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Computational barrier
High-fidelity simulation

+ An indispensible tool
- Very high computational cost

Barrier

Time-critical applications

Many query Real time

[Andrieu et al., 2003] [Nat'l Power Grid Sim. Cap.]

Objective: break barrier
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Computational barrier at Sandia

m CFD model m High simulation costs
m 100 million cells m 6 weeks, 5000 cores
m 200,000 time steps m 6 runs maxes out Cielo
m Fast-turnaround design m Uncertainty quantification
(UQ)
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Surrogate modeling

inputs g — ‘full—order model ‘ — outputs y

inputs g — ‘surrogate model ‘ — outputs y

1) Data fits 2) Coarsened 3) Reduced-order
physics models (ROMs)
;; - + Physics based
o : L] i
— , B + High speedups
\ _ = + Preserve
- Not physics structure
based ;
. G -+ Rigorous error
+ High speedups ‘ analysis
- Unproven for
' nonlinear
+ Physics based dynamical

- Low speedups systems
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ROM = data science + modeling and simulation

Goal: exploit simulation data to drastically reduce simulation costs

e low-dim
. structure
Full-order Simulation _) Mach-lne _»|® index
model learning clusters
e sample
nodes

‘ Reduced-order model ‘

Nonlinear model reduction Kevin Carlberg




ROM: state of the art genner et al., 2015]

m Linear time-invariant systems: mature [Antoulas, 2005]
m Balanced truncation [Moore, 1981]
m Empirical balanced truncation [Willcox and Peraire, 2002, Rowley, 2005]
m Moment matching
[Bai, 2002, Freund, 2003, Gallivan et al., 2004, Baur et al., 2011]
m Loewner framework [Lefteriu and Antoulas, 2010, lonita and Antoulas, 2014]
+ Reliable: guaranteed stability, a priori error bounds
+ Certified: sharp, computable a posteriori error bounds
m Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]
m Reduced-basis method
[Prud’Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]
m Subsystem-based reduced-basis method
[Maday and Rgnquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]
+ Reliable: a priori error bounds
+ Certified: sharp, computable a posteriori error bounds
m Nonlinear dynamical systems: unproven
m Proper orthogonal decomposition (POD)-Galerkin
- Not reliable: Stability and accuracy not guaranteed
- Not certified: error bounds not sharp
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [C. et al., 2011a, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015¢]

+ Low cost

m Sample-mesh approach [C. et al.,, 2011b, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability
m A posteriori h-refinement [C., 2015]
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POD-Galerkin: offline data collection

— =f(x;t,p); x(0,p)=x%p), tel0,T], peD
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POD-Galerkin: offline data collection

2 Data compression
m Compute SVD:  [X; X, X3] =

II I\ I

m Truncate: ® =[u; --- up)
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POD-Galerkin: online projection

Full-order model: j—: = f(x;t, 1), x(0, ) = x°()
x(t) ~ x dx(t) 2 ¢T(f(>“(;t,u) — 9 =0
| | | I | ‘) |
i dx T N S T,0
Galerkin ROM: i O f(bx;t,pn), Xx(0,p)=d x(n)
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CaVity—ﬂOW pr0b|em. Collaborator: M. Barone (SNL)

m Unsteady Navier-Stokes m Re = 6.3 x 10°

m DES turbulence model m M, ,=0.6

m 1.2 million degrees of m CFD code: AERO-F
freedom [Farhat et al., 2003]
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Full-order model responses

vorticity field

pressure field
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POD-Galerkin failure
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- Galerkin ROMs unstable
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How to construct a ROM for nonlinear dynamical systems?

m Optimize then discretize? (Galerkin)

m Discretize then optimize? (discrete optimal)

Discrete-
optimal ROM
OAE

Full-order model optimal Galerkin ROM
projection ODE

time discretization time discretization

| |

optimal Full-order model -

m Qutstanding questions:
Which notion of optimality is better in practice?
Are the two techniques ever equivalent?
Discrete-time error bounds?
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Full-order model
ODE

|

time discretization

|

Full-order model

OAE
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Full-order model (FOM)

m ODE: time continuous
d
d—’t‘ = f(x,t), x(0)=x° telo T]

m OAE, linear multistep schemes: |r" (x") =0, n=1,...,N

k K
r'" (x) .= apx — AtSof(x, t") + Zajx"*j - AtZﬁjf (x", t")

