Overcoming the time limitation in Molecular Dynamics simulation of crystal
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Abstract

The crystal nucleation from liquid in most cases is too rare to be accessed within the limited
timescales of the conventional molecular dynamics (MD) simulation. Here, we developed a
“persistent embryo” method to facilitate crystal nucleation in MD simulations by preventing
small crystal embryos from melting using external spring forces. We applied this method to the
pure Ni case for a moderate undercooling where no nucleation can be observed in the
conventional MD simulation, and obtained nucleation rate in good agreement with the
experimental data. Moreover, the method is applied to simulate an even more sluggish event: the
nucleation of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found
to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the
good glass formability of the alloy. Thus, our work opens a new avenue to study solidification
under realistic experimental conditions via atomistic computer simulation.
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Homogeneous crystal nucleation from an undercooled liquid is a fundamental process
that plays an important role in numerous areas ranging from materials science to biophysics [1].
In the classical nucleation theory (CNT), the nucleation is described as a competition between
the energy gain associated with the transformation of the bulk liquid into a crystal phase and the
energy cost of creating a solid-liquid interface such that the change in the free energy associated
with the formation of a nucleus containing N atoms can be presented as:

AG(N) = NAp + s(N/p)*3y, (1)

where p is the atomic density, Ay (< 0) is the chemical potential difference between the bulk
solid and liquid, y (> 0) is the solid-liquid interfacial free energy and s is a factor to account for
the nucleus shape. As schematically shown in Fig. 1(a), this competition between the bulk and
interface terms leads to a critical barrier AG* where the nucleus reaches the critical size N*. The
low probability of overcoming this free energy barrier makes it inefficient to sample nucleation
events in conventional MD simulations [2]. To circumvent this difficulty, advanced sampling
techniques such as umbrella sampling [3—5] and metadynamics [6] can be used. With the help of
biased potentials, these techniques can in principle map out the free energy barrier for nucleation.
However, they do not directly give the correct kinetics of the unbiased system; and thus other
methods, such as kinetic Monte Carlo (KMC), have to be used to obtain necessary kinetic
parameters for evaluating the nucleation rate [7], which significantly adds to the complexity of
the problem. The critical nucleus size was also determined by embedding a large crystal cluster
into the liquid and watching if the cluster grows or disappears [8]. Although this method can
provide a fast estimation of the critical nucleus size [9—11], the initial equilibration process
during which the cluster should melt, can lead to a considerable overestimation of the critical

nucleus size [12]. Moreover, the artificially chosen initial cluster can lead to an unreal



description of the nucleus shape, such as the non-spherical nucleus shape in the Lennard-Jones

system reviewed recently by Sosso ef al. in Ref. [2].
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FIG. 1. Using the persistent-embryo method to reach the critical nucleus. (a) The excess free
energy (black) and spring constant (red) as a function of the crystalline cluster size N. N, is the
number of atoms in the constrained embryo. The red curve shows that the strength of the spring
constant decreases with the increasing cluster size. The spring is completely removed when the
cluster size reaches the threshold value N,.. N* is the critical size. (b) A cross-section of the as-
grown crystalline cluster around embryo. The yellow atoms with spring icon are the persistent
embryo. The red are the as-grown atoms, showing the crystalline packing. The gray are the liquid
atoms.

In the present study, we took advantage of the well-known fact that the dependence of AG
on N has a convex shape (see Fig. la), which means that a large fraction of AG* must be
overcome only to grow a small crystalline cluster (embryo). Thus, if the embryo can be kept
from re-melting, it can reach the critical size even during a relatively short MD simulation.
Therefore, we propose a persistent-embryo method to achieve this, in which external spring
forces are applied to constrain the embryo from melting. First, we create a crystalline embryo

with N, atoms (N, is much smaller than N*), which is then inserted into the liquid while a

tunable harmonic potential is added to each atom in the embryo to effectively keep it from



melting. As the embryo grows, the harmonic potential is gradually weakened and is completely
removed when the cluster size reaches a sub-critical threshold Ny, (< N™*): the spring constant

corresponding to the harmonic potential is set as k(N) = kONSAj—_N if N < Ny, and k(N) =0

otherwise. If the nucleus melts the harmonic potential is gradually enforced. The strategy to
adjust the spring constant to zero before reaching the critical nucleus size ensures the dynamics
of the system is unbiased at the critical point, which is an advantage of this approach compared
to others such as the lattice mold method [13]. A schematic of the simulation configuration is
shown in Fig. 1(b). We emphasize since the springs are removed well before the nucleus reaches
the critical size, the overall process simulates homogeneous nucleation.

