

Chemically Linked Metal-Matrix Nanocomposites of Boron Nitride Nanosheets and Silver as Thermal Interface Materials

N. Nagabandi¹, C. Yegin², X. Feng³, C. King³, J.K. Oh², E.A. Scholar⁴, S. Narumanchi³, M. Akbulut^{1, 2, 4*}

¹Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA

²Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA

³National Renewable Energy Laboratory (NREL), 15013 Denver West Parkway, Golden, CO 80401, USA

⁴Texas A&M Energy Institute, Texas A&M University, 3372 TAMU, College Station, TX 77843-3372, USA

Abstract

Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercaptop-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3×10^{-6} m²/K-s for MBCA-BNNS and 8.5×10^{-7} m²/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.

KEYWORDS: Thermal management, 2-D nanomaterials, Nanostructured materials, Nanocomposites

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1. Introduction

21 Thermal management is a multidisciplinary field which is getting increasing attention in various
22 applications, including processors, electronic devices, power storage devices, power inverters and
23 converters, light-emitting diodes, and telecommunication systems [1-12]. This trend is primarily
24 driven by recent technological developments leading to smaller but more powerful processors and
25 electronic devices, larger energy density in energy storage devices, and higher speed and frequency
26 operation of moving components of machinery. A typical approach to thermal management is to
27 reduce the thermal contact resistance between a heat source to a heat sink by filling interstitial gaps
28 with soft, conformal, high thermal conductivity materials, which are often referred as thermal
29 interface materials (TIMs) [13-18].

30
31
32 The thermal contact resistance, R , is one of the major factors limiting the rate at which heat can be
33 dissipated from engineered devices, components, and systems having a finite surface roughness
34 [19, 20]. According to the theoretical models [21, 22], the contact conductance, $1/R$, can be
35 expressed as:

36
37
38
$$1/R = 1.25k m/\sigma * (P/H)^{0.95} \quad [1]$$

39
40
41 where k is the harmonic mean thermal conductivity of the contacting surfaces, m is the effective
42 absolute surface slope, σ is the effective rms roughness, P is the contact pressure, and H is the
43 micro-hardness of the softer material. From a perspective of the material property design, to
44 minimize the thermal contact resistance, as a first approximation, one needs to maximize the ratio
45 of thermal conductivity to hardness. In addition, since the operation of TIMs involves the exposure
46 to on/off and heating/cooling cycles, the thermal stresses induced at the interface of heat
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 sink/TIM/heat source strongly depends on the elastic modulus, i.e. a soft and compliant materials
4 are desired to minimize thermal stresses at the interface. Considering these points, various
5 strategies have been explored and implemented. For instance, there are numerous publications in
6 the literature reporting the incorporation of high thermal conductivity fillers such as silver
7 particles, copper particles, graphene, carbon nanotubes, and silicon carbide and diamond powder
8 into a soft, compliant polymer matrix or viscous oil to form polymer pads, thermal greases, and
9 thermal compounds [23-30]. For these types of materials, the current state-of-art in the ratio of
10 thermal conductivity to hardness lies in the range of 2×10^{-9} to 10×10^{-9} m²/K-s.
11
12
13
14
15
16
17
18
19
20
21
22

23 An alternative approach is to rely on a high thermal conductivity matrix such as copper or silver
24 and to improve its compliance by forming porous sponge-like structures [31-33] or arrays of
25 nano/micro-pillars [34, 35], which typically have the ratio of thermal conductivity to effective
26 hardness values in range of 5×10^{-8} to 3×10^{-7} m²/K-s. However, in these cases, the increased surface
27 area tends to cause an increased rate of oxidation and corrosion. In addition, the surface pores of
28 metal sponge can contribute to the effective roughness, thereby adversely influencing the quality
29 of the contact and the transport of heat.
30
31
32
33
34
35
36
37
38
39

40 In this study, we report a new class of thermal interface material involving metal nanocrystals
41 coordinated with organic ligands grafted on BN nanosheets in the form of mesoscale metal-organic
42 framework. Furthermore, this work also investigates the influence of organic ligand (linker)
43 chemistry on the thermal and mechanical properties of the resultant material. Here, BNNS was
44 particularly focused on because of its ultrahigh thermal conductivity, high chemical stability, and
45 electrical insulation property [36]. In addition, Novoselov and co-workers [37] reported that some
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

metals can induce etching of graphene. Hence, graphene was avoided as filler although it has a higher thermal conductivity than BNNS. Silver is a metal with the second highest k/H (after indium) ratio excluding group I metals, which are highly reactive. Silver also has much higher corrosion resistivity than indium.

Regarding the ligands forming organic networks and links across the developed metal-base hybrid nanocomposites, prior studies have revealed that acyl chloride (COCl) and amino groups can react with BN nanomaterials at high yield via nucleophilic addition/elimination [38]. In this reaction, after the lone pair on the amino groups of BN performs a nucleophilic attack on the carbonyl carbon, carbonyl group reforms by releasing a chloride ion and the charge neutrality is finally achieved by deprotonation with the aid of the chloride ion. Similar to acyl chlorides, the reactions of carboxyl acid groups with BN nanomaterials were observed to occur [39]. Hence, to functionalize BN nanosheets, we selected to use three different ligands as a linker molecule between silver nano-/micro-crystals and BN nanosheets: 4-bromo-benzoyl chloride (BBC), 4-cyano-benzoyl chloride (CBC), and 2-mercaptop-5-benzimidazole carboxylic acid (MBCA). With this combination, we fixed the reactive group of the ligand that directly binds to BN nanosheets (forming an amide for all cases) while changing the terminal end of the functionalized nanosheets from bromo- to cyano- to mercapto-group, thereby varying the binding strength of functionalized-BNNS to the silver matrix.

2. Materials and Methods

2.1 Materials

1
2
3 *Materials.* 4-bromo-benzoyl chloride (BBC), 4-cyano-benzoyl chloride (CBC) and 2-mercaptop-5-
4 benzimidazole carboxylic acid (MBCA) were obtained from TCI Chemicals (Philadelphia, PA,
5 USA). Ethanol was procured from VWR (Houston, TX, USA). BNNS was purchased from M.K.
6 Impex Corp (Mississauga, Ontario, Canada). Silver cyanide, AgCN; potassium cyanide, KCN; and
7 potassium dicyanoargenate, AgK(CN)₂, which were used in the electrodeposition solution, were
8 purchased from Sigma Aldrich (St. Louis, MO, USA).
9
10
11
12
13
14
15
16
17