=1 =1
x" = x" (explicit state update)

m OAE, Runge-Kutta: | r] (x],...,x2)=0|,i=1,...,s

S
r7(xy, .., xs) == x; — f(x"1 4 Atz ajxj, t"t 4 i At)
j=1

S
x"=x""1 4 Atz bix} (explicit state update)
i=1
This talk focuses on linear multistep schemes.
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Galerkin ROM: first optimize

Full-order model Galerkin s Galerkin ROM
ODE projection ODE

|

time discretization

|

Full-order model
OAE
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Galerkin: first optimize, then discretize

Full-order model Galerkin Galerkin ROM
ODE projection ODE
time discretization time discretization
Full-order model Galerkin ROM
OAE OAE
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Galerkin ROM
m ODE

dx
dt

+ Continuous velocity

=0T f(dx,t), x(0)=d"x° tc[0T]

dx
dt

is optimal
Theorem (Galerkin ROM: continuous optimality)
The Galerkin ROM velocity minimizes the time-continuous FOM residual:

Z—:(x, t)y=arg min |lv—f(x, t)||§

vErange(®)
m OAE
PR =0, n=1,. N
P (%) = a0k~ Ath® F(O%, t")+Y k"I -Ar> | [0 F (m"—f, t"—f)
j=1 j=1

- Discrete state X" is not generally optimal

Can we fix this? Will doing so help?
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Discrete-optimal ROM: first discretize, then optimize

Discrete- .
Petrov—Galerk
optimal ROM  |<— e;f(;’jecf}:r: n
OAE

Nonlinear model reduction

Full-order

model
ODE

time discretization

|

Full-order

model
OAE

Galerkin
projection

Galerkin
projection

Galerkin ROM
ODE

!

time discretization
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Discrete-optimal ROM

m FOM OAE
r"(x"y=0, n=1,..,N
m Discrete-optimal ROM OAE:
sn . n 3\ (|12
X" = arg min [|Ar® (®2) ||2.
)

W(R") TP (037) =0, W) = ATAL

()

m A = [|: Least-squares Petrov—Galerkin
[LeGresley, 2006, Bui-Thanh et al., 2008, C. et al., 2011a]

+ Discrete solution is optimal
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Does the discrete-optimal ROM have a time-continuous representation?

| ? |
o )
Discrete- .
Petrov-Galerk
optimal ROM | <— Et;f;’.effi:; n
OAE )

Nonlinear model reduction

Full-order

model
ODE

time discretization

|

Full-order

model
OAE

Galerkin
projection

Galerkin
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
OAE
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Does the discrete-optimal ROM have a time-continuous representation?

o 7D7isc7re7te—7 - 7\‘ i
) Petrov—Galerkin
: optimal ROM <€ - projection
. ODE !
1
Y

time discretization

Y
Discrete- Petrov—Galerkin
optimal ROM  |<— O et
OAE pres

Nonlinear model reduction

Sometimes.

Full-order

model
ODE

time discretization

|

Full-order

model
OAE

Galerkin
projection

Galerkin
projection

Galerkin ROM
ODE

!

time discretization

3 Galerkin ROM
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Discrete-optimal ROM: continuous representation

Theorem

The discrete-optimal ROM is equivalent to applying a Petrov—Galerkin
projection to the FOM ODE with test basis

vk t)=ATA (aol - Atﬁog—i(xo + ©%, t)) >

Bj=0,j>1 (eg., asingle-step method),
the velocity f is linear in the state, or

Bo = 0 (i.e., explicit schemes).

Time-continuous test basis depends on
time-discretization parameters!

Nonlinear model reduction Kevin Carlberg 26 / 63



Are the two approaches ever equivalent?
m Galerkin: o7 (0x") =0
m Discrete-optimal: W"(X")7r" (®%") =0
Does W"(Xx") = ® ever?
Yes.

