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1. Introduction

Thermal management is a multidisciplinary field which is getting increasing attention in various
applications, including processors, electronic devices, power storage devices, power inverters and
converters, light-emitting diodes, and telecommunication systems [1-12]. This trend 1 primarily
driven by recent technological developments leading to smaller but more powerful processors and
electronic devices, larger energy density in energy storage devices, and higher speed and frequency
operation of moving components of machinery. A typical approach.to thermal management is to
reduce the thermal contact resistance between a heat source to a heat sink by filling interstitial gaps
with soft, conformal, high thermal conductivity materials, which are often referred as thermal

interface materials (TIMs) [13-18]. IS

The thermal contact resistance, R, is one of the major factors limiting the rate at which heat can be
dissipated from engineered devices,omponents; and systems having a finite surface roughness
[19, 20]. According to the theoretical models [21, 22], the contact conductance, 1/R, can be

expressed as:
N

where K is the harmonic mean thermal conductivity of the contacting surfaces, m is the effective
absolute surface‘slope, o is the effective rms roughness, P is the contact pressure, and H is the
micro-hardness of the' softer material. From a perspective of the material property design, to
minimize the thermal contact resistance, as a first approximation, one needs to maximize the ratio
of thermal conductivity to hardness. In addition, since the operation of TIMs involves the exposure

to ‘on/off and heating/cooling cycles, the thermal stresses induced at the interface of heat
2
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sink/TIM/heat source strongly depends on the elastic modulus, i.e. a soft and compliant materials
are desired to minimize thermal stresses at the interface. Considering these points, various
strategies have been explored and implemented. For instance, there are numerous publications in
the literature reporting the incorporation of high thermal conductivity “fillers such as silver
particles, copper particles, graphene, carbon nanotubes, and silicon carbide and‘diamond powder
into a soft, compliant polymer matrix or viscous oil to form polymer pads; thermal greases, and
thermal compounds [23-30]. For these types of materials, the cutrent state-of-art in the ratio of

thermal conductivity to hardness lies in the range of 2x10? to 10x10"? m*/K-s.

An alternative approach is to rely on a high thermal conductivity matrix such as copper or silver
and to improve its compliance by forming porous sponge—l?ke structures [31-33] or arrays of
nano/micro-pillars [34, 35], which typically have the ratio of thermal conductivity to effective
hardness values in range of 5x1078 to 3%10:~.m?/K=s. However, in these cases, the increased surface
area tends to cause an increased rate of oxidation and corrosion. In addition, the surface pores of
metal sponge can contribute to the effective roughness, thereby adversely influencing the quality

of the contact and the transpertiofheat.

In this study, we report a new elass of thermal interface material involving metal nanocrystals
coordinated with organie ligands grafted on BN nanosheets in the form of mesoscale metal-organic
framework. Furthermeore,<this work also investigates the influence of organic ligand (linker)
chemistry on the thermal and mechanical properties of the resultant material. Here, BNNS was
particularly focused on because of its ultrahigh thermal conductivity, high chemical stability, and

electrical insulation property [36]. In addition, Novoselov and co-workers [37] reported that some
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metals can induce etching of graphene. Hence, graphene was avoided as filler although it,has a
higher thermal conductivity than BNNS. Silver is a metal with the second highest k/H (after
indium) ratio excluding group I metals, which are highly reactive. Silver alsothas much higher

corrosion resistivity than indium.

Regarding the ligands forming organic networks and links across the developed metal-base hybrid
nanocomposites, prior studies have revealed that acyl chloride (COClysand a\mino groups can react
with BN nanomaterials at high yield via nucleophilic addition/elimination [38]. In this reaction,
after the lone pair on the amino groups of BN performs a nucleophilic attack on the carbonyl
carbon, carbonyl group reforms by releasing a chloride ien and the charge neutrality is finally
achieved by deprotonation with the aid of the chlorideion. Sin’lilar to acyl chlorides, the reactions
of carboxyl acid groups with BN nanomaterials were observed to occur [39]. Hence, to
functionalize BN nanosheets, we selécted. to use three different ligands as a linker molecule
between silver nano-/micro-crystals and BNynanosheets: 4-bromo-benzoyl chloride (BBC), 4-
cyano-benzoyl chloride (CBC), and 2-mercapto-5-benzimidazole carboxylic acid (MBCA). With
this combination, we fixed thereactive group of the ligand that directly binds to BN nanosheets
(forming an amide for all cases) while changing the terminal end of the functionalized nanosheets

from bromo- to cyano-.to mercapto-group, thereby varying the binding strength of functionalized-

BNNS to the silver matrix.