2.2 Functionalization of BNNS

18
19 For all ligands, functionalization of BNNS was carried out in a similar fashion as described by Zhi
20 et al. [39] Briefly, a mixture of BNNS and organic ligand at a weight ratio of 1:4 was placed in a
21 flask equipped with a condenser. Under a nitrogen environment, the reaction content was
22 constantly stirred using a magnetic stirrer at 120 °C for 120 hours. Upon the completion of the
23 reaction, the mixture was allowed to cool down to room temperature prior to washing in excess
24 ethanol to get rid of the unreacted ligands. Finally, the washed product was centrifuged at 4000
25 rpm for 5 minutes and the precipitate was collected after drying overnight with nitrogen at 60 °C.
26
27
28
29
30
31
32
33
34
35
36

37 2.3 Characterization of Functionalization Reaction

38
39 Purified and dried products of the functionalization reaction were analyzed with an attenuated total
40 reflectance Fourier-transform infrared spectrometer (ATR-FTIR, Shimadzu Scientific Instruments
41 Inc., Columbia, MD). Data were acquired in the transmission mode with a resolution of 1 cm⁻¹
42 wavenumber and are an average of 12 measurements for each ligand. Spectra were analyzed using
43 IRsolution software package (Shimadzu).
44
45
46
47
48
49
50
51

52 2.4 Preparation of Thermal Interface Materials

To form hybrid metal-matrix nanocomposites, we developed an approach coupling a coordination-driven assembly and an electrodeposition process (Fig. 1). The key concept is that as silver nanoclusters form and deposit on the cathode through electrolytic reduction, the organic ligands on nanosheet spacers reaches to the vicinity of nanoclusters through diffusion and coordinate their assembly. The electrodeposition process was achieved using an electrolyte mixture involving 5 g of KCN, 3 g of AgCN, and 1 g of AgK(CN)₂ in 100 ml Milli-Q water. For the coordination reaction, one of the three ligands affixed on BNNS was used: 4-bromo-benzoyl chloride, 4-cyano-benzoyl chloride, or 2-mercaptop-5-benzimidazole carboxylic acid, all of which had been grafted on BN nanosheets via Lewis acid-base reaction as described in the previous section. To achieve a net nanosheet loading of 10±1 wt.% in the nanocomposite, functionalized BNNS (i.e. nanosheet grafted with ligands) at a concentration of 0.5 wt.%-1.5 wt.% were added into the electrodeposition solution and sonicated for 30 minutes. A pure silver (>99%) and an aluminum substrate were connected to anode and cathode, respectively. The material was deposited on the aluminum substrate via pulsating electrodeposition using Powerstat05 Potentiostat (Movant Systems Inc., Crown Point, IN). The electrodeposition was carried out at a current density of 0 to 12 A/dm² and AC frequency of 950 Hz with 30% off time. The resultant TIMs were detached from the Al substrate, rinsed with water, dried and stored under nitrogen for further characterization.

43 2.5 Chemical and Structural Analysis of Nanocomposite TIMs

44
45 The obtained TIMs were cut into 1 cm × 1 cm pieces and characterized using an Omicron x-ray
46 photoelectron spectroscopy/ultraviolet photoelectron spectroscopy (XPS/UPS) system with an
47 Argus detector relying on dual Mg/Al X-ray source with a source energy of 1253.6 eV (Scienta
48 Omicron GmbH, Taunusstein, Germany) to determine if a reaction between the silver crystal
49

1
2
3 matrix and functionalized nanosheets took place. Measurements involved an initial survey scan
4 with a step size of 1.0 eV in the range of 0-1200 eV and high-resolution scans of Ag 3 d_{5/2} region
5 with a step size of 0.05 eV in the range of 362-372 eV. All spectra were corrected to the reference
6 binding energy of ambient carbon (C 1s) at 284.8 eV. The peaks were assigned based on the NIST
7 XPS spectra database.
8
9
10
11
12

13
14
15 The internal nanostructure of the prepared nanocomposites was examined by secondary electron
16 microscopy (FE-SEM, JSM-7500F; JEOL, Tokyo, Japan).
17
18

20 **2.6 Characterization of Thermal Properties of TIMs** 21 22

23 A differential scanning calorimeter (DSC, Q20, TA Instruments, New Castle, DE) was used to
24 measure the specific heat capacity of the samples in the modulation mode [40]. In these
25 experiments, first, small pieces of hybrid nanocomposites were weighted with an accuracy of 0.01
26 mg and placed and sealed in aluminum pans. Then, the stability of the instrument was checked by
27 monitoring DSC baseline over three cycles using blank pans. Next, the samples were mounted into
28 the DSC chamber, which was followed by the application of a heating profile involving a
29 combination of a sinusoidal oscillation with an amplitude of 0.5 °C and a linear ramp with a heating
30 rate of 5 °C/min in the temperature range of 25-75 °C. Finally, the slope of the graph plotting the
31 total heat flow (dQ/dt) versus heating rate was used to determine the heat capacity of samples at
32 the desired temperature.
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47 Thermal diffusivity measurements were performed via a DLF-1200 Laser Flash Diffusivity
48 System (TA Instruments, New Castle, DE) [41]. This system relies on a Class 1 Nd:Glass Laser
49 source to generate a collimated energy pulse with 15 J energy and 300–400 µs pulse width. In
50
51
52
53
54
55
56
57
58
59
60

1
2
3 these experiments, TIM coupons were cut into circles using a 1-inch hole punch and placed into
4 the DLF system. Then, the front of the sample was irradiated with the laser beam while the thermal
5 response of the rear face of the sample was monitored using a liquid nitrogen-cooled, indium
6 antimonide IR detector. The time-temperature history of the rear face was analyzed to determine
7 the time for the thermogram to reach the half of the maximal temperature increase, and this
8 information was used to calculate the thermal diffusivity of the sample. The density of samples
9 was determined via Archimedes principle.
10
11
12
13
14
15
16
17
18
19

20 Thermal interface resistance was measured using the phase-sensitive transient thermoreflectance
21 (PSTTR) technique [42]. For these experiments, the samples were prepared by direct co-
22 electrodeposition/chemisorption of TIM on silicon substrates that had previously been coated with
23 a thin layer of chromium/silver (5nm/95nm) via electron-beam deposition. Then, a pure aluminum
24 foil of 4.5 μ m thickness was melted on top of another silicon substrate under an argon atmosphere
25 and rapidly transferred on top of the TIM surface that was deposited on the other silicon substrate.
26 The whole configuration was cooled to room temperature to obtain diffusive-bonded samples. The
27 sandwiched samples were characterized using our PSTTR setup utilizing a diode pump laser with
28 a spot diameter of 3 mm. The absorption of this energy on the front side generates a thermal wave
29 traveling through the sample, inducing temperature fluctuation of the same frequency on the back
30 surface. The reflectance of the surface on the back side of the sample, which is proportional to the
31 surface temperature, was measured using a continuous wave probe laser. The comparison of the
32 probe laser signal with the original modulation from the waveform generator, which was achieved
33 using a photodiode and lock-in amplifier, allowed us to extract the phase shift. Through a multi-
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 parameter regression analysis of the phase-shift data, the bulk thermal property of different layers
4 and the contact resistance between the layers in the sandwiched film were obtained [42].
5
6
7
8

