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Chapter 1

Introduction

As we move towards the exascale era, the new architectures must be capable of running the

massive computational problems efficiently. Scientists and researchers are continuously invest-

ing in tuning the performance of extreme-scale computational problems. These problems arise

in almost all areas of computing, ranging from big data analytics, artificial intelligence, search,

machine learning, virtual/augmented reality, computer vision, image/signal processing to compu-

tational science and bioinformatics.

With Moore’s law driving the evolution of hardware platforms towards exascale, the dominant

performance metric (time efficiency) has now expanded to also incorporate power/energy effi-

ciency. Therefore the major challenge [1–5] that we face in computing systems research is: “how

to solve massive-scale computational problems in the most time/power/energy efficient manner?”

The architectures are constantly evolving making the current performance optimizing strategies

less applicable and new strategies to be invented. The solution is for the new architectures, new

programming models, and applications to go forward together. Doing this is, however, extremely

hard. There are too many design choices in too many dimensions. The algorithms/applications

may have a wide range of parameters, making them either intensely bandwidth bound or heavily

compute bound, limited only by the hardware’s operational throughput. This significantly affects

the algorithms used to obtain the best solution. At the hardware end, the target platform affects not

only the parallelization methods but also the tool-chains used. To overcome this complications,

cost models and simulators are used.

We propose the following strategy to solve the problem, i.e., “how to solve massive-scale

computational problems in the most time/power/energy efficient manner?”:

1. Models Develop accurate analytical models (e.g. execution time, energy, silicon area) to

predict the cost of executing a given program.
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2. Complete System Design Simultaneously optimize all the cost models for the programs

(computational problems) to obtain the most time/area/power/energy efficient solution. Such

an optimization problem evokes the notion of codesign.

Codesign—the simultaneous design of hardware and software—has two common interpreta-

tions [1, 6]. System codesign [7, 8] is the problem of simultaneously designing hardware, run-time

system, compilers, and programming environments of entire computing systems, typically in the

context of large-scale, high-performance computing (HPC) systems and supercomputers. Appli-

cation codesign, also called hardware-software codesign [9–11], is the problem of systematically

and simultaneously designing a dedicated hardware platform and the software to execute a single

application (program). The proposed approach is applicable to both contexts.

Solving the problem of System codesign in its full generality is very difficult [1,2,4,7] because

of the wide range of (i) computational problems, (ii) the programming languages and abstractions

used to express them, and (iii) varying target architectures, from data centers and cloud-based plat-

forms, to distributed heterogeneous mobile platforms such as phones, and even “things.” There-

fore, we suggest the following breakdown:

1. Employ Domain-Specificity Choose (i) a (small set/class) of programs, (ii) highly opti-

mized hardware accelerators, and (iii) the optimal compiler transformations.

2. Develop Cost Models Develop accurate analytical cost (Time/Power/Area/Energy) models

for performance prediction and optimization.

3. Mini Sub Prob - Specialize Solve the codesign problem for the specific domain in (1) using

the models in (2) i.e. optimize the program, compiler and hardware parameters simultane-

ously.

4. Large Prob - Generalize Repeat the above process to cover various important classes of

programs, assign a weight to each class of programs and formulate an optimization problem

for this weighted set of program parameters. Simultaneously, solve for all the parameters

and for all classes of programs.
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1.1 Specialization
Application codesign [12] is particularly important for embedded systems. In many uses of

these systems (e.g., self-driving cars, computational fluid dynamics, neural networks, medical

imaging, smart cameras, and cyber-physical systems) general purpose platforms based on standard

CPUs deliver inadequate “performance” on a combination of many cost metrics: speed/throughput,

power/energy, weight, size, and manufacturing/fabrication cost, especially in volumes that the mar-

ket can sustain. As a result, specialized hardware is essential.

Hardware platforms for embedded systems are usually heterogeneous, with (instruction-set)

programmable processors (CPUs and micro-controllers), accelerators that are either instruction-

set programmable (e.g., GPUs), or “hardware programmable” ones like FPGAs and reconfigurable

logic, as well as Application Specific Integrated Circuits (ASICs). For HPC systems, ASICs are

usually not a designer option. In either case, the platforms have specialized, highly parallel, often

fine-grain, components like FPGAs, GPUs, or DSPs, called accelerators.

The challenge is exacerbated when we consider the fact that accelerators are not one single

architecture, and moreover, are constantly evolving. For example,

• Google recently developed the TPU (Tensor-flow Processing Unit), an ASIC to accelerate

machine learning computations. It is completely invisible to end users, who access it via the

Tensor-Flow tool, and whose back end presumably makes direct library calls to TPUs.

• Microsoft released Catapult, an FPGA based fabric for accelerating large-scale data-center

services. It is a custom design, written in Verilog, and accessed via library calls.

• At the other end of the spectrum, Facebook is developing its large scale machine learning

applications using off-the-shelf GPUs and conventional tool chains: CUDA/OpenCL.

Mapping an application to an accelerator platform, even when the hardware is fixed, is extremely

difficult. Codesign seeks to simultaneously design the hardware itself, and is, therefore, an even

harder problem. Multiple cost metrics must be optimized, while still providing flexibility to the

programmer and end user, and the design space is huge.
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The key element of our approach is to exploit multiple forms of domain-specificity [1]. First,

we tackle a specific (family of) computations that are nevertheless very important in many em-

bedded systems. This class of computations, called dense stencils, includes the compute-intensive

parts of many applications such as computational fluid dynamics, neural networks, medical imag-

ing, smart cameras, image processing kernels, simulation of physical systems relevant to realistic

visualization, as well as the solution of partial differential equations (PDEs) that arise in many

cyber-physical systems such as automobile control and avionics.

Second, we target NVIDIA GPUs, which are vector-parallel programmable accelerators. Such

components are now becoming de-facto standard in most embedded platforms and MPSoCs since

they provide lightweight parallelism and energy/power efficiency. We further argue that they will

become ubiquitous for the following reasons. Any device on the market today that has a screen

(essentially, any device, period) has to render images. GPUs are natural platforms for this process-

ing (for speed and efficiency). So all systems will have an accelerator, by default. If the system

now needs any additional dense stencil computations, the natural target for performing it in the

most speed/power/energy efficient manner is on the accelerator.

The third element of domain specificity is that we exploit a formalism called the polyhedral

model as the tool to map dense stencil computations to GPU accelerators. Developed over the past

thirty years [13–17], it has matured into a powerful technology, now incorporated into gcc, llvm

and in commercial compilers [Rstream, IBM]. Tools targeting GPUs are also available [18, 19].

Thus, we formulate the domain-specific optimization problem: simultaneously optimize com-

pilation and hardware/architectural parameters to compile stencil computations to GPUs.

Previously, we presented [20] an approach to solve the above problem as follows:

1. Develop Models

(a) Time Model [21] We show that the elements of the domain specificity can be combined

to develop simple, analytical (as well as accurate) models for the execution time of tiled

stencil codes on GPUs and that these model can be used to solve for optimal tile size
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selection. Our model was able to predict tile sizes that achieve 30% of theoretical

machine peak on NVIDIA Maxwell GTX 980 and Titan X.

(b) Area Model [20] We develop a simple, analytical model for the silicon area of pro-

grammable accelerator architectures, and calibrate it using the NVIDIA Maxwell class

GPUs. Our model proved to be accurate to within 2% when validated.

(c) Energy Model [22] We also developed energy models, as an explicit analytic function

of a set of compiler and hardware parameters, that predict the energy consumption by

analyzing the source code. We used these energy models to obtain optimal solutions to

tile size selection problem.

2. Codesign [20] We combine the proposed execution time model [21] and the area model [20]

with a workload characterization of stencil codes to formulate a mathematical optimization

problem that minimizes a common objective function of all the hardware and compiler pa-

rameters. We propose a set of Pareto optimal designs that represent optimal combination of

the parameters that would allow up to 126% improvement in performance (GFlops/sec).

Despite domain specificity, the problem remains difficult. Even when done by hand for sin-

gle target architecture and an application kernel, it is more art than science. Although smart

designers and implementers have worked for many decades on such problems for the “appli-

cation/architecture du jour,” each one was usually a point-solution [23–25]. Designers invested

blood, sweat and tears to find the best implementation, used it to solve their problem of interest,

usually published a paper explaining the design, and moved on. Their invested effort, particularly

the trade-offs they made, and lessons they learned, are lost: future designers are left to reinvent

wheels.

The high-level objective is to optimize stencil codes while tuning the hardware accelerator

(GPUs) developing a complete ecosystem. The goal is to automatically and provably optimally,

using time and/or energy as the objective function, map stencils to the hardware accelerators.
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The idea is to obtain provably optimal mappings through rigorous mathematical optimizations.

The proposed approach can have the following benefits.

