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1. Introduction

Financial portfolio selection is the problem of op-
timal allocation of a fixed budget to a collection of
assets (commodities, bonds, securities etc.) which pro-
duces random returns over time. The word optimal,
however, can have different meanings. For instance, one
could define optimal so that a solution to the portfolio
problem maximizes expected or average value of the
return. While this definition is intuitively appealing,
it is also naive because the values of a random pro-
cess can deviate from the expected value. A defini-
tion of optimal should therefore incorporate deviations
from the expected value. In his 1952 paper [4]], Harry
Markowitz proposed just such a definition of optimal
for the financial portfolio selection problem. Markowitz
proposed that the problem has an optimal solution when
an investor maximizes expected return and minimizes
variance in the values of the return. In other words, an
investor should look to maximize gain and minimize
risk for a given financial portfolio.
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Markowitz’s portfolio selection theory also formal-
izes the wisdom of portfolio diversification, where in-
stead of allocating the largest fractions of the budget to
a select number of assets with largest expected return,
an investor allocates his budget to many assets with the
hope that the fortune of some of these assets will not
be influenced by the misfortune of some others.

Formally, consider a portfolio with n assets. Let a;
be the percentage allocation of the total budget to asset
¢ and let R; denote the random variable representing the
return from asset ¢. Further, let R denote the random
variable for the return from the entire portfolio. Then

R = Z CLiRi
whereby the expected return from the the portfolio is

due to the linearity of expectation. Next, consider the
variance of R which is given by

Var(R) = ZaiajCov(Ri, R;), 2)

,J
where Cov(R;, R;) is the co-variance of the random
variables R; and R; and which reduces to the variance
of R; for i+ = j. An investor working with respect
to Markowitz theory will maximize (I) while mini-
mizing (2). The information that the investor needs



to achieve these two tasks is the pairs of statistics
[E(R;),Cov(R;,R;)]. In his paper, Markowitz refers
to these pairs as (E, V) combinations and assures that
it is always possible to identify an optimal one.

More mathematically, this is a bicriteria quadratic
optimization problem in which the set of all optimal
solutions yield the so-called efficient frontier or efficient
portfolios. Among all optimal portfolios, the decision
maker will make a choice based on his/her preferences.
In the literature this formulation is also known as the
mean-variance model.

For a given pair of assets ¢ and j, the contribution
to Var(R) is zero when either a; or a; is zero, that
is, when the investor does not allocate any budget to
asset ¢ or j. However, this contribution can be made
smaller by allocating positive budget to assets ¢ and j
and ensuring that Cov(R;, R;) is negative. A negative
value for Cov(R;, R;) will imply that the returns from
asset ¢ and j influence each other inversely and an
adverse change in the returns from one asset will mean
a favorable change in the returns from the other. Hence,
not only does Markowitz theory justify the maxim of
diversification mentioned earlier, but it also provides a
measure for diversification.

2. Portfolio Selection as Unconstrained Op-
timization

In a relaxed form, the Markowitz portfolio model
can be formulated as a quadratic unconstrained binary
optimization (QUBO) problem as follows:

Minimize : 6; Z [~ E(R;)]
+ 05 Z O{i()éjCOV(Ri, R])

,J

2
+ 93 (Z OéiAi - B)

subject to a; € {0,1}, A; is the maximum amount
of money that can be invested in the ¢-th asset, and
where B is the total budget. In this relaxed formulation
we suppose that fractional shares of stocks can not
be purchased, so the decision maker either invests the
total amount A; into the i-th asset or nothing. The
objective function is composed by three terms: the
expected return, the volatility of the investment, and a
penalization term that takes into account the difference
between the invested amount of money ) ., A;c; and
the total budget B. The positive weights 6;,i = 1,2, 3,

describe the relative importance of each criterion in the
decision making process.

The QUBO form for the Markowitz portfolio model
is ideally suited for running on the specialized quantum
computer available from the Canadian technology com-
pany, D-Wave Systems. D-Wave Systems has developed
a specialized quantum processor that uses the principles
of quantum information processing to solve uncon-
strained optimization problems. The D-Wave processor
uses superconducting technology and the physics of
quantum annealing to find the minimum energy eigen-
state of the Ising Hamiltonian operator, which corre-
sponds to the optimal strategy in the Markowitz model.
Unlike a conventional computer, a quantum computer
utilizes quantum bits, or qubits, to encode and process
information. The principles of quantum physics allow
qubits to store information in superposition of logical
basis states. For example, a single qubit can store any
normalized superposition of the logical 0 and logical
1 states simultaneously. A quantum computer manip-
ulates superposition across multiple qubits to process
information. Measurements with a quantum computer
causes these superposition states to collapse into definite
logical states, either O or 1, with probabilities given by
the respective coefficients.

We show how quantum superposition states within
the special purpose D-Wave processor may be used
to effectively sample the space of potential portfolios.
Computation then corresponds to finding the optimal
portfolio as defined by the objective function above.
The D-Wave processor uses quantum dynamics, namely
quantum annealing, to isolate the portfolio selection,
and we develop an implementation of portfolio selection
using the D-Wave processor to recover the optimal
portfolio. Our approach tests whether the adoption of
the D-Wave quantum computer allows for a meaningful
increment in computational performance for solving
the Markowitz portfolio. We use D-Wave’s quantum
optimizer to find the optimal allocation of funds.

We map the QUBO form of Markowitz’s portfolio
selection problem into the well-known Ising model.

