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Computational barrier

High-fidelity simulation

+ An indispensible tool
- Very high computational cost

Barrier

Time-critical applications

Many query Real time

[Andrieu et al., 2003] [Nat’l Power Grid Sim. Cap.]

Objective: break barrier
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Computational barrier at Sandia

CFD model

100 million cells
200,000 time steps

High simulation costs

6 weeks, 5000 cores
6 runs maxes out Cielo

Barrier

Fast-turnaround design Uncertainty quantification
(UQ)
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Surrogate modeling

inputs µ → full-order model → outputs y

inputs µ → surrogate model → outputs y

1) Data fits

- Not physics
based

+ High speedups

2) Coarsened
physics

+ Physics based

- Low speedups

3) Reduced-order
models (ROMs)

+ Physics based

+ High speedups

+ Preserve
structure

+ Rigorous error
analysis

- Unproven for
nonlinear
dynamical
systems
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ROM = data science + modeling and simulation

Goal: exploit simulation data to drastically reduce simulation costs

Full-order
model

Simulation Data

Reduced-order model

Machine
learning

• low-dim
structure
• index

clusters
• sample

nodes
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ROM: state of the art [Benner et al., 2015]

Linear time-invariant systems: mature [Antoulas, 2005]

Balanced truncation [Moore, 1981]

Empirical balanced truncation [Willcox and Peraire, 2002, Rowley, 2005]

Moment matching
[Bai, 2002, Freund, 2003, Gallivan et al., 2004, Baur et al., 2011]

Loewner framework [Lefteriu and Antoulas, 2010, Ionita and Antoulas, 2014]

+ Reliable: guaranteed stability, a priori error bounds
+ Certified : sharp, computable a posteriori error bounds

Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]

Reduced-basis method
[Prud’Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]

Subsystem-based reduced-basis method
[Maday and Rønquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]

+ Reliable: a priori error bounds
+ Certified : sharp, computable a posteriori error bounds

Nonlinear dynamical systems: unproven
Proper orthogonal decomposition (POD)–Galerkin

- Not reliable: Stability and accuracy not guaranteed
- Not certified : error bounds not sharp
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

Improve projection technique [C. et al., 2011a, C. et al., 2015a]

Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

Sample-mesh approach [C. et al., 2011b, C. et al., 2013]

Leverage time-domain data [C. et al., 2015b]

+ Certification

Error bounds [C. et al., 2015a]

Statistical error modeling [Drohmann and C., 2015]

+ Reliability

A posteriori h-refinement [C., 2015]
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POD–Galerkin: offline data collection

dx
dt

= f (x ; t,µ); x(0,µ) = x0(µ), t ∈ [0,T ] , µ ∈ D

1 Collect ‘snapshots’ of the state
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POD–Galerkin: offline data collection

2 Data compression

Compute SVD: X1 X2 X3 = U ⌃ VT[ ]

Truncate: Φ = [u1 · · · up]
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POD–Galerkin: online projection

Full-order model:
dx
dt

= f (x ; t,µ), x(0,µ) = x0(µ)

1 x(t) ≈ x̃(t) = Φx̂(t)
⇡ =

2 ΦT (f (x̃ ; t,µ)− d x̃
dt ) = 0

⇡ =

( (
=

Galerkin ROM:
d x̂
dt

= ΦT f (Φx̂ ; t,µ), x̂(0,µ) = ΦTx0(µ)
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Cavity-flow problem. Collaborator: M. Barone (SNL)

Unsteady Navier–Stokes

DES turbulence model

1.2 million degrees of
freedom

Re = 6.3× 106

M∞ = 0.6

CFD code: AERO-F
[Farhat et al., 2003]
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Full-order model responses

vorticity field

pressure field
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POD–Galerkin failure
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- Galerkin ROMs unstable
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How to construct a ROM for nonlinear dynamical systems?