2.7 Characterization of Mechanical Properties of TIMs

9
10 Hardness and reduced elastic modulus values were measured via a Hysitron TI 950 Triboindenter
11 (Hysitron Inc., Minneapolis, MN). A Berkovich tip with a well-defined geometry was used for
12 indentation and forty measurements were taken from each sample for statistical analysis as
13 described elsewhere [43]. For each measurement, a force of 5000 mN was applied over 10 seconds,
14 and the tip was withdrawn from the surface for 10 seconds with a 5-second holding time in
15 between. The force versus depth curves were fitted to give the values of reduced modulus and
16 hardness.
17
18
19
20
21
22
23
24
25
26
27

3. RESULT AND DISCUSSION

3.1 Functionalization of BN Nanosheets

30
31 Via nucleophilic substitution reaction, boron nitride nanosheets were functionalized with one of
32 three different bifunctional ligands (linkers), all of which involve a terminal-end reactive towards
33 BNNS, a benzene ring (spacer), and another terminal-end with varying affinity towards silver (Fig.
34 2). The functionalization reactions were characterized via the FTIR spectroscopy, the spectra of
35 which are shown in Figure 3a for pure BN nanosheets, pure MBCA, and MBCA-functionalized
36 BN nanosheets. The most notable difference between the spectra of pure MBCA and MBCA-
37 BNNS is the shift of the peak from 1724 cm^{-1} to 1628 cm^{-1} , indicating a different level of coupling
38 between the carbonyl groups and the molecular group next to it and suggesting a change from a
39 carboxylic acid group to an amide group. In addition, no peak shift at 763 cm^{-1} and 2357 cm^{-1}
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 indicates that C=S (thio urea) and SH (thiolate form) terminal-edges did not react with BNNS and
4 faced outwards from the BNNS surface. Based on these observations, a condensation reaction is
5 proposed as illustrated in Figure 3d.
6
7

8
9 The comparison of the FTIR spectra of pure CBC and CBC-functionalized BNNS revealed that
10 there is a peak shift from 1740 cm⁻¹ to 1680 cm⁻¹ after the functionalization reaction, suggesting
11 that the carbonyl chloride group of CBC was converted into an amide group (Fig. 3b). In addition,
12 it can be concluded that cyano-group faces away from the BNNS surface given that the peak at
13 2330 cm⁻¹ corresponding to the cyano group is unchanged upon the functionalization reaction (Fig.
14 3e). Similarly, for BBC, the peak at 1766 cm⁻¹ shifted to 1651 cm⁻¹ indicating the conversion of
15 carbonyl chloride in pure BBC to amide of BBC-BNNS (Fig. 3c). Likewise, the unchanged peak
16 at 636 cm⁻¹ corresponding to C-Br implies no vibrational coupling between Br and BNNS. Overall,
17 all of the linkers formed an amide upon reacting with BNNS via their carboxylic acid or acyl
18 chloride group, but formed functionalized BN nanosheets with a different terminal group (i.e.,
19 mercapto, cyano, or bromo) facing away from BNNS surfaces.
20
21

3.2 Formation and Chemical Analysis of Hybrid TIMs

32
33 Hybrid TIMs were prepared using a co-electrodeposition/chemisorption approach where the
34 electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the
35 conjugation of ligand-coated nanosheets onto silver crystals (Fig. 1). Using this approach, four
36 different nanocomposites involving silver as the base matrix were prepared: silver matrix with bare
37 BNNS, BBC-functionalized BNNS, CBC-functionalized BNNS, and MBCA-functionalized
38 BNNS. The resultant TIMs were analyzed using XPS spectroscopy, which revealed that MBCA-
39 and CBC-functionalized BNNSs interact chemically with silver as evidenced by the positive 0.3
40 10

1
2
3 eV shifts in Ag 3d_{5/2} peak for silver-CBC-BNNS and silver-MBCA-BNNS nanocomposites (Fig.
4
5 4). These shifts can presumably be ascribed to the coordination bond between cyano and thiol
6 groups causing silver to assume a partial positive charge due to the electron donation and cyano
7 and thiol groups to acquire a slightly negative charge owing to the electron withdrawal. On the
8 other hand, no chemical interaction between silver and bare BNNS or BBC-BNNS was observed.
9
10
11
12
13
14

15 **3.3 Morphological, Thermal and Mechanical Properties of Hybrid TIMs**

16

17 Upon determining the nature of chemical interactions between building blocks of metal-organic-
18 inorganic nanocomposites, morphological (nanostructure), thermal and mechanical properties
19 were investigated. Secondary electron microscopy (SEM) imaging of fractured samples provided
20 insights into the organization and distribution of BN nanosheets in silver crystal matrix as a
21 function of ligand (linker) chemistry (Fig. 5). Bare BNNS and BBC-functionalized BNNS
22 aggregated and strongly phase-separated from the silver-base matrix, which can be attributed to
23 the interfacial energy mismatch between BN and silver (Fig. 5b&c). On the other hand, for the
24 cases of CBC-functionalized and MBCA-functionalized BN nanosheets, the distribution of
25 nanosheets within the matrix was more uniform while some aggregation was still observed (Fig.
26 5d&e). These observations support the idea that the chemical interactions between functionalized
27 BNNS and ligands improve the integrity of metal-inorganic-organic hybrid nanocomposites.
28 These findings are also consistent with the XPS data in that CBC-functionalized and MBCA-
29 functionalized BN nanosheets react with Ag while no reaction occurred between silver and bare
30 BNNS and BBC-functionalized BNNS.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The presence and nature of the organic linker influences the thermal conductivity of
nanocomposite TIMs (Figure 6a). For a fixed filler volume fraction of 10±1 wt.%, the effective

1
2
3 thermal conductivity of chemically-integrated nanocomposites (i.e. the filler is CBC-BNNS or
4
5 MBCA-BNNS) was about 25-40% higher than that of physically-integrated nanocomposites (i.e.
6
7 the filler is BBC-BNNS). However, regardless of the functionalization state of BNNS, the
8
9 introduction of BNNS into silver matrix resulted in a reduction of the effective thermal
10
11 conductivity in comparison to pure silver, which can be explained by the out-of-plane thermal
12
13 conductivity of BNNS being lower than that of pure silver, and the relatively low thermal
14
15 conductivity of organic linkers. The effective thermal conductivity of chemically-linked
16
17 nanocomposites was significantly larger than that of physically-linked nanocomposites (306-321
18
19 W/m-K versus 236-258 W/m-K. Since the thermal transport is primarily due to the transport of
20
21 electrons, we also compared the electrical conductivities of these TIM nanocomposites (Table 1.)
22
23 It was found that the electrical conductivity trends followed the thermal conductivity trends i.e.,
24
25 pure silver is the highest, followed by the chemically functionalized nanocomposites, and
26
27 nanocomposites with physically trapped BNNS being the lowest. These consistent trend is
28
29 consistent with the Wiedemann-Franz law and can explain the observed variations in thermal
30
31 conductivities [44].
32
33
34
35
36
37