During the MD simulation, the NPT ensemble is applied with Nose-Hoover thermostats.
The time step of the simulation is 1.0 fs. The sample size is set up to 32,000 atoms which is at
least 10 times larger than the critical nucleus size. The Finnis-Sinclair (FS) potentials [14] were
used for the investigation of Ni [15] and CuZr [16] systems. These FS potentials were developed
to accurately reproduce the melting point data and the liquid structure. The initial liquid is
equilibrated for 1 ns. The embryo is inserted in the liquid by removing liquid atoms that are
closer to the embryo atoms than 2.0 A. All the simulations were performed using the GPU-
accelerated LAMMPS code [17-19]. To quickly identify the solid-like and liquid-like atoms
during MD simulation, the widely-used bond-orientational order parameter [20,21] is employed
by calculating §;; = ¥ 6 qem (i) - qem (i) between two neighboring atoms based on the

1 ZNb(i)

o 2=t Ylm(?ij), where Ylm(ﬁj) is the spherical harmonics
b

Steinhardt parameter g, (i) =

and N, (i) is the number of nearest neighbors of atom i. Two neighboring atoms i and j are
considered to be connected when S;; exceeds a threshold. The threshold is carefully chosen

based on Espinosa ef al.’s “equal mislabeling” method [11], which gives the lowest probability



to mislabel the liquid and solid (see Supplemental Material [12] for details). The atoms with 6
connected neighbors are recognized as solid-like. Then the cluster analysis [22], which uses the
crystalline bond length as the cutoff distance to choose neighbor atoms, is applied to measure the

size of the solid cluster which formed around the initial embryo.
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FIG. 2. The persistent-embryo MD simulation of the crystal nucleation in the undercooled liquid
Ni. (a) The nucleus size versus time of one Ni nucleation trajectory at 1480 K. The blue dashed
line shows the atom number N, in the persistent embryo. The green dashed line indicates the
threshold to remove the spring and the red solid line indicates the critical size N*. Two inserts
zoom in two plateaus at the critical size. (b) The critical size as a function of the temperature. (c)
The upper panel shows the nucleus size versus time for the isoconfigurational ensemble with 30
MD runs. Each color indicates an independent MD trajectory. The bottom panel shows the
ensemble average of [AN*(t)|? = [N(t) — N*|. The dashed line indicates the linear fitting to
the first 5 ps to derive the attachment rate; (d) The nucleation rate as a function of the
temperature for Ni. The simulation results are connected to guide the eye. The experimental data
are from Ref. [23] (A) and Ref. [24] (V).



We first applied this method to the pure Ni case with a wide range of moderate
undercooling. Under these conditions, experimental nucleation events occur on the time scale of
seconds [23] and, hence, cannot be observed in the conventional MD simulation with the
simulation time usually less than 1 microsecond. With the help of a persistent embryo, the long-
time fluctuation of the nucleation with nucleus smaller than the embryo is suppressed. The
barrier to be overcome by the simulation is reduced so that the nucleation can be observed at the
typical MD timescale. When the nucleus reaches the critical size, it has equal chance to dissolve
or further grow. Thus, one should expect that the size of the nucleus will fluctuate about N*
within an extended time, which will result in a plateau at the critical region on the N(t) curve.
This unique signal can help us to accurately measure N* in our simulations. We, therefore,
launched multiple independent MD runs (up to 50 runs) to collect such critical plateaus for
statistical analysis. An example is shown in Fig. 2(a) (see more examples in Supplemental
Material [12]). Although the length of the plateaus varies in different runs, their heights are
almost identical. Thus, the critical size can be determined statistically by averaging over all the
plateau heights. The obtained critical nucleus size as a function of temperature is shown in Fig.
2(b). We note that as long as the N, and N, are chosen such that the fluctuating plateau can be
observed within the typical MD timescale in the simulations, different choices of the embryo
shape, N, and N, give a consistent measurement of the critical nucleus size (see Supplemental
Material for details [12]). The fundamental reason that the persistent-embryo method allows an
accurate measurement of the critical nucleus size is that one can observe the actual fluctuations
of a critical nucleus in an unbiased environment, and perform extensive statistical analysis based
on these fluctuations. This unique feature will be even more important for treating stoichiometric

compounds with larger anisotropy of the interfacial properties [25].



