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Mesh-Based Discretizations

(d Mesh-based discretizations (finite differences,
finite elements, etc.) are the most common
discretization method used today.

O Lagrangian description moves with material.

O Eulerian description has material moving
through it.

-

* Lagrangian description good for
solid mechanics (simpler, more natural)
* Not good for large deformations (element

k inversion, etc.)

e Eulerian description good
for fluid mechanics
* Not good for deformable

Qoundaries, etc.
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* Arbitrary Lagrangian-
Eulerian (ALE) methods
* Highly complex codes!

K Lagrangian Phase

Remesh/Remap Phase

/3




Mesh-Based Discretization

nodes and elements.

e Lagrangian, Eulerian, ALE

 Computational domain defined by

) 2,
Mesh-Based vs. Meshfree Discretizations

e Solution computed using polynomial
approximation over each element.
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Mesh-Based Discretization

* Computational domain defined by
nodes and elements.

e Solution computed using polynomial
approximation over each element.

e Lagrangian, Eulerian, ALE

Meshfree Discretization:

 Computational domain defined by
point particles (colocation points) and
support of associated shape functions.

e Solution represented using shape
functions at each point.

* Lagrangian, but no mesh. Suitable for
large deformations and fluid flows.

 Meshfree methods sidestep many of the deficiencies of mesh-based methods, and
frequently have less computational overhead.
d Meshfree methods are not a panacea and have their own shortcomings.
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Smoothed Particle Hydrodynamics (SPH)

(J SPH is a meshfree particle-based method to solve
PDEs in fluid mechanics.

L SPH solves Lagrangian form of Navier—Stokes
equations at each particle.

[ This discretization gives a set of ODEs for fluid
particles trajectories.

 Traditional SPH implementations yield simple-to-
code explicit method.

LAMMPS Simulation of
Dam Break Problem

 SPH is useful for:
1 Modeling low Reynolds number flows in microfluidic applications
L Colloidal suspensions
O Fluid structure interaction (FSI)
J No need either to adaptively fit a mesh to a moving boundary or to couple the
solid boundary to a fixed Eulerian mesh

1 Peridynamics fans: SPH can be shown to be a specific discretization of a peridynamic
equation.*
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Smoothed Particle Hydrodynamics (SPH)

O You’ve probably seen SPH simulations before.

THE DAY AFTER TOREIEIEE Y
wWHEAL I :

The Lord of the Rings: The Return of the King The Day After Tomorrow
(2003, New Line Cinema) (2004, 20" Century Fox)

U NextLimit Technologies won an Oscar in 2008 for their RealFlow code

w i
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Smoothed Particle Hydrodynamics (SPH)

 From an overview article* on SPH in motion pictures...

How does SPH work?

Rather than tryii  And the more particles used in the simulation, the more accurate the
particles. Amath model becomes.”

determine the d¢

Using the density and pressure of the fluid, SPH
on each particle within the fluid. This technique provides ré

e to map the force acting

uite similar to the actual

This is well known
to be false.
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SPH for Navier-Stokes

1 Consider a incompressible flow governed by the Navier-Stokes (NS) equations:

ﬂ:EVerUVZUJrg
dt p

V.-u=0

O Traditional SPH implementations for Navier-Stokes have some problems:

1) Classical SPH formulations (i.e., weakly compressible SPH or WCSPH) apply an
inconsistent artificial compressibility assumption to control the divergence error
in the velocity field at the expense of a stiffer CFL condition -- Motivates implicit
time integration.)

2) SPH operator discretizations are inconsistent (diverge with increasing particle
density).

L Our objective is to produce a consistent, efficient, 2nd order implicit SPH method.*

(d We will achieve this by:
1) Introduce 2" order accurate incremental pressure correction scheme
2) Introducing consistent, 2"d order accurate SPH operator discretizations
O VIl then show a massively parallel software implementation and a few examples....
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Navier-Stokes

Q Split into predictor/corrector steps:

Cu - 1_ (u -u" )
=—-—Vp +vV + g
Predictor < At p 2 > Helmholtz
(Find velocity £
estimate u™*) \_ U =uyx J
1 *
7 u™t —u _ _lv(pn+1 B pn)
At p
Corrector < nel provably O(At?)
. V-u = accurate in velocity &
(Make velocity i1 O(At) in pressure.
divergence free) \ U~ 71 =Uy, "1