38 **Table 1.** The comparison of electrical conductivity of various types of composite TIMs at 25 °C.
39
40

41 42 43 44 45 46 47 48 49 Material	40 41 42 43 44 45 46 47 48 Electrical Conductivity	
	40 41 42 43 44 45 46 47 48 Average (S/m)	40 41 42 43 44 45 46 47 48 Standard Deviation (S/m)
40 41 42 43 44 Pure Ag	40 41 6.1×10 ⁷	40 41 5.7×10 ²
40 41 42 Ag- pure BNNS	40 41 1.1×10 ⁵	40 41 7.8×10 ²
40 41 42 Ag- BBC-BNNS	40 41 9.7×10 ⁴	40 41 5.6×10 ²
40 41 42 Ag- CBC-BNNS	40 41 1.5×10 ⁵	40 41 9.2×10 ²
40 41 42 Ag-MBCA-BNNS	40 41 1.9×10 ⁵	40 41 7.9×10 ²

1
2
3 Figure 6b shows the reduced modulus and hardness of these nanocomposites obtained using
4 nanoindentation. Silver-based nanocomposites were found to be softer and more compliant than
5 pure silver. This trend is presumably because the presence of BNNS and functionalized-BNNS
6 disrupts metallic bonds between silver crystals within the film and in addition, will reduce the van
7 der Waals interactions between silver crystals considering that the dielectric constant of metals is
8 much higher than that of inorganic and organic materials. Furthermore, the occupation of f-BNNSs
9 at grain boundaries may promote the slippage of metallic interface, which softens nanocomposites
10 [45, 46]. Furthermore, the ligand molecules act as cushions due to their inherent softness.
11
12

13 The hardness and modulus values of chemically integrated nanocomposites were lower than that
14 of physically integrated nanocomposites, which is counter-intuitive considering only the types and
15 strengths of the bonds involved. However, physically integrated nanocomposites experience the
16 aggregation of fillers as shown in Figure 5. For a given nominal filler loading, the existence of the
17 regions containing BNNS aggregates reduces the effective concentration of BNNS in the regions
18 without BNNS aggregates due to the availability of lower amount of fillers on average. Namely,
19 the effective filler concentration is reduced in the regions where there is no aggregation. Assuming
20 the mechanical properties of fillers do not change significantly with aggregation, the effective
21 medium theory can explain the observed trends [47,48].
22
23

24 Based on the measured thermomechanical properties, the k/H ratio for these silver-based
25 nanocomposites is calculated to be 1.3×10^{-6} m²/K-s for the case of MBCA-BNNS fillers and
26 8.5×10^{-7} m²/K-s for the case of CBC-BNNS fillers. Considering pure silver samples prepared had
27 a k/H ratio of 3.9×10^{-7} m²/K-s, these values signify noticeable improvements (118% to 233%
28 improvement) in thermomechanical properties of chemically integrated nanocomposites. On the
29
30

other hand, the physically integrated nanocomposites yielded a k/H ratio of $5.2 \times 10^{-7} - 5.9 \times 10^{-7}$ $\text{m}^2/\text{K}\cdot\text{s}$. Using the PSTTR technique, a thermal interface resistance of $0.05 \pm 0.02 \text{ mm}^2\cdot\text{K}/\text{W}$ and $0.06 \pm 0.02 \text{ mm}^2\cdot\text{K}/\text{W}$ was measured at the Si-TIM interface under adhesive loading for nanocomposites with chemisorbed and physisorbed fillers, respectively in comparison to $0.12 \pm 0.03 \text{ mm}^2\cdot\text{K}/\text{W}$ for the case of pure silver (**Table 2**). Results from pure silver, nanocomposite with physisorbed fillers and chemisorbed fillers are summarized in Table 1. The contact thermal resistance of the nanocomposite materials is measured to be lower than that of the silver. This trend may be attributed to potentially reduced number of defects at the interface due to the increased interfacial energy compatibility between Si and Ag with the addition of organic ligands [49-51]. Combining the thermal resistances from both bulk material and surface contact, the overall thermal resistance when the hybrid nanocomposite is used as TIM is calculated to be around $0.35 \text{ mm}^2\cdot\text{K}/\text{W}$, more than two orders of magnitude lower than common commercial TIM products.

Table 2. The thermal interface resistance and total resistance of nanocomposite TIMs directly chemisorption-coupled electrodeposited on molecular smooth silicon wafer.

	Si-TIM interface resistance ($\text{mm}^2\cdot\text{K}/\text{W}$)	Overall thermal resistance ($\text{mm}^2\cdot\text{K}/\text{W}$)
Pure silver	0.12 ± 0.04	0.27 ± 0.04
Nanocomposite with physisorbed fillers	0.05	0.34
Nanocomposite with chemisorbed fillers	0.06	0.35

To determine the influence of temperature on the thermal properties of these TIM, we used laser flash analysis (Table 3). It was found that thermal conductivity of composites involving physical bonding of BNNS and silver did not change significantly with temperature while there was a small increase in thermal conductivity of composites involving chemical bonding of BNNS and silver.

Table 3. The comparison of thermal conductivity of various types of composite TIMs at 25 °C and 250 °C.

	K (W/m-K)	K (W/m-K)
	25 °C	250 °C
Pure Ag	374±5	372±8
Ag/pure BNNS	258±21	261±7
Ag/BBC-BNNS	236±16	230±3
Ag/CBC-BNNS	306±41	354±8
Ag/MBCA-BNNS	321±68	382±6

4. Conclusions

Overall, this work has three key conclusions, important in the context of materials science, thermal management, and nanotechnology. First, using the coordination chemistry in conjunction with an electrodeposition process, it is possible to fabricate chemically-linked hybrid nanocomposites involving a silver matrix, 2-D BN nanosheets, and organic ligands. Second, the nanostructure, thermal and mechanical properties of these hybrid nanocomposites strongly depend on the chemistry of linker molecules (ligands) physically or chemically binding nanosheets to the silver matrix. BN nanosheets with cyano- and thio- terminal groups are uniformly distributed in the silver matrix while bare BN nanosheets and BN nanosheets with bromo- terminal groups are in a strongly aggregated state in the silver matrix. The thermal transport in thio- and cyano-linked nanocomposites of silver and BN nanosheets is more efficient than that in bromo-linked nanocomposites. This difference is presumably due to the increased electrical conductivity in the presence of chemical bonds in comparison to the physical bonds. Third, while the presence of bare and functionalized BN nanosheets somewhat reduced the thermal conductivity of pure silver, the mechanical compliance and deformability of nanocomposites were significantly better than pure silver. To put the improvement in mechanical compliance relative to the loss of thermal conductivity in perspective, we determined the thermal conductivity-to-hardness ratio (k/H ratio), which is a critical metric controlling the thermal interface resistance, and found that chemically-integrated nanocomposites improves this ratio from 3.9×10^{-7} m²/K-s (pure silver) to 1.3×10^{-6} – 8.5×10^{-7} m²/K-s, (i.e. ~118% to ~233% enhancement in comparison to pure silver). With such intriguing thermomechanical properties and scalable methodology of production, these