In the CNT, the nucleation rate, J, can be expressed as | = kexp(—AG*/kgT), where kg

is the Boltzmann constant, and k is a kinetic prefactor. AG* is related to the driving force |Ay|
and the critical size N* as AG™ = %|A/J|N * (see Supplemental Material [12]). Using the steady-

state model to derive the kinetic prefactor [1], we can express the nucleation rate as

J=poft | —L exp(—EN ()

6mkpTN* 2kpT
where f* is the attachment rate of a single atom to the critical nucleus and p; is the
liquid density. Au can be computed by integrating the Gibbs-Helmholtz equation from the
undercooling temperature to the melting point [26]. Following the pioneering work by Auer and
Frenkel [7], once the critical nucleus is available, the attachment rate can be measured with MD

simulation as the effective diffusion constant for the change in critical nucleus size: f+ =

(IaN*(O)[*)

Py Figure 2(c) shows the measurement of the attachment rate at the critical nucleus using

an isoconfigurational ensemble [27]. 30 independent MD runs were performed starting from the
same atomic configuration with a critical nucleus but with atomic momenta randomly assigned
using the Maxwell distribution. As there are no constraints in the embryos anymore, the critical
nucleus indeed melted in half of the MD runs and grew in the other half runs, which further
validates the determination of the critical nucleus size.

Figure 2(d) shows that the nucleation rate in pure Ni as a function of temperature. The
nucleation rate computed with the persistent-embryo MD covers a wide undercooling range,
which can be compared directly to the recent experimental measurements [23,24]. The results
agree well with Bokeloh et al.’s experimental measurements from 1400 K to 1450 K, in which

homogeneous nucleation was carefully probed [23]. Our results slightly deviate from Filipponi et



al.’s measurements [24] from 1360 K to 1380 K but these data could be affected by possible
heterogeneous nucleation [24].

Compared to the pure Ni case, it is a much more challenging task to simulate a nucleation
in a glass-forming alloy, because the crystal nucleation can be bypassed even on the
experimental timescale in such a system. Here, we employ the persistent-embryo method to
simulate the B2 phase nucleation in the CusoZrso alloy, which has attracted extensively attention
as a strong binary glass former [28,29]. As shown in Fig. 3(a), we can still obtain the critical
nucleus size by sampling plateaus on N (t) curves collected in different MD runs. It is interesting
to note that the plateau can sustain much longer time in CuZr than in Ni. This can be attributed to
a much slower attachment/detachment rate, which was measured in isoconfigurational

simulations shown in Fig. 3 (b).

(a) — T T T (b) 700 T T T T
Cu_Zr.., T=1097
800 - 5050 500
. > 500 _
600 400
[%) L
3
73’ 300
400 ! !
< 10000 T 1 T T T T T ]
<§/_\\ 8000 - ILs_oconff|.gt;tL.1rat|onaI ensemble average 7
% [ — — Linear fittin s, N
200P°% — — — — — 1 — — — — — — — — = 4000 [ AT T
¥ 2000 g E .
L L 1 1 L 1 L 1 1 L 1 L 1
0 5 10 15 20 25 30 . 600 800 1000
Time (ns) t (ps)

FIG. 3. The persistent-embryo MD for B2 nucleation in CusoZrso undercooled liquid at 1097 K.
(a) Nucleus size as a function of time. The insert shows the B2 critical nucleus. (b) 30 MD runs
starting from the configuration with critical nucleus are performed. Each color indicates an
independent MD trajectory. The dashed line shows the linear fitting of the ensemble average to
derive the attachment rate.



The nucleation rate of the B2 phase from the CusoZrso liquid alloy was found to be 8
orders of magnitude smaller than the nucleation of the FCC phase in liquid Ni. This explains
why the CusoZrso liquid can bypass the crystal phase and be driven to the glassy state when
cooled at a sufficient fast rate. In Table.l, we compare several factors that could affect the
nucleation rates in liquid Ni and CusoZrso alloy at the same undercooling T’ = (T, = T)/Tp,-
The examination of this table shows that 6 orders of magnitude are caused by the higher free
energy barrier and remaining 2 orders of magnitude result from the smaller attachment rate. The
higher nucleation barrier of the B2 phase in the CusoZrso alloy is associated with much larger
energy penalty of forming the liquid/B2 interface comparing to that for the liquid/fcc interface in
Ni (see Supplemental Material for details [12]). Note the diffusivities of Ni and CusoZrso are
quite similar. Thus, the attachment rate may be highly affected by the structure of solid-liquid

interface as observed by Tang and Harrowell [30].

Table 1 The critical nucleus size (N*), free energy barrier contribution (e ~2¢"/¥8T), attachment

rate (f*), prefactor (k), nucleation rate (J) and atomic diffusivity (D) for the pure Ni and

CusoZrso liquid alloy at same undercooling T' = T’;—_T

m

System | T(K)| T | N* e~0G"/kgT ffes™ | k@m3s™ | Jm3s™) D (m?/s)
Ni 1430 17% | 623 | 1.0 x 10731 7.6 x 104 2.8 x 104t 2.9 x 101° 2.0x107°
Cu: 9.8 x 10710
CusoZrso | 1097 17% | 495 | 9.8 x 10738 2.5 x 102 8.3 x 1038 81.3
Zr: 7.2 x 10710

In summary, the proposed persistent-embryo method dramatically extends the ability of
the MD simulation to explore the rare nucleation without the use of biasing forces near the

critical point. The spontaneously formed critical nucleus, the critical size and the kinetic




prefactor can be measured so that the nucleation rate can be computed in the CNT framework.
The study of the nucleation in pure Ni demonstrated a good agreement with available
experimental data proofing the reliability of the preformed work. The investigation of the
nucleation in the CusoZrso liquid alloy revealed an extremely low nucleation rate which explains
the high glass formability of this alloy. These successes demonstrate that our work opens a

practical way to quantitatively estimate nucleation rates under realistic experimental conditions.