• Automation with Optimality: the most time/power/energy efficient implementations can be

derived, reducing programmers’ effort. Compilation tools can be used to guide the optimal

choice of transformations which will, in turn, optimize the performance of the workloads

such as deep learning, image rendering, cyber-physical systems, autonomous vehicle sys-

tems, etc.

• Future proofing: Porting applications to new GPU architectures will require less effort.

Instead of a redesign of each program, our methods can be used to develop new paralleliza-

tion strategies and transformations, refine/redefine objective functions and constraints, and

re-target the compiler. This one-time effort can then be amortized over many application

kernels.

• Codesign: By casting hardware/architectural parameters as variables in the mathematical

optimization framework, we can solve for their optimal values. This will enable us to sys-

tematically explore alternate GPU architectures and simultaneously tune compilation param-

eters. Such a codesign approach will help speed up the research work and the chip design

process. The cost models can be used to quickly recognize the performance sinks and help

identify the design flaws in its early stages saving billions of dollars.

Generalization Future exascale high-performance computing (HPC) systems are expected to be

increasingly heterogeneous, consisting of several multi-core CPUs and a large number of accel-

erators, special-purpose hardware that will increase the computing power of the system in a very

energy-efficient way [5]. Consequently, highly specialized coprocessors will become much more

common in exascale than in the current HPC systems. Such specialized, energy-efficient acceler-

ators are also an important component in many diverse systems beyond HPC: gaming machines,

general purpose workstations, tablets, phones and other media devices. In order to attain exascale
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level performance, accelerators have to become even more energy-efficient, and experts anticipate

that a large part of this must come through increased specialization [1].

Our approach can be used to solve the problem of System codesign by applying proposed

accelerator codesign techniques to all the classes of programs that optimize for all the parameters

simultaneously. We provide a proof of concept of our approach, which is a stepping stone towards

solving the larger problem of transforming the GPUs into accelerators for HPC Systems.

1.2 Breaking Abstractions

Code Performance 
Data

Optimization 
Strategy

Performance 
Model

run/measure/profile

prediction

analyzetransform

Figure 1.1: HPC application performance improvement cycle. The layers represent different architectures.

Since a long time the HPC developers and tool builders are using certain abstractions to im-

prove the performance of applications. Figure 1.1 shows the performance improvement life cycle

of an HPC application. The layers represent a separate life cycle for every architecture (e.g. GPUs,

CPUs, FPGAs). A different Programming Language and System, each with its own Programming

Environment & Tools is used based on the underlying hardware architecture. Therefore, there are

different codes for the same application on different hardware. Usually, the scientists who develop
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the algorithms/applications are completely isolated from the HPC performance tuning specialists.

For every application, a profiler is used to get performance data which is analyzed to derive a

performance model. The performance models are used to predict the performance and select an

optimization strategy. Optimal transformation strategy is applied to get code. This cycle repeats

until the satisfactory performance is obtained.

Fortran

C source
PRDG

Array 
Dataflow 
Analysis

Stencil 
DSL

DSLs
Polyhedral 
analyses

Scheduler

Parallelizer

Tiler

Memory (re) 
Allocator

Code 
Generator(s)

PQAF(s)
C+OPenMP

C+MPI

C+CUDA

PGAS

FPGA

Transformation 
Engine

Figure 1.2: Polyhedral Compilation

Polyhedral compilers (see Figure 1.2) have a Polyhedral Reduced Dependence Graph (PRDG)

as the intermediate representation of loops. Polyhedral analysis (such as scheduling, parallelizing,

memory allocation, etc.) is performed on this graph. Piecewise Quasi-Affine Functions (PQAFs)

are mathematical functions that transform the PRDG using cost functions. A transformed PRDG

is used to generate codes. Notice the similarities and differences between Figures 1.1 and 1.2 and

their performance cycles. The optimization strategies in Figure 1.1 are represent the PQAFs. The

performance models are subsumed in the polyhedral analysis phase. Our work focuses on using

performance models for polyhedral analysis, in turn, breaking the cycle and reducing the time to

find optimal solutions.
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Novelty

1. The main novelty of our work comes out as a consequence of some of the exascale chal-

lenges [1]. For exascale system design, various architectures, programs and transformation

strategies are to be explored simultaneously in order to find the optimal. We add performance

models to this design space and provide a unified view of the optimization space. Figure 1.3

shows this view (more details in Section 2.2).
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Figure 1.3: Unified View of the Design Space.

2. The above design space, however, is very large, has too many parameters and is too com-

plicated to develop precise models. Therefore, we explore domain specificity and identify

regions where optimization across multiple axes become possible.

We show how the analytical cost models can be used to optimize the performance of domain

specific programs using transformation strategies for a given architecture in Chapter 2. The rest of

this document is organized as follows: Chapter 2 explains our proposed approach. Chapters 3, 4,

and 5 discuss the work that has been accomplished. Bottleneck Analysis is explained in details in

Chapter 6. Chapter 7 discusses the relevant literature. Finally, Chapter 8 concludes the work.
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Chapter 2

The Landscape and Navigation

2.1 Domain Specificity
As we move to address the challenges of exascale computing, one approach that has shown

promise is domain specificity: the adaptation of application, compilation, parallelization, and opti-

mization strategies to narrower classes of domains. An important representative of such a domain

is called Stencil Computations, and includes a class of typically compute bound parts of many

applications such as partial differential equation (PDE) solvers, numerical simulations in domains

like oceanography, aerospace, climate and weather modeling, computational physics, materials

modeling, simulations of fluids, and signal and image-processing algorithms. One of the thirteen

Berkeley dwarfs/motifs [26], is “structured mesh computations,” which are nothing but stencils.

Many dynamic programming algorithms also exhibit a similar dependence pattern. The importance

of stencils has been noted by a number of researchers, indicated by the recent surge of research

projects and publications on this topic, ranging from optimization methods for implementing such

computations on a range of target architectures, to Domain Specific Languages (DSLs) and com-

pilation systems for stencils [27–39]. Workshops and conferences devoted exclusively to stencil

acceleration have recently emerged.

A second aspect of domain specificity is reflected in the emergence of specialized architec-

tures, called accelerators, for executing compute intensive parts of many computations. They

include GPGPU, general purpose computing on graphics processing units (GPUs), and other co-

processors (Intel Xeon Phi, Knight’s Landing, etc.). Initially they were “special purpose,” limited

to highly optimized image rendering libraries occurring in graphics processing. Later, researchers

realized that these processors could be used for more general computations, and, eventually, the

emergence of tools like CUDA and OpenCL enabled general purpose parallel programming on

these platforms.
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Exploiting the specificity of the applications and the specificity of target architectures leads

to domain-specific tools to map very high level program specifications to highly tuned and opti-

mized implementations on the target architecture. Many such tools exist, both academic research

prototypes and productions systems.

As indicated earlier, our domain specificity comes in multiple flavors. First, we investigate only

stencil computations. They belong to a class of programs called uniform dependence computations,

which are themselves a proper subset of “affine loop programs.” Such programs can be analyzed

and parallelized using a powerful methodology called the polyhedral model [13–17, 48–50], and

many tools are widely available, e.g., PPCG, developed by the group at ENS, Paris [51]. Second,

we tackle a specific target platform, namely a single GPU accelerator, and PPCG includes a module

that targets GPUs and incorporates a sophisticated code generator developed by Grosser et al. [18]

that employs a state-of-the-art tiling strategy called hybrid hexagonal classic tiling. An open source

compiler, implementing this strategy is also available, henceforth called the HHC compiler.

2.1.1 Comparison with Polyhedral Methods

The landscape described (in Figure 1.3) allows us to place our work in context. Although our

methods are for domain specific purposes, an extreme situation with CPUs as the architecture, and

the set of polyhedral programs allows us to compare with conventional compilation.

The optimization problem a compiler “solves” is: pick transformation parameters so as to

optimize the program property of interest, typically execution time. Since it has a single (or a small

handful of) predetermined strategies, it is a limited kind of mathematical optimization problem.

The objective function is a surrogate for execution time.

Now consider PLuTO [50], a state-of-the art polyhedral compiler based on a mathematical

representation of both programs and transformations. By considering only polyhedral programs

and transformations, the optimization problems are rigorous. By default, PLuTO targets multi-

core CPUs, and uses a transformation strategy that combines one level of tiling, loop fusion and

(loop/wavefront) parallelization of tiles. It solves a mathematical optimization problem where the
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schedule parameters (coefficients of tiling and schedule hyperplanes) are the unknown variables,

and the cost function is the number of linearly independent tiling hyperplanes, combined with a

quantitative measure of the length of the inter-tile dependences. This is again, a surrogate for

the total execution time, and leads to solutions that while reasonable, are not provably optimal.

Moreover, parameters like tile sizes, vectorization and inter-tile schedule are chosen using simple

heuristics, and are not part of the optimization.

