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Ultrafast X-ray imaging provides high resolution information on individual fragile specimens
such as aerosols!, metastable particles®, superfluid quantum systems® and live biospecimen?,
which is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imag-
ing, however, suffers from intrinsic loss of phase, and therefore structure recovery is often
complicated and not always uniquely-defined 5. Here, we introduce the method of in-flight

holography, where we use nanoclusters as reference X-ray scatterers in order to encode rel-



ative phase information into diffraction patterns of a virus. The resulting hologram contains
an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lat-
eral resolution so far achieved via single shot X-ray holography. Our approach unlocks the
benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and
paves the way to direct observation of complex electron dynamics down to the attosecond

time scale.

High-resolution imaging of single non-periodic nanoparticles remains a great challenge.
Electron microscopy requires the samples to be frozen and deposited on a substrate, potentially
modifying their structure and functionality. Optical imaging techniques are limited in resolu-
tion. In contrast, intense femtosecond X-ray pulses from free-electron laser (FEL) sources enable
“diffraction-before-destruction’® coherent diffractive imaging (CDI) of individual nanospecimen
within a single exposure. Here, a single specimen is injected into the FEL focus from its native en-
vironment at room temperature and X-ray diffraction patterns are recorded long before the sample

is vaporized by the FEL pulse>’™.

The central problem of all indirect imaging methods, such as CDI, is the intrinsic loss of
phase during the measurement. Thus, structure recovery from CDI images is usually performed
through iterative phasing algorithms which require solving a non-convex high-dimensional mini-
mization problem. Much effort has been invested into phase retrieval algorithm development*=1012,
Despite significant progress, structure reconstruction remains computationally demanding and re-

quires guidance for selecting the object support. Particularly, noisy experimental data with missing



data regions pose a challenge” and sometimes lead to incompatible solutions®.

Holographic approaches overcome the phase problem by encoding the relative phase between
areference object's and the sample's exit waves'>!®, In X-ray Fourier transform holography (FTH),
a unique solution for the structure of the sample can be obtained from a simple two dimensional
Fourier transformation (2D FTY>"®. The highly desirable combination of X-ray Fourier holog-
raphy (FTH) and CDI of free nanoparticles has been discussed theoretically in the past!>17%12:20,
The experimental realization has not been achieved so far as it is virtually impossible to prepare a
well known and easily controlled reference with suitable spatial separation for randomly injected

samples.

Here, we demonstrate a proof-of-concept in-flight holography experiment, which in contrast
to classical X-ray Fourier holography, does not require careful positioning or precise preparation
of the reference. Instead, the reference scatterer is randomly placed, and its size and position are
directly extracted from the diffraction image as schematically illustrated in Fig. 1. Diffraction from
two equally-sized spheres located in the plane perpendicular to the laser beam (Fig. 1a) is similar to
Young 's double slit experiment: the intensity distribution envelope in the reciprocal space reflects
the size of the spheres and the fine intensity modulation mirrors the relative distance between the
spheres. Changes of the size of one sphere lead to an overlap of two characteristic envelopes (Fig.
1b). An off-set along the laser direction results in a distinct curvature of the fine modulations (Fig.
Ic). Vice versa, the patterns from the reciprocal space can be unambiguously translated into a

real-space three dimensional positions map based on the relative distances between the spheres



directly encoded into the image. In in-flight holography, the smaller sphere can be regarded as a
source of a reference wave front and the large sphere can be replaced by any unknown sample at a
certain unknown distance. Using the information from the three-dimensional map, the structure of

the sample can be reconstructed via Fourier inversion of the diffraction pattern.

In our proof-of-principle experiment, we used almost spherical gas-phase Xe clusters with
diameters 30-120 nm as references and injected Mimi viruses with 450 nm sized quasi-icosahedral
capsids as samples®. The experiment was carried out at the Linac Coherent Light source (LCLS)
inside the LAMP end station®?, the experimental setup is illustrated in Fig. 2. We focused 100-
femtosecond long X-ray FEL pulses with 1 nm wavelength to peak power densities up to 10'7

W/cm?, which are necessary for single particle coherent diffraction imaging.

The bio-sample and the cluster jets were overlapped inside the FEL focus using the instan-
taneous feedback from ion signal and X-ray diffraction patterns. The holograms were recorded
using a pnCCD detector placed 735 mm downstream from the interaction region and covering up

to a momentum transfer of q=0.3 nm~*.

