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Mesh-Based Discretizations
 Mesh-based discretizations (finite differences, 

finite elements, etc.) are the most common 
discretization method used today. 

 Lagrangian description moves with material.
 Eulerian description has material moving 

through it. 

3

• Lagrangian description good for 
solid mechanics (simpler, more natural)

• Not good for large deformations  (element 
inversion, etc.)

• Eulerian description good 
for fluid mechanics

• Not good for deformable 
boundaries, etc. 

• Arbitrary Lagrangian-
Eulerian (ALE) methods

• Highly complex codes!



Mesh-Based vs. Meshfree Discretizations





Mesh-Based Discretization
• Computational domain defined by 

nodes and elements. 
• Solution computed using polynomial 

approximation over each element.
• Lagrangian, Eulerian, ALE



 Meshfree methods sidestep many of the deficiencies of mesh-based methods, and 
frequently have less computational overhead. 

 Meshfree methods are not a panacea and have their own shortcomings.





Mesh-Based vs. Meshfree Discretizations

Meshfree Discretization:
• Computational domain defined by 

point particles (colocation points) and 
support of associated shape functions.

• Solution represented using shape 
functions at each point.

• Lagrangian, but no mesh. Suitable for 
large deformations and fluid flows.

Mesh-Based Discretization
• Computational domain defined by 

nodes and elements. 
• Solution computed using polynomial 

approximation over each element.
• Lagrangian, Eulerian, ALE



 SPH is a meshfree particle-based method to solve 
PDEs in fluid mechanics. 

 SPH solves Lagrangian form of Navier–Stokes 
equations at each particle. 

 This discretization gives a set of ODEs for fluid 
particles trajectories. 

 Traditional SPH implementations yield simple-to-
code explicit method. 

Smoothed Particle Hydrodynamics (SPH)

 SPH is useful for:
 Modeling low Reynolds number flows in microfluidic applications
 Colloidal suspensions
 Fluid structure interaction (FSI) 
 No need either to adaptively fit a mesh to a moving boundary or to couple the 

solid boundary to a fixed Eulerian mesh

 Peridynamics fans: SPH can be shown to be a specific discretization of a peridynamic
equation.*

LAMMPS Simulation of        
Dam Break Problem

* G.C. Ganzenmüller, S. Hiermaier, M. May, On the similarity of meshless discretizations of Peridynamics and Smooth-Particle Hydrodynamics, Comp. Struct., 150, pp. 71-78, 2015.



 You’ve probably seen SPH simulations before. 

 NextLimit Technologies won an Oscar in 2008 for their RealFlow code. 

Smoothed Particle Hydrodynamics (SPH)

The Day After Tomorrow
(2004, 20th Century Fox)

The Lord of the Rings: The Return of the King
(2003, New Line Cinema)



 From an overview article* on SPH in motion pictures…

Smoothed Particle Hydrodynamics (SPH)

* http://theconversation.com/superman-returns-but-whos-looking-after-his-water-680

“And the more particles used in the simulation, the more accurate the 
model becomes.”

This is well known 
to be false.



 Consider a incompressible flow governed by the Navier-Stokes (NS) equations:

 Traditional SPH implementations for Navier-Stokes have some problems:
1) Classical SPH formulations (i.e., weakly compressible SPH or WCSPH) apply an 

inconsistent artificial compressibility assumption to control the divergence error 
in the velocity field at the expense of a stiffer CFL condition -- Motivates implicit 
time integration.)

2) SPH operator discretizations are inconsistent (diverge with increasing particle 
density). 

 Our objective is to produce a consistent, efficient, 2nd order implicit SPH method.*

 We will achieve this by:
1) Introduce 2nd order accurate incremental pressure correction scheme
2) Introducing consistent, 2nd order accurate SPH operator discretizations

 I’ll then show a massively parallel software implementation and a few examples….

SPH for Navier-Stokes
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* N. Trask, M. Maxey, K. Kim, M. Perego, M.L. Parks, K. Yang, and J. Xu, A scalable consistent second-order SPH solver for unsteady low Reynolds number flows, Computer 
Methods in Applied Mechanics and Engineering, 289, pp. 155-178, 2015. 



 Split into predictor/corrector steps:

 Divergence of corrector equations gives Poisson equation for pressure increment:

 Solve resulting systems with algebraic multigrid (AMG) preconditioned GMRES.