2.1.2 Limitations of current domain-specific compilation

Consider how polyhedral compilation has recently evolved. Bondhugula et al. [52] proposed

an extension of PLuTO for periodic stencil computations, and Bandishti et al. [53] developed

another extension to allow concurrent starts. Since the objective functions in these strategies are

all surrogates for the execution time, there is no way to compare across the strategies. Authors

leave the choice of strategy to the user, via compiler flags. Recently it was shown (in [54], both

quantitatively and empirically) that while concurrent start may be faster for iteration spaces with

a certain aspect ratio of the program size parameters, the best performance for the same program

with different aspect ratio is provided by the basic PLuTO algorithm.

As another example, Grosser et al. [18] proposed a novel combination of hexagonal and classic

tiling for stencil programs on GPUs. They demonstrated—only empirically—performance gains

compared to previous strategies, but did not quantitatively explore cases where HHC was better.

As a consequence, polyhedral compilation remains difficult. Every time a new strategy is de-

veloped, the authors publish a paper, and empirically show that their results are better than previous

ones. They usually do not provide a quantitative, analytical comparison, thereby preventing a bet-

ter, collective understanding of how to solve the bigger, global problem. Our intention is not to

criticize the field: the problems today are difficult enough that significant effort is needed for even

developing such “point solutions.” Our approach is a step towards addressing these limitations.
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2.2 Design Landscape
To place our work into context, to precisely formulate the problems we address, and to describe

the approach we take to solve them, we show the design landscape of domain-specific optimization

problems. It has six dimensions, organized into three planes (Fig. 2.1 (a), (b) and (c)). Each plane

has two axes: instances, and features. The feature axis may be hierarchical, and parameterized.

Instance

Features

Parameters

Operations

Dependences

Iteration	space(s)

Data	Space(s)

Program	Plane

Strategies

Features

Parameters

Num Levels

Tile	Shape

Attributes

Schedule

Transformation	Plane

(a) Programs (b) Transformations

Instance

Features

Bandwidth
or Throughput

Latency

Capacity

#	Processors

#	Memories

Architecture	Plane

Games

Metrics

Time

Energy

Power

Area

Memory

Performance	Modeling

(c) Architectures (d) Performance Models

Figure 2.1: The Domain-Specific Design Landscape. We tackle a narrow domain of programs (a) each
one described by a small number of features. Similarly the mappings/transformations (b) we can apply are
drawn form a small set, each one parameterized by a set of features. Architectures (c) are also drawn from a
similarly small set, and are parameterized by their features. In each plane, the features may be hierarchical.
The performance models (d) and the games that we can play.

The program plane (Fig. 2.1(a)) consists of instances of dense stencil computations, such as

Convolutional Neural Net (a machine learning kernel), Heat-3D (a stencil computation from com-
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putational science), Clustal-3D (a dynamic programming kernel from bioinformatics). Because of

domain specificity, each program is compactly described with a small set of features, such as: (i) a

set of iteration spaces (ii) a set of data spaces, (iii) a set of dependences, (iv) a set of computational

operators (e.g., loop bodies), and (iv) one or more size parameters.

The transformation plane (Fig. 2.1(b)) defines the space of compiler transformations that can

be applied to the program. Domain specificity again allows us to consider only a few instances, e.g.,

time skewing [55, 56], diamond tiling [53], diamond prisms [36, 57], or hybrid hexagonal-classic

(HHC) tiling [18,58,59]. Transformation strategies are (potentially) hierarchical, and each level of

the hierarchy represents a partitioning.1 They are also specified by a set of features, each of which

is a mathematical function: (i) tile shape, specified by the so called “tiling hyperplanes,” (ii) tile

schedule, (iii) processor mapping specifying which (virtual/physical) processor in the hardware

hierarchy will execute a tile, and (iv) memory allocation specifying where its inputs and outputs

are stored. Note that the schedule usually also has components to specify when tile inputs are

read and when tile outputs are written. The transformation plane features are also parameterized:

mapping function coefficients, tile sizes, etc., are viewed as parameters.

The architecture plane (Fig. 2.1(c)) captures the accelerator hardware. Examples of architec-

ture instances are ASICs, FPGAs/Reconfigurable Logic, and Instruction Set Architectures (such

as GPGPUs).2 Hardware features include (i) the number of processors at that granularity, (ii) the

memories, and (iii) the interconnects. Parameters of each such feature specify the performance of

that feature: e.g., speed in terms of throughput and latency, capacity, etc. Also included are spe-

cific access/scheduling constraints such as the need for gang scheduling in warps, the constraints

on coalescing and bank conflicts, etc.

We combine this six-dimensional design space with the performance modeling plane (Fig. 2.1(d))

which gives us a high level picture of various performance metrics and the games that we can play

with these performance models. This unified view of the landscape is the main novelty of our

1Partitioning denotes a generalization of a crucial transformation called tiling to also include multiple passes.

2 In our taxonomy, an accelerator that is programmable in the conventional, von Neumann sense is an ISA, and
accelerators where the “programming” is at the circuit level are FPGAs or ASICs.
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Figure 2.2: The main novelty of our work! The Domain-Specific Design Landscape that we must navigate
is thus the cross-product of the four planes in Fig. 2.1.

work. Fig. 2.2 shows the eight dimensional navigation space to be explored. A model can be used

for performance prediction as well as performance improvement like (auto)tuning, bottleneckol-

ogy (bottleneck analysis), etc. Multiple models can contribute to multi-criteria optimization (eg.

simultaneously optimize for both, time and energy) as well as HW/SW Co-design.

2.3 Approach
We now describe our overall approach and how it can lead to the benefits mentioned earlier

(i.e., automatic optimal mappings, future proofing and codesign). First, we develop analytical

models for execution time and energy for a given program and a transformation strategy on a fixed

architecture. We also develop silicon area models for GPU architectures and show its use in chip
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area prediction. Second, we show how these models can be used for performance optimization.

And finally, we show how to formulate mathematical optimization problems using such cost mod-

els to solve the problem of software-hardware codesign. We show our initial results to justify our

claims, and identify remaining challenges in later chapters.

2.3.1 Models and Validation

Execution Time Model and Prediction of GPGPU Stencils

We develop an execution time model that predicts execution time of transformed stencil codes.

Our model is a simple set of analytical functions that predict the execution time of the generated

code. It is deliberately optimistic, since we are targeting modeling and parameter selections yield-

ing highly optimized codes. We experimentally validate the model on a number of 2D and 3D

stencil codes, and show that the root mean square error in the execution time is less than 10% for

the subset of the codes that achieve performance within 20% of the best.

Energy Model and Prediction of GPGPU Stencils

Like the analytical execution time model, we develop a methodology for modeling the energy

efficiency of tiled nested-loop codes running on a graphics processing unit (GPU) and use it for

prediction of energy consumption. We assume that a highly optimized and parameterized version

of a tiled nested-loop code—either written by an expert programmer or automatically produced by

a polyhedral compilation tool—is given to us as an input. We then model the energy consumption

as an analytical function of a set of parameters characterizing the software and the GPU hardware.

Most previous attempts at GPU energy modeling were based on low-level machine models that

were then used to model whole programs through simulations, or were analytical models that re-

quired low level details. In contrast, our approach develops analytical models based on (i) machine

and architecture parameters, (ii) program size parameters as found in the polyhedral model, and

(iii) tiling parameters. Our model therefore allows prediction of the energy consumption with re-

spect to a set of parameters of interest. We illustrate the framework on three nested-loop codes:

Smith-Waterman, and one-dimensional and two-dimensional Jacobi stencils, and analyze the ac-
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curacy of the resulting models. With optimal choice of model parameters the RMS error is less

than 4%. Two factors allow us to attain this high accuracy. The first is domain-specificity: we

focus only on tilable nested-loop codes. The second is that we decouple the energy model from a

model of the execution time, a known hard problem.

Area Model and Chip Area Prediction of GPUs

We also develop an analytic model for the total silicon area of a GPU accelerator. We faced

some difficulties in deriving an acceptable analytical model, as silicon data had to be reverse en-

gineered from extremely limited public domain resources. As a general observation, within each

GPU family, there is little diversity in the parameter configurations. For the Maxwell family of

GPUs, the GTX980 and Titan X chips were chosen as two sufficiently distinct points to calibrate

our analytical models. The calibration itself was performed by evaluating die photomicrographs,

publicly available information about the nVidia GTX 980 (Maxwell series) GPU, and other gen-

erally accepted memory architecture models. The model validation was done by comparing the

predictions with known data on the Maxwell series Titan X GPU. We found the model prediction

to be accurate to within, 2%, though this number is not significant3.

Next, we develop mathematical objective functions to illustrate the use of these models in

performance optimization and later we will show the same for software-hardware codesign.

2.3.2 Compilation and its optimization subspaces

To address the limitations of current domain-specific compilation noted in Section 2.1.2, we

now describe our approach to systematically exploring well defined regions of the design landscape

using exact (not surrogate) objective functions.

