
dominated by small memory transactions within and between computing nodes.
In this work, we focus on the highly scalable HipMer assembler and identify the
dominant algorithms and communication patterns, also using microbenchmarks
to capture the workload. We evaluate HipMer on a variety of platforms from the
latest HPC systems to ethernet clusters. HipMer performs well on all single node
systems, including the Xeon Phi manycore architecture. Given large enough
problems, it also demonstrates excellent scaling across nodes in an HPC
system, but requires a high speed network with low overhead and high injection

rates. Our results shed light on the architectural features that are most important
for achieving good parallel efficiency on this and related problems.

Matrix factorizations at scale: A comparison of scientific data analytics in Spark
and C+MPI using three case studies
A.Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt, J. Kottalam,
J. Liu, K. Maschhoff, S. Canon, J. Chhugani, P. Sharma, J. Yang, J. Demmel, J.
Harrell, V. Krishnamurthy, M. Mahoney, Prabhat
2016 IEEE Intern. Conf on Big Data
Abstract:
We explore the trade-offs of performing linear algebra using Apache Spark,
compared to traditional C and MPI implementations on HPC platforms. Spark is
designed for data analytics on cluster computing platforms with access to local
disks and is optimized for data-parallel tasks. We examine three widely-used and
important matrix factorizations: NMF (for physical plausability), PCA (for its
ubiquity) and CX (for data interpretability). We apply these methods to 1.6TB
particle physics, 2.2TB and 16TB climate modeling and 1.1TB bioimaging data.
The data matrices are tall-and-skinny, which enable the algorithms to map
conveniently into Spark's data-parallel model. We perform scaling experiments
on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and
provide tuning guidance to obtain high performance.

Avoiding Communication in Primal and Dual Block Coordinate Descent Methods
A. Devarakonda, K. Fountoulakis, J. Demmel, M. Mahoney
Arxiv:1612.04003v2, May 2, 2017
Abstract:
Primal and dual block coordinate descent methods are iterative methods for
solving regularized and unregularized optimization problems. Distributed-memory
parallel implementations of these methods have become popular in analyzing
large machine learning datasets. However, existing implementations
communicate at every iteration, which on modern data center and super-
computing architectures, often dominates the cost of floating-point computation.
Recent results on communication-avoiding Krylov subspace methods suggest
that large speedups are possible by reorganizing iterative algorithms to avoid
communication. We show how applying similar algorithmic transformations can
lead to primal and dual block coordinate descent methods that only communicate
every s iterations–where s is a tuning parameter–instead of every iteration for the
regularized least-squares problem. We show that the communication-avoiding
variants reduce the number of synchronizations by a factor of s on distributed-
memory parallel machines without altering the convergence rate and attains
strong scaling speedups of up to 6.1× on a Cray XC30 supercomputer.

Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication
Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz, S. Toledo, S.
Williams
SIAM J. Sci. Comp, 38(6), C624-C651, 2016
Abstract: Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for
many high-performance graph algorithms as well as for some linear solvers, such
as algebraic multigrid. The scaling of existing parallel implementations of
SpGEMM is heavily bound by communication. Even though 3D (or 2.5D)
algorithms have been proposed and theoretically analyzed in the flat MPI model
on Erdös--Rényi matrices, those algorithms had not been implemented in
practice and their complexities had not been analyzed for the general case. In
this work, we present the first implementation of the 3D SpGEMM formulation
that exploits multiple (intranode and internode) levels of parallelism, achieving
significant speedups over the state-of-the-art publicly available codes at all levels
of concurrencies. We extensively evaluate our implementation and identify
bottlenecks that should be subject to further research.

Design and Implementation of a Communication-Optimal Classifier for
Distributed Kernel Support Vector Machines
Y. You, J. Demmel, K. Czechowski, L. Song, R. Vuduc
IEEE Trans. On Parallel and Distributed Systems, 2016
(Best Paper Award for version appearing in IEEE Intern. Parallel and Distr.
Processing Symp., 2015)
Abstract
We consider the problem of how to design and implement communication-
efficient versions of parallel kernel support vector machines, a widely used
classifier in statistical machine learning, for distributed memory clusters and
supercomputers. The main computational bottleneck is the training phase, in
which a statistical model is built from an input data set. Prior to our study, the
parallel isoefficiency of a state-of-the-art implementation scaled as W =
Omega(P^3), where W is the problem size and P the number of processors; this
scaling is worse than even a one-dimensional block row dense matrix vector
multiplication, which has W = Omega(P^2). This study considers a series of
algorithmic refinements, leading ultimately to a Communication-Avoiding SVM
method that improves the isoefficiency to nearly W = Omega(P). We evaluate
these methods on 96 to 1536 processors, and show average speedups of 3 –
16x (7x on average) over Dis-SMO, and a 95% weak-scaling efficiency on six
real-world datasets, with only modest losses in overall classification accuracy.
The source code can be downloaded freely.