A hologram of a Mimi virus is displayed in Fig. 3a. The imaginary part of the Mimi virus
image from a reconstruction based on a Fourier inversion of the hologram (discussed in detail in
the next paragraph and in Methods) is displayed in Fig. 3b. The shape and the size of the Mimi
virus are in perfect agreement with results from previous studies>"23 demonstrating that in-flight
Fourier holography provides a correct and unique real-space shape of the sample. The structural

information was retrieved in only few steps without the need of complicated iterative procedures.



Note that due to the missing data from the FEL passage hole in the detector, the reconstruction is
low frequency filtered and dominated by edge contrast information akin to a dark field microscopic

image.

The reconstruction of the Mimi virus is guided by the information directly extracted from the
hologram based on the scheme described in Fig. 1. In the reciprocal space, the diffraction pattern
shown in Fig. 3a exhibits the characteristic streak pattern due to the quasi-icosahedral shape of the
virus. The reference Xe cluster with the strongest signal produces the centrosymmetrical intensity
distribution envelope fitted and highlighted in Fig. 3a, upper right quadrant of the hologram. From
this envelope, we calculated the cluster diameter d = 74 nm using the Guinier approximation®*.
The fine modulations (magnified in Fig. 3c) convey information about relative distances between
the Mimi virus and the reference clusters. Two independent modulations emphasized in Fig. 3c

indicate the presence of at least two reference clusters.

The features in the reciprocal space pattern shown in Fig. 3a and c can be directly translated
into a real-space three-dimensional map via two steps. First, a real space 2D projection onto a
plane perpendicular to the FEL is created from an inverse 2D Fourier transformation (FT) of the
hologram as presented in Fig. 4a. The highlighted region contains real-space cross-correlation
terms (labeled with 1-3) between objects contributing to the hologram. The cluster-cluster and
Mimi-Mimi auto-correlation terms are concentrated around the center of the FT. The distance
between the center of the FT and the cross-correlation terms is the relative distance between the

cross-correlation partners in the plane perpendicular to the FEL propagation as indicated in Fig.



4a and b by arrows.

The cross correlations in Fig. 4a appear out-of-focus due to longitudinal offsets between
the nanoparticles. Thus, in a second step, the cross-correlation terms are refocused using angular

spectrum propagation 18925

as illustrated in Fig. 4c. The longitudinal distances between the
objects can be recovered from a series of propagations into different planes perpendicular to the
laser direction. Each propagation consists of a 2D FT of the hologram from Fig. 3a multiplied by a
varying free space propagator (see Methods). Similarly to refocusing with a microscope objective,
the sharp boundaries of the cross correlation terms emerge when the selected propagator term

meets the real-space distance between the two correlating particles along the FEL axis as shown in

Fig. 4c.

Both reconstruction steps combined create a three-dimensional map of relative positions be-
tween the two clusters and the Mimi virus inside the FEL focal volume, as illustrated in Fig. 4d.
For the final reconstruction of the Mimi virus presented in Fig. 3b, we used the refocused cross-
correlation shown in Fig. 4a. labeled 1. The quality of the reconstruction was further enhanced
through deconvolution with the reference cluster size determined from the envelope of the diffrac-

tion pattern as demonstrated in Fig. 3a (see Methods).

We have shown that in-flight holography can provide high fidelity images of highly asym-
metrical samples. We recovered images from deformed specimen which have a more complex
structure than the ideal Mimi virus. For example, the hologram in Fig. 5 a was most likely recorded

from a conglomerate of three samples, while the hologram shown in Fig. 5 b stems from debris



with a rich substructure. The reconstruction indicates that our method can be used to access the
inner structure of a sample. The lateral resolution in our experiment was limited by the photon
flux, similarly to non-holographic studies>®2%27 We achieved a lateral resolution below 20 nm as
shown in Fig. 5 C and 260 nm longitudinal resolution using small reference clusters with diameters
30-40 nm (see Methods). The longitudinal resolution can be in principle further improved using

softer X-rays-?.