1. (Auto) Tuning: Let us consider a three-dimensional subspace in our landscape, of instances

of programs × transformations/strategies × execution time. At each point in this three-

dimensional space, we may define a mathematical optimization problem which has an ob-

3Although a many configurations of any family of GPUs are spaced out, they come from binning only a small
number of distinct dies. We ended up calibrating our model on one die and validating it on only another one.
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jective function, and a feasible space. Both involve analytical functions of parameters from

all three feature dimensions, defined by vectors: ~P for a program, ~S for a strategy, and ~A

for an architecture. The objective function for execution time is MT (~P , ~S, ~A). Similarly, we

have constraints defining the feasible space of the optimization problem, FT (~P , ~S, ~A). The

mathematical optimization problems can be formulated for various performance metrics as

follows:

(a) For execution time, minimize MT (~P , ~S, ~A) subject to FT (~P , ~S, ~A),

(b) For energy, minimize ME(~P , ~S, ~A) subject to FE(~P , ~S, ~A),

(c) For power, minimize MP (~P , ~S, ~A) subject to FP (~P , ~S, ~A), etc.

Each problem instance has an objective function that represents (is not just a surrogate for)

the metric which we seek to optimize: execution time(MT ), power(MP ), energy(ME), etc.

It is a function of all the parameters of this three-dimensional point. Other parameters, e.g.,

the number of processors, the memory capacity, etc., may define a feasible space where this

function is valid.

Our approach is based on the hypothesis that domain-specificity of both the programs and

the architecture allows us to develop such functions. Note that the objective function cannot

be a surrogate, it must be the actual cost metric of interest. Under this hypothesis, our entire

strategy can be summarized as collective solution of multiple optimization problems with

common objective function(s). We will discuss two such common objective functions,MT

for execution time andME for energy (expressed as GOPs/sec or GOPs/joule) in details in

the following chapters.

2. (Auto) Super-Tuning: The next step will be to extend the optimization across multiple

strategies, say S1 and S2. Given two separate optimizations formulated as follows:

(a) Minimize MT1(~P , ~S1, ~A) subject to FT1(~P , ~S1, ~A), and

(b) Minimize MT2(~P , ~S2, ~A) subject to FT2(~P , ~S2, ~A)
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We can formulate the problem of optimizing across strategies in two ways: (i) Take the min-

imum of the two optimizations min(minimize MT1(~P , ~S1, ~A), minimize MT2(~P , ~S2, ~A)), or

(ii) solve separate optimization problems, depending on the intersections and differences of

the feasible spaces of each one.

(a) Minimize min(MT1(~P , ~S1, ~A),MT2(~P , ~S2, ~A)), subject toFT1(~P , ~S1, ~A)∩FT2(~P , ~S2, ~A),

(b) Minimize MT1(~P , ~S1, ~A), subject to FT1(~P , ~S1, ~A)∩ ∼ FT2(~P , ~S2, ~A), and

(c) Minimize MT2(~P , ~S2, ~A), subject to ∼ FT1(~P , ~S1, ~A) ∩ FT2(~P , ~S2, ~A)

This can be extended to a set of strategies, S = {Si}. Although the second option is not very

scalable—the number of sub-problems grows exponentially with the number of strategies—

it is reasonable for a small number of strategies, e.g., it would let us automatically choose

between time skewing, diamond tiling, diamond prisms, and HHC.

3. Multi-Metric (Auto) Tuning: The above optimizations account for only one performance

metric, which leads to a single objective function for the optimization. One might want to

optimize for more than one metric. Let us consider a multi-metric optimization such as the

energy-delay product. The optimization problem can be formulated as

Minimize (MT (~P , ~S, ~A) ∗ME(~P , ~S, ~A)), subject to FT (~P , ~S, ~A) ∩ FE(~P , ~S, ~A)

Note, the feasible space consists of the intersection of the feasible space of time and energy.

The program parameters (eg. problem sizes) and the features (eg. tile sizes) of the selected

strategy (eg. Diamond tiling) are the parameters to the multi-metric objective function.

4. Multi-Metric (Auto) Super-Tuning: The above multi-metric objective function can be ex-

tended to multiple strategies, say S1 and S2. Consider, two optimization functions

(a) Minimize (MT1(~P , ~S1, ~A)∗ME1(~P , ~S1, ~A)), subject to FT1(~P , ~S1, ~A)∩FE1(~P , ~S1, ~A),

and

(b) Minimize (MT2(~P , ~S2, ~A) ∗ME2(~P , ~S2, ~A)), subject to FT2(~P , ~S2, ~A)∩FE2(~P , ~S2, ~A)
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As in (Auto) Super-Tuning, we can formulate the problem of optimizing across strategies in

two ways: (i) Take the minimum of the two optimizations, or (ii) solve separate optimization

problems, depending on the intersections and differences of the feasible spaces of each one.

The methods can be extended to a set of strategies, S = {Si}.

Thus, our approach would allow us to deliver on the promise of automatic and provably optimal

compilation, for any point in the program × transformations/strategies plane for a given perfor-

mance metric.

Polyhedral compilation revisited: As noted before, current polyhedral compilers target a

fairly broad class of programs, and make choices like tiling hyperplanes and shapes, and (inter

and intra) tile schedules. They do this by this using classic scheduling algorithms [16, 17, 50]

that use (integer) linear programming using surrogate objective functions. Tile sizes are chosen

subsequently via auto-tuning.

2.3.3 Codesign and its optimization subspaces

Codesign—the simultaneous design of hardware and software—has two common interpreta-

tions. System codesign is the problem of simultaneously designing hardware, runtime system,

compilers, and programming environments of entire computing systems, typically in the context of

large-scale, high-performance computing (HPC) systems and supercomputers. Application code-

sign, also called hardware-software codesign, is the problem of systematically and simultaneously

designing a dedicated hardware platform and the software to execute a single application (pro-

gram). The proposed approach is applicable in both contexts.

Application Codesign and its optimization subspaces

1. Application Codesign: For Application Codesign, we fix a program, a strategy as well as a

micro-architecture (technology node). In addition to the program parameters and features of

the selected strategy, we now have ~A, the architecture parameters, as unknowns. The archi-

tecture parameters can be number of processors, number of memories, size of memories, etc.
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Considering, execution time as the performance metric, the four-dimensional optimization

problem can be formulated as

Minimize MT (~P , ~S, ~A), subject to FT (~P , ~S, ~A)

The feasible space FT is a combination of (i) all possible program parameters, (ii) all pos-

sible features of the selected strategy, (iii) all possible architecture parameters, and (iv) time

as the performance optimizing criteria. Similar objective functions can be formulated for

different performance metrics.

2. Super Application Codesign: Classic application codesign techniques consider optimiza-

tion for one strategy. Domain specificity allows us to formulate the mathematical optimiza-

tion across a set of strategies, say S = {Si}, as follows

Minimize MT (~P , ~S, ~A), subject to FT (~P , ~S, ~A)

Note that the feasible space for each strategy will vary and not all architectures may be

feasible for every strategy. Such optimization allows for exploration of a larger feasible

space.

3. Multi-Metric Application Codesign: The architecture parameters may include configu-

ration options that trade off energy for performance (as in execution time). One might,

therefore, want to optimize across multiple performance metrics. A multi-metric SW-HW

Codesign optimization can be formulated as

Minimize (MT (~P , ~S, ~A) ∗ME(~P , ~S, ~A)), subject to FT (~P , ~S, ~A) ∩ FE(~P , ~S, ~A)

considering energy-delay product as the performance metric. Note that this four-dimensional

feasible space consists of program parameters, strategy features and architecture parameters

as unknowns.
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4. Multi-Metric-Super Application Codesign: Again, the multi-metric application codesign

objective function can be extended to multiple strategies, say S = {Si}. Considering energy-

delay product as the optimizing criteria, the objective function will be

Minimize (MT (~P , ~S, ~A) ∗ME(~P , ~S, ~A)), subject to FT (~P , ~S, ~A) ∩ FE(~P , ~S, ~A)

Note that the feasible space here consists of multiple areas in the design space based on the

strategy and performance metric.

System Codesign and its optimization subspaces

1. System Codesign: Let us now consider a set of program instances P = {Pi}, and recall that

we have common objective functions for all of them. The optimization problem

Minimize M( ~P , ~S, ~A) subject to F( ~P , ~S, ~A)

seeks to optimize a common performance metric (we drop the subscript for the common

metric). The parameters to this function are a set of program instances, features of the

strategy and the architecture features.

2. Super System Codesign: Let us now consider the following optimization problem, which

we call the generalized optimization problem.