Optimize then discretize? (Galerkin)

Discretize then optimize? (discrete optimal)

Full-order model
ODE

optimal
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
O∆E

time discretization

Full-order model
O∆E

optimal
projection

Discrete-
optimal ROM

O∆E

Outstanding questions:

1 Which notion of optimality is better in practice?
2 Are the two techniques ever equivalent?
3 Discrete-time error bounds?
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Full-order model
ODE

time discretization

Full-order model
O∆E
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Full-order model (FOM)
ODE: time continuous

dx
dt

= f (x , t), x(0) = x0, t ∈ [0,T ]

O∆E, linear multistep schemes: rn (xn) = 0 , n = 1, ... ,N

rn (x) := α0x −∆tβ0f (x , tn) +
k∑

j=1

αjxn−j −∆t
k∑

j=1

βj f
(
xn−j , tn−j

)
xn = xn (explicit state update)

O∆E, Runge–Kutta: rni (xn
1, ... , xn

s ) = 0 , i = 1, ... , s

rni (x1, ... , x s) := x i − f (xn−1 + ∆t
s∑

j=1

aijx j , t
n−1 + ci∆t)

xn = xn−1 + ∆t
s∑

i=1

bixn
i (explicit state update)

This talk focuses on linear multistep schemes.
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Galerkin ROM: first optimize

Full-order model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretization

Full-order model
O∆E
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Galerkin: first optimize, then discretize

Full-order model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
O∆E

time discretization

Full-order model
O∆E
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Galerkin ROM
ODE

d x̂
dt

= ΦT f (Φx̂ , t), x̂(0) = ΦTx0, t ∈ [0,T ]

+ Continuous velocity d x̂
dt is optimal

Theorem (Galerkin ROM: continuous optimality)

The Galerkin ROM velocity minimizes the time-continuous FOM residual:
d x̃
dt

(x , t) = arg min
v∈range(Φ)

‖v − f (x , t)‖2
2

O∆E
r̂n (x̂n) = 0, n = 1, ... ,N

r̂ n (x̂) := α0x̂−∆tβ0ΦT f (Φx̂ , tn)+
k∑

j=1

αj x̂n−j−∆t
k∑

j=1

βjΦ
T f
(

Φx̂n−j , tn−j
)

- Discrete state x̂n is not generally optimal

Can we fix this? Will doing so help?
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Discrete-optimal ROM: first discretize, then optimize

Full-order
model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretizationtime discretization

Full-order
model
O∆E

Galerkin
projection

Galerkin ROM
O∆E

Petrov–Galerkin
projection

Discrete-
optimal ROM

O∆E
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Discrete-optimal ROM

FOM O∆E

rn (xn) = 0, n = 1, ... ,N

Discrete-optimal ROM O∆E:

x̂n = arg min
ẑ∈Rp
‖Arn (Φẑ) ‖2

2.

m

Ψn(x̂n)T rn (Φx̂n) = 0, Ψn(x̂) := ATA
∂rn

∂x
(Φx̂)

A = I : Least-squares Petrov–Galerkin
[LeGresley, 2006, Bui-Thanh et al., 2008, C. et al., 2011a]

+ Discrete solution is optimal
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Does the discrete-optimal ROM have a time-continuous representation?

Full-order
model
ODE

?
Galerkin

projection
Galerkin ROM

ODE

time discretizationtime discretization

Full-order
model
O∆E

Galerkin
projection

Galerkin ROM
O∆E

Petrov–Galerkin
projection

Discrete-
optimal ROM

O∆E
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Does the discrete-optimal ROM have a time-continuous representation?

Sometimes.

Full-order
model
ODE

Petrov–Galerkin
projection

Discrete-
optimal ROM

ODE

time discretization

Galerkin
projection

Galerkin ROM
ODE

time discretizationtime discretization

Full-order
model
O∆E

Galerkin
projection

Galerkin ROM
O∆E

Petrov–Galerkin
projection

Discrete-
optimal ROM

O∆E
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Discrete-optimal ROM: continuous representation

Theorem

The discrete-optimal ROM is equivalent to applying a Petrov–Galerkin
projection to the FOM ODE with test basis

Ψ(x̂ , t) = ATA
(
α0I −∆tβ0

∂f
∂x

(x0 + Φx̂ , t)

)
Φ

if

1 βj = 0, j ≥ 1 (e.g., a single-step method),

2 the velocity f is linear in the state, or

3 β0 = 0 (i.e., explicit schemes).