1
2
3 nanomaterials can be applied in various thermal management systems to relieve the thermal
4 stresses in next generation devices and applications.
5
6

7
8 **Author Information**
9

10 Corresponding Author: Mustafa Akbulut, e-mail: makbulut@tamu.edu
11
12

13 **Funding Sources**
14

15 NSF Grant 1559627, DARPA Award No: D13AP00040, and DARPA IAG-12-1844
16
17

18 **Acknowledgement**
19

20 This research was developed with funding from the Defense Advanced Research Projects Agency
21 (DARPA). The views, opinions and/or findings expressed are those of the authors and should not
22 be interpreted as representing the official views or policies of the Department of Defense or the
23 U.S. Government. M.A acknowledges funding from NSF Grant 1559627 and DARPA Award No:
24 D13AP00040. X.F., C.K., and S.N. acknowledge funding from DARPA through the Interagency
25 Agreement IAG-12-1844.
26
27
28
29
30
31
32

33 **References**
34

35 [1] J.A. Mason, J. Oktawiec, M.K. Taylor, M.R. Hudson, J. Rodriguez, J.E. Bachman, M.I.
36 Gonzalez, A. Cervellino, A. Guagliardi, C.M. Brown, P.L. Llewellyn, N. Masciocchi, J.R.
37 Long, Methane storage in flexible metal-organic frameworks with intrinsic thermal
38 management, *Nature*. 527 (2015) 5–7.
39
40 [2] H. Huang, C. Liu, Y. Wu, S. Fan, Aligned carbon nanotube composite films for thermal
41 management, *Adv. Mater.* 17 (2005) 1652–1656.
42
43 [3] Z. Yan, G. Liu, J.M. Khan, A. a. Balandin, Graphene quilts for thermal management of
44 high-power GaN transistors, *Nat. Commun.* 3 (2012) 827.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[4] J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability, *Adv. Funct. Mater.* 27 (2017) 1–9.

[5] A. Balčytis, M. Ryu, G. Seniutinas, P.R. Stoddart, M.A. Al Mamun, J. Morikawa, S. Juodkazis, Nano-rescaling of gold films on polystyrene: thermal management for SERS, *Nanoscale* 9 (2016) 690–695.

[6] N. Song, D. Jiao, S. Cui, X. Hou, P. Ding, L. Shi, Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management, *ACS Appl. Mater. Interfaces* 9 (2017) 2924–2932.

[7] S. Kwon, J. Zheng, M.C. Wingert, S. Cui, R. Chen, Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures, *ACS Nano* 11 (2017) 2470–2476.

[8] F.E. Alam, W. Dai, M. Yang, S. Du, X. Li, J. Yu, N. Jiang, C.-T. Lin, In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity, *J. Mater. Chem. A* 5 (2017) 6164–6169.

[9] J. Hu, Y. Huang, Y. Yao, G. Pan, J. Sun, X. Zeng, R. Sun, J. Bin Xu, B. Song, C.P. Wong, Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN, *ACS Appl. Mater. Interfaces* 9 (2017) 13544–13553.

[10] Y. Wang, N. Xu, D. Li, J. Zhu, Thermal Properties of Two Dimensional Layered Materials, *Adv. Funct. Mater.* 27 (2017) 1604134.

[11] J.D. van Wyk, F.C. Lee, On a Future for Power Electronics, *IEEE J. Emerg. Sel. Top. Power*

1
2
3 Electron. 1 (2013) 59–72.
4
5 [12] H.S. Hamut, I. Dincer, G.F. Naterer, Exergy analysis of a TMS (thermal management
6 system) for range-extended EVs (electric vehicles), Energy. 46 (2012) 117–125.
7
8 [13] R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future
9 Directions, Proc. IEEE. 94 (2006) 1571–1586.
10
11 [14] A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon, Enhanced Thermal
12 Conductivity in a Hybrid Graphite Nanoplatelet - Carbon Nanotube Filler for Epoxy
13 Composites, Adv. Mater. (Weinheim, Ger.). 20 (2008) 4740–4744.
14
15 [15] A. Bar-Cohen, K. Matin, S. Narumanchi, Nanothermal Interface Materials: Technology
16 Review and Recent Results, J. Electron. Packag. 137 (2015) 40803–40817.
17
18 [16] Y. Xu, X. Luo, D.D.L. Chung, Lithium Doped Polyethylene- Glycol-Based Thermal
19 Interface Pastes for High Thermal Contact Conductance, J. Electron. Packag. 122 (2000)
20 188–191.
21
22 [17] S. Stankovich, D. a Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E. a Stach, R.D.
23 Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials., Nature. 442 (2006)
24 282–286.
25
26 [18] V. Goyal, A.A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-
27 composites: Applications in thermal interface materials, Appl. Phys. Lett. 100 (2012)
28 073113.
29
30 [19] E.G. Wolff, D.A. Schneider, Prediction of thermal contact resistance between polished
31 surfaces, Int. J. Heat Mass Transf. 41 (1998) 3469–3482.
32
33 [20] V. Sartre, M. Lallemand, Enhancement of thermal contact conductance for electronic
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

systems, *Appl. Therm. Eng.* 21 (2001) 221–235.

[21] R.L. Jackson, S.H. Bhavnani, T.P. Ferguson, A Multiscale Model of Thermal Contact Resistance Between Rough Surfaces, *J. Heat Transfer.* 130 (2008) 81301.

[22] M.M. Yovanovich, Four decades of research on thermal contact, gap, and joint resistance in microelectronics, *IEEE Trans. Compon., Packag., Manuf. Technol.* 28 (2005) 182–206.

[23] S. Wang, Y. Cheng, R. Wang, J. Sun, L. Gao, Highly thermal conductive copper nanowire composites with ultralow loading: Toward applications as thermal interface materials, *ACS Appl. Mater. Interfaces.* 6 (2014) 6481–6486.

[24] J.S. Park, Y.J. An, K. Shin, J.H. Han, C.S. Lee, Enhanced thermal conductivity of epoxy/three-dimensional carbon hybrid filler composites for effective heat dissipation, *RSC Adv.* 5 (2015) 46989–46996.