Reference

[1] K. F.Kelton and A. L. Greer, Nucleation in Condensed Matter: Application in Materials
and Biology (Elsevier, Amsterdam, 2010).

[2]  G.C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides,
Chem. Rev. 116, 7078 (2016).

[3] G.M.G.M. Torrie and J. P. J. P. Valleau, J. Comput. Phys. 23, 187 (1977).

[4] S.Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J. Comput.
Chem. 13, 1011 (1992).

[5] S. Auer and D. Frenkel, Nature 409, 1020 (2001).

[6] A.Laio and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 99, 12562 (2002).

[7]  S. Auer and D. Frenkel, J. Chem. Phys. 120, 3015 (2004).

[8] X.-M.Baiand M. L1, J. Chem. Phys. 122, 224510 (2005).

[9] E.Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, J.
Am. Chem. Soc. 135, 15008 (2013).

[10] T. Mandal and R. G. Larson, J. Chem. Phys. 146, 134501 (2017).

[11] J.R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 144, 034501 (2016).

10



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

For the Ni potential studied in the present paper, the conventional seeding method
systematically overestimates the critical nucleus size which leads to an error of ~3 orders
of magnitudes on the nucleation rate compared to the persistent-embryo method and the
burte-force MD. See Supplemental Material [url] for the comparison between the seeding
and current methods, additional critical plateaus and computational details, which
includes Refs. [31-33].

J. R. Espinosa, P. Sampedro, C. Valeriani, C. Vega, and E. Sanz, Faraday Discuss. 195,
569 (2016).

M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

M. 1. Mendelev, M. J. Kramer, S. G. Hao, K. M. Ho, and C. Z. Wang, Philos. Mag. 92,
4454 (2012).

M. 1. Mendelev, M. J. Kramer, R. T. Ott, D. J. Sordelet, D. Yagodin, and P. Popel, Philos.
Mag. 89, 967 (2009).

W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, Comput. Phys. Commun.
182, 898 (2011).

W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, Comput. Phys.
Commun. 183, 449 (2012).

W. M. Brown and M. Yamada, Comput. Phys. Commun. 184, 2785 (2013).

P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

P. Rein ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996).
P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining (Pearson Addison
Wesley, 2005).

J. Bokeloh, R. E. Rozas, J. Horbach, and G. Wilde, Phys. Rev. Lett. 107, 145701 (2011).

11



[24] A. Filipponi, A. Di Cicco, S. De Panfilis, P. Giammatteo, and F. lesari, Acta Mater. 124,
261 (2017).

[25] S.R. Wilson and M. I. Mendelev, Philos. Mag. 95, 224 (2015).

[26] M. L L. Mendelev, M. J. J. Kramer, C. A. A. Becker, and M. Asta, Philos. Mag. 88, 1723
(2008).

[27] A. Widmer-Cooper, P. Harrowell, and H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004).

[28] W.H. Wang, J. J. Lewandowski, and A. L. Greer, J. Mater. Res. 20, 2307 (2005).

[29] Y.Li Q. Guo,J. A. Kalb, and C. V. Thompson, Science 322, 1816 (2008).

[30] C. Tang and P. Harrowell, Nat. Mater. 12, 507 (2013).

[31] F.C. Frank, Proc. R. Soc. A 215, 43 (1952).

[32] J.R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 142, 194709 (2015).

[33] G. Chkonia, J. Wolk, R. Strey, J. Wedekind, and D. Reguera, J. Chem. Phys. 130, 64505

(2009).

Acknowledgements

We thank M. J. Kramer, R. E. Napolitano, X. Song and R. T. Ott from Ames Laboratory for
valuable discussion. Work at Ames Laboratory was supported by the US Department of Energy,
Basic Energy Sciences, Materials Science and Engineering Division, under Contract No. DE-
ACO02-07CHI11358, including a grant of computer time at the National Energy Research
Supercomputing Center (NERSC) in Berkeley, CA. K.M.H. acknowledges support from USTC
Qian-Ren B (1000-Talents Program B) fund. The Laboratory Directed Research and
Development (LDRD) program of Ames Laboratory supported the use of GPU-accelerated

calculations.

12