In summary, our experiment is the first demonstration of high fidelity imaging based on
Fourier holography on free nanosamples. Our method is noise robust, reliable and can be extended
to a variety of references and samples. With recent advances in single shot imaging with table-top
sized lasers®®, in-flight holography may reach laboratory scale experiments due to its simplicity.
This opens a novel avenue to study air pollution, combustion, cloud formation and catalytic pro-
cesses on the nanoscale at the single-particle level. One could envision for example direct imaging
of aerosol nucleation and droplet formation in their native environment without ensemble aver-
aging effects’. In-flight holography can be also easily extended towards time-resolved studies of

complex, ultrafast electron dynamics®%2230,
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Methods

Experimental Methods The experiments were performed at the LAMP instrument inside the
AMO end station at the Linac Coherent Light Source (LCLS)*!. We used soft X-ray pulses with
1200 eV photons and pulse energies up to 2 mJ at 120 Hz repetition rate. The biological samples
were injected in a solution through a gas dynamic virtual nozzle using a guiding helium gas flow?’.
The particle jet was focused down to 100 pm in diameter with an aerodynamic lens stack consisting
of 6 apertures. The solvent evaporates during the injection. The Xe clusters were produced via a
supersonic expansion through a conical nozzle with a diameter of 200 ym and an half opening
angle of 4°, which was attached to a commercial Parker Series 99 Pulsed Valve. The mean cluster
size was varied between 30 and 120 nm in diameter by adjusting the backing pressure of the
gas resovoir (from 7 bar to 30 bar) and the nozzle temperature (from 240 - 300 K). It has been
demonstrated in previous experiments that within the achieved resolution, down to 8nm scale the
large majority of Xe clusters are spherical”?%52, The pulsed cluster jet was synchronized to the
FEL at 10-30 Hz repetition rate with regard to the gas load faced by the pumps. The particle jet was
skimmed down with a system of two fixed skimmers and an adjustable piezo skimmer reaching a

cluster jet width between 100 ym and 3 mm.

The X-ray diffraction patterns were recorded via a pnCCD detector pair with 75 pm x 75 pm
pixel size and 1024 x 512 pixels per detector half. The two detector parts were positioned 735 mm

downstream from the interaction region.
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Requirements to coherence The longitudinal coherence of LCLS pulses in the soft X-ray regime
has been estimated to 0.5 fs which translates to 0.17 um in real-space®. In principle, forward
scattering from two objects placed with an offset along the FEL beam always leads to a coherent
superposition of the scattered wave fronts. Constructive interference at scattering angles greater
than zero can occur when the path length difference between the wavefronts is smaller than the
longitudinal coherence. In our case, interference at the outer edge of the detector can be expected

from reference-sample pairs with maximum longitudinal distance of around 60 pm.

Structure reconstruction The reconstruction from an X-ray hologram is sectioned in three steps
and described below in greater detail. First, the images were calibrated using the dark noise level
and masked due to detector imperfections. Second, the three dimensional composition between the
sample and the reference was reconstructed. Third, the three dimensional information was used to

refocus and refine through deconvolution.

Image imperfections The intrinsic noise of the detector was substracted using dark calibration
and common mode correction, followed by a correction for beamline background X-ray scattering

and readout artifacts>.

A binary mask from missing, dead, highly fluctuating and saturated detector pixels was gen-
erated for each diffraction pattern. To suppress reconstruction ringing artifacts from an oscillating
point spread function, the transition from masked areas to areas of data pixels was smoothed out.
This was accomplished by first dilating the binary mask by 5px and afterwards applying a Gaus-

sian filter with 0 = 5px, to ensure a continuous transition to zero. We found that the such applied
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changes of the data values lead only to minor changes in the reconstruction contrast while ringing

in the surrounding areas is efficiently suppressed.

Three dimensional reconstruction The samples and the reference clusters are almost transparent
for the X-rays. Thus, first Born approximation and the small-angle approximation are valid. In the
far field region, the scattering pattern O equals the absolute square of the Fourier transform of the

projection of the object’s electron density o along the FEL axis:

Olaw) = |Z o(xL)]I" (D

Hereby x, and q,; denote the coordinates perpendicular to the FEL beam in real space
and the scattering vector in momentum space, respectively. By introducing a reference scatterer
r(z, — 29 ), the exit waves of both particles interfere and the scattering pattern becomes a Fourier
hologram. It is important to note that here the particles were smaller than the depth of field (DOF)
and the exit wave of each particle can be interpreted as a projection of its electron density. At the
same time the distance between the particles along the FEL axis can be larger than the DOF and

therefore results in 3D information about the positions of the scatterers in regard to each other.

