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Abstract. In 2016 the NOvA experiment released results for the observation of oscillations in
the νµ and νe channels as well as νe cross section measurements using neutrinos from Fermilab’s
NuMI beam. These and other measurements in progress rely on the accurate identification and
reconstruction of the neutrino flavor and energy recorded by our detectors. This presentation
describes the first application of convolutional neural network technology for event identification
and reconstruction in particle detectors like NOvA. The Convolutional Visual Network (CVN)
Algorithm was developed for identification, categorization, and reconstruction of NOvA events.
It increased the selection efficiency of the νe appearance signal by 40% and studies show potential
impact to the νµ disappearance analysis.

1. Introduction to NOvA’s Measurement
NOvA is a long baseline neutrino oscillations experiment whose main purpose is to study the ap-
pearance of electron neutrinos in a muon neutrino source. It does so by measuring the neutrino
signal close to its source, at Fermilab, as well as 810 km away, at Ash River, MN. Oscillations
measurements rely on the identification of the flavor of neutrino interactions in typically low
statistics samples. Thus, high efficiency event identification techniques are a crucial component
of these analyses.

The NOvA detectors are two low-Z material sampling calorimeters, designed to optimize
electron identification. They are composed of alternating vertical and horizontal planes of liquid
scintillator. This array allows us to produce two views of the detector activity, which in detector
coordinates are a view on the XZ plane (from the top) and one on the YZ plane (from the side).

1.1. NOvA Neutrino Events
NOvA events are typically 550 microsecond readouts of the detector electronics, centered around
the ∼10 microsecond neutrino beam spills from Fermilab’s Main Injector. The interactions are
isolated by correlating groups of hits in time and space in order to separate them from the rest
of the activity in the detector. Images from the NOvA event display such as Figure 1 typically
display hits in color, representing either the time or deposited charge of each hit.

Neutrino interactions in these events can be classified by analyzing the topology and energy
deposition profile of the hits from them. The main approach at signal identification employed

http://creativecommons.org/licenses/by/3.0
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Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.
The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral
current interactions (bottom), as well as the charged current interactions for electron (middle)
and muon (top) flavor are each the main signal on NOvA’s neutral current, νe appearance and
νµ disappearance analyses, respectively. This makes the classification of these events the crucial
first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make
a geometrical separation of each particle’s contribution to the event. Then, identification
algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s
contribution (given as a cluster of hits) and attempt to identify the leptonic component of the
interaction1 by using neural networks trained on these features.

2. The CVN Convolutional Neural Network
2.1. Advantages of Convolutional Neural Networks
Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These
networks–and in particular convolutional neural networks (CNNs)–present several advantages
with respect to the traditional identification methods described in Section 1. Not only do
traditional algorithms rely heavily on the efficiency of the geometric separation of the compo-
nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.
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Figure 2. Pixel map for simulated νµ CC event. This diagram exemplifies how the convolutional
operations extract features from the images. Some track activity is visible in one of the feature
maps.

which have been previously selected by the designer, equally folded in with the efficiency of
their extraction. In turn, convolutional neural networks–in their implementation for image
classification[10]–eliminate the need for both previous separation of the event into components
and extraction of predefined features. The following is a brief explanation of the main features
of CNN architectures:

• Convolutional Layers: Employ the use of feature extraction kernels of various types to
extract features from the image. Kernels operate on images to extract different features
(averages, edge effects, etc.)2. The network then learns and trains on correlations between
these feature maps for events of each type.

• Inception Modules: Multiple kernels of different dimensions are used to extract features
at multiple scales simultaneously. Figure 2 shows a set of feature maps produced by an
inception module.

• Pooling Layers: The feature maps are down-sampled by replacing regions with the output
of a function (average, maximum value, etc.).

• Dropout Layers: Select a random sub-sample of existing connections to be used at every
iteration by randomly resetting weights.

2.2. CVN
We have developed a Convolutional Visual Network (CVN) based on existing implementations of
machine learning[3] which classifies neutrino interactions by categories. The architecture of the
CVN is depicted in Figure 3. We use a Siamese-style architecture optimized for categorization
of thirteen types of events, labeled by neutrino flavor and interaction type. These categories can

2 The kernels also evolve through local response normalization as training progresses.
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Figure 3. Diagram of the CNN architecture used for event classification. Starting with the input
at the top, the network has separate branches for the XZ and YZ views of the event. Each branch
undergoes successive convolution, pooling, and local response normalization (LRN). Inception
modules are used in downstream layers. The two views are merged and passed through a final
inception module, and pooled. The output of the network comes from softmax units.
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Figure 4. The CVN νe PID distribution for muon-removed electron (MRE) events in the near
detector after basic preselection has been applied.

then be labeled as signal or background for each analysis independently.

The CVN network is trained on pixel maps of simulated events and labels corresponding to
the type of simulated interaction. The maps are analogous to images but constructed from the
output of the detector. One example of a side-view pixel map is shown in Figure 2. Both the
side and top views of each event are trained on to provide further context of the topology. This
implementation was trained using the caffe framework[5].

3. Performance of CVN
3.1. Performance Tests on Data
One test of the performance of the classifier on data uses the Muon Removed - Electron (MRE)
technique. It begins by selecting a muon neutrino interaction with traditional identification
methods. The hits from the muon are then removed from the event and they are replaced by
hits from a single simulated electron of matching momentum. Data/MC comparisons using this
technique (Figure 4) show less than 1% difference in efficiency.

3.2. Results Using CVN
The CVN event classifier is implemented as a selector for the νe appearance analysis presented
in the summer of 2016[1]. It improved the efficiency of νe CC events by 40% with respect
to the traditional algorithm[4]. This is the first implementation of CNNs in a high energy
physics result, followed by NOvA’s neutral current neutrino disappearance analysis. A CVN-
based νµ disappearance analysis of NOvA’s initial dataset reveals potential improvements on
our sensitivities as well as signal efficiency[8] and this technique is currently being incorporated
into the main branch of this analysis as well.

4. CVN for Reconstruction
While the current implementation of CVN focuses on event classification, it is possible to train a
network for single particle identification through the clusters of hits it contributes to the event.
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Figure 5. Signal and background CVN PID distributions for the νµ disappearance (left) and
the νe appearance (right) analyses.

In this case a similar architecture to Figure 3 is used, with four rather than two main branches.
This network trains on two views of the full event as well as two views of the isolated cluster.
These clusters need to be previously defined as a collection of hits by some other algorithm.
Adding the single cluster views to the network input allows it to combine features extracted
from the particle signature itself as well as in context with the rest of the interaction. Currently
the input clusters to our particle CVN classifier come from traditional cluster reconstruction[4]
but there is ongoing work to disentangle the network from traditional reconstruction completely.

The CVN particle classifier is currently in development, but initial studies already show
promise, especially for e−/π0 and µ/p discrimination, as seen by their respective efficiencies in
Figure 6. Optimization of this classifier is ongoing and preliminary versions of it are already
being implemented in studies of cross sections and energy reconstruction. Work is also ongoing
to design a network for hit-by-hit identification within an event. This type of identification could
influence the existing approaches to reconstruction.
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Figure 6. CVN for Prong ID tests on 50% purity clusters from simulated NuMI events. The
entries along the diagonal represent efficiencies of categorizing by the best PID value across
categories rather than cutting on a PID value.
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