- on1)o

The two approaches are equivalent (W"(x) = ®)
in the limit of At — 0 with A=1/,/aql,
B if the scheme is explicit (5o = 0) with A =1/,/aol, or
B if 2 is positive definite with [2=]71 =ATA

f

V(%) =A

(bx)= A'A (aol — Atﬁoa
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Discrete-time error bound

If the following conditions hold:
f(-, t) is Lipschitz continuous with Lipschitz constant k, and

At is such that 0 < h := |ag| — |Bo|kAL,
then

At R
Hax2||<—an(l—w(xowxz Nl Z(M\hAth\)HM ‘I

k
n fH

At A
loxp ]l < = Z Bell (1= B7) £ (x0 + @%5E) [1+7 D (IBelert + o) ox

= =
with

m Ox% = x] — ®RE. n V=007

m OxD = x" — K m PP = (W)T0) (W)
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Discrete-optimal ROM yields a smaller error bound

Theorem (Backward Euler)

If conditions (1) and (2) hold, then
n—1

I6x8 1l < A3 oo U =V)f (xo+ 0357 |
j=0

n—j
4
n—1

loxpll < Atd (h),%ll (1=P") £ (xo+ 0257) |

=0 :
E'E;J
_k _ sk sk ok—1
e¢ = ||ox& — Atf (xo + ¢xG) —ox. |
ek = |0k — Atf (xo T wg) — 0% = min @y — Atf (xo + ®y) - 0%5 |

Corollary (Discrete-optimal smaller error bound)

ok—1 _ ok—1 k k
Ifxy " =%xg ", thenef < e¢.

Nonlinear model reduction
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Discrete-optimal ROM has an interesting time-step dependence

Corollary (Backward Euler)
Define
" A)A(jD = )“(Jb — )?151 and
m AX/: full-space solution increment from )A(J -t

Then, the discrete-optimal error 1can also be bounded as

|10xBIl < At(1 + KAL) Z (h)1+1 ||f(xJ + AR

with 1 = |®AR] — A)‘(f||/||AxJ||.

Effect of decreasing At:
+ The terms At(1 + kAt) and 1/(hY*! decrease
- The number of total time instances n increases

? The term /"7 may increase or decrease, depending on the
spectral content of the basis ®
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Galerkin and discrete-optimal responses for basis dimension p = 204
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(a) Galerkin

4 5 6 0 2 4 6 8 10 12

(b) Discrete optimal

- Galerkin ROMs unstable for long time intervals

(consistent with previous results [C. et al., 2013, C. et al., 2011a, C., 2011])

+ Discrete-optimal ROMs accurate and stable (most time steps)
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Discrete-optimal ROM: superior performance

£10 - £10 - £10 -
E ——Galerkin . = ——Galerkin . E] ——Galerkin X
a ——Minimum residual 2 ——Minimum residual @ ——Minimum residual
57 57 o
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At At At
() 0<t<055 (do<t<11 (e)0<t<154

v Discrete-optimal ROM vyields a smaller error for all time
intervals and time steps.
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Limiting equivalence

1072 1072
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At At At
(f) p=204 (g) p=368 (h) p =564

Galerkin/discrete-optimal difference in the stable Galerkin interval

0<t<11.

V" The discrete-optimal ROM converges to Galerkin as At — 0.
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Discrete-optimal performance (t < 12.5 sec)

100 - 107 ———
E%ié%% P

-1 S1n6

0 §10

(

—
(e}
Tt

(e}
4
simulation time
[
o
2

error intime-averaged pressure
(e
L

o

" 107 =3 ) -1
107° 107 1073 1072 107* 10° 10 10 10 10
At At

V' An intermediate At produces the lowest error and better speedup.
p = 564 case:

m At = 1.875 x 10~ sec: relative error = 1.40%, time = 289 hrs

m At =15 x 1073 sec: relative error = 0.095%, time = 35.8 hrs
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Summary: Improve projection technique

Discrete optimality outperforms continuous optimality
(Galerkin) in practice

Equivalence conditions

Limit of At — 0

Explicit schemes

Positive definite residual Jacobians
m Discrete-time error bounds

m Discrete-optimal ROM yields smaller error bound than Galerkin
m Ambiguous role of time step At

Numerical experiments

m Discrete-optimal ROM vyields a smaller error than Galerkin
m Equivalent as At - 0
m Error minimized for intermediate At
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [C. et al., 2011a, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015¢]

+ Low cost

m Sample-mesh approach [C. et al.,, 2011b, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015

+ Reliability

m A posteriori h-refinement [C., 2015]
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Discrete-optimal performance (t < 2.5 sec)

o 10 107 —
= —-—pD = 04 e
S p=368 —~ |ZB=
=B :
40! 2100
Z g

-2 2100
g 8
H0-3 =10*
£ E
8 n
a0 10°

—4
10 10° 1073 102 107" 100 1070 1070 107 107!
At At

-+ Always sub-3% errors
- More expensive than the FOM

m FOM simulation: 1 hour, 48 CPU
m Discrete-optimal ROM simulation (fastest): 1.3 hours, 48 CPU
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Hyper-reduction via Gappy POD [everson and Sirovich, 1095]

" — arg min ||Ar" (®2) 3.
ZeRP

Can we select A to make this inexpensive?