Asynchronous Parallel Greedy Coordinate Descent
Y. You, X. Lian, J. Liu, H.-F. Yu, I. Dhillon, J. Demmel, C.-J. Hsieh
Conference on Neural Information Processing Systems, 2016
Abstract:
In this paper, we propose and study an Asynchronous parallel Greedy
Coordinate Descent (Asy-GCD) algorithm for minimizing a smooth function with
bounded constraints. At each iteration, workers asynchronously conduct greedy
coordinate descent updates on a block of variables. In the first part of the paper,
we analyze the theoretical behavior of Asy-GCD and prove a linear convergence
rate. In the second part, we develop an efficient kernel SVM solver based on
Asy-GCD in the shared memory multi-core setting. Since our algorithm is fully
asynchronous—each core does not need to idle and wait for the other cores—the
resulting algorithm enjoys good speedup and outperforms existing multi-core
kernel SVM solvers including asynchronous stochastic coordinate descent and
multi-core LIBSVM.

Parallelpipeds obtaining HBL lower bounds
J. Demmel, A. Rusciano
https://arxiv.org/abs/1611.05944, 18 Nov 2016
Abstract:
This work studies the application of the discrete Holder-Brascamp-Lieb (HBL)
inequalities to the design of communication optimal algorithms. In particular, it
describes optimal tiling (blocking) strategies for nested loops that lack data
dependencies and exhibit linear memory access patterns. We attain known lower
bounds for communication costs by unraveling the relationship between the HBL
linear program, its dual, and tile selection. The methods used are constructive
and algorithmic. The case when all arrays have one index is explored in depth,
as a useful example in which a particularly efficient tiling can be determined.
	
Scaling Deep Leaning on GPU and Knights Landing Clusters
Y. You, A. Buluc, J. Demmel
Supercomputing 17,
Abstract:
Training neural networks has become a big bottleneck. For example, training
ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the
training process, the current deep learning systems heavily rely on the hardware
accelerators. However, these accelerators have limited on-chip memory
compared with CPUs. We use both self-host Intel Knights Landing (KNL) clusters
and multi-GPU clusters as our target platforms. From the algorithm aspect, we
focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters.
We redesign four efficient algorithms for HPC systems to improve EASGD’s poor
scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are
faster than existing counterpart methods (Async SGD, Async MSGD, and
Hogwild SGD) in all comparisons. Sync EASGD achieves 5.3X speedup over

original EASGD on the same platform. We achieve 91.5% weak scaling
efficiency on 4253 KNL cores, which is higher than the state-of-the-art
implementation.

ImageNet Training in Minutes
Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, K. Keutzer
arXiv:1709.05011, Nov 2017
Abstract:
Since its creation, the ImageNet-1k benchmark set has played a significant role
as a benchmark for ascertaining the accuracy of different deep neural net (DNN)
models on the classification problem. Moreover, in recent years it has also
served as the principal benchmark for assessing different approaches to DNN
training. Finishing a 90-epoch ImageNet-1k training with ResNet-50 on a NVIDIA
M40 GPU takes 14 days. This training requires 10^18 single precision operations
in total. On the other hand, the world’s current fastest supercomputer can finish 2
x 10^17 single precision operations per second. If we can make full use of the
computing capability of the fastest supercomputer for DNN training, we should be
able to finish the 90-epoch ResNet-50 training in five seconds. Over the last two
years, a number of researchers have focused on closing this significant
performance gap through scaling DNN training to larger numbers of processors.
Most successful approaches to scaling ImageNet training have used the
synchronous stochastic gradient descent. However, to scale synchronous
stochastic gradient descent one must also increase the batch size used in each
iteration.
Thus, for many researchers, the focus on scaling DNN training has translated
into a focus on developing training algorithms that enable increasing the batch
size in data-parallel synchronous stochastic gradient descent without losing
accuracy over a fixed number of epochs. As a result, we have seen the batch
size and number of processors successfully utilized increase from 1K batch size
on 128 processors to 8K batch size on 256 processors over the last two years.
The recently published LARS algorithm increased batch size further to 32K for
some DNN models. Following up on this work, we wished to confirm that LARS
could be used to further scale the number of processors efficiently used in DNN
training and, and as a result, further reduce the total training time. In this paper
we present the results of this investigation: using LARS we efficiently utilized
1024 CPUs to finish the 100-epoch ImageNet training with AlexNet in 11 minutes
with 58.6% accuracy (batch size = 32K), and we utilized 2048 KNLs to finish the
90-epoch ImageNet training with ResNet-50 in 20 minutes without losing
accuracy (batch size = 32K). State-of-the-art ImageNet training speed with
ResNet-50 is 74.9% top-1 test accuracy in 15 minutes (Akiba, Suzuki, and
Fukuda 2017). We got 74.9% top-1 test accuracy in 64 epochs, which only needs
14 minutes. Furthermore, when the batch size is above 16K, our accuracy using
LARS is much higher than Facebooks corresponding batch sizes (Figure 1). Our
code is available upon request.