At Poisson

V(pn+1 . pn) -0
O Solve resulting systems with algebraic multigrid (AMG) preconditioned GMRES.
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SPH Kernel Approximation Operator

L Consider approximations of f(x) with smoothing function W(x-y,h):
()(x) = [ fly)W(x - y,h) dy
Q

where h is a smoothing length.
L W possesses these properties:

O Normalized: jW(x -y,h)dy=1
Q
O Non-negative: >0 for‘x - y\ < kh
W(X - yrh) —
O Compact support: =0 for‘x - y‘ > kh
O Decay: Monotonic decrease with increasing | x-y|

O “Delta function property”: Liirg j fly)W(x - y,h)dy = jf(y)5 (x - y)dy
Q Q

- Even: W(x - y,h)= W(y - x, h)

O “Sufficiently smooth”: Must be differentiable
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SPH Kernel Approximation Operator

L Consider approximations of f(x) with smoothing function W(x-y,h):
(f)(x) = [ fly)Wix - y,h) dy
9
where h is a smoothing length.
L With some derivation, can produce following expression for smoothed gradient:

(VE)(x) = [ ly) V,Wix - y) dy

J We can compute smoothed gradients of f by pushing derivatives on to W.
d We don’t need to know Vf, or use finite differences, or similar tactics...

J So how to discretize?
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Interpolation Errors and Convergence

(J Discrete approximation (suppress h from now on):

B0 = Flx) = D fix,)Wix, -x,) V.

jesupp(W)
where V; is a quadrature weight for point j.

O Straightforward discrete smoothed gradient not even 0" order accurate:

(VHX) =~ D f(x;)V,W(x, -x,)V,

jesupp(W)

[ Standard SPH discretizations (0t order consistent):

(VE) = Tofx) = 3 (Fix,) - F(x,))V, Wi, - x,) V,

jesupp(W)
~ f(x.)- f(x.) x.-x.
V3)(x) = Vif(x,) =2 ‘ =V W(X, - X)) V.
< > i iesuzmo:(w) X; - xjH X; - xjH o

U These standard discretizations lack higher order accuracy....
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Interpolation Errors and Convergence

1 Consider 3 particle distributions: Cartesian, randomly perturbed, quasi-ordered

[ Discrete SPH operators convergent only on perfectly cartesian grid!

~ ~ 2
7 f(x.) T2f(x)
: T LA T T lUg T T T LB B B T T T T T T T T
F ) 5 L
" E
001 R E o1k =
= =" 0.01;—
s E |— Symmetric E = £
- |— x=001h : - |— Symmetric
L |— x=005h i 0O01E | 9 =0.01h
o001 |— X=0.1h . F|— x=005h
x=05h aopor |— x=0.1h
I |— Quasi-ordered 1 F | — Quasi-ordered
le-05 j L 1¢-05

E 1 1 L L L T -} 1 1 L L L L1 = E 1 Il 1 I | N ! 1 I It 1 1 I =
10 100 1000 10 100 1000
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Interpolation Errors and Convergence

O Interpolation errors of differential operators can be categorized as errors due to
smoothing, quadrature, and particle anisotropy:

€1t <
L There are many possible discretizations for the smoothed gradients. In general,

'ﬁ1 'ﬁz
» IS
AX hP \ Ax

where C>0, B,, B, € Z*, Ax~ 1/N, p=1 for gradient, p=2 for Laplacian.

e e +|le

anis

+|e

interp smoothing quad

e

ot e

smoothing quad

O For convergence must simultaneously decrease h and increase h/Ax
(i.e. increase the number of neighbors interacting with each particle).

O If h/Ax held constant (standard practice), error due to particle anisotropy dominates.
What to do?




Sandia
m National

Laboratories

Interpolation Errors and Convergence

U Define corrected operators

Vi) = Y (flx,) - (x,))G,V, Wix, - x,)V,

jesupp(W)
Viix)=2 Li;ﬁ@)vxwm—xj) flx) ~fx) - x, —x, V.flx,) |V,
ton x| ox] o)

where L, G; are 3x3 tensors (in 3D), and can be determined from a Taylor expansion.

U L, G can be computed directly and stored for each particle at a cost of inverting and
storing G, L, incurring O(N) total cost in additional computational complexity and
storage.