Time-continuous test basis depends on
time-discretization parameters!
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Are the two approaches ever equivalent?

Galerkin: ΦT rn (Φx̂n) = 0

Discrete-optimal: Ψn(x̂n)T rn (Φx̂n) = 0

Does Ψn(x̂n) = Φ ever?

Yes.

Ψn(x̂) := ATA
∂r n

∂x
(Φx̂) = ATA

(
α0I −∆tβ0

∂f
∂x

(Φx̂ , tn)

)
Φ

Theorem

The two approaches are equivalent (Ψn(x̂) = Φ)

1 in the limit of ∆t → 0 with A = 1/
√
α0I ,

2 if the scheme is explicit (β0 = 0) with A = 1/
√
α0I , or

3 if ∂rn
∂x is positive definite with [∂r

n

∂x ]−1 = ATA.

Nonlinear model reduction Kevin Carlberg 27 / 63



Discrete-time error bound

Theorem

If the following conditions hold:

1 f (·, t) is Lipschitz continuous with Lipschitz constant κ, and

2 ∆t is such that 0 < h := |α0| − |β0|κ∆t,

then

‖δxn
G‖ ≤

∆t

h

k∑
`=0

|β`|‖ (I − V) f
(
x0 + Φx̂n−`

G

)
‖+

1

h

k∑
`=1

(|β`|κ∆t + |α`|) ‖δxn−`
G ‖

‖δxn
D‖ ≤

∆t

h

k∑
`=0

|β`|‖ (I − Pn) f
(
x0 + Φx̂n−`

D

)
‖+

1

h

k∑
`=1

(|β`|κ∆t + |α`|) ‖δxn−`
D ‖,

with

δxn
G := xn

? −Φx̂n
G .

δxn
D := xn

? −Φx̂n
D

V := ΦΦT

Pn := Φ
(
(Ψn)TΦ

)−1
(Ψn)T
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Discrete-optimal ROM yields a smaller error bound

Theorem (Backward Euler)

If conditions (1) and (2) hold, then

‖δxn
G‖ ≤ ∆t

n−1∑
j=0

1

(h)j+1
‖ (I − V) f

(
x0 + Φx̂n−j

G

)
‖︸ ︷︷ ︸

ε
n−j
G

‖δxn
D‖ ≤ ∆t

n−1∑
j=0

1

(h)j+1
‖
(
I − Pn−j

)
f
(
x0 + Φx̂n−j

D

)
‖︸ ︷︷ ︸

ε
n−j
D

εkG = ‖Φx̂k
G −∆tf

(
x0 + Φx̂k

G

)
−Φx̂k−1

G ‖

εkD = ‖Φx̂k
D −∆tf

(
x0 + Φx̂k

D

)
−Φx̂k−1

D ‖ = min
y
‖Φy −∆tf (x0 + Φy)−Φx̂k−1

D ‖

Corollary (Discrete-optimal smaller error bound)

If x̂k−1
D = x̂k−1

G , then εkD ≤ εkG .
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Discrete-optimal ROM has an interesting time-step dependence

Corollary (Backward Euler)

Define

∆x̂ j
D := x̂ j

D − x̂ j−1
D and

∆x̄ j : full-space solution increment from x̂ j−1
D .

Then, the discrete-optimal error can also be bounded as

‖δxn
D‖ ≤ ∆t(1 + κ∆t)

n−1∑
j=0

µn−j

(h)j+1
‖f (x̂ j−1

D + ∆x̄n−j)‖

with µj := ‖Φ∆x̂ j
D −∆x̄ j‖/‖∆x̄ j‖.