Navier-Stokes
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(Find velocity 
estimate u*)

(Make velocity 
divergence free)

This incremental 
projection scheme is 

provably O(t2) 
accurate in velocity & 

O(t) in pressure. 



 Consider approximations of f(x) with smoothing function W(x-y,h):

where h is a smoothing length. 
 W possesses these properties:

 Normalized:

 Non-negative:

 Compact support:

 Decay: Monotonic decrease with increasing |x-y|

 “Delta function property”: 

 Even: 

 “Sufficiently smooth”: Must be differentiable

SPH Kernel Approximation Operator
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 Consider approximations of f(x) with smoothing function W(x-y,h):

where h is a smoothing length. 

 With some derivation, can produce following expression for smoothed gradient:

 We can compute smoothed gradients of f by pushing derivatives on to W. 
 We don’t need to know f, or use finite differences, or similar tactics…

 So how to discretize?

SPH Kernel Approximation Operator
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 Discrete approximation (suppress h from now on):

where Vj is a quadrature weight for point j. 

 Straightforward discrete smoothed gradient not even 0th order accurate:

 Standard SPH discretizations (0th order consistent):

 These standard discretizations lack higher order accuracy….

Interpolation Errors and Convergence
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 Consider 3 particle distributions: Cartesian, randomly perturbed, quasi-ordered

 Discrete SPH operators convergent only on perfectly cartesian grid!

Interpolation Errors and Convergence
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 Interpolation errors of differential operators can be categorized as errors due to 
smoothing, quadrature, and particle anisotropy:

 There are many possible discretizations for the smoothed gradients. In general, 

where C>0, 1, 2  Z+, x ~ 1/N, p=1 for gradient, p=2 for Laplacian. 

 For convergence must simultaneously decrease h and increase h/x
(i.e. increase the number of neighbors interacting with each particle).

 If h/x held constant (standard practice), error due to particle anisotropy dominates. 
What to do?

Interpolation Errors and Convergence
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 Define corrected operators 

where Li, Gi are 3x3 tensors (in 3D), and can be determined from a Taylor expansion.

 L, G can be computed directly and stored for each particle at a cost of inverting and 
storing G, L, incurring O(N) total cost in additional computational complexity and 
storage.  

 A simple expression exists to determine G:

where m,n = 1,2,3.
 There is a similar (more tedious) expression for L. 

Interpolation Errors and Convergence
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 The modified operators remove dependence  on h/x (number of neighbors per 
particle) in the error terms equad and eanis. 

 This means that we can achieve O(h2) accuracy with fixed h/x!

 Further (and of even more importance) the corrected operators achieve a similar 
accuracy with fewer neighbors (for example 20 neighbors in 2D vs. 80 neighbors). 

 This gives sparser global operators (Poisson & Helmholtz) for Navier-Stokes, 
representing a substantial computational savings.

Interpolation Errors and Convergence
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Goal: Large scale parallel 3D implicit simulation capability
 Use LAMMPS, Sandia’s massively parallel molecular dynamics code
 LAMMPS can simulate any particle system (MD, SPH, DPD, PD, etc.)
 Demonstrated massively parallel scalability 

Problem:
 LAMMPS has no capability for implicit time integration!
 LAMMPS handles particle systems easily
 However, only explicit time integration used in MD
 Need distributed memory matrices, linear solvers, preconditioners, etc.
 Unwise/unwieldy to implement directly into LAMMPS

Solution:
 Integrate LAMMPS with Trilinos solvers!
 This has never been done before….

Massively Parallel 3D Implicit SPH

lammps.sandia.gov

trilinos.org

http://trilinos.sandia.gov/


 Object-oriented software framework for solving large complex science & engineering 
problems

 Trilinos is made of packages 
 Not a monolithic piece of software; Use the set of packages you choose
 Each package developed by domain experts
 Like LEGO™ bricks, not Matlab™

Trilinos

http://trilinos.sandia.gov/


Fuse LAMMPS and Trilinos for massively parallel 3D Implicit SPH computational framework
 Let each code handle what it was designed to do well

 LAMMPS handles particle data, parallel data distribution, ghosting
 Trilinos handles distributed memory linear solvers, preconditioners, etc. 