1. r(x) = F'(x) = (x) 2. ¢ x)—argmln |PPrF— Pri(x)||2

| | I | argmln

2

X" =arg1 m|n [|F" (d2) ||2 =argr m|n |OR7F" (®2) ||2 =argr m|n |P" (®2) ||§

= arg min || (P®R)T Pr" (tbz) 3.
2ERP e —
A
+ GNAT: A= (P®%)" P leads to low-cost

m Offline: Construct ®r (POD) and P (greedy method)

Nonlinear model reduction
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Sample mesh: HPC implementation

%" = arg min || (P®R)T Pr"(®2)]3
Z€RP

m Goals:

+ Reuse existing computational-mechanics codes
+ Minimize number of required computing cores
+ Scalability

m Key: GNAT samples only a few entries of the residual Pr"

m /dea: Extract minimal subset of the mesh
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Postprocessing mesh: HPC implementation

inputs gt — \ reduced-order model \ — outputs y

m Observations:
+ Outputs y are often defined locally in space (e.g., lift)
- Qutputs may not be computable on sample mesh

m Output computation:

Read reduced state X", n =1, ..., M computed by GNAT
Assemble solution on minimal output-computation mesh
Compute outputs
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Cavity-flow problem: GNAT

%" = arg min || (P®R)" Pr" (®2) |3
ZeRP

m Sample mesh: 4.1% nodes, 3.0% cells

-+ Small problem size: can run on many fewer cores

Nonlinear model reduction



GNAT performance (t < 12.5 sec)

vorticity field pressure field

FOM

+ < 1% error in time-averaged drag
+ 229x CPU-hour savings

m FOM: 5 hour x 48 CPU
m GNAT ROM: 32 min x 2 CPU
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [C. et al., 2011a, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015¢]

+ Low cost

m Sample-mesh approach [C. et al., 2011b, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015

+ Reliability

m A posteriori h-refinement [C., 2015]
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GNAT performance

vorticity field pressure field

FOM

m FOM: 5 hour x 48 CPU

m GNAT ROM: 32 min x 2 CPU

+ 229x CPU-hour savings. Good for many query.
- 9.4x walltime savings. Bad for real time.

Why?
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GNAT: strong scaling (Ahmed body) (c. 2o

o

Trom/ Trom

0 2 4 6 0 12

S cPu
(e) CPU-hour savings

14

16

(f) Walltime savings

+ Significant CPU-hour savings (max: 438 for 4 CPU)
- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!

Nonlinear model reduction
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Time—pa rallel a |g0|’itth [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

—AT—>

to tm
|—o—o—o—o—o—o—“—’o—o—o—o—o—o—{—“ ¢ s \ \\—H—\—H—H—H—{
To T1 T> Ti—1 T

m Fine propagator: time step At
F(x;11,72)

m Coarse propagator: time step AT
G(x;71,72)

m Parareal iteration k (sequential and parallel steps):

Xt = G(x7 15 T, Tms1) + F(XF: T Tner) — G(X75 Ton, Ting1)
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lllustration: sequential and parallel steps

17 17
1.6 . . 16 L
%_5, . %5 /
< <
T4 . ‘T4
13 13
%2 57;2
11 11
L 10 20 (5,dQ¢ep 40 50 60 1 1020 ndQgep 40 50 60
1 . m.
X0 = GG T T Fxg T Tmia)
17 17
1.6 /,,,/—4 1.61 7{>-
< <
‘T4 Tar
13 T3
§,2 £2
11 11
5 1020 jndQgep 40 50 60 L 1020 (jdQep 40 50 60
X’17’+1:]-—(xg';Tm,Tm+1) ]:(XT, va Tm+1)

+G(XT Tim, Tr41)=G(XG: Ty Tm1)
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Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

m Existing coarse propagators

Same integrator [Lions et al., 2001b, Bal and Maday, 2002]

Coarse spatial discretization

[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]
Simplified phyics model [Baffico et al., 2002, Maday and Turinici, 2003,
Blouza et al., 2011, Engblom, 2009, Maday, 2007]

Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]
Reduced-order model (on the fly) [Farhat et al., 2008,

Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

Can we leverage offline data to improve the coarse propagator?

