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Abstract: The coverage and efficiency of constrained 

random simulations for verifying an ASIC have long been 

recognized.  However, this level of test coverage is often 

missing from tests of the actual device. A process to extend 

the test coverage provided in constrained random 

simulations to software-driven tests performed on actual 

devices in hardware systems will be discussed.             
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Introduction 
It is often very challenging to provide a high level of 

coverage when verifying an ASIC with actual physical 

interfaces. When moving from simulation to real hardware, 

the reality of physics comes into play. Real device delays, 

board parasitics, routing delays, and clock skews are just a 

few of the complications of physical device verification 

versus simulation. Directed tests can verify functionality 

for a small set of parameters, but  the use of directed testing 

for a wide variety of configurations can be time consuming 

and ineffective. Closing the gap between the level of 

verification that is obtained in a simulation environment 

and the level of verification that is achievable in physical 

hardware is a desired goal of ASIC and system designers. 

One method of achieving this goal is possible with 

processor-based ASICs. By converting the random 

simulation parameters into software running on the 

processor within the ASIC to exercise the various IO 

interfaces, random and intelligent test coverage of the 

physical ASIC can be achieved. Though the process 

discussed in this paper utilizes Open Source VHDL 

Verification Methodology (OS-VVM) [1], an intelligent 

test bench methodology that allows mixing of “Intelligent 

Coverage” (coverage driven randomization) with directed, 

algorithmic, file based, and constrained random test 

approaches, the same process and principles can be applied 

using System Verilog and Unified Verification 

Methodology (UVM). The method described is tool 

independent. For simplicity, this paper will use the terms 

OS-VVM and Constrained Random Simulations to refer to 

these approaches. An overview of the process will first be 

described followed by an example implementation and 

results. 

Block Diagram of the General Processing ASIC 
(GPA) 
A simplified block diagram of the device verified through 

this process is shown in Figure 1. 
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Figure 1: GPA Simplified Block Diagram 
 

Built around an ARM processor, the GPA contains a 

processor subsystem consisting of internal memory and 

external memory interfaces with accesses controlled by an 

address decode / memory protection unit (MPU). In 

addition to interrupts and timers, general purpose inputs 

and outputs are available along with a Serial Peripheral 

Interface (SPI) master. The SPI master communicates with 

up to five SPI slaves; two are internal interfaces to the 

custom Bus Nodes within the ASIC while the remaining 

three are available to connect to external SPI slaves.  

Process Overview 
The process of extending the random simulations of a 

processor-based ASIC involves three main steps:  

SAND2016-0687C



1. Set up / execute the constrained random simulation to 

get the randomized parameter sets for each interface to 

be tested. 

2. Convert the resulting interface parameters to 

processor-accessible value sets.  

3. Execute the randomized hardware tests. 

Step 1: Set up and execute the constrained 
random simulation  
Interface and parameter identification: To set up the 

constrained random simulation, the ASIC interfaces and 

software parameters for the interface drivers must first be 

identified along with the allowed ranges and bounds for 

these parameters.  

For the GPA, the first interface to be tested was the SPI 

master through the external SPI ports. The GPA software 

driver for the SPI master allowed configuration of the 

following parameters with the constraints as shown in 

Table 1: 

Table 1. SPI Parameters and Allowed Values 

Parameter Description Range 

Clock 
Divide 

System Clock Divisor to 
generate SPI Clock (SCK) 

8 - 65534 

SPI Mode 
Polarity (CPOL) and Phase 

(CPHA) 
0 - 3 

Length  
SPI transaction length in 

bits 
1 - 8192 

Data SPI data byte value 0 - 255 

 

The processor interface to the two custom Bus Nodes of the 

GPA was also through the SPI master, however, with a 

limited range of system clock divisors and a fixed SPI 

mode. The testing of this interface therefore was built upon 

the work done for the SPI ports with the two Bus Nodes 

connected to each other external to the GPA. Each node 

was configured to either transmit the data or receive the 

data. For simplicity since both nodes had to be at the same 

clock frequency, the clock divisor was set at the minimum 

value to produce the maximum bus clock frequency as a 

worst-case condition. The parameters and the allowed 

range of values that were randomized are shown in Table 2. 

Table 2. Bus Node Parameters and Allowed Values 

Parameter Range 

Node TX 
0 – transmit 
1 – receive 

Node data value 0 - 255 

Transaction length (bits) 1 - 2032 

Destination Port – Node 1 16 - 65535 

Destination Port – Node 2 16 - 65535 

 

After the parameters and legal ranges are identified, 

coverage bins for randomization of these parameters must 

be determined along with any cross coverage between bins 

that is required. Techniques for setting up the 

randomization and coverage parameters will not be 

discussed in this paper, the reader is encouraged to research 

this based on whether OS-VVM or UVM is being utilized. 

Development of the RTL file for simulation: Next, the RTL 

file to be simulated is developed. In addition to containing 

the processes for randomizing the interface parameters, this 

RTL file contains a process to create a text file with each 

set of randomized values based off the values created by 

the coverage bins of the simulation. This process is called 

after each randomization cycle to output the values to the 

text file. 

Note that it is not required, but very helpful, to include the 

RTL of the interface under test in the simulation so that the 

randomized output and transactions generated can be 

visualized in the resulting simulation waveforms. If the 

interface RTL is included, the text file creation process is 

called each time the RTL interface is provided randomized 

parameters. 

For testing of the GPA SPI master, randomization bins 

were defined for the parameters in