 LAMMPS “tag” vector is logically equivalent to an Epetra/Tpetra map
 LAMMPS “neighborlists” determine matrix sparsity pattern
 LAMMPS constructs and fills sparse matrices, right-hand-sides
 LAMMPS requests linear solver, preconditioner; leverages full Trilinos solver stack

LAMMPS/Trilinos Integration

o SPH particle discretization 
o Parallel data distribution

o Parallel SPH linear system solves 
(Helmholtz, Poisson)

o Block Krylov iterative solvers
o Algebraic multigrid preconditioners

Solver
Manager

Matrix Fill Linear Systems

Solution
Vectors

Updated
State 
Data

http://trilinos.sandia.gov/


Verification Problem (2D, Extruded to 3D)

Taylor-Green Vortex 
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 Weak scaling results (Simulations on Hopper @ NERSC, Cray XE6)
 h = 1.5 x
 4096 particles/core
 Smoothed aggregation AMG

Parallel Scalability
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 Flow through complex geometry
 3D periodic array of spheres in BCC lattice driven by external force
 h = 0.8 x; 4096 particles/core; Smoothed aggregation AMG

Flow Past Periodic 3D Spheres

Selected particle streamlines
(color indicates velocity magnitude)

~133M Particles!

# cores



 Simulate porous media flow at pore scale
 High-resolution magnetic resonance imaging of 6864 packed polystyrene beads used 

to construct pore geometry

Pore Scale Flow in Bead Pack*

* X. Yang, Y. Mehmani, W.A. Perkins, A. Pasquali, M. Schönherr, K. Kim, M. Perego, M.L. Parks, N. Trask, M.T. Balhoff, M.C. Richmond, M. Geier, M. Krafczyk, L-S. Luo, A.M. 
Tartakovsky, and T.D. Scheibe, Intercomparison of 3D Pore-scale Flow and Solute Transport Simulation Methods, Advances in Water Resources, In Press, 2015. 



 165M particles; x = 20 m

 Simulations on Edison @ NERSC    
(Cray XC30)

 7680 cores; 13 minutes wall-clock run 
time

Pore Scale Flow in Bead Pack*

Steady state simulated result (cut view)
(color indicates velocity magnitude)

* X. Yang, Y. Mehmani, W.A. Perkins, A. Pasquali, M. Schönherr, K. Kim, M. Perego, M.L. Parks, N. Trask, M.T. Balhoff, M.C. Richmond, M. Geier, M. Krafczyk, L-S. Luo, A.M. 
Tartakovsky, and T.D. Scheibe, Intercomparison of 3D Pore-scale Flow and Solute Transport Simulation Methods, Advances in Water Resources, In Press, 2015. 



 Compare multiple codes (including 
this one) on same problem. 

 QoI: Pressure drop along axial 
direction

Pore Scale Flow in Bead Pack*

Steady state simulated result (cross section)
(color indicates velocity magnitude)

* X. Yang, Y. Mehmani, W.A. Perkins, A. Pasquali, M. Schönherr, K. Kim, M. Perego, M.L. Parks, N. Trask, M.T. Balhoff, M.C. Richmond, M. Geier, M. Krafczyk, L-S. Luo, A.M. 
Tartakovsky, and T.D. Scheibe, Intercomparison of 3D Pore-scale Flow and Solute Transport Simulation Methods, Advances in Water Resources, In Press, 2015. 



Summary
 Review of mesh-based and meshless methods
 SPH review
 Developed scalable, efficient, parallel implicit 2nd order accurate SPH method

 Introduced consistent, 2nd order accurate SPH operator discretizations
 Introduced 2nd order accurate incremental pressure correction scheme

 Massively parallel implementation (LAMMPS+Trilinos)
 Demonstrated weak scaling on largest ever implicit SPH simulations
 Applications:

 Verification: Taylor-Green Vortex
 Flow past periodic 3D spheres 
 Pore scale flow in bead pack (using MRV data from physical experiment)

 Acknowledgements: This work is supported by the Applied Mathematics Program 
within the Department of Energy (DOE) Office of Advanced Scientific Computing 
Research (ASCR) as part of the Collaboratory on Mathematics for Mesoscopic 
Modeling of Materials (CM4). 



 Weak scaling results (Simulations on Hopper @ NERSC, Cray XE6)
 h = 1.5 x
 4096 particles/core
 Smoothed aggregation AMG
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