Effect of decreasing ∆t:

+ The terms ∆t(1 + κ∆t) and 1/(h)j+1 decrease

- The number of total time instances n increases

? The term µn−j may increase or decrease, depending on the
spectral content of the basis Φ
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Galerkin and discrete-optimal responses for basis dimension p = 204
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(a) Galerkin
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(b) Discrete optimal

- Galerkin ROMs unstable for long time intervals
(consistent with previous results [C. et al., 2013, C. et al., 2011a, C., 2011])

+ Discrete-optimal ROMs accurate and stable (most time steps)
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Discrete-optimal ROM: superior performance
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(c) 0 ≤ t ≤ 0.55
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(d) 0 ≤ t ≤ 1.1
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(e) 0 ≤ t ≤ 1.54

X Discrete-optimal ROM yields a smaller error for all time
intervals and time steps.
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Limiting equivalence
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(h) p = 564

Galerkin/discrete-optimal difference in the stable Galerkin interval
0 ≤ t ≤ 1.1.

X The discrete-optimal ROM converges to Galerkin as ∆t → 0.
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Discrete-optimal performance (t ≤ 12.5 sec)
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X An intermediate ∆t produces the lowest error and better speedup.

p = 564 case:

∆t = 1.875× 10−4 sec: relative error = 1.40%, time = 289 hrs

∆t = 1.5× 10−3 sec: relative error = 0.095%, time = 35.8 hrs
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Summary: Improve projection technique

Discrete optimality outperforms continuous optimality
(Galerkin) in practice

Equivalence conditions

1 Limit of ∆t → 0
2 Explicit schemes
3 Positive definite residual Jacobians

Discrete-time error bounds

Discrete-optimal ROM yields smaller error bound than Galerkin
Ambiguous role of time step ∆t

Numerical experiments

Discrete-optimal ROM yields a smaller error than Galerkin
Equivalent as ∆t → 0
Error minimized for intermediate ∆t
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

Improve projection technique [C. et al., 2011a, C. et al., 2015a]

Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

Sample-mesh approach [C. et al., 2011b, C. et al., 2013]

Leverage time-domain data [C. et al., 2015b]

+ Certification

Error bounds [C. et al., 2015a]

Statistical error modeling [Drohmann and C., 2015]

+ Reliability

A posteriori h-refinement [C., 2015]
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Discrete-optimal performance (t ≤ 2.5 sec)
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+ Always sub-3% errors

- More expensive than the FOM

FOM simulation: 1 hour, 48 CPU
Discrete-optimal ROM simulation (fastest): 1.3 hours, 48 CPU
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Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]

x̂n = arg min
ẑ∈Rp

‖Arn (Φẑ) ‖2
2.

Can we select A to make this inexpensive?

1. rn(x) ≈ r̃n(x) = ΦR r̂n(x) 2. r̂n(x) = arg min
r̂
‖PΦR r̂ − Prn(x)‖2

c

⇡ =k k�= arg min
r̂

2

⇡ =k k�= arg min
r̂

2

⇡ =k k�= arg min
r̂

2

x̂n = arg min
ẑ∈Rp
‖r̃n (Φẑ) ‖2

2 = arg min
ẑ∈Rp
‖ΦR r̂n (Φẑ) ‖2

2 = arg min
ẑ∈Rp
‖r̂n (Φẑ) ‖2

2

= arg min
ẑ∈Rp
‖ (PΦR)+ P︸ ︷︷ ︸

A

rn (Φẑ) ‖2
2.