2. Materials'and Methods

2.1 Materials

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted
manuscript. The published version of the article is available from the relevant publisher.

Page 4 of 29



Page 5 of 29

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - NANO-115824.R1

Materials. 4-bromo-benzoyl chloride (BBC), 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-
benzimidazole carboxylic acid (MBCA) were obtained from TCI Chemicals (Philadelphia, PA,
USA). Ethanol was procured from VWR (Houston, TX, USA). BNNS was purchased from M.K.
Impex Corp (Mississauga, Ontario, Canada). Silver cyanide, AgCN; potassitim cyanide, KCN; and
potassium dicyanoargenate, AgK(CN)2, which were used in the electrodeposition solution, were

purchased from Sigma Aldrich (St. Louis, MO, USA). ~
2.2 Functionalization of BNNS

For all ligands, functionalization of BNNS was carried out in asimilar fashion as described by Zhi
et al. [39] Briefly, a mixture of BNNS and organic ligand at a weight ratio of 1:4 was placed in a
flask equipped with a condenser. Under a nitrogen enVirznment, the reaction content was
constantly stirred using a magnetic stirrer at\120,°C for 120 hours. Upon the completion of the
reaction, the mixture was allowed to'cool,down to room temperature prior to washing in excess

ethanol to get rid of the unreacted ligands. Finally, the washed product was centrifuged at 4000

rpm for 5 minutes and the precipitate was collected after drying overnight with nitrogen at 60 °C.
2.3 Characterization of Functionalization Reaction

Purified and dried products of thefunctionalization reaction were analyzed with an attenuated total
reflectance Fourier-transform intrared spectrometer (ATR-FTIR, Shimadzu Scientific Instruments
Inc., ColumbiagMD)uData were acquired in the transmission mode with a resolution of 1 cm™
wavenumber and are an average of 12 measurements for each ligand. Spectra were analyzed using

IRsolution software package (Shimadzu).

2.4 Preparation of Thermal Interface Materials
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To form hybrid metal-matrix nanocomposites, we developed an approach coupling a coordination-
driven assembly and an electrodeposition process (Fig. 1). The key concept is, that as silver
nanoclusters form and deposit on the cathode through electrolytic reduction, the organic ligands
on nanosheet spacers reaches to the vicinity of nanoclusters through diffusion and coordinate their
assembly. The electrodeposition process was achieved using an electrolyte mixture involving 5 g
of KCN, 3 g of AgCN, and 1 g of AgK(CN)2 in 100 ml Milli-Q water:-For the coordination
reaction, one of the three ligands affixed on BNNS was used: 4-bromo-benzoyl chloride, 4-cyano-
benzoyl chloride, or 2-mercapto-5-benzimidazole carboxylic aeid, all of which had been grafted
on BN nanosheets via Lewis acid-base reaction as deseribed in the previous section. To achieve a
net nanosheet loading of 10+1 wt.% in the nanocomposite; functionalized BNNS (i.e. nanosheet
grafted with ligands) at a concentration of 05 wt.%-1.5 wt:% were added into the electrodeposition
solution and sonicated for 30 minutes. A pure silver (>99%) and an aluminum substrate were
connected to anode and cathode, respectively. The material was deposited on the aluminum
substrate via pulsating electrodepeosition using Powerstat05 Potentiostat (Movant Systems Inc.,
Crown Point, IN). The electrodeposition was carried out at a current density of 0 to 12 A/dm? and
N

AC frequency of 950 Hz/with¢30% off time. The resultant TIMs were detached from the Al

substrate, rinsed with water, dried and stored under nitrogen for further characterization.
2.5 Chemical and Structural Analysis of Nanocomposite TIMs

The obtained TIMs were cut into 1 cm % 1 cm pieces and characterized using an Omicron x-ray
photoelectron spectroscopy/ultraviolet photoelectron spectroscopy (XPS/UPS) system with an
Argusidetector. relying on dual Mg/Al X-ray source with a source energy of 1253.6 eV (Scienta

Omieron GmbH, Taunusstein, Germany) to determine if a reaction between the silver crystal

6
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matrix and functionalized nanosheets took place. Measurements involved an initial survey. scan
with a step size of 1.0 eV in the range of 0-1200 eV and high-resolution scans of Ag 3 ds;2 region
with a step size of 0.05 eV in the range of 362-372 eV. All spectra were correctéd. to the reference
binding energy of ambient carbon (C 1s) at 284.8 eV. The peaks were assighed based on the NIST

XPS spectra database.