In the first step of the reconstruction, a single inverse Fourier transformation of the recorded
two-dimensional hologram H (q ) can be regarded as a translation from momentum space coordi-
nates to real space coordinates and results in the Patterson map P(x ):
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P(x,)=2"'H(q.) = ﬁ—l)j;)2 |ﬁ(o(xL) +r(xy — X(D)}

2

2T

~ ep? <O*<_XL) ®o(xy) +ri(—x, +x})®@r(x, —x9)

+ 0" (—x1) @r(xy —x9) +r*(—x. +x7) ®o(xl)>. (2)

with X-ray photon wavelength A and detector distance DD. Hereby ® describes the convolu-
tion operator and the terms 1* ® 1 and p* ® p are the autocorrelation functions without direct phase
information. The spatially separated cross-correlation terms 1* ® p and p* ® ) contain relative
phases between the reference and the sample wave fronts (Fig. 4). With some knowledge about the
reference (in our case: size and spherical shape), these terms allow for unambiguous reconstruction
of the sample exit wave and thus the sample’s structure. The lateral distance of the cross-correlation
partners has to be at least twice the diameter of the exit waves to avoid overlapping of the terms

with autocorrelation function in the center and enable reconstruction.

In a second step, the cross-correlation terms were refocused using the free space propagator.
The sample and the reference clusters were randomly injected into the FEL focal volume with an
offset between the sample and the reference along the optical axis as demonstrated in Fig. 1 and
4. Consequently, the sample's exit wave propagates over a distance z before it interferes with the
references exit wave or vice versa. Assuming free propagation along the FEL beam (z-direction)
the samples structure can be recovered by propagating the exit wave to the plane of the sample

using the angular spectrum propagation vz (x, y, 2 J**:
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br(x,y,z) = F L VETET G (g, q,) (3)

with the wave field vector k = 2=

T, v = (,y, 2) the real space coordinates and k = |k|.

The refocusing of the hologram can be done by eye similar to the refocusing of a light micro-
scope image as illustrated in Fig. 4 or using autofocus techniques. If the phase shift matches
the real-space distance between the reference and the sample, the samples structure emerges with
high contrast and sharp features. All reconstructions with refocused cross correlation terms were
sorted according to the size and analyzed by hand for reference-reference and sample-sample cross

correlations.

Refining the image of the virus In the last steps, the diffraction patterns were centered based on
the reduction of phase ramps in real space and deconvolved using a Wiener deconvolution filter
for the cases, where the reference cluster size was well known from radial plots®>=°. The recon-
struction represents the convolution of the reference and the sample, thus the resolution is often
limited by the reference scatterers size. However, using the knowledge that the produced reference
clusters are spherical in good approximation within the reached resolution, it is possible to resolve
even smaller structures. In the current photon energy regime, the diffraction pattern of a spherical
particle is well described within Guinier’s approximation®*. This allows for deconvolution of the

reconstruction. Here the Wiener deconvolution filter was used:
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1 ]S(g)]* - SNR(q)

Fwld) = S T+ ISP - SNR(g)

“4)

S(q) describes the estimate for the reference and SNR(¢) the signal-to-noise ratio. As the real
ratio is not known, here the square root of the scattering pattern is used as the SNR approximation.
This approximation is justified by the fact that the Poisson noise is the main noise contribution and
the deconvolution quality depends rather on the scale than the exact SNR. Additionally Wiener
deconvolution assumes signal independent noise, which is not the case here. As a result SNR(q) is

here more an adjustable parameter than the genuine noise.

Resolution estimation We used the signal-to-noise ratio of the power spectrum of each individual

reconstruction to estimate the half-period resolution based on the Rose criterion.

The resolution in Fourier holography is usually limited by several constraints. In the ideal,
detector limited system the resolution is determined by the numerical aperture while in the perfect
reference limited system it is given by the size of the reference scatterer. This limitation is not
necessarily caused by the fact that the reconstruction describes the convolution of both particles.
With the knowledge about the reference morphology it becomes possible to deconvolve the recon-
struction and therefore resolve even smaller features®®. The limitation hereby is set by the fact that
the signal is modulated by the spectrum of the reference which has zero crossings. Therefore even
the deconvolved reconstruction has a drop in its spectrum which translates into the resolution limit
of a perfect reference limited system. Nevertheless a deconvolution changes the transmission func-

tion within the boundaries of the central speckle of the reference and therefore obtains resolution
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before the first zero crossing.

In our case, the resolution is limited by photon flux or in other words Poisson noise. Thus, we
estimated our resolution from the signal-to-noise ratio in each reconstruction. In order to estimate

the noise level, empty areas at different positions of the Patterson map were used.