Nonlinear model reduction Kevin Carlberg

48 / 63



Revisit the SVD

[X1 X2 X3] =

First row of VT

jth row of VT contains a basis for time evolution of X

m Construct =;: basis for time evolution of X;

[El : E"“a'”]' & = [vmi-1+1 - vmijlT

Nonlinear model reduction Kevin Carlberg
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Previous method (c. et ai., 20151]

compute forecast by gappy POD in time domain:

0

time step B
X1 so far; memory « = 4; forecast; temporal basis

zi=argmin|Z(m—-1,0)Zjz— Z(m — 1, 0)g(X)]2

z€RY
m Time sampling: Z(k, ) := [ek_ﬁ ek]T
m Time unrolling: g(%) : & — [Xi(to) -+ K(tm)] "

T=.. as initi S(t )i
use e, =;z; as initial guess for Xj(tm) in Newton solver
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Previous results: structural dynamics c etai, 2015]

o

smszrztizizoeacao ]

o

reduction

speedup
v

Newton-it

o

memory o memory «

+ Newton iterations reduced by up to ~2x
+ Speedup improved by up to ~1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

- Insufficient for real-time computation
Can we apply the same idea for the coarse propagator?
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Coarse propagator for coordinate j and time interval m

m Offline: Construct time-evolution basis =¥

J
r | ———
=1 =2 =3 =4 ‘ =8
-1 -1 -1 -1 -1
0 M

time step

m Online: Coarse propagator QJf" defined via forecasting:

Compute « time steps with fine propagator

Compute forecast via gappy POD

Select last timestep of forecast
F(Xj; T, Ty + At)
A -—m -_—m + .
G (%) T, Tg1) = eZT/’Atzj [Z(a+1,0)=]] :
F(Xj; T, T + Atar)
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|deal-conditions speedup

Theorem

If g(X;) € range(Z;), j=1,...,p, then the proposed method
converges in one parareal iteration and realizes a theoretical

speedup of m
M(M — )a/M 41

—a=1 —
[ ——a=2 -

0 5 10 15 20 _ 25 30 35
processors M
Ideal-conditions speedup for M = 5000
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|deal-conditions speedup with initial guesses

Corollary

If f is nonlinear, g(X;) € range(Z;), j=1,...,p, and the
forecasting method also provides Newton-solver initial guesses,
then

the method converges in one parareal iteration, and

only a nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M
(Ma) 4+ (M/M — a)r,

relative to the sequential algorithm without forecasting. Here,

residual computation time

Tr = B B B -
nonlinear-system solution time

Nonlinear model reduction Kevin Carlberg
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|deal-conditions speedup with initial-guesses
120

100 |

80 -

1.5 2.0_ 2.5 3.0 35
processors M
Ideal-condition speedup for M = 5000, 7, = 1/10

Nonlinear model reduction

Significant speedups possible by leveraging time-domain data!
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Stability

If the fine propagator is stable, i.e.,

[F ()| < (1+ CFAT)|x]],
then the proposed method is also stable, i.e.,

1821l < Cmexp(CEmAT)||K°].

0 G = D (,I;)kay"’ak(A T/At)mk
m [y = exp(—Crk(AT — Ata)) <1
m 7y = max(maxm,; 1/|Z(a+1, @)=, 1/omin(Z(a+1, a)=]"))

Nonlinear model reduction Kevin Carlberg 56 / 63



Example: inviscid Burgers equation [rewienski, 2003]

du(x,7) 10 (u2 (x, 7-)) _ o
87' + § aX = 0.026
u(0,7) = p1, V7 €0, 25]

u(x,0) =1, ¥x € [0, 100],

Discretization: Godunov's scheme

(p1, p2) € [2.5,3.5] x [0.02,0.075]

At =0.1, M = 250 fine time steps

FOM: N = 500 degrees of freedom

ROM: LSPG [c. et al, 20112] with POD basis dimension p = 100

Ntrain = 4 training points (LHS sampling); random online point

Two coarse propagators: Backward Euler and forecasting
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Forecasting outperforms backward Euler

Backward Euler Forecasting
2.8 2.6 .
2.6 2.4
2.4 292
2.2 5
3?2 Sis
s o
X
Xs 1.6
1.4 1.4 —Tteration 1
1.2 1.2
1
10 100 200 300 400 500 600 0 100 20Q 300 400 500 600
ume step time step
:10 Dlo
) 9 @ 9
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Parareal performance

parageal iferationg

N

25 3 35 4 45 5 55
number of processors M

6

2.5 35, 4 45 5 55—-6
number of processors M

+ Forecasting: minimum possible iterations

Backward Euler: maximum possible iterations

More parallelism successfully exposed!