The internal nanostructure of the prepared nanocomposites was examined by secondary electron

microscopy (FE-SEM, JSM-7500F; JEOL, Tokyo, Japan).
2.6 Characterization of Thermal Properties of TIMs

A differential scanning calorimeter (DSC, Q20, TA Instmmints, New Castle, DE) was used to
measure the specific heat capacity of the samples in the modulation mode [40]. In these
experiments, first, small pieces of hybrid nanecompesites were weighted with an accuracy of 0.01
mg and placed and sealed in aluminum pans:Then, the stability of the instrument was checked by
monitoring DSC baseline over three cycles using blank pans. Next, the samples were mounted into
the DSC chamber, which was' followed by the application of a heating profile involving a
combination of a sinusoidal@scillationwith an amplitude of 0.5 °C and a linear ramp with a heating
rate of 5 °C/min in the temperaturerange of 25-75 °C. Finally, the slope of the graph plotting the

total heat flow (dQ/dt) versus,heating rate was used to determine the heat capacity of samples at

the desired temperature.

Thermal diffusivity measurements were performed via a DLF-1200 Laser Flash Diffusivity
System(TA Instruments, New Castle, DE) [41]. This system relies on a Class 1 Nd:Glass Laser

source to generate a collimated energy pulse with 15 J energy and 300—400 ps pulse width. In
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these experiments, TIM coupons were cut into circles using a 1-inch hole punch and placed into
the DLF system. Then, the front of the sample was irradiated with the laser beam while the thermal
response of the rear face of the sample was monitored using a liquid nitrogén-cooled, indium
antimonide IR detector. The time-temperature history of the rear face was‘analyzed to determine
the time for the thermogram to reach the half of the maximal temperature increase, and this
information was used to calculate the thermal diffusivity of the sample«The density of samples

was determined via Archimedes principle.

Thermal interface resistance was measured using the phase-sensitive transient thermoreflectance
(PSTTR) technique [42]. For these experiments, the samples” were prepared by direct co-
electrodeposition/chemisorption of TIM on silicon/substratesithat had previously been coated with
a thin layer of chromium/silver (5nm/95nm) viaelectron-beam deposition. Then, a pure aluminum
foil of 4.5 um thickness was melted on.top of another silicon substrate under an argon atmosphere
and rapidly transferred on top of the TIM surface that was deposited on the other silicon substrate.
The whole configuration was cooled te room temperature to obtain diffusive-bonded samples. The
sandwiched samples were characsrized using our PSTTR setup utilizing a diode pump laser with
a spot diameter of 3 mm. The absorption of this energy on the front side generates a thermal wave
traveling through the sample, inducing temperature fluctuation of the same frequency on the back
surface. The reflectance of the surface on the back side of the sample, which is proportional to the
surface temperature, was.measured using a continuous wave probe laser. The comparison of the
probe laser'signal.with the original modulation from the waveform generator, which was achieved

using a photodiode and lock-in amplifier, allowed us to extract the phase shift. Through a multi-
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parameter regression analysis of the phase-shift data, the bulk thermal property of differentlayers

and the contact resistance between the layers in the sandwiched film were obtained [42].
2.7 Characterization of Mechanical Properties of TIMs

Hardness and reduced elastic modulus values were measured via a Hysitron'TT'950 Triboindenter
(Hysitron Inc., Minneapolis, MN). A Berkovich tip with a well-defined,geometry was used for
indentation and forty measurements were taken from each sample for\statistical analysis as
described elsewhere [43]. For each measurement, a force of 5000 mN was applied over 10 seconds,
and the tip was withdrawn from the surface for 10 seconds, with'a 5-second holding time in
between. The force versus depth curves were fitted to give the values of reduced modulus and

&
hardness.

3. RESULT AND DISCUSSION
3.1 Functionalization of BN Nanosheets

Via nucleophilic substitution reaction, boron nitride nanosheets were functionalized with one of
three different bifunctional ligands (linkers), all of which involve a terminal-end reactive towards
BNNS, a benzene ring (spacer),and@nother terminal-end with varying affinity towards silver (Fig.
2). The functionalization,reactions were characterized via the FTIR spectroscopy, the spectra of
which are shown in Figure3a for pure BN nanosheets, pure MBCA, and MBCA -functionalized
BN nanosheets. The most notable difference between the spectra of pure MBCA and MBCA-
BNNS is the shift of the peak from 1724 cm™ to 1628 cm™!, indicating a different level of coupling
between the carbonyl groups and the molecular group next to it and suggesting a change from a

catboxylic @cid group to an amide group. In addition, no peak shift at 763 cm™ and 2357 cm™

9
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indicates that C=S (thio urea) and SH (thiolate form) terminal-edges did not react with BNNS and
faced outwards from the BNNS surface. Based on these observations, a condensation reaction is

proposed as illustrated in Figure 3d.