O A simple expression exists to determine G:
(G'1)“n = Z (xm-xm)iW(x -x.)V
i - j j ox" i 77

jesupp(W) xj

where m,n=1,2,3.
 There is a similar (more tedious) expression for L.
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Interpolation Errors and Convergence

U The modified operators remove dependence on h/Ax (number of neighbors per
particle) in the error terms e ., and e, ;..
L This means that we can achieve O(h?) accuracy with fixed h/Ax!
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~ ~2
V. fix;) Vif(x;)
0.1 o | - = 01 \‘--«._ | l =
c — Symmetric| 7 £ — Symmetric
— %=0.01h | ] C — %=0.01h
— %=0.05h — % =005h
0.01 — x=0.1h | = 0_015— — x=0.1h 5

- Quasi-ordered| -

lell,
lell,

0.001 = 0.001 |
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le-05 le-05
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 Further (and of even more importance) the corrected operators achieve a similar
accuracy with fewer neighbors (for example 20 neighbors in 2D vs. 80 neighbors).

U This gives sparser global operators (Poisson & Helmholtz) for Navier-Stokes,
representing a substantial computational savings.




Sandia
m National
Laboratories

Massively Parallel 3D Implicit SPH

Goal: Large scale parallel 3D implicit simulation capability

O Use LAMMPS, Sandia’s massively parallel molecular dynamics code &%

O LAMMPS can simulate any particle system (MD, SPH, DPD, PD, etc.) &
 Demonstrated massively parallel scalability lammps.sandia.gov

Problem:

O LAMMPS has no capability for implicit time integration!

 LAMMPS handles particle systems easily

L However, only explicit time integration used in MD

J Need distributed memory matrices, linear solvers, preconditioners, etc.
0 Unwise/unwieldy to implement directly into LAMMPS

Solution:
U Integrate LAMMPS with Trilinos solvers!
L This has never been done before....

trilinos.org



http://trilinos.sandia.gov/

Trilinos

m
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L Object-oriented software framework for solving large complex science & engineering

problems
O Trilinos is made of packages

L Not a monolithic piece of software; Use the set of packages you choose
O Each package developed by domain experts

1 Like LEGO™ bricks, not Matlab™

Objective

Package(s)

Discretizations

Meshing & Discretizations

STKMesh, Intrepid, Pamgen, Sundance, ITAPS, Mesquite

Time Integration Rythmos
Automatic Differentiation Sacado
Methods
Mortar Methods Moertel
Linear algebra objects Epetra, Tpetra, Kokkos
Interfaces Thyra, Stratimikos, RTOp, FEI, Shards, Tpetra::RTI
Services Load Balancing Zoltan, Isorropia
“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika
C++ utilities, 1/0, thread APl | Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx
Iterative linear solvers AztecQO, Belos, Komplex
Direct sparse linear solvers | Amesos, Amesos2
Direct dense linear solvers | Epetra, Teuchos, Pliris
Iterative eigenvalue solvers | Anasazi
ILU-type preconditioners AztecOO, IFPACK, Ifpack2
Solvers - —
Multilevel preconditioners ML, CLAPS

Block preconditioners

Meros, Teko

Nonlinear system solvers

NOX, LOCA

Optimization (SAND)

MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs

Stokhos
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LAMMPS/Trilinos Integration

O
O

" o/
a T e,
'y & -
e 3
R D
.y U /
" /[
N . e ~umier-

SPH particle discretization Updated Solution © Parallel SPH linear system solves
Parallel data distribution State (Helmholtz, Poisson)
Vectors - .
Data o Block Krylov iterative solvers
Algebraic multigrid preconditioners

Solver
Manager

Matrix Fill

Linear Systems

Fuse LAMMPS and Trilinos for massively parallel 3D Implicit SPH computational framework
(J Let each code handle what it was designed to do well

d LAMMPS handles particle data, parallel data distribution, ghosting

O Trilinos handles distributed memory linear solvers, preconditioners, etc.