+ GNAT: A = (PΦR)+ P leads to low-cost

Offline: Construct ΦR (POD) and P (greedy method)
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Sample mesh: HPC implementation

x̂n = arg min
ẑ∈Rp

‖ (PΦR)+ Prn (Φẑ) ‖2
2

Goals:
+ Reuse existing computational-mechanics codes
+ Minimize number of required computing cores
+ Scalability

Key : GNAT samples only a few entries of the residual Prn

Idea: Extract minimal subset of the mesh
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Postprocessing mesh: HPC implementation

inputs µ → reduced-order model → outputs y

Observations:
+ Outputs y are often defined locally in space (e.g., lift)
- Outputs may not be computable on sample mesh

Output computation:
1 Read reduced state x̂n, n = 1, ... ,M computed by GNAT
2 Assemble solution on minimal output-computation mesh
3 Compute outputs
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Cavity-flow problem: GNAT

x̂n = arg min
ẑ∈Rp

‖ (PΦR)+ Prn (Φẑ) ‖2
2

Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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GNAT performance (t ≤ 12.5 sec)

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag

+ 229x CPU-hour savings

FOM: 5 hour x 48 CPU
GNAT ROM: 32 min x 2 CPU
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

Improve projection technique [C. et al., 2011a, C. et al., 2015a]

Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

Sample-mesh approach [C. et al., 2011b, C. et al., 2013]

Leverage time-domain data [C. et al., 2015b]

+ Certification

Error bounds [C. et al., 2015a]

Statistical error modeling [Drohmann and C., 2015]

+ Reliability

A posteriori h-refinement [C., 2015]
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GNAT performance

vorticity field pressure field

GNAT
ROM

FOM

FOM: 5 hour x 48 CPU

GNAT ROM: 32 min x 2 CPU

+ 229x CPU-hour savings. Good for many query.

- 9.4x walltime savings. Bad for real time.

Why?
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GNAT: strong scaling (Ahmed body) [C., 2011]
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(f) Walltime savings

+ Significant CPU-hour savings (max: 438 for 4 CPU)

- Modest walltime savings (max: 7 for 12 CPU)

Spatial parallelism is quickly saturated!
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Time-parallel algorithms [Lions et al., 2001a, Farhat and Chandesris, 2003]

Goal: expose more parallelism to reduce walltime

T0 T1 T2 TM̄�1 TM̄

t0
t1 t2

tM�T
�t

Fine propagator: time step ∆t

F(x ; τ1, τ2)

Coarse propagator: time step ∆T

G(x ; τ1, τ2)

Parareal iteration k (sequential and parallel steps):

xm+1
k+1 = G(xm

k+1;Tm,Tm+1) + F(xm
k ;Tm,Tm+1)− G(xm

k ;Tm,Tm+1)
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Illustration: sequential and parallel steps
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Coarse propagator

Critical: coarse propagator should be fast, accurate, stable

Existing coarse propagators

Same integrator [Lions et al., 2001b, Bal and Maday, 2002]

Coarse spatial discretization
[Fischer et al., 2005, Farhat et al., 2006, Cortial and Farhat, 2009]

Simplified phyics model [Baffico et al., 2002, Maday and Turinici, 2003,

Blouza et al., 2011, Engblom, 2009, Maday, 2007]

Relaxed solver tolerance [Guibert and Tromeur-Dervout, 2007]

Reduced-order model (on the fly) [Farhat et al., 2006,

Cortial and Farhat, 2009, Ruprecht and Krause, 2012, Chen et al., 2014]

Can we leverage offline data to improve the coarse propagator?
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Revisit the SVD

X1 X2 X3 = U ⌃ VT[ ]

ŵ
j

n
0 M

0

time step

x̂1

First row of V T

jth row of V T contains a basis for time evolution of x̂j

Construct Ξj : basis for time evolution of x̂j

Ξj :=
[
ξ1
j · · · ξntrain

j

]
, ξij := [vM(i−1)+1,j · · · vMi ,j ]

T
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Previous method [C. et al., 2015b]

1 compute forecast by gappy POD in time domain:

ŵ
j

n
0 M

0

time step

x̂1

n
0 M

0

ŵ
j

n
0 M

0

time step

x̂1

n
0 M

0

x̂1 so far; memory α = 4; forecast; temporal basis

z j = arg min
z∈Raj

‖Z (m − 1,α)Ξjz − Z (m − 1,α)g(x̂j)‖2

Time sampling: Z (k ,β) :=
[
ek−β · · · ek

]T
Time unrolling: g(x̂j) : x̂j 7→ [x̂j(t0) · · · x̂j(tM)]T

2 use eT
mΞjz j as initial guess for x̂j(tm) in Newton solver

Nonlinear model reduction Kevin Carlberg 50 / 63



Previous results: structural dynamics [C. et al., 2015b]

100 K. Carlberg et al. / Comput. Methods Appl. Mech. Engrg. 289 (2015) 79–103

(a) Reduction-factor improvement. (b) Speedup improvement.

Fig. 15. Performance of forecasting methods quantified over all reduced-order models, problems, and online prediction points. The mean (solid
line), maximum (dashed line), and minimum (dotted) are reported.

From this set of experiments, we conclude that the proposed technique can improve ROM performance even for
problems with relatively large parameter variation.

4.6. Average performance

Finally, we summarize the performance of the forecasting techniques over the complete set of experiments. Fig. 15
reports average, minimum, and maximum values of the reduction-factor improvement k, and speedup improvement s
over all experiments (i.e., all three experiments in Sections 4.3–4.5, all three reduced-order models, and both online
points q?,1 and q?,2). Here, k = /no and s = S/Sno can each be computed for a given ROM simulation; a subscript
‘no’ indicates the value of the variable for a zero initial guess (i.e., polynomial extrapolation with ↵ = 0). First, note
that the proposed method always outperforms polynomial forecasting in the mean, maximum, and minimum achieved
performance for both reduction-factor improvement k and speedup improvement s. Secondly, the maximum, mini-
mum, and average performance of polynomial forecasting were all made worse by increasing the polynomial degree.

Finally, the best average performance was achieved for a forecast memory of ↵max = 9 and Newton-iteration
criterion of ⌧ = 0. In this case, the iteration-reduction factor was increased by 63% on average; the speedup was
improved by 22% on average. Critically, note that these temporal-complexity gains incur no additional error, and so
they strictly serve to improve the performance of the ROMs with no penalty.

5. Conclusions

This paper has described a method for decreasing the temporal complexity of nonlinear reduced-order models in
the case of implicit time integration. The method exploits knowledge of the dynamical system’s temporal behavior in
the form of ‘time-evolution bases’; one such basis is generated for each generalized coordinate of the time integrator’s
unknown during the (offline) training stage. During the (online) deployed stage, these time-evolution bases are used
– along with the solution at recent time steps – to forecast the unknown at future time steps via Gappy POD. If this
forecast is accurate, the Newton-like solver will converge in very few iterations, leading to computational-cost savings.

Numerical experiments demonstrated the potential of the method to significantly improve the performance of
nonlinear reduced-order models, even in the presence of high-frequency content in the dynamics. The experiments
also demonstrated the effect of input parameters on the method’s performance, and provided a parameter study to
analyze the effect of the method’s parameters.

Future work includes developing an approach to directly handle frequency and phase shifts in the response, as well
as time-shifted temporal behavior.

Acknowledgments
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generate the numerical results, as well as the anonymous reviewers for their insightful suggestions.
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+ Newton iterations reduced by up to ∼2x

+ Speedup improved by up to ∼1.5x

+ No accuracy loss

+ Applicable to any nonlinear ROM

- Insufficient for real-time computation

Can we apply the same idea for the coarse propagator?
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Coarse propagator for coordinate j and time interval m

Offline: Construct time-evolution basis Ξm
j

ŵ
j

n
0 M

0

time step

x̂1

⌅1
1 ⌅2

1 ⌅4
1⌅3

1 ⌅5
1

Online: Coarse propagator Gmj defined via forecasting:
1 Compute α time steps with fine propagator
2 Compute forecast via gappy POD
3 Select last timestep of forecast

Gmj : (x̂ j ;Tm,Tm+1) 7→ eT
∆T/∆tΞ

m
j

[
Z (α + 1,α)Ξm

j

]+ F(x̂ j ;Tm,Tm + ∆t)
...