The comparison of the FTIR spectra of pure CBC and CBC-functionalized BNNS revealed that
there is a peak shift from 1740 cm™ to 1680 cm™ after the functionalization reaction, suggesting
that the carbonyl chloride group of CBC was converted into an amide group\(Fig. 3b). In addition,
it can be concluded that cyano-group faces away from the BNNS surface given that the peak at
2330 cm! corresponding to the cyano group is unchanged.upen the functionalization reaction (Fig.
3e). Similarly, for BBC, the peak at 1766 cm™! shifted t0.1651 cm™ indicating the conversion of
carbonyl chloride in pure BBC to amide of BBC-BNNS (Fig."3c). Likewise, the unchanged peak
at 636 cm™! corresponding to C-Br implies no vibrational @oupling between Br and BNNS. Overall,
all of the linkers formed an amide upon reacting with BNNS via their carboxylic acid or acyl
chloride group, but formed functionalized BN nanosheets with a different terminal group (i.e.,

mercapto, cyano, or bromo) facing.away from BNNS surfaces.
3.2 Formation and Chemical'Analysis of Hybrid TIMs

Hybrid TIMs were prepared using a co-electrodeposition/chemisorption approach where the
electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the
conjugation of ligand-coated nanosheets onto silver crystals (Fig. 1). Using this approach, four
different nanocomposites involving silver as the base matrix were prepared: silver matrix with bare
BNNS,  BBC-functionalized BNNS, CBC-functionalized BNNS, and MBCA-functionalized
BNNS. The resultant TIMs were analyzed using XPS spectroscopy, which revealed that MBCA-

and CBC-functionalized BNNSs interact chemically with silver as evidenced by the positive 0.3
10
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eV shifts in Ag 3ds.2 peak for silver-CBC-BNNS and silver-MBCA-BNNS nanocomposites. (Fig.
4). These shifts can presumably be ascribed to the coordination bond between cyano and thiol
groups causing silver to assume a partial positive charge due to the electron donation and cyano
and thiol groups to acquire a slightly negative charge owing to the electron withdrawal. On the

other hand, no chemical interaction between silver and bare BNNS or BBC-BNNS was observed.
3.3 Morphological, Thermal and Mechanical Properties of Hybrid TIMs

Upon determining the nature of chemical interactions between building blocks of metal-organic-
inorganic nanocomposites, morphological (nanostructufe), thermal and mechanical properties
were investigated. Secondary electron microscopy (SEM)imaging of fractured samples provided
insights into the organization and distribution of BN nanos’heets in silver crystal matrix as a
function of ligand (linker) chemistry (Fig.,5):Bare BNNS and BBC-functionalized BNNS
aggregated and strongly phase-separateédifrom the silver-base matrix, which can be attributed to
the interfacial energy mismatch between BNhand silver (Fig. 5b&c). On the other hand, for the
cases of CBC-functionalized and MBCA-functionalized BN nanosheets, the distribution of
nanosheets within the matrixewas.more ainiform while some aggregation was still observed (Fig.
5d&e). These observations support the idea that the chemical interactions between functionalized
BNNS and ligands_improve the integrity of metal-inorganic-organic hybrid nanocomposites.
These findings atre also consistent with the XPS data in that CBC-functionalized and MBCA-
functionalized BN nanosheets react with Ag while no reaction occurred between silver and bare

BNNS and BBC-functionalized BNNS.