Nonlinear model reduction
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Summary: Leverage time-domain data

Use temporal data to reduce ROM simulation time

m offline: time-evolution bases from right singular vectors
m online: use as coarse propagator

compute « time steps with fine propagator
use gappy POD to forecast

theory: excellent speedup and stabilty
ideal parareal performance observed
significant improvement over Backward Euler

no additional error introduced

+ o+ o+ + o+

generally applicable

Nonlinear model reduction Kevin Carlberg 60 / 63



Opportunities at Sandia National Laboratories, Livermore

We are hiring summer interns, postdocs, and staff

Model reduction

Uncertainty quantification
Machine learning
High-performance computing
Cybersecurity

Data analytics

Email me if interested: ktcarlb@sandia.gov
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Questions?

L - — | ——
)/\(1 L=
[ =1 =2 =3 =4 =5
L =1 =1 =1 =1 -1
5 . . : . . . Y
time step

e
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

m Improve projection technique [C. et al., 2011a, C. et al., 2015a]
m Preserve problem structure [C. et al., 2012, C. et al., 2015¢]

+ Low cost

m Sample-mesh approach [C. et al.,, 2011b, C. et al., 2013]
m Leverage time-domain data [C. et al., 2015b]

+ Certification

m Error bounds [C. et al., 2015a]
m Statistical error modeling [Drohmann and C., 2015]

+ Reliability
m A posteriori h-refinement [C., 2015]

Nonlinear model reduction Kevin Carlberg 63 / 63



Acknowledgments

m This research was supported in part by an appointment to the
Sandia National Laboratories Truman Fellowship in National
Security Science and Engineering, sponsored by Sandia
Corporation (a wholly owned subsidiary of Lockheed Martin
Corporation) as Operator of Sandia National Laboratories
under its U.S. Department of Energy Contract No.
DE-AC04-94AL85000.

Nonlinear model reduction Kevin Carlberg 64 / 63



ﬁ Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.
(2003).
An introduction to mcmc for machine learning.
Machine learning, 50(1-2):5-43.

@ Antoulas, A. C. (2005).
Approximation of Large-Scale Dynamical Systems.

Society for Industrial and Applied Mathematics, Philadelphia,
PA.

@ Baffico, L., Bernard, S., Maday, Y., Turinici, G., and Zérah, G.
(2002).
Parallel-in-time molecular-dynamics simulations.
Physical Review E, 66(5):057701.

@ Bai, Z. (2002).
Krylov subspace techniques for reduced-order modeling of
large-scale dynamical systems.
Applied Numerical Mathematics, 43(1):9-44.

[@ Bal, G. and Maday, Y. (2002).

Nonlinear model reduction Kevin Carlberg 64 / 63



A “parareal” time discretization for non-linear pdes with
application to the pricing of an american put.

In Recent developments in domain decomposition methods,
pages 189-202. Springer Berlin Heidelberg.

Barrault, M., Maday, Y., Nguyen, N. C., and Patera, A. T.
(2004).

An ‘empirical interpolation’ method: application to efficient
reduced-basis discretization of partial differential equations.
Comptes Rendus Mathématique Académie des Sciences,
339(9):667-672.

Baur, U., Beattie, C., Benner, P., and Gugercin, S. (2011).
Interpolatory projection methods for parameterized model
reduction.

SIAM Journal on Scientific Computing, 33(5):2489-2518.

Benner, P., Gugercin, S., and Willcox, K. (2015).
A survey of projection-based model reduction methods for
parametric dynamical systems.

Nonlinear model reduction Kevin Carlberg 64 / 63



SIAM Review, 57(4):483-531.

Blouza, A., Boudin, L., and Kaber, S. M. (2011).

Parallel in time algorithms with reduction methods for solving
chemical kinetics.

Communications in Applied Mathematics and Computational
Science, 5(2):241-263.

Bui-Thanh, T., Willcox, K., and Ghattas, O. (2008).

Model reduction for large-scale systems with high-dimensional
parametric input space.

SIAM Journal on Scientific Computing, 30(6):3270-3288.

C., K. (2011).

Model Reduction of Nonlinear Mechanical Systems via
Optimal Projection and Tensor Approximation.

PhD thesis, Stanford University.