L LAMMPS “tag” vector is logically equivalent to an Epetra/Tpetra map

L LAMMPS “neighborlists” determine matrix sparsity pattern

 LAMMPS constructs and fills sparse matrices, right-hand-sides

O LAMMPS requests linear solver, preconditioner; leverages full Trilinos solver stack



http://trilinos.sandia.gov/

Sandia
m National
Laboratories

Taylor-Green Vortex

Verification Problem (2D, Extruded to 3D) — - -
N7
d—u—lep—ﬂAu:f, in €
dt P P Velocity Magni
Vou=o T 0.099925
u=0. ondQ 2'22

0.04
0.02

T

up = Uge 2™t sin(mz) cos(my)

0.001735
Uy = —Upe ™t cos(mx) sin(my)

U2
“0.
4

—4y172t(cos(2ﬂ-x) =+ COS(QT‘Ty) + 2)

—+-valocity error
0 -oN? E

Velocity Magni
0.099925
0.08
0,06
-0.04
0.02

0.001735

Velocity RMS Error

10°F
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Parallel Scalability

1 Weak scaling results (Simulations on Hopper @ NERSC, Cray XE6)
0 h=1.5Ax
1 4096 particles/core
O Smoothed aggregation AMG
1.8

1.6

1.4

1.2 —
11

0.8 =#= Helmholtz

== Poisson

0.6
0.4
0.2

Parallel Efficiency

0
64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768
# cores \

~133M Particles!
T
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Flow Past Periodic 3D Spheres

O Flow through complex geometry
O 3D periodic array of spheres in BCC lattice driven by external force

U h = 0.8 Ax; 4096 particles/core; Smoothed aggregation AMG

1.8
1.6

Ll
[l T Y

==Helmhaltz

o o
(o T » ]

=~Poisson

Parallel Efficiency

o o
[ o

o

64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768

# cores /

~133M Particles!

Selected particle streamlines
(color indicates velocity magnitude)
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Pore Scale Flow in Bead Pack*

O Simulate porous media flow at pore scale

O High-resolution magnetic resonance imaging of 6864 packed polystyrene beads used
to construct pore geometry

Dimensions and parameters of the column.

Parameter Symbol (units) Value
Length of the simulated domain L (mm) 16.8
Length of the sphere pack Ly (mm) 12.8
Diameter of the column D (mm) 8.8
Diameter of the beads dp (mm) 0.5
Porosity 0.4267

€

Volumetric flow rate Q (kgls) 2771 x 102
Fluid density P (kg/m?3) 997.561
Fluid dynamic viscosity L (Pas) 8.887 x 10*
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Pore Scale Flow in Bead Pack*

L 165M particles; Ax = 20 um

1 Simulations on Edison @ NERSC

(Cray XC30)
1 7680 cores; 13 minutes wall-clock run 0011 V]
time E0.0]

0.0075

0.005

0.0025

Q@
MIIIIIIMIIII\MHHH

Steady state simulated result (cut view)
(color indicates velocity magnitude)




Pore Scale Flow in Bead Pack*

L Compare multiple codes (including
this one) on same problem.
U Qol: Pressure drop along axial

direction
Code Resolution AP [Pa] Diff [ %]
Reference - 14.29 -
StarCCM+ 40 um 13.61 4.48
[SPH 40 um 13.26 4.76
TETHYS 40 um 13.32 6.79
TETHYS 20 um 13.19 7.70
iRMB-LBM 40 um 15.20 6.37
iRMB-LBM 20 um 16.26 13.79

o83 o ee%te

?
-

3 By,
. F
_ 3 L
0. a:a®
L
k- ¥

-
'....
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0.011-
E0.0]

0.0075

0.005

Q

Steady state simulated result (cross section)

(color indicates velocity magnitude)




Summary

(J Review of mesh-based and meshless methods
(J SPH review
J Developed scalable, efficient, parallel implicit 2nd order accurate SPH method
O Introduced consistent, 2"d order accurate SPH operator discretizations
O Introduced 2" order accurate incremental pressure correction scheme
L Massively parallel implementation (LAMMPS+Trilinos)
(J Demonstrated weak scaling on largest ever implicit SPH simulations
O Applications:
O Verification: Taylor-Green Vortex
1 Flow past periodic 3D spheres
L Pore scale flow in bead pack (using MRV data from physical experiment)
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Parallel Scalability

O Weak scaling results (Simulations on Hopper @ NERSC, Cray XE6)
0 h=1.5Ax

1 4096 particles/core

O Smoothed aggregation AMG

25 |

20 = =
e
g =+ Helmholtz
3+ 10| W= Poisson

0_0-‘_.-4 .
0
64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768
# cores \

~133M Particles!
T