H==> "hjZj=Y J;ZiZj+~ 3)
J 4,J

where the real-valued coefficients h; and J; ; define,
respectively, the bias for qubit ¢ and the coupling be-
tween qubits ¢ and j and the Pauli Z; operator is for
the i-th qubit.
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h; = (0:Cov(R;, R;) + 03A7
—91E(Ri) — 2393A1)

and v = 03 B2.

Our goal here is to use D-Wave’s quantum computer
to explore the solution to portfolio optimization prob-
lems for data gathered from Abu Dhabi Stock Exchange
website in Abu Dhabi, United Arab Emirates. Abu
Dhabi is the capital city and the largest Emirate of the
United Arab Emirates. It excels as a bridge between the
East and the West in tourism, trade, financial services,
to name a few. Abu Dhabi Securities Exchange offers
opportunities to invest in businesses and industries in
the Gulf Cooperation Council region. We have collected
and processed the data from Abu Dhabi Securities
exchange and used it to optimize the portfolio using
MATLAB’s Genetic Algorithm solver. The MATLAB
solution has been validated using QBSOLYV, D-Wave’s
simulator for its actual quantum optimizer. The next
step is to validate the solutions obtained from MATLAB
and QBSOLV with the actual quantum computer.

&)

2.1. Quantum Programming and Execution

Programming the D-Wave processor requires first
reducing the Markowitz model to the Ising form in
Eq. [8]. This logical representation of the optimiza-
tion function must then be encoded into the processor
hardware. The D-Wave processor has a unique hardware
connectivity graph called Chimera that corresponds to
a rectangular array of bipartite unit cells. As shown in
Eq. (@), the i-th and j-th qubits generally posses non-
zero coupling between them. Mapping logical problems
into the Chimera hardware therefore requires an em-
bedding function that uses chains of coupled qubits
to develop equivalent representations of the problem
structure. There are a variety of embedding methods
available [11]. The D-Wave Solver API (SAPI) provides
an implementation of an embedding algorithm search
from Cai, Macready, and Roy [12]], which uses a prob-
abilistic search to find a valid embedding. We use the
SAPI-provided embedding routine provided to program
the dense Ising model into the Chimera hardware. The
resulting parameters for the embedded physical Ising
model are then given in terms of the original Ising
coefficients and an intra-chain coupling constant .J [[10]].
We set the value of J to be approximately an order
of magnitude greater than the largest value of an co-
efficient; this setting is optimized based on empirical
observation.

Execution of the embedded physical program is
based on the time-dependent Hamiltonian H(t) =
A(t)Hy + B(t)Hy, where Hj is the transverse field
term and H is the physical Ising model. The annealing
schedules A(t) and B(t) have a fixed form within the
hardware but a scalable duration 7'. Larger values of
T imply a slower schedule. We use an annealing time
T = 20us. A single program execution returns a binary
string representing the candidate solution for the ground
state of the physical Ising model. We decode this string
into the solution for the QUBO problem. We collect an
ensemble of such strings and generate a list of these
candidate solutions. We then order the list of these
solutions based on the calculated energy and pick the
solution with the lowest energy. Our implementation
of these programming steps rely on the XACC pro-
gramming framework [13]. The XACC framework is
designed to provide an extensible software framework
for integrating novel computational accelerators, like
quantum processors, into conventional scientific appli-
cation codes.

Our implementation of portfolio optimization uses
the D-Wave processor to find the optimal selection
based on real data from the Abu Dhabi Securities
Exchange. The prototype open-source code and data set
are available online [[14]. As seen in the data files for
the averages and covariances, there are a wide array of
values for the selected stocks. As a simplification we
have performed portfolio optimization using a current
price A; for stock S; that matches the corresponding
average E(S;). We have also assumed a total budget
for investment to be $100. Finally, we have found the
solution to this multi-objective optimization function to
depend on the specific choices for #;. This is a well-
known feature of using the weighted sum method to
represent multi-objective optimization. For our demon-
strations, we have settled on the use of 6; = 1/3 for all
i.

For the above definition, we have used adiabatic
quantum optimization with the D-Wave processor to
search for the optimal portfolio. Repeated runs of the
program for the same anneal time of 20 us returns the
same result of a portfolio selection that costs $121.176.
This cost does not strictly match our budget because the
weight sum method provides only a tradeoff between
the different constraints. For example, changing the
weights to #; = 0.8, 62 = 0., and 63 = 0.2 produces
a portfolio that costs $119.007. However, this choice
has clearly ignored the influence of the covariance on
minimizing risk. In addition, longer anneal times (up
to 2 ms) yield very similar portfolios but with slightly



lower costs. We find that some selections cannot be un-
ambiguously determined from the program. This traces
back to the embedded chains that return a strictly even
distribution of the 0 and 1 outcomes. We separate these
stocks from the remainder of the portfolio and compute
the uncertain cost separately. For our problem set, this
spread is typically from $4 to $40.

This data set is too large for direct embedding onto
the D-Wave 128-qubit simulator, and was submitted to
gbsolv, a heuristic QUBO solver, which is designed for
problems too large and/or too dense to be embedded
on a D-Wave quantum computer. gbsolv divides QUBO
problems into chunks and iterates on subQUBOs until
either the best solution is found, or the input time limit
runs out. The gbsolv solution, which made use of the D-
Wave simulator, is compared to the MATLAB-derived
solution, with good agreement.

In summary, we have performed Markowitz portfo-
lio optimization using the D-Wave processor.
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