Communication-Avoiding Parallel Sparse-Dense Matrix-Matrix Multiplication	
P. Koanantokool, A. Azad, A. Buluc, D. Morozov, S.-Y. Oh, L. Oliker, K. Yelick
Proc. 30th IEEE Intern. Parallel & Distr. Proc. Symp, May 2016
Abstract:
Multiplication of a sparse matrix with a dense matrix is a building block of an
increasing number of applications in many areas such as machine learning and
graph algorithms. However, most previous work on parallel matrix multiplication
considered only both dense or both sparse matrix operands. This paper analyzes
the communication lower bounds and compares the communication costs of
various classic parallel algorithms in the context of sparse-dense matrix-matrix
multiplication. We also present new communication-avoiding algorithms based
on a 1D decomposition, called 1.5D, which — while suboptimal in dense-dense
and sparse-sparse cases — outperform the 2D and 3D variants both theoretically
and in practice for sparse- dense multiplication. Our analysis separates one-time
costs from per iteration costs in an iterative machine learning context.
Experiments demonstrate speedups up to 100x over a baseline 3D SUMMA
implementation and show parallel scaling over 10 thousand cores.

Write-Avoiding Algorithms
E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, H.
Simhadri
Proc. 30th IEEE Intern. Parallel & Distr. Proc. Symp, May 2016
Abstract:
Communication, i.e., moving data between levels of a memory hierarchy or
between processors over a network, is much more expensive (in time or energy)
than arithmetic. There has thus been a recent focus on designing algorithms that
minimize communication and, when possible, attain lower bounds on the total
number of reads and writes. However, most previous work does not distinguish
between the costs of reads and writes. Writes can be much more expensive than
reads in some current and emerging storage devices such as nonvolatile
memories.
This motivates us to ask whether there are lower bounds on the number of writes
that certain algorithms must perform, and whether these bounds are
asymptotically smaller than bounds on the sum of reads and writes together.
When these smaller lower bounds exist, we then ask when they are attainable;
we call such algorithms “write-avoiding” (WA), to distinguish them from
“communication-avoiding” (CA) algorithms, which only minimize the sum of reads
and writes. We identify a number of cases in linear algebra and direct N-body
methods where known CA algorithms are also WA (some are and some aren’t).
We also identify classes of algorithms, including Strassen’s matrix multiplication,
Cooley-Tukey FFT, and cache oblivious algorithms for classical linear algebra,

where a WA algorithm cannot exist: the number of writes is unavoidably within a
constant factor of the total number of reads and writes. We explore the
interaction of WA algorithms with cache replacement policies and argue that the
Least Recently Used policy works well with the WA algorithms in this paper. We
provide empirical hardware counter measurements from Intel’s Nehalem-EX
microarchitecture to validate our theory. In the parallel case, for classical linear
algebra, we show that it is impossible to attain lower bounds both on
interprocessor communication and on writes to local memory, but either one is
attainable by itself. Finally, we discuss WA algorithms for sparse iterative linear
algebra.