The' presence” and nature of the organic linker influences the thermal conductivity of

nanocompeosite TIMs (Figure 6a). For a fixed filler volume fraction of 10+1 wt.%, the effective
11
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thermal conductivity of chemically-integrated nanocomposites (i.e. the filler is CBC<BNNS or
MBCA-BNNS) was about 25-40% higher than that of physically-integrated nanocomposites(i.e.
the filler is BBC-BNNS). However, regardless of the functionalization state. of BNNS, the
introduction of BNNS into silver matrix resulted in a reduction of the, effective thermal
conductivity in comparison to pure silver, which can be explained by the outtof-plane thermal
conductivity of BNNS being lower than that of pure silver, and therrelatively low thermal
conductivity of organic linkers. The effective thermal conductivity® of chemically-linked
nanocomposites was significantly larger than that of physically-linked nanocomposites (306-321
W/m-K versus 236-258 W/m-K. Since the thermal transport is primarily due to the transport of
electrons, we also compared the electrical conductivities of these TIM nanocomposites (Table 1.)
It was found that the electrical conductivity trends followed the thermal conductivity trends i.e.,
pure silver is the highest, followed by the chemieally functionalized nanocomposites, and
nanocomposites with physically trapped, BNNS being the lowest. These consistent trend is
consistent with the Wiedemann-Franz law and can explain the observed variations in thermal

conductivities [44].
N

Table 1. The comparison of electrical conductivity of various types of composite TIMs at 25 °C.

Electrical Conductivity

Material Average (S/m) | Standard Deviation (S/m)
Pure Ag 6.1x10’ 5.7x10?
Ag- pure BNNS 1.1x10° 7.8x10?
Ag- BBC-BNNS 9.7x10% 5.6x10?
Ag< CBC-BNNS 1.5x10° 9.2x102
Ag-MBCA-BNNS 1.9x10° 7.9x10?

12
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Figure 6b shows the reduced modulus and hardness of these nanocomposites obtained,using
nanoindentation. Silver-based nanocomposites were found to be softer and more compliant than
pure silver. This trend is presumably because the presence of BNNS and fun€tionalized-BNNS
disrupts metallic bonds between silver crystals within the film and in addition, will reduce the van
der Waals interactions between silver crystals considering that the dielectric constant of metals is
much higher than that of inorganic and organic materials. Furthermore, the 0ecupation of f-BNNSs
at grain boundaries may promote the slippage of metallic interface, whichsoftens nanocomposites

[45, 46]. Furthermore, the ligand molecules act as cushions dueto their inherent softness.

The hardness and modulus values of chemically integrated nanocomposites were lower than that
of physically integrated nanocomposites, which is counter-intuitive considering only the types and
strengths of the bonds involved. However, physically integrated nanocomposites experience the
aggregation of fillers as shown in Figure 5. For agiven nominal filler loading, the existence of the
regions containing BNNS aggregates reduces the effective concentration of BNNS in the regions
without BNNS aggregates due to.theéwavailability of lower amount of fillers on average. Namely,
the effective filler concentration 1{ reduced in the regions where there is no aggregation. Assuming
the mechanical properties|of fillers do not change significantly with aggregation, the effective

medium theory can explain the observed trends [47,48].

Based on the measured thermomechanical properties, the k/H ratio for these silver-based
nanocomposites i§ calculated to be 1.3x10% m?/K-s for the case of MBCA-BNNS fillers and
8.5x1077am?/K-s for'the case of CBC-BNNS fillers. Considering pure silver samples prepared had
a k/Hrrationof 3.9x107 m?/K-s, these values signify noticeable improvements (118% to 233%

improvement) in thermomechanical properties of chemically integrated nanocomposites. On the

13
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other hand, the physically integrated nanocomposites yielded a k/H ratio of 5.2x107-5:9x10"’
m?/K-s. Using the PSTTR technique, a thermal interface resistance of 0.05+0.02,mm?.K/W\and
0.06+£0.02 mm*K/W was measured at the Si-TIM interface under adhésive loading for
nanocomposites with chemisorbed and physisorbed fillers, respectively .in comparison to
0.12+0.03 mm?.K/W for the case of pure silver (Table 2). Results from pure silver, nanocomposite
with physisorbed fillers and chemisorbed fillers are summarized in Table I The contact thermal
resistance of the nanocomposite materials is measured to be lower than thatof the silver. This trend
may be attributed to potentially reduced number of defects at the interface due to the increased
interfacial energy compatibility between Si and Ag with the addition of organic ligands [49-51].
Combining the thermal resistances from both bulk material andisurface contact, the overall thermal
resistance when the hybrid nanocomposite iis used as TIM is calculated to be around 0.35

mm?-K/W, more than two orders of magnitude lower than common commercial TIM products.

Table 2. The thermal interface resistance and total resistance of nanocomposite TIMs directly

chemisorption-coupled electrodeposited on molecular smooth silicon wafer.