Minimize M( ~P , ~S, ~A) subject to F( ~P , ~S, ~A)

This problem seeks to optimize the common performance metric for the set of programs

on the given architecture. We treat ~A, not as parameters, but rather as unknowns, in the

generalized optimization problem, argmin ~AM( ~P , ~S, ~A) gives us the optimal architecture for

the set of program instances. Thus we simultaneously solve for architecture and compilation,

thereby resolving the codesign problem.
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3. Multi-Metric System Codesign: The next step would be to extend our generalized opti-

mization problem to a multi-metric optimization.

Minimize (MT ( ~P , ~S, ~A) ∗ME( ~P , ~S, ~A)), subject to FT ( ~P , ~S, ~A) ∩ FE( ~P , ~S, ~A)

This is particularly useful in large system designs, where the transformation strategy is fixed

and more than one performance metric is critical for system design. Note, that we show

multi-metric optimization for two cost metrics which can be extended to more than two cost

metrics as needed.

4. Multi-Metric-Super System Codesign: The above multi-metric system codesign can be

further extended to consider multiple strategies as shown below

Minimize (MT ( ~P , ~S, ~A) ∗ME( ~P , ~S, ~A)), subject to FT ( ~P , ~S, ~A) ∩ FE( ~P , ~S, ~A)

This would be the ultimate goal for system codesign where we can optimize across all the

possible program, transformation and architecture planes for multiple performance metrics.

2.3.4 Bottleneckology

Our approach to system design seems deceptively simple, however, it is a very hard problem.

Exploiting the resources to their full capacity is one of the objectives while optimizing for per-

formance. The bottleneck analysis becomes helpful in studying the performance sinks and design

flaws. There are many ways of utilizing the cost models to perform bottleneck analysis. The cost

models can be used to identify the resources that have been saturated and the ones that have slack.

We refer to this slack and saturation of the resources as Bottleneckology. We study this in three

ways: (i) investigate codesign-tradeoffs, (ii) perform overhead analysis, and (iii) explore the effect

of hyperthreading. More details are provided in Chapter 6.

In the next chapters (3, 4, 5, and 6), we discussed our work in more details.
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Chapter 3

Models and Validation

Model predictions are used for estimating execution time, energy consumption, power con-

sumption, etc. of a program. Cost metrics either appear in the objective function as a factor to be

optimized or in the constraints. We will illustrate the use of a few of the many metrics - (i) exe-

cution time models, and (ii) energy models as cost in the optimizing functions; and (iii) memory

access models, and (iv) silicon area models as the constraints to the objective function.

3.1 Execution Time Model for GPGPU Stencils
We develop an execution time models for GPGPU stencils that guides the optimal choice of

compiler parameters(tile sizes). Our model is a simple set of analytical functions that predict the

execution time of the generated code. It is deliberately optimistic, since we are targeting modeling

and parameter selections yielding highly optimized codes. We experimentally validate the model

on a number of 2D and 3D stencil codes, and show that the root mean square error in the execution

time is less than 10% for the subset of the codes that achieve performance within 20% of the best.

We show the following.

• We develop a simple analytical model to predict the execution time of a tiled stencil program

and apply it to codes generated by the HHC compiler. The model is an analytic function of

– program, machine, and compiler parameters that are easily available statically, and

– one stencil-specific parameter that is obtained by running a handful of micro-benchmarks.

It is deliberately optimistic and also ignores the effect of some parameters.

• Although our model may not accurately predict the performance for all tile size combina-

tions, it is very accurate for the ones that matter, i.e., those that give top performance. To

show this, we generated more than than 60,000 programs for
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– two modern target platforms (NVIDIA GTX 980, and Titan X), and

– four 2D stencil codes (Jacobi2D, Heat2D, Laplacian2D, and Gradient2D) and two 3D

stencils (Heat3D and Laplacian3D)

– over a range of ten input/problem sizes, and

– a wide range of tile sizes and thread counts (the HHC compiler inputs) for each platform-

stencil-size combination.

As we expected, the root-mean-square error (RMSE) over the entire data set was “disap-

pointingly” over 100%. However, when we restricted ourselves to the data points that have

an execution time within 20% of the best value for that particular platform-stencil-size com-

bination, the RMSE dropped to less than 10%4, which we consider very good.

Our overall methodology is applicable, with simple extensions, to more general programs, e.g.,

those that fit the polyhedral model. But for achieving high GPU utilization, we need efficient

GPU codes to start with, which are very hard and time consuming to produce manually, especially

in higher dimensions. The highly optimized HHC-generated codes we are using for testing and

validation have a few thousand lines of CUDA code each and we generated tens of thousands such

codes in our experimental analysis. So our methodology is not limited to the HHC compiler (in

fact we have applied it successfully to manually generated 1D stencil codes), but the use of HHC

(or similar compiler) was necessary to produce for our experiments a high number of GPU codes

that are also very efficient.

3.2 Energy Model for Tiled Nested-Loop Codes
Energy efficiency has been recognized as one of the biggest challenges in the roadmap to

higher performance (exascale) systems for a number of reasons including cost, reliability, energy

conservation, and environmental impact. The most powerful computers today consume megawatts

4The restriction to the better performing subset was exactly our motivation. We designed the model to help
predict/explore data points that would give good performance. It is also why we made optimistic assumptions in
developing the model.
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of power, enough to power small towns, and at cost of millions per year. And those estimations do

not include the cost of cooling, which might be almost as high as the cost of computing itself [60].

In addition, the cost of building a power provisioning facility ranges at $10-22 per deployed IT watt

[61] and every 10 ◦C temperature-increase results in a doubling of the system failure rate, thereby

reducing the reliability of HPC systems [62]. Designing accurate models for energy efficiency

can help better predict the power and energy requirements of an application and aid developers

optimize the parameters of their codes for better energy efficiency on HPC systems.

The goal of our work is to introduce a new approach for modeling the energy cost as an analyti-

cal function of tunable software parameters in a way that is both simple and accurate. Having such

a model will allow the energy efficiency to be optimized with respect to (a subset of) the tunable

parameters by solving the corresponding analytical optimization problem.

We target with our modeling approach tiled nested-loop code segments, which are the most

compute-intensive portions of many application codes and which also allow a high degree of par-

allelism. In order to be more specific, we focus in our analysis on a subclass of the tiled nested-loop

codes called dense stencils, which occur frequently in the numerical solution of PDEs and in many

other contexts such as high-end graphics, signal and image processing, numerical simulation, sci-

entific computing, and bioinformatics. We chose stencils for our case studies since that would

allow us to model the entire class in a hierarchical way with a single generic model representing

the whole class, while model parameters that are stencil-dependent have to be separately specified

for each stencil of interest to complete its model. (However, the approach is applicable to any

other class of nested-loop codes that allows tiling.) We completely develop and validate the de-

tailed models (including the stencil-dependent parameters) of three specific stencils. Models for

other stencils can be developed in a similar way with relatively small amount of extra work.

In order to efficiently optimize stencils on accelerators, we aim to represent the amount of

energy consumed as an analytic function of the software parameters. We assume that the input

codes have been analyzed and optimized with respect to parallelism and data-access efficiency by

appropriate skewing and tiling transformations, say by a polyhedral code generator.

26



Our specific contributions are as follows.

• Our energy model predicts energy efficiency by analyzing source code only, unlike other

approaches [63, 64] that rely on parameters computed by running benchmarks for each in-

dividual code. We do use micro-benchmarks, but they are used to characterize hardware,

rather than codes.

• We are not aware of any previous work combining the polyhedral method with energy mod-

eling. Our approach allows optimization of codes that are already very efficient having

been significantly improved by applying the polyhedral method and by using advanced tiling

strategies such as hexagonal and hybrid tilings [18].

• Our model is very accurate (one version with RMS error ≤ 17.14% and another with

RMS error ≤ 4%), with similar or higher precision than alternative existing models, e.g.,

GPUSimPow [65], which are simulation based.

3.3 Memory Access Model for GPGPU Stencils
We develop Memory Access models [21, 22] for GPGPU stencils and use them for execution

time models and energy models. The memory models appear in two specific contexts. Firstly, the

total number of memory accesses made by a tile is used to model the data transfer time taken by

a tile, similarly, the data movement requirement of a wavefront is modeled using the equations to

calculate the data transfer time for wavefronts. Similarly, for the energy models we use memory

access equations to determine the amount of transfer required and combine it with the energy

consumption per data transfer to calculate the total energy consumption of a tile.

Second, the memory footprint of a tile appear as constraints to the formulated objective function

for optimization. The memory requirements of a tile are not to exceed the shared memory capacity

of a GPU. This in turn constrains the tile sizes and the feasible space.

These memory models are then used for codesign optimization [20]. Again for software-

hardware codesign, the memory models appear both in the objective function as a part of time
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model equations (i.e. to calculate the data transfer time) as well as the constraints where memory

capacity defines the feasible space.