Hit finding Bright images were extracted according to the total number of lit pixels and a 2D FFT
was calculated. Potential holograms were filtered based on the presence of cross correlation terms
as described in®*’. Further quality assessment was performed by eye. Within the course of this
experiment, the hit rate changed considerably. For example the Mimi virus hologram displayed
in Fig. 2 and 3 was selected from a run recorded during 15 minutes at 30 Hz rate and containing
in total 15 bright holograms of the Mimi virus. The holograms from Fig. 5 were extracted from
a 10 minutes run recorded at 30 Hz and containing over 100 holograms. The hologram hit rate
varied strongly depending on fine adjustments of both sources. We expect that the hit rate can be

significantly improved based on recently described injector developments=Z.
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Figure 1 In-flight holography principle Diffraction patterns in the first row are calcu-

lated from objects and geometries displayed in the second row.

The diffraction pattern shown in a is produced by two equally sized spheres located
in a plane perpendicular to the laser direction. It exhibits two dominant features. First, the
ring-type envelope reflects the size of a single sphere. Second, fine straight modulation
lines mirror the lateral distance between the spheres, similarly to Young's double slit ex-
periment. If one sphere is considerably smaller than the other, a second envelope with
wider ring spacing appears as demonstrated in case b. Here, the different sizes of the
spheres and the lateral distances are unambiguously encoded into the diffraction. In case
¢, the differently sized spheres are shifted along the laser direction. This shift in the real-
space translates into curvature of the fine modulation lines in the reciprocal space. The
combination of distinct diffraction features such as the envelopes and fine modulations
carry a unique three-dimensional relative positions map of the two spheres. This map
is used for structure recovery in in-flight holography, where the large sphere is replaced
by an unknown sample. The smaller sphere can be regarded as a source of a Fourier

holography-type reference wave front.

Figure 2 Experimental setup. The FEL beam is focused by a pair of Kirkpatrick-Baez
mirrors in order to achieve FEL intensities necessary for single particle imaging. The
bio particle jet and the Xe cluster jet are mounted perpendicular to each other and the
FEL direction and overlapped inside the FEL focal volume. The X-ray photons diffract
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from randomly injected Xe clusters and nanosamples as schematically illustrated in the
magnification panel. The resulting diffraction patterns are recorded on a pnCCD detector
placed 735 mm downstream. The diffraction from the spherical clusters serves as a

reference wavefront similar to a pinhole-like source.

Figure 3 Hologram and reconstructions. a: Hologram of a Mimi virus. The signa-
ture envelope from the reference cluster is visualized in the upper right quadrant. b: The
reconstruction of the Mimi virus from the hologram corresponds to a 2D projection of a
quasi-icosahedron as expected from previous experiments>2!23 Note that the recon-
struction is based on a two-step Fourier inversion without any preassumptions c: The
magnified section of the hologram shown in a with contoured interference ripples. Two

independent modulations indicate the presence of at least two reference scatterers.

Figure 4 Three dimensional reconstruction. a: 2D Fast Fourier transformation (2D
FFT) of the hologram displayed in Fig. 3a. The cross-correlation terms result from the
interference between the spatially separated exit waves of the correlating particles and
thus are displaced from the center. Cross-correlation 1 can be attributed to a Mimi virus
and a cluster with d=74 nm, cross-correlation 2 to a Mimi virus and a cluster with d=100
nm, and cross-correlation 3 to clusters with d=74 and d=100 nm. The twin images of
the cross-correlations are distributed point-symmetrically around the center. b: The 2D
FFT shown in a contains positions of all three particles inside the plane perpendicular
to the FEL. ¢: Using angular spectrum propagation, it is possible to recover the relative
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distances along the FEL axis. d: The combination of a and b creates a three-dimensional
map of two clusters and the Mimi virus. The forth cross correlation is not discussed here
as the corresponding cluster is too far from the Mimi virus. Note that there is no need for

several references in order to reconstruct the Mimi virus.

Figure 5 Holograms of deformed specimen recorded with small reference clus-
ters. Panels a and b display holograms and their reconstructions as insets. The scale bar
represents 100 nm. In ¢, the corresponding signal-to-noise ratio vs. half-period resolution
is plotted. The central diffraction speckle from the reference cluster with diameter <20 nm
covers almost the entire detector area.
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