N Si-TIM interface Overall thermal
resistance resistance
(mm?-K/W) (mm?-K/W)
Pure silver 0.12+0.04 0.27 +£0.04
Nanocomposite with physisorbed fillers 0.05 0.34
Nanocomposite with chemisorbed fillers 0.06 0.35

manuscript. The published version of the article is available from the relevant publisher.
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To determine the influence of temperature on the thermal properties of these TIM, weused. laser
flash analysis (Table 3). It was found that thermal conductivity of composites involving physical
bonding of BNNS and silver did not change significantly with temperature whil€ there was a small
increase in thermal conductivity of composites involving chemical bonding of BNNS and silver.

Table 3. The comparison of thermal conductivity of various types of composite TIMs at 25 °C and

250 °C. ~

K (W/m-K) . K (W/m-K)

25°c4, 250°C
Pure Ag 37415 : 37218
Ag/pure BNNS_‘r 258421 0l 261+7
Ag/BBC-BNNS  236+16 23043
Ag/CBC-BNNS : 30641 354+8
Ag/MBCA-BNNS = 32168 382+6

N

15
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4. Conclusions

Overall, this work has three key conclusions, important in the context of materials s€ience, thermal
management, and nanotechnology. First, using the coordination chemistry in conjunction with an
electrodeposition process, it is possible to fabricate chemically-linked hybrid nanocomposites
involving a silver matrix, 2-D BN nanosheets, and organic ligands. Second, the nanostructure,
thermal and mechanical properties of these hybrid nanocomposites str\ongly depend on the
chemistry of linker molecules (ligands) physically or chemically binding nanosheets to the silver
matrix. BN nanosheets with cyano- and thio- terminal groups.are uniformly distributed in the silver
matrix while bare BN nanosheets and BN nanosheets with.bromo- terminal groups are in a strongly
aggregated state in the silver matrix. The thermal tranSport in thio- and cyano-linked
nanocomposites of silver and BN nanosheets, is mote efficient than that in bromo-linked
nanocomposites. This difference is presumably due to the increased electrical conductivity in the
presence of chemical bonds in comparison to,the physical bonds. Third, while the presence of bare
and functionalized BN nanosheets.somewhat reduced the thermal conductivity of pure silver, the
mechanical compliance and defO{mability of nanocomposites were significantly better than pure
silver. To put the improvement in mechanical compliance relative to the loss of thermal
conductivity in perspective, we determined the thermal conductivity-to-hardness ratio (k/H ratio),
which is a critical metric controlling the thermal interface resistance, and found that chemically-
integrated nafiocomposites improves this ratio from 3.9x107 m?/K-s (pure silver) to 1.3x107-
8.5x107 m%/K-s, (i.ef ~118% to ~233% enhancement in comparison to pure silver). With such

intriguing,, thermomechanical properties and scalable methodology of production, these
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nanomaterials can be applied in various thermal management systems to relieve the thermal

stresses in next generation devices and applications.
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Figure 1. Three main steps of preparing hybrid nanocomposites involving silver, BN nanosheets,
and organic ligands: a) the preparation of BN nangsheets via ultrahigh-intensity sonification
assisted exfoliation in n-methyl-2-pyrrolidone, b) the functionalization of BN nanosheets with
bifunctional ligands containing acyl chloride or'earboxylic acid groups through Lewis acid-base
reactions, and c) the co-electrodeposition/chemisotption process that couples the electrolytic
reduction of silver ions and the chemiSorption of functionalized BN nanosheets on the cathode.
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Figure 3. FTIR spectra of a) pure BNNS, pure MBCA, and MBCA-functionalized BNNS, b)pure
BNNS, pure CBE€, and CBC-functionalized BNNS, and c¢) pure BNNS, pure BBC and CBC-

functionalized BNNS. The proposed reactions for the chemical interactions of d) MBCA and
BNNS, e) CBC€ and BNNS,and f) BBC and BNNS.
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Figure 4. High resolution XPS spectra in the region of Ag 3 dsp for pure silver, nanocomposites
21 involving bare BNNS and silver, nanocomposites involving BBC-functionalized BNNS and silver,
22 nanocomposites involving CBC-functionalized BNNSsand silver, and nanocomposites involving
23 MBCA-functionalized BNNS and silver. No peak shifts.wete observed for the cases of pure BNNS
24 and BBC-BNNS compared to pure silver. Nanocomposites with CBC-BNNS or MBCA-BNNS
25 fillers showed an oxidative shift of 0.3 eV, suggesting the chemical integration of BN nanosheets
containing thio- and cyano-terminal groups with the silver matrix.
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