Communication-Avoiding Symmetric Definite Factorization
G. Ballard, D. Becker, J. Demmel, J. Dongarra, A. Druinsky, I. Peled, O.
Schwartz, S. Toledo, I. Yamazaki
SIAM J. Matrix. Anal. Appl., V. 35, N. 4, 1364-1406, 2014
Abstract.
We describe and analyze a novel symmetric triangular factorization algorithm.
The algorithm is essentially a block version of Aasen’s triangular
tridiagonalization. It factors a dense symmetric matrix A as the product A
=P*L^T*L*P^T where P is a permutation matrix, L is lower triangular, and T is
block tridiagonal and banded. The algorithm is the first symmetric indefinite
communication-avoiding factorization: it performs an asymptotically optimal
amount of communication in a two-level memory hierarchy for almost any cache-
line size. Adaptations of the algorithm to parallel computers are likely to be
communication efficient as well; one such adaptation has been recently
published. The current paper describes the algorithm, proves that it is
numerically stable, and proves that it is communication optimal.

Exploiting Data Sparsity in Parallel Matrix Powers Computations
N. Knight, E. Carson, J. Demmel,
Intern. Conf. Parallel Processing and Applied Math,
Lecture Notes in Computer Science, v. 8384, May 2014
Abstract:
We derive a new parallel communication-avoiding matrix powers algorithm for
matrices of the form A=D+USV^H, where D is sparse and USV^H has low rank
and is possibly dense. We demonstrate that, with respect to the cost of
computing k sparse matrix-vector multiplications, our algorithm asymptotically
reduces the parallel latency by a factor of O(k) for small additional bandwidth and
computation costs. Using problems from real-world applications, our performance
model predicts up to 13× speedups on petascale machines.

Contracting Symmetric Tensors using Fewer Multiplications
E. Solomonik, J. Demmel
ETH Technical Report, 2016
https://doi.org/10.3929/ethz-a-010345741
Abstract:
We present more computationally-efficient algorithms for contracting symmetric
tensors. Tensor contractions are reducible to matrix multiplication, but
permutational symmetries of the data, which are expressed by the tensor
representation, provide an opportunity for more efficient algorithms. Previously
known methods have exploited only tensor symmetries that yield identical
computations that are directly evident in the contraction expression. We present
a new ‘symmetry preserving’ algorithm that uses an algebraic reorganization in
order to exploit considerably more symmetry in the computation of the
contraction than the conventional approach. The new algorithm requires fewer
multiplications but more additions per multiplication than previous approaches.
The applications of this result include the capability to multiply a symmetric matrix
by a vector, as well as compute the rank-2 symmetric vector outer product in half
the number of scalar multiplications, albeit with more additions.
The symmetry preserving algorithm can also be adapted to perform the complex
versions of these operations, namely the product of a Hermitian matrix and a
vector and the rank-2 Hermitian vector outer product, in 3/4 of the overall
operations. Consequently, the number of operations needed for the direct
algorithm to compute the eigenvalues of a Hermitian matrix is reduced by the
same factor.
Our symmetry preserving tensor contraction algorithm can also be adapted to the
antisymmetric case and is therefore applicable to the tensor-contraction
computations employed in quantum chemistry. For these applications, notably
the coupled-cluster method, our algorithm yields the highest potential speed-ups,
since in many higher-order contractions the reduction in the number of
multiplications achieved by our algorithm enables an equivalent reduction in
overall contraction cost. We highlight that for three typical coupled-cluster
contractions taken from methods of three different orders, our algorithm achieves
2X, 4X, and 9X improvements in arithmetic cost over the standard approach.

Communication Lower Bounds for Tensor Contraction Algorithms
E. Solomonik, J. Demmel, T. Hoefler
ETH Technical Report
https://doi.org/10.3929/ethz-a-010350411
Abstract:
Contractions of nonsymmetric tensors are reducible to matrix multiplication,
however, ‘fully symmetric contractions’ in which the tensors are symmetric and
the result is symmetrized can be done with fewer operations. The ‘direct
evaluation algorithm’ for fully symmetric contractions exploits equivalence
between terms in the contraction equation to obtain a lower computation cost
than the cost associated with nonsymmetric contractions. The ‘symmetry

preserving algorithm’ lowers the cost even further via an algebraic reorganization
of the contraction equation. We derive vertical (between memory and cache) and
horizontal (interprocessor) communication lower bounds for both of these
algorithms. We demonstrate that any load balanced parallel schedule of the
direct evaluation algorithm requires asymptotically more horizontal
communication for some fully symmetric contractions than matrix multiplication
for nonsymmetric contractions of the same size. Instances of such fully
symmetric contractions arise in quantum chemistry calculations. Further, we
prove that any schedule of the symmetry preserving algorithm requires
asymptotically more vertical and horizontal communication than the direct
evaluation algorithm for some fully symmetric contractions. However, for the
instances of fully symmetric contractions that arise in quantum chemistry
calculations, our lower bounds are asymptotically the same for both of these
algorithms.