[25] G. Lian, C.-C. Tuan, L. Li, S. Jiao, Q. Wang, K.-S. Moon, D. Cui, C.-P. Wong, Vertically Aligned and Interconnected Graphene Networks for High Thermal Conductivity of Epoxy Composites with Ultralow Loading, *Chem. Mater.* 28 (2016) 6096–6104.

[26] Y. Yao, X. Zeng, G. Pan, J. Sun, J. Hu, Y. Huang, R. Sun, J.-B. Xu, C.-P. Wong, Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity, *ACS Appl. Mater. Interfaces.* 8 (2016) 31248–31255.

[27] T. Eyassu, T.-J. Hsiao, K. Henderson, T. Kim, C.-T. Lin, Molecular Cooling Fan: Factors for Optimization of Heat Dissipation Devices and Applications, *Ind. Eng. Chem. Res.* 53 (2014) 19550–19558.

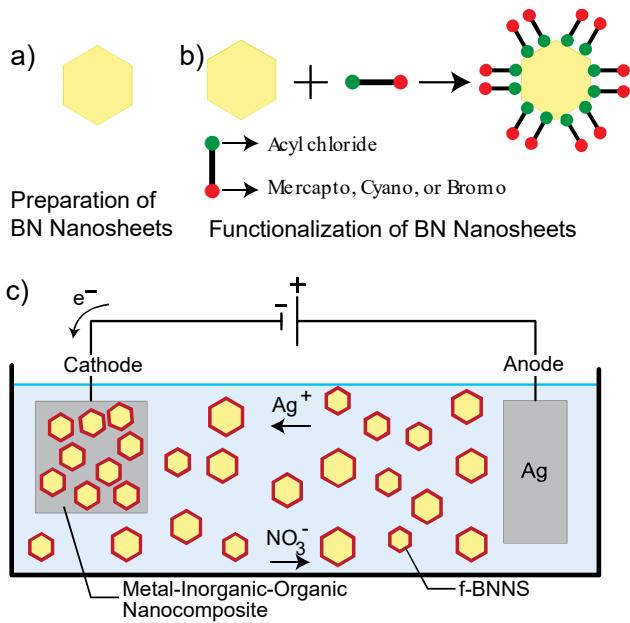
[28] Q. Li, Y. Guo, W. Li, S. Qiu, C. Zhu, X. Wei, M. Chen, C. Liu, S. Liao, Y. Gong, Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite, *Chem.*

1
2
3 Mater. 26 (2014) 4459–4465.
4
5 [29] X. Fang, L.-W. Fan, Q. Ding, X. Wang, X.-L. Yao, J.-F. Hou, Z.-T. Yu, G.-H. Cheng, Y.-
6 C. Hu, K.-F. Cen, Increased thermal conductivity of eicosane-based composite phase
7 change materials in the presence of graphene nanoplatelets, Energy Fuels. 27 (2013) 4041–
8 4047.
9
10 [30] M. Shtein, R. Nadiv, M. Buzaglo, K. Kahil, O. Regev, Thermally conductive graphene-
11 polymer composites: size, percolation and synergy effects, Chem. Mater. 27 (2015) 2100–
12 2106.
13
14 [31] P.-C. Hsu, X. Liu, C. Liu, X. Xie, H.R. Lee, A.J. Welch, T. Zhao, Y. Cui, Personal thermal
15 management by metallic nanowire-coated textile, Nano Lett. 15 (2014) 365–371.
16
17 [32] B. Wunderle, M. Klein, L. Dietrich, M. Abo Ras, R. Mrossko, D. May, R. Schacht, H.
18 Oppermann, B. Michel, H. Reichl, Advances in thermal interface technology: Mono-metal
19 interconnect formation, processing and characterisation, ITherm 2010, Intersoc. Conf.
20 Therm. Thermomech. Phenom. Electron. Syst., 12th. (2010) 1-10.
21
22 [33] X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Carbon nanotube sponges,
23 Adv. Mater. (Weinheim, Ger.) 22 (2010) 617–621.
24
25 [34] M. Qin, Y. Feng, T. Ji, W. Feng, Enhancement of cross-plane thermal conductivity and
26 mechanical strength via vertical aligned carbon nanotube@graphite architecture, Carbon.
27 104 (2016) 157–168.
28
29 [35] R. Sasaki, K. Shintani, Hardness of Pillared-Graphene Nanostructures via Indentation
30 Simulation, MRS Adv. 2 (2017) 45–50.
31
32 [36] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride
33

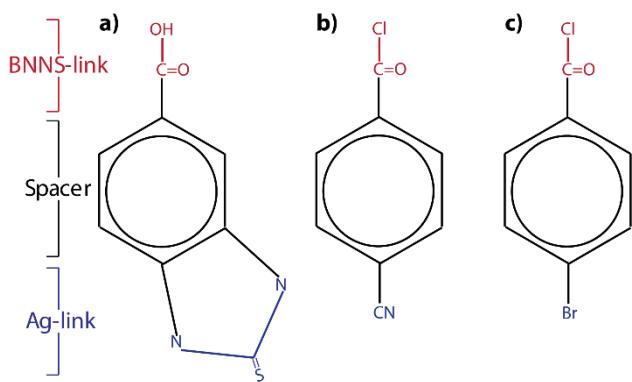
1
2
3 nanotubes and nanosheets, *ACS Nano.* 4 (2010) 2979–2993.
4
5 [37] Q.M. Ramasse, R. Zan, U. Bangert, D.W. Boukhvalov, Y.-W. Son, K.S. Novoselov, Direct
6 experimental evidence of metal-mediated etching of suspended graphene, *ACS Nano.* 6
7 (2012) 4063–4071.
8
9 [38] J. Chen, M. Hamon, H. Hu, Y. Chen, A. Rao, P. Eklund, R. Haddon, Solution properties of
10 single-walled carbon nanotubes, *Science.* 282 (1998) 95–98.
11
12 [39] C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, D. Golberg, Covalent
13 functionalization: towards soluble multiwalled boron nitride nanotubes., *Angew. Chem. Int.*
14 Ed. 44 (2005) 7932–7935.
15
16 [40] P.S. Gill, S.R. Sauerbrunn, M. Reading, Modulated differential scanning calorimetry, *J.*
17 *Therm. Anal.* 40 (1993) 931–939.
18
19 [41] H.W. Deem, W.D. Wood, Flash thermal-diffusivity measurements using a laser, *Rev. Sci.*
20 *Instrum.* 33 (1962) 1107–1109.
21
22 [42] X. Feng, C. King, D. Devoto, M. Mihalic, S. Narumanchi, Investigation of thermal interface
23 materials using phase-sensitive transient thermoreflectance technique, *ITherm 2014,*
24 Intersoc. Conf. Therm. Thermomech. Phenom. Electron. Syst., 14th. (2014) 1296–1307.
25
26 [43] C. Yegin, N. Nagabandi, X. Feng, C. King, M. Catalano, J.K. Oh, A. Talib, E.A. Scholar, S.
27 V. Verkhoturov, T. Cagin, A. V. Sokolov, M.J. Kim, K. Matin, S. Narumanchi, M. Akbulut,
28 Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultra-Low
29 Thermal Resistances, *ACS Appl. Mater. Interfaces.* 9 (2017) 10120–10127.
30
31 [44] Wilson, R.B. and Cahill, D.G., 2012. Experimental validation of the interfacial form of the
32 Wiedemann-Franz law. *Physical review letters,* 108(25), p.255901.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[45] Broedling, N.C., Hartmaier, A., Buehler, M.J. and Gao, H., 2008. The strength limit in a bio-inspired metallic nanocomposite. *Journal of the Mechanics and Physics of Solids*, 56(3), pp.1086-1104.