3.4 Silicon Area Model for GPUs
We develop an analytic model for the total silicon area of a GPU accelerator. We faced some

difficulties in deriving an acceptable analytical model, as silicon data had to be reverse engineered

from extremely limited public domain resources. As a general observation, within each GPU fam-

ily, there is little diversity in the parameter configurations. For the Maxwell family of GPUs, the

GTX980 and Titan X chips were chosen as two sufficiently distinct points to calibrate our analyt-

ical models. The calibration itself was performed by evaluating die photomicrographs, publicly

available information about the nVidia GTX-980 (Maxwell series) GPU, and other generally ac-

cepted memory architecture models. The model validation was done by comparing the predictions

with known data on the Maxwell series Titan X GPU. We found the model prediction to be accurate

to within, 2%, though this number is not significant.5

In the next chapter, we will show the use of these cost models for tile size selection.

5Although a many configurations of any family of GPUs are spaced out, they come from binning only a small
number of distinct dies. We ended up calibrating our model on one die and validating it on only another one.
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Chapter 4

Tuning

An important element of compilation tools is a step called (auto) tuning: empirical evaluation

of the actual performance of a, hopefully small, set of code instances for a range of mapping pa-

rameters. This enables the compilation system to choose these parameters optimally for actual

“production runs” on real data/inputs. Modern architectures are extremely complicated, with so-

phisticated hardware features that interact in unpredictable manners, especially since the latency

of operations is unpredictable because of the deep memory hierarchy. It is widely believed that

because of this, autotuning is unavoidable in order to obtain good performance.

Our work challenges this. In particular, we make the case that domain specificity can have a

third important benefit: it enables us to develop a good analytical model to predict the performance

of specific types of codes on specific types of target architectures. We can then use the model to

optimally choose the mapping parameters (notably tile sizes).

In order to address the challenges of exascale computing, many experts believe that a software-

hardware co-design approach—where the software and the corresponding hardware are jointly co-

developed and co-optimized—will be a “critical necessity” [66]. Since the architectures of exascale

systems are in the flux, it is important to develop rigorous methods to map high level specifications

of computations to diverse target architectures, ranging from multi-core CPUs, many-core GPUs,

and accelerators over heterogeneous nodes of such CPU-GPU combinations to large distributed

systems of many such nodes. In the overwhelming majority of cases, the mismatch between data

communication patterns and hardware architecture prevents the efficient exploitation of all avail-

able computing resources and peak performance is almost impossible to achieve. Worse still, it is

often not clear to the user when the point of diminishing returns is reached.

We address a key step of the optimization, namely mapping the software representation onto

the hardware, and choosing the mapping parameters to optimize an objective function representing

the performance, i.e., the execution time. In its full generality, the optimal mapping problem is
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a discrete non-linear optimization problem, known to be NP-hard [67] and hence very difficult

to solve efficiently. We therefore use a number of simplifying assumptions, as is common in the

literature. A number of parameters can be specified as inputs to a compiler, e.g., the tile sizes.

These parameters have a tremendous influence on the performance of the code. The problem we

tackle here is how to select these parameters optimally.

4.1 Tune for Speed
To test the predictive abilities of our execution time models, we evaluated the model over the

entire feasible space (for each platform-stencil-size combination) and obtained the tile sizes that

were within 10% of the best predicted execution time. There were less than 200 such points. We

called the HHC compiler with these tile sizes and were able to observe among this set a perfor-

mance improvement of 9% on average with maximum of 17%. Prajapati et al. [21] illustrates the

predictive power of our execution time models in detail.

We have two messages. The main one is that, contrary to widespread belief, it is possible

to construct good analytical cost functions to drive performance tuning for GPGPUs. This can

significantly reduce the space that autotuners need to explore. The second message, is that it may

be necessary to revisit some of the “conventional wisdom,” when choosing tile size parameters.

Our model is very accurate for predicting the times of problem instances whose performance is

within 20% of the optimal and, hence, it can be used to find values for tunable parameters that will

give near optimal performance.

We would like to note that our techniques can be easily extended to other type of stencils.

4.2 Optimize for Energy
Our proposed optimization methods can also be applied to optimize for energy. Our energy

models represents the energy consumption as an explicit analytic function of a set of software and

hardware parameters describing the specifics of the implementation and the hardware.
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In our experiments, we observe that energy optimization has almost always had no loss of

speed, as expected in the folklore. Thus a user could use both optimizations rather than having to

choose one or the other. Finally, we use our energy model to select the optimal tile size for energy

efficiency and report the number of non-optimal tile size selections and hence the error in energy

due to the selection of non-optimal tile sizes. Prajapati et al. [22] describes our energy models, the

optimization methods, the results and experimental validation in details.
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Chapter 5

Accelerator Codesign

“Design is not just what it looks like and feels like. Design is how it works.” – Steve Jobs

Software-hardware codesign is one of the proposed enabling technologies for exascale com-

puting and beyond [6]. Currently, hardware and software design are done largely separately. Hard-

ware manufacturers design and produce a high-performance computing (HPC) system with great

computing potential and deliver it to customers, who then try to adapt their application codes to

run on the new system. But because of a typically occurring mismatch between hardware and

software structure and parameters, such codes are often only able to run at a small fraction of the

total performance the new hardware can reach. Hence, optimizing both the hardware and software

parameters simultaneously during hardware design is considered as a promising way to achieve

better hardware usage efficiency and thereby enabling leadership-class HPC availability at a more

manageable cost and energy efficiency.

The design of HPC systems and supercomputers is by no means the only scenario where such

optimization problems occur. The execution platforms of typical consumer devices like smart

phones and tablets consist of very heterogeneous Multi-Processor Systems-on-Chip (MPSoCs)

and the design challenges for them are similar.

Despite the appeal of an approach to simultaneously optimize for software and hardware, its

implementation represents a formidable challenge because of the huge search space. Previous

approaches [68–70], pick a hardware model H from the hardware design space, a software model

S from the software design space, map S onto H, estimate the performance of the mapping, and

iterate until a desirable quality is achieved. But not only each of the software and hardware design

spaces can be huge, each iteration takes a long time since finding a good mapping of S onto

H and estimating the performance of the resulting implementation are themselves challenging

computational problems.
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We propose a new approach for the software-hardware codesign problem that avoids these

pitfalls by considerably shrinking the design space and making its exploration possible by for-

mulating the optimization problem in a way that allows the use of existing powerful optimization

solvers. We apply the methodology to programmable accelerators: Graphics Processing Units

(GPUs), and for stencil codes. The key elements of our approach are to exploit multiple forms of

domain-specificity. Our main contributions are:

• We propose a new approach to software-hardware codesign that it is computationally feasible

and provides interesting insights.

• We combine our area model with a workload characterization of stencil codes, and our previ-

ously proposed execution time model [21] to formulate a mathematical optimization problem

that maximizes a common objective function of the hardware and software parameters.

• Our analysis provides interesting insights. We produce a set of Pareto optimal designs that

represent the optimal combination of hardware and compiler parameters. They allow for up

to 33% improvement in performance as measured in GFLOPs/sec.

We develop a framework for software-hardware codesign that allows the simultaneous opti-

mization of software and hardware parameters. It assumes having analytical models for perfor-

mance, for which we use execution time, and cost, for which we choose the chip area. We make

use of the execution time model from Prajapati et al [21] that predicts the execution times of a set

of stencil programs. For the chip area, we develop an analytical model that estimates the chip area

of parameterized designs from the Maxwell GPU architecture. Our model is reasonably accurate

for estimating the total die area based on individual components such as the number of SMs, the

number of vector units, the size of memories, etc.

We formulate a codesign optimization problem using the time model and our area model for

optimizing the compiler and architecture parameters simultaneously. We predict an improvement

in the performance of 2D stencils by (104% and 69%) and 3D stencils by (123% and 126%) over

existing Maxwell (GTX980 and Titan X) architectures.
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The main focus is on the methodology; specifically, to develop a software-hardware codesign

framework and to illustrate how models built using it can be used for efficient exploration of the

design space for identifying Pareto-optimal configurations and analyzing for design tradeoffs. The

same framework, possibly with some modifications, could be used for codesign on other type of

hardware platforms (instead of GPU), other type of software kernels (instead of the set of stencils

we chose, or even non-stencil kernels), and other kind of performance and cost criteria (e.g., energy

as cost). Also, with work focused on the individual elements of the framework, the execution time

and the chip area models we used could possibly be replaced by ones with better features in certain

aspects or scenarios.

The analyses from our work indicate the following accelerator design recommendations, for

the chosen performance, cost criteria, and application profile:

• Remove caches completely and

• Use the area (previously devoted to caches) to add more cores on the chip.

• The more precise the workload characterization and the specific area model parameters, the

more useful the conclusions drawn from the study.

Hardware resources such as memories are often expensive and must be utilized wisely. In the

next chapter, we discuss how to use cost models to identify the resources requirements for optimal

performance via bottleneck analysis.
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Chapter 6

Bottleneckology

We explore bottleneckology in three ways: study codesign trade-offs, perform overhead anal-

ysis, and investigate the effect of hyperthreading. Next three sections discuss these in more details.