F(x̂ j ;Tm,Tm + ∆tα)


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Ideal-conditions speedup
Theorem

If g(x̂j) ∈ range(Ξj), j = 1, ... , p, then the proposed method
converges in one parareal iteration and realizes a theoretical
speedup of M̄

M̄(M̄ − 1)α/M + 1
.
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Ideal-conditions speedup for M = 5000
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Ideal-conditions speedup with initial guesses
Corollary

If f is nonlinear, g(x̂j) ∈ range(Ξj), j = 1, ... , p, and the
forecasting method also provides Newton-solver initial guesses,
then

1 the method converges in one parareal iteration, and

2 only α nonlinear systems of algebraic equations are solved in
each time interval.

The method then realizes a theoretical speedup of

M

(M̄α) + (M/M̄ − α)τr

relative to the sequential algorithm without forecasting. Here,

τr =
residual computation time

nonlinear-system solution time
.
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Ideal-conditions speedup with initial-guesses
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Ideal-condition speedup for M = 5000, τr = 1/10

Significant speedups possible by leveraging time-domain data!
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Stability

Theorem

If the fine propagator is stable, i.e.,

‖F(x ; τ1, τ2)‖ ≤ (1 + CF∆T )‖x‖,

then the proposed method is also stable, i.e.,

‖x̂m
k+1‖ ≤ Cm exp(CFm∆T )‖x̂0‖.

Cm :=
∑m

k=1

(k
m

)
βkγ

mαk(∆T/∆t)m−k

βk := exp(−CFk(∆T −∆tα)) ≤ 1

γ := max(maxm,j 1/‖Z (α+1,α)Ξm
j ‖, 1/σmin(Z (α+1,α)Ξm

j ))
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Example: inviscid Burgers equation [Rewienski, 2003]

∂u(x , τ)

∂τ
+

1

2

∂
(
u2 (x , τ)

)
∂x

= 0.02eµ2x

u(0, τ) = µ1, ∀τ ∈ [0, 25]

u(x , 0) = 1, ∀x ∈ [0, 100] ,

Discretization: Godunov’s scheme

(µ1,µ2) ∈ [2.5, 3.5]× [0.02, 0.075]

∆t = 0.1, M = 250 fine time steps

FOM: N = 500 degrees of freedom

ROM: LSPG [C. et al., 2011a] with POD basis dimension p = 100

ntrain = 4 training points (LHS sampling); random online point

Two coarse propagators: Backward Euler and forecasting
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Forecasting outperforms backward Euler

Backward Euler Forecasting
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Parareal performance
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α = 10

α = 14

Backward Euler
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+ Forecasting : minimum possible iterations

- Backward Euler : maximum possible iterations

More parallelism successfully exposed!
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Summary: Leverage time-domain data

Use temporal data to reduce ROM simulation time

offline: time-evolution bases from right singular vectors

online: use as coarse propagator

1 compute α time steps with fine propagator
2 use gappy POD to forecast

+ theory: excellent speedup and stabilty

+ ideal parareal performance observed

+ significant improvement over Backward Euler

+ no additional error introduced

+ generally applicable
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Opportunities at Sandia National Laboratories, Livermore

We are hiring summer interns, postdocs, and staff

Model reduction

Uncertainty quantification

Machine learning

High-performance computing

Cybersecurity

Data analytics

Email me if interested: ktcarlb@sandia.gov
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Questions?
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My research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

Improve projection technique [C. et al., 2011a, C. et al., 2015a]

Preserve problem structure [C. et al., 2012, C. et al., 2015c]

+ Low cost

Sample-mesh approach [C. et al., 2011b, C. et al., 2013]

Leverage time-domain data [C. et al., 2015b]

+ Certification

Error bounds [C. et al., 2015a]

Statistical error modeling [Drohmann and C., 2015]

+ Reliability

A posteriori h-refinement [C., 2015]
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