C., K. (2015).
Adaptive h-refinement for reduced-order models.

Nonlinear model reduction Kevin Carlberg 64 / 63



International Journal for Numerical Methods in Engineering,

102(5):1192-1210.

C., K., Barone, M., and Antil, H. (2015a).

Galerkin v. discrete-optimal projection in nonlinear model
reduction.

arXiv e-print, (1504.03749).

C., K., Bou-Mosleh, C., and Farhat, C. (2011a).
Efficient non-linear model reduction via a least-squares
Petrov—Galerkin projection and compressive tensor
approximations.

International Journal for Numerical Methods in Engineering,

86(2):155-181.

C., K., Cortial, J., Amsallem, D., Zahr, M., and Farhat, C.
(2011b).

The GNAT nonlinear model reduction method and its
application to fluid dynamics problems.

Nonlinear model reduction Kevin Carlberg

64 / 63



AIAA Paper 2011-3112, 6th AIAA Theoretical Fluid Mechanics
Conference, Honolulu, HI.

C., K., Farhat, C., Cortial, J., and Amsallem, D. (2013).
The GNAT method for nonlinear model reduction: effective
implementation and application to computational fluid
dynamics and turbulent flows.

Journal of Computational Physics, 242:623-647.

C., K., Ray, J., and van Bloemen Waanders, B. (2015b).
Decreasing the temporal complexity for nonlinear, implicit
reduced-order models by forecasting.

Computer Methods in Applied Mechanics and Engineering,
289:79-103.

C., K., Tuminaro, R., and Boggs, P. (2012).

Efficient structure-preserving model reduction for nonlinear
mechanical systems with application to structural dynamics.
In AIAA Paper 2012-1969, 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, Honolulu, Hawaii.

Nonlinear model reduction Kevin Carlberg

64 / 63



[§ C., K., Tuminaro, R., and Boggs, P. (2015c).
Preserving Lagrangian structure in nonlinear model reduction
with application to structural dynamics.
SIAM J. Sci. Comput., 37(2):B153—B184.

[8 Chen, F., Hesthaven, J. S., and Zhu, X. (2014).
On the use of reduced basis methods to accelerate and
stabilize the parareal method.
In Reduced Order Methods for Modeling and Computational
Reduction, pages 187-214. Springer.

[8 Cortial, J. and Farhat, C. (2009).
A time-parallel implicit method for accelerating the solution of
non-linear structural dynamics problems.
International Journal for Numerical Methods in Engineering,
77(4):451.

[§ Drohmann, M. and C., K. (2015).
The romes method for reduced-order-model uncertainty
quantification.

Nonlinear model reduction Kevin Carlberg 64 / 63



SIAM/ASA Journal on Uncertainty Quantification,
3(1):116-145.

Eftang, J. L. and Patera, A. T. (2013).

Port reduction in parametrized component static condensation:

approximation and a posteriori error estimation.
International Journal for Numerical Methods in Engineering,
96(5):269-302.

Engblom, S. (2009).

Parallel in time simulation of multiscale stochastic chemical
kinetics.

Multiscale Modeling & Simulation, 8(1):46—68.

Everson, R. and Sirovich, L. (1995).
Karhunen—Loeve procedure for gappy data.

Journal of the Optical Society of America A, 12(8):1657-1664.

Farhat, C. and Chandesris, M. (2003).

Nonlinear model reduction Kevin Carlberg

64 / 63



Time-decomposed parallel time-integrators: theory and
feasibility studies for fluid, structure, and fluid-structure
applications.

International Journal for Numerical Methods in Engineering,
58(9):1397-1434.

[§ Farhat, C., Cortial, J., Dastillung, C., and Bavestrello, H.
(2006).
Time-parallel implicit integrators for the near-real-time
prediction of linear structural dynamic responses.
International Journal for Numerical Methods in Engineering,
67:697-724.

[d Farhat, C., Geuzaine, P., and Brown, G. (2003).
Application of a three-field nonlinear fluid-structure
formulation to the prediction of the aeroelastic parameters of
an F-16 fighter.
Computers & Fluids, 32(1):3-29.

[§ Fischer, P. F., Hecht, F., and Maday, Y. (2005).

Nonlinear model reduction Kevin Carlberg 64 / 63



A parareal in time semi-implicit approximation of the
navier-stokes equations.

In Domain decomposition methods in science and engineering,
pages 433-440. Springer.