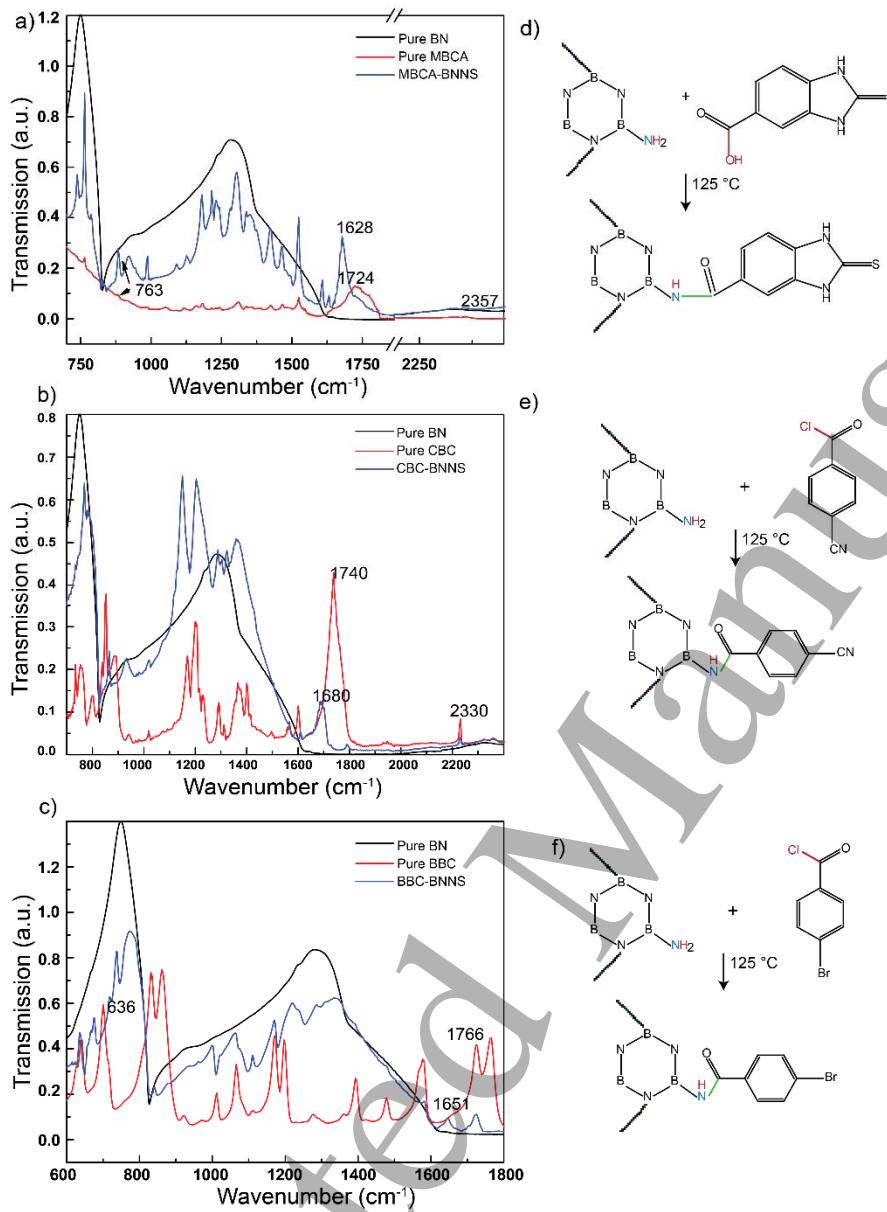
[46] Sofronis, P. and McMeeking, R.M., 1994. The effect of interface diffusion and slip on the creep resistance of particulate composite materials. *Mechanics of materials*, 18(1), pp.55-68.

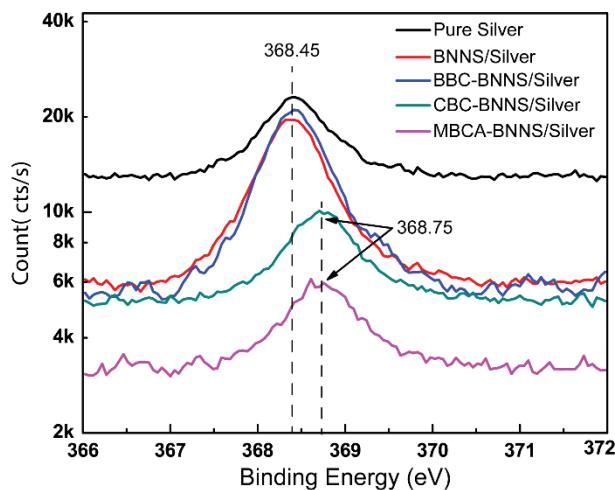

[47] J.C. Halpin, J.L. Kardos, The Halpin-Tsai equations: A review, *Polym. Eng. Sci.* 16 (1976) 344–352.