Avoiding Communication in Successive Band Reduction
G. Ballard, J. Demmel, N. Knight
ACM Trans. Parallel Computing, v. 1, i. 2, Jan 2015
Abstract:
The running time of an algorithm depends on both arithmetic and communication
(i.e., data movement) costs, and the relative costs of communication are growing
over time. In this work, we present sequential and distributed-memory parallel
algorithms for tridiagonalizing full symmetric and symmetric band matrices that
asymptotically reduce communication compared to previous approaches.
The tridiagonalization of a symmetric band matrix is a key kernel in solving the
symmetric eigenvalue problem for both full and band matrices. In order to
preserve structure, tridiagonalization routines use annihilate-and-chase
procedures that previously have suffered from poor data locality and high parallel
latency cost. We improve both by reorganizing the computation and obtain
asymptotic improvements. We also propose new algorithms for reducing a full
symmetric matrix to band form in a communication-efficient manner. In this
article, we consider the cases of computing eigenvalues only and of computing
eigenvalues and all eigenvectors.

Avoiding communication in the Lanczos bidiagonalizaiton routine and associated
Least Squares QR solvers
E. Carson
UC Berkeley EECS Technical Report UCB/EECS-2015-15, Apr 12, 2015
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-15.html
Abstract:
Communication – the movement of data between levels of memory hierarchy or
between processors over a network – is the most expensive operation in terms of
both time and energy at all scales of computing. Achieving scalable performance
in terms of time and energy thus requires a dramatic shift in the field of
algorithmic design. Solvers for sparse linear algebra problems, ubiquitous

throughout scientific codes, are often the bottlenecks in application performance
due to a low computation/communication ratio. In this paper we develop three
potential implementations of communication-avoiding Lanczos bidiagonalization
algorithms and discuss their different computational requirements. Based on
these new algorithms, we also show how to obtain a communication-avoiding
LSQR least squares solver.

Communication Avoiding Rank Revealing QR Factorization with Column Pivoting
J. Demmel, L. Grigori, M. Gu, H Xiang
SIAM J. Matrix Anal. Appl., V. 36, N. 1, pp 55-89
Abstract:
In this paper we introduce CARRQR, a communication avoiding rank revealing
QR factorization with tournament pivoting. We show that CARRQR reveals the
numerical rank of a matrix in an analogous way to QR factorization with column
pivoting (QRCP). Although the upper bound of a quantity involved in the
characterization of a rank revealing factorization is worse for CARRQR than for
QRCP, our numerical experiments on a set of challenging matrices show that this
upper bound is very pessimistic, and CARRQR is an effective tool in revealing
the rank in practical problems. Our main motivation for introducing CARRQR is
that it minimizes data transfer, modulo polylogarithmic factors, on both sequential
and parallel machines, while previous factorizations as QRCP are
communication suboptimal and require asymptotically more communication than
CARRQR. Hence CARRQR is expected to have a better performance on current
and future computers, where communication is a major bottleneck that highly
impacts the performance of an algorithm.

Reconstructing Householder vectors from Tall-Skinny QR
G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, N. Knight, H. D. Nguyen
J. Parallel and Distr. Computing, V. 85, Nov 2015
Abstract:
The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the
standard Householder algorithm for QR decomposition of matrices with many
more rows than columns. However, TSQR produces a different representation of
the orthogonal factor and therefore requires more software development to
support the new representation. Further, implicitly applying the orthogonal factor
to the trailing matrix in the context of factoring a square matrix is more
complicated and costly than with the Householder representation.
We show how to perform TSQR and then reconstruct the Householder vector
representation with the same asymptotic communication efficiency and little extra
computational cost. We demonstrate the high performance and numerical
stability of this algorithm both theoretically and empirically. The new Householder
reconstruction algorithm allows us to design more efficient parallel QR
algorithms, with significantly lower latency cost compared to Householder QR
and lower bandwidth and latency costs compared with Communication-Avoiding

QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits
of the communication cost improvements: in particular, our experiments show
substantial improvements over tuned library implementations for tall-and-skinny
matrices. We also provide algorithmic improvements to the Householder QR and
CAQR algorithms, and we investigate several alternatives to the Householder
reconstruction algorithm that sacrifice guarantees on numerical stability in some
cases in order to obtain higher performance.