[§ Freund, R. (2003).
Model reduction methods based on Krylov subspaces.
Acta Numerica, 12:267-3109.

[@ Gallivan, K., Vandendorpe, A., and Van Dooren, P. (2004).
Model reduction of mimo systems via tangential interpolation.
SIAM Journal on Matrix Analysis and Applications,
26(2):328-349.

[§ Guibert, D. and Tromeur-Dervout, D. (2007).
Adaptive parareal for systems of odes.
In Domain decomposition methods in science and engineering
XVI, pages 587-594. Springer.

[ lonita, A. and Antoulas, A. (2014).

Nonlinear model reduction Kevin Carlberg 64 / 63



Data-driven parametrized model reduction in the loewner
framework.
SIAM Journal on Scientific Computing, 36(3):A984-A1007.

[ Lefteriu, S. and Antoulas, A. C. (2010).
A new approach to modeling multiport systems from
frequency-domain data.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 29(1):14-27.

[§ LeGresley, P. A. (2006).
Application of Proper Orthogonal Decomposition (POD) to
Design Decomposition Methods.
PhD thesis, Stanford University.

ﬁ Lions, J., Maday, Y., and Turinici, G. (2001a).
A “parareal” in time discretization of pdes.
Comptes Rendus de I’Academie des Sciences Series |
Mathematics, 332(7):661-668.

ﬁ Lions, J.-L., Maday, Y., and Turinici, G. (2001b).

Nonlinear model reduction Kevin Carlberg 64 / 63



Résolution d’edp par un schéma en temps “parareal”.
Comptes Rendus de I"’Académie des Sciences-Series
I-Mathematics, 332(7):661-668.

@ Maday, Y. (2007).
Parareal in time algorithm for kinetic systems based on model
reduction.
High-dimensional partial differential equations in science and
engineering, 41:183-194.

@ Maday, Y. and Rgnquist, E. M. (2002).
A reduced-basis element method.
J. Sci Comput, 17(1-4):447-4509.

[§ Maday, Y. and Turinici, G. (2003).
Parallel in time algorithms for quantum control: Parareal time
discretization scheme.
International journal of quantum chemistry, 93(3):223-228.

8 Moore, B. (1981).

Nonlinear model reduction Kevin Carlberg 64 / 63



Principal component analysis in linear systems: Controllability,
observability, and model reduction.
Automatic Control, IEEE Transactions on, 26(1):17-32.

Phuong Huynh, D. B., Knezevic, D. J., and Patera, A. T.
(2013).

A static condensation reduced basis element method:
approximation and a posteriori error estimation.

ESAIM: Mathematical Modelling and Numerical Analysis,
47(01):213-251.

Prud'Homme, C., Rovas, D. V., Veroy, K., Machiels, L.,
Maday, Y., Patera, A. T., Turinici, G., et al. (2001).
Reliable real-time solution of parametrized partial differential
equations: Reduced-basis output bound methods.

Journal of Fluids Engineering, 124(1):70-80.

Rewienski, M. J. (2003).
A Trajectory Piecewise-Linear Approach to Model Order
Reduction of Nonlinear Dynamical Systems.

Nonlinear model reduction Kevin Carlberg 64 / 63



PhD thesis, Massachusetts Institute of Technology.

Rowley, C. W. (2005).

Model reduction for fluids, using balanced proper orthogonal
decomposition.

Int. J. on Bifurcation and Chaos, 15(3):997-1013.

Rozza, G., Huynh, D., and Patera, A. T. (2008).

Reduced basis approximation and a posteriori error estimation
for affinely parametrized elliptic coercive partial differential
equations.

Archives of Computational Methods in Engineering,
15(3):229-275.

Ruprecht, D. and Krause, R. (2012).

Explicit parallel-in-time integration of a linear
acoustic-advection system.

Computers & Fluids, 59:72-83.

Veroy, K., Prud’homme, C., Rovas, D. V., and Patera, A. T.
(2003).

Nonlinear model reduction Kevin Carlberg

64 / 63



A posteriori error bounds for reduced-basis approximation of
parametrized noncoercive and nonlinear elliptic partial
differential equations.

AIAA Paper 2003-3847, 16th AIAA Computational Fluid
Dynamics Conference, Orlando, FL.

Willcox, K. and Peraire, J. (2002).

Balanced model reduction via the proper orthogonal
decomposition.

AIAA Journal, 40(11):2323-2330.

Nonlinear model reduction Kevin Carlberg 64 / 63



	Motivation