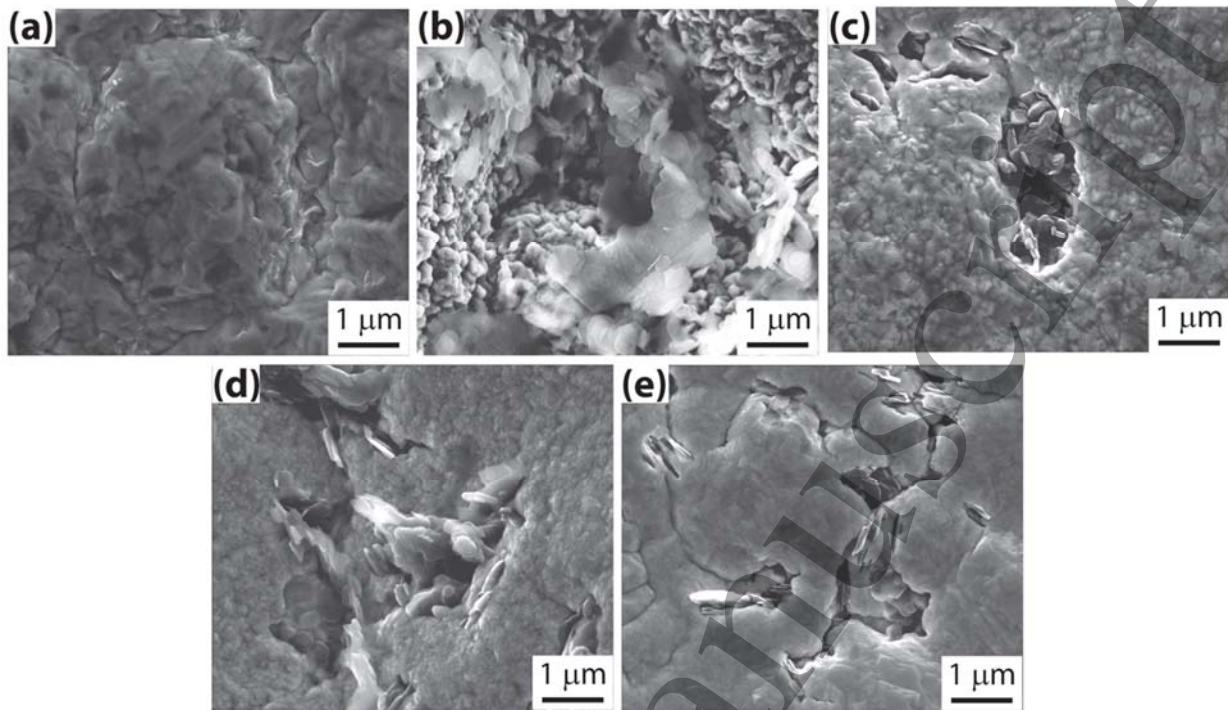
[48] M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, *ACS Nano*. 3 (2009) 3884–3890.


[49] Van Loenen, E.J., Iwami, M., Tromp, R.M. and Van der Veen, J.F., 1984. The adsorption of Ag on the Si (111) 7× 7 surface at room temperature studied by medium energy ion scattering, LEED and AES. *Surface science*, 137(1), pp.1-22.

[50] Guerin, D., Merckling, C., Lenfant, S., Wallart, X., Pleutin, S. and Vuillaume, D., 2007. Silicon– Molecules– Metal Junctions by Transfer Printing: Chemical Synthesis and Electrical Properties. *The Journal of Physical Chemistry C*, 111(22), pp.7947-7956.


[51] Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N. and Nuzzo, R.G., 1991. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. *Journal of the American Chemical Society*, 113(19), pp.7152-7167.


Figure 1. Three main steps of preparing hybrid nanocomposites involving silver, BN nanosheets, and organic ligands: a) the preparation of BN nanosheets via ultrahigh-intensity sonification assisted exfoliation in n-methyl-2-pyrrolidone, b) the functionalization of BN nanosheets with bifunctional ligands containing acyl chloride or carboxylic acid groups through Lewis acid-base reactions, and c) the co-electrodeposition/chemisorption process that couples the electrolytic reduction of silver ions and the chemisorption of functionalized BN nanosheets on the cathode.


Figure 2. Generic and specific structures of selected ligands: a) 2-mercaptop-5-benzimidazole carboxylic acid (MBCA), b) 4-cyanobenzoyl chloride (CBC), and c) 4-bromo-benzoyl chloride (BBC).

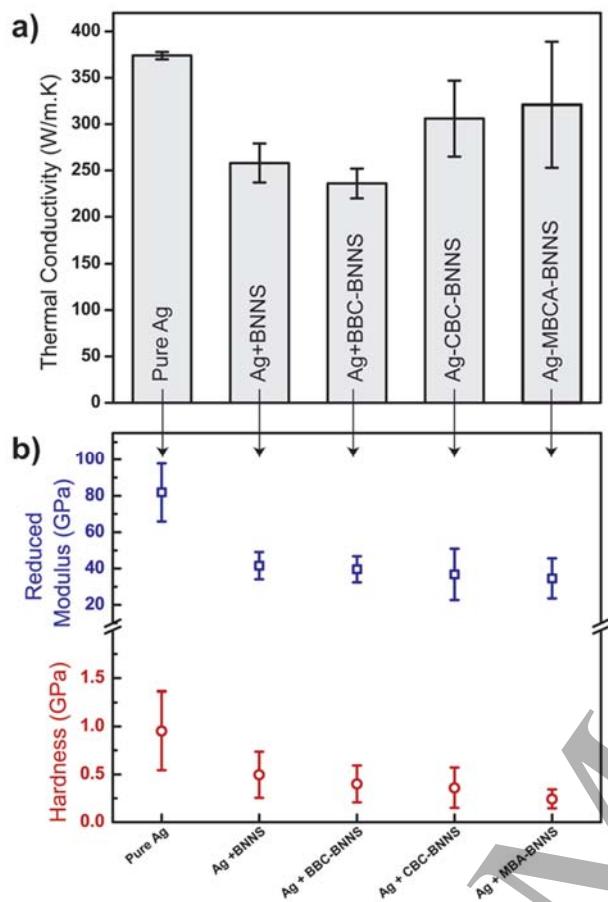

Figure 3. FTIR spectra of a) pure BNNS, pure MBCA, and MBCA-functionalized BNNS, b) pure BNNS, pure CBC, and CBC-functionalized BNNS, and c) pure BNNS, pure BBC and CBC-functionalized BNNS. The proposed reactions for the chemical interactions of d) MBCA and BNNS, e) CBC and BNNS, and f) BBC and BNNS.

Figure 4. High resolution XPS spectra in the region of Ag 3 d_{5/2} for pure silver, nanocomposites involving bare BNNS and silver, nanocomposites involving BBC-functionalized BNNS and silver, nanocomposites involving CBC-functionalized BNNS and silver, and nanocomposites involving MBCA-functionalized BNNS and silver. No peak shifts were observed for the cases of pure BNNS and BBC-BNNS compared to pure silver. Nanocomposites with CBC-BNNS or MBCA-BNNS fillers showed an oxidative shift of 0.3 eV, suggesting the chemical integration of BN nanosheets containing thio- and cyano-terminal groups with the silver matrix.

Figure 5. Secondary electron micrographs of (a) pure silver, and silver-matrix nanocomposites involving (b) bare BNNS, (c) BBC-functionalized BNNS, (d) CBC-functionalized BNNS, and (e) MBCA-functionalized BNNS. Nanocomposites with bare BNNS and BBC-functionalized BNNS showed a strong aggregation of nanosheets in the silver matrix while CBC-functionalized and MBCA-functionalized nanosheets resulted in a better dispersion and distribution of nanosheets in the matrix.

Figure 6. a) Thermal conductivity and b) reduced modulus and hardness values of chemically-integrated (CBC-BNNS and MBCA-BNNS)) and physically-integrated hybrid nanocomposites in comparison to pure silver.