6.1 Codesign Trade-offs
Workload Sensitivity Table 6.1 illustrates the architectural parameters for the best performing

designs for each of the six benchmarks(2D and 3D stencils), for an area budget between 425–

450 mm2. Observe how the parameters of the best architecture are significantly different. There

are also differences in the achieved performance for each benchmark, but that is to be expected

since the main computation in the stencil loop body has different number of operations across the

benchmarks.

Shared Memory Requirements We can also observe that there are marked differences between

the optimal architecture configurations for 2D and 3D stencils in Table 6.1. 3D stencils seem to

require larger shared memory (≥ 96 kB / SM) compared to 2D stencils (≤ 24 kB / SM). Indeed,

for designs with lower than 48kB, the performance was nowhere near the optimal for 3D stencil

programs. Comparing the optimal configurations for Heat 2D stencil with that of Heat 3D stencil

(both have equal total die area of 447mm2), we observe that the amount of shared memory required

Code nSM nV MSM Area GFLOPs/S
Jacobi 2D 32 128 24 438 2059
Heat 2D 22 256 12 447 3017
Gradient 2D 28 160 24 431 4963
Laplacian 2D 28 160 12 426 2549
Heat 3D 18 288 192 447 3600
Laplacian 3D 8 896 96 446 1427

Table 6.1: Workload sensitivity. The optimal architecture configuration for a single benchmark varies
significantly.
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Figure 6.1: Resource Allocation.

for Heat 3D stencil is 16 times more than that for Heat 2D stencil. Also note, 3D stencils require

higher number of vector units per SM for optimal performance.

Resource Allocation Another interesting perspective is seen in Figure 6.1 which plots the Pareto-

optimal design points in blue and all other non-Pareto configurations in orange. The axes show the

relative percentages of the chip area devoted to memory, and to vector units. We notice that the

optimal designs (blue points) lie in a relative cluster. This phenomenon is even more marked for

3D stencils. At present, we do not have a clear explanation for why the points are clustered in this

manner, and we plan to mine this data to determine patterns, if any.

6.2 Overhead Analysis
As discussed before, a compiler generated code has a number of parameters, such as tile sizes,

that are then tuned via empirical exploration. Our execution time model [21] guides such a choice.

This execution time model is a simple set of analytical functions that predicts the execution time

of the HHC [18] generated code.

The execution time model uses a machine dependent parameter, called Citer, which is the ex-

ecution time of one iteration of the loop body per vector unit provided that all the necessary data

is available in shared memory. To measure Citer, one needs to generate a random set of codes for

a given stencil with different tile sizes, modify these codes to remove global memory accesses and
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then take the average of empirically measured execution times to obtain the value of Citer. The

process is very time consuming and requires expertise in Hybrid Hexagonal Tiled code genera-

tor [18]. Also, Citer is dependent on both, the machine as well as the program. Therefore, its value

changes as machine and program parameters vary. It is, therefore, very difficult to model/measure

is Citer. Also note that Citer value is used to evaluate the objective function to find the optimal tile

size. This imposes limitations on the use of execution time model for optimal tile size selection

because the crucial model parameter Citer, is to be empirically measured.

To address this problem, we propose a closed form solution that is completely independent

of the machine and the program parameters. We are able to analytically predict the optimal tile

sizes which are portable across platforms and is valid for all Jacobi-like stencils. We modify the

objective function from Prajapati et al. [21] and develop a cost function which is independent

of Citer. For a 2D stencil, our closed form solution suggests that we maximize the size of the

hexagonal face of a tile subject to some constraints. This allows us to significantly narrow down

the tile size design space.

The mathematical optimization problem in Prajapati et al. [21] for a given 2D stencil is formu-

lated as follows:

minimize Talg(tS1 , tS2 , tT ) (6.1)

where tS1 , tS2 , and tT are tile sizes and Talg is the model predicted execution time of the code

given by the following formula:

Talg = NwTsync +NwTprism

⌈
1

nSM

⌈w
k

⌉⌉
. (6.2)

where Nw is the number of wavefronts, Tsync is the time for synchronization for a wavefront,

Tprism is the time to execute a tile, nSM is the number of processors, w is the size of a wavefront

and k is the number of tiles that execute simultaneously. For more details, please refer Prajapati et

al. [21].
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In addition to the time for computation, Talg includes time taken by data transfers and the

time for inter-tile and intra-tile synchronizations. We are interested in only those tile sizes that

give optimal performance. Therefore, our tiles will be compute bound. Let us consider an ideal

machine where the performance is given by the following equation:

Tideal =
S1S2T

nSMnV

Citer (6.3)

where S1, and S2 are problem sizes in space dimensions, T is the problem size in time dimen-

sion, and nV is the number of vector units. Such an ideal machine is free of all synchronization

delays and takes no additional time to do data transfers. On a real machine, we would like to obtain

the performance that is close to Tideal. However, there is always an overhead price such that

Toverhead = Talg − Tideal (6.4)

Substituting Talg and Tideal with their respective equations and solving gives us

Toverhead = CiterS1T
1

tS1 +
tT
2

(6.5)

Instead of minimizing the execution time(as in the equation 6.1), we can now minimize the

overhead. To minimize equation 6.5, we need to maximize tS1 +
tT
2

. This suggests that we should

increase the size of the hexagonal face of the tile as much as possible. Notice, tS2 does not appear

in the equation 6.5.

For the above formulation, we assumed that the tiles are compute bound. We need a mechanism

to first prune the tile size design space and restrict it to only consider compute bound tiles and then

use the above cost functions to further reduce the search space.

6.3 The effect of the hyper-threading
Our results in [21] suggest that we should revisit the “conventional wisdom” that says that

an optimal strategy of a tiling is to choose the “largest possible tile size that fits” i.e., its memory
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footprint matches the available capacity. First of all, this falls into the trap that it precludes over-

lapping of computation and communication (the “hyperthreading effect”). But this can be avoided

by explicitly accounting for hyperthreading. Indeed, our GPU platforms preclude such large size

by disallowing the data footprint of a thread block to exceed half the shared memory capacity.

Thus, the hyperthreading-adjusted “conventional wisdom” would still seek to maximize tile

volume subject to the half-capacity constraint—the best strategy is the largest tile volume for the

given footprint. Our model and experimental data suggests otherwise—an even higher hyper-

threading factor is turning out to yield the best performance. We still don’t know why, and it is

subject to investigation.
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Chapter 7

Related Work

Our research draws upon prior work in the following distinct areas.

7.1 Stencil Computations and Code Generation
At the algorithmic level, most stencil applications are compute bound in the sense that the ratio

of the total number of operations to the total number of memory locations touched can always

be made “sufficiently large” because it is an asymptotically increasing value. We may expect

that such codes can be optimized to achieve very high performance relative to machine peak.

However, naive implementations turn out to be memory-bound. Therefore, many authors seek

to exploit data locality for these programs [53, 71, 72]. One successful technique is called time

tiling [53, 57, 73–78], an advanced form of loop tiling [73, 79, 80]. Time tiling first partitions

the whole computation space into tiles extending in all dimensions, and then optionally executes

these tiles in a so called “45 degree wavefront” fashion. We assume, like most of the work in the

literature, that dense stencil programs are compute bound after time tiling. However, due to the

intricate structure of time tiled code, writing it by hand is challenging. Automatic code generation,

is an attractive solution, and has been an active research topic.

For iterative stencils a large set of optimizing code generation strategies have been proposed.

Pochoir [38] is a CPU-only code generator for stencil computations that exploits reuse along

the time dimension by recursively dividing the computation in trapezoids. Diamond tiling [81],

Hybrid-hexagonal tiling [18], and Overtile [82] are all tiling strategies that allow to exploit reuse

along the time dimension, while ensuring a balanced amount of coarse-grained parallelism through-

out the computation. While the former has only been evaluated on CPU systems, the last two tiling

schemes have been implemented to target GPUs. Overtile uses redundant computation whereas

hybrid-hexagonal tiling uses the hexagonal tiles to avoid the need for redundant computation and

the increased shared memory that would otherwise be required to store temporary values. Another
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time tiling strategy has been proposed with 3.5D blocking by Nguyen et. al [83], who manually

implemented kernels that use two dimensional space tiling plus streaming along one space dimen-

sion with tiling along the time dimension to target both CPUs and GPUs. A slightly orthogonal

stencil optimization has been proposed by Henretty et. al, who use data-layout transformations to

avoid redundant non-aligned vector loads on CPU platforms.

7.2 Performance Modeling
All of the previously discussed frameworks either come with their own auto-tuning frame-

work or require auto tuning to derive optimal tile sizes. For stencil graphs, which are directed

acyclic graphs (DAGs) of non-iterated stencil kernels, various DSLs compilers have been pro-

posed. Halide [84] and Stella [85] are two DSLs from the context of image processing and weather

modeling that separate the specification of the stencil computation from the execution schedule,

which allows for the specification of platform specific execution strategies derived either by plat-

form experts or automatic tuning. Both DSLs support various hardware targets, including CPUs

and GPUs. Polymage [86] also provides a stencil graph DSL—this time for CPUs only—but pairs

it with an analytical performance model for the automatic computation of optimal tile size and

fusion choices. With MODESTO [87] an analytical performance model has been proposed that

allows to model multiple cache levels and fusion strategies for both GPUs and CPUs as they arise

in the context of Stella.

For stencil GPU code generation strategies that use redundant computations in combination

with ghost zones, an analytical performance model has been proposed [88] that allows to automat-

ically derive “optimal” code generation parameters. Yotov et. al [89] showed already more than ten

years ago that an analytical performance model for matrix multiplication kernels allows to generate

code that is performance-wise competitive to empirically tuned code generated by ATLAS [90],

but at this point no stencil computations have been considered. Shirako et al. [91] use cache mod-

els to derive lower and upper bounds on cache traffic, which they use to bound the search space

of empirical tile-size tuning. Their work does not consider any GPU specific properties, such as
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shared memory sizes and their impact on the available parallelism. In contrast to tools for tuning,

Hong and Kim [92] present a precise GPU performance model which shares many of the GPU

parameters we use. It is highly accurate, low level, and requires analyzing the PTX assembly code.

For stencil GPU code generation strategies that use redundant computations in combination with

ghost zones an analytical performance model has been proposed [88] that allows to automatically

derive “optimal” code generation parameters. Patus [93] provides an auto-tuning environment for

stencil computations which can target CPU and GPU hardware. It does not use software managed

memories and also does not consider any time tiling strategies.

Renganarayana et al. [94] identifies positivity as a common property shared by the parameters

used by tile size selection methods and show that the property can be used to derive efficient and

scalable tile size selection frameworks.

7.3 Chip Reverse Engineering and Area Modeling
Chip area modeling can be formally considered a branch of semiconductor reverse engineering,

which is a well researched subject area. Torrence et. al. [95] gives an overview of the various

techniques used for chip reverse engineering. The packaged chips are usually decapped and the

wafer die within is photographed layer by layer. The layers are exposed in the reverse order after

physical or chemical exfoliation. Degate [96], for example, is a well known open source software

that can help in analyzing die photographs layer by layer. The reverse engineering process can

be coarse-grained to identify just the functional macro-blocks. Sometimes, the process can be

very fine-grained, in order to identify standard-cell interconnections, and hence, actual logic-gate

netlists. Degate is often used in association with catalogs of known standard cell gate layouts,

such as those compiled by Silicon Zoo [97]. Courbon et. al. [98] provides a case study of how a

modern flash memory chip can be reverse engineered using targeted scanning electron microscope

imagery. For chip area modeling, one is only interested in the relatively easier task of demarcating

the interesting functional blocks within the die.
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7.4 Energy Modeling
GPU power/energy model is a very active area: a recent survey article on the topic [99] cites al-

most 150 references. We only discuss the relevant work here. The model we present complements

Mittal and Vetter [99] by enabling us to find the optimal parameters (i.e., tile sizes) for the energy

efficient execution of stencil like programs. Hong and Kim [100] present a GPU power model

to predict the number of optimal GPU cores to achieve the peak memory bandwidth for a kernel.

An analytical model is used to predict the execution time [101] which has enabled prediction of

the power consumption statically. However, they have predicted the minimum number of cores

required for a program to achieve the peak memory bandwidth of GPU. While this approach may

work for memory bandwidth bound programs, it is unlikely to produce better results for compute-

bound programs like tiled stencil computations. Our model is much simpler, because our model

does not depend on warp and thread level parameters and number of PTX instructions.

Nagasaka et al [63] model GPU power of kernels using performance counters. Lim et al. [102],

GPUWattch [64] and GPUSimPow [103] are simulation based power models. McPAT [104] is

the basis for Lim et al [102] and GPUWattch [64] uses GPGPUSim [105] to simulate execution

time. Simulation and performance counters-based models require execution (or simulation) of

the program to predict the power consumption. Therefore, these models are not feasible solutions

when it requires to take decisions at compile time to determine optimal software parameters. We do

need to run some micro-benchmarks to find the energy parameters that our model use. In contrast,

we run our micro-benchmarks only to determine parameters of a GPU architecture, while the power

consumption can be predicted for a given program statically without running the program.

There are studies [106,107] focused on reducing the energy for both CPU and GPU by balanc-

ing the load among CPU and GPU. Our study is only focused on modeling the energy consumption

of GPUs. There are studies [106,107] focused on reducing the energy for both CPU and GPU. The

models are used to determine how to balance the load among CPU and GPU, so that it reduces the

overall energy consumption. Our study is only focused on modeling the energy consumption of

GPUs.
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7.5 Codesign
Application codesign is a well established discipline and has seen active research for well over

two decades [108–112]. The essential idea is to start with a program (or a program representation,

say in the form of a CFDG—Control Data Flow Graph) and then map it to an abstract hardware

description, often represented as a graph of operators and storage elements. The challenge that

makes codesign significantly harder than compilation is that the hardware is not fixed, but is also

to be synthesized. Most systems involve a search over a design space of feasible solutions, and

various techniques are used to solve this optimization problem: tabu search and simulated anneal-

ing [113, 114], integer linear programming [115].

There is some recent work on accurately modeling the design space, especially for regular, or

affine control programs [23–25]. However, all current approaches solve the optimization problem

for a single program at a time. To the best of our knowledge, no one has previously considered the

generalized application codesign problem, seeking a solution for a suite of programs.

There are multiple publications on codesign related to exascale computing, but they focus on

different aspects. For instance, Dosanji et al. [116] focus on methodological aspects of exploring

the design space, including architectural testbeds, choice of mini-applications to represent appli-

cations codes, and tools. The ExaSAT framework [117] was developed to automatically extract

parameterized performance models from source code using compiler analysis techniques. Perfor-

mance analysis techniques and tools targeting exascale and codesign are discussed in [6].

Kuck et al. [118, 119] analyze and model program hot-spots. They develop computational ca-

pacity models and propose an approach for the HW/SW codesign of computer systems. The hard-

ware/software measurements of computational capacity (based on bandwidth usage) and power

consumption (based on hardware counters) are used to find optimal solutions to various codesign

problems and to evaluate codesign trade-offs. Their models are theoretical and are illustrated by

numerical examples. They do not validate their models using real hardware.
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Chapter 8

Conclusions

Our work contributes to knowledge in following ways:

The unified view of the polyhedral design landscape We put together all the parameters to be

considered for performance optimization in a single unified landscape (Chapter 2). The landscape

(shown in Figure 2.1) considers the program, architecture, and compiler parameters and combines

them with various cost metrics. This view lets us identify the pockets of domain specificity and

allows us to study performance improvement across all cost metrics.

Analytical Models We develop analytical cost models (Chapter 3) for execution time, energy,

memory access, and silicon area of a chip. Our models are reasonably accurate and help predict the

associated cost. We argue that these models can be used to break the HPC application performance

improvement cycle.

Mathematical Optimization Approach We formulate mathematical optimization problems to

address some of the challenges of exascale. We show how these optimizations can be used for

performance tuning (Chapter 4) and accelerator codesign (Chapter 5). For GPGPU stencil com-

putations and polyhedral code generator, we illustrate a proof of concept [20] and present a novel

optimization approach to accelerator codesign.

8.1 Limitations of our approach
Our approach is limited to the narrow area of domain specific applications, polyhedral model

and GPU-like programmable hardware accelerators. The approach can, however, be extended to

other set of programs/architectures/transformations by identifying other domain specific regions

in the design landscape. More work is needed in order to extend our approach across different

regions of domain specificity.
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8.2 Open Questions
Among the many different uses of the analytical cost models, they can be further explored to

answer important performance related questions. We list some of them below:

• Using analytical execution time and energy models we can find out (i) What happens when

input parameters change? (ii) What happens when different number of processors is used?

(iii) What is the largest possible problem size on a given architecture? (iv) When does the

efficiency drop?

• Silicon area models can be used for the following: (i) Chip area prediction. (ii) Generate all

possible configurations for a give die area. (iii) Calculate the cost of different configurations.

(iv) Study the trade-offs. (v) System tuning.

• Performance tuning related questions such as (i) Sensitivity of problem size to tile size.

(ii) Sensitivity of optimal tile size for different codes. (iii) Reconfirm the folklore : whether

optimizing for time is equal to optimizing for energy? (iv) Reasons for the poor performance.

can be answered using cost models.

The answer to these questions become helpful in two situations. One, for performance porta-

bility while moving from one architecture to another. Second, obtaining interesting insights to

recognize promising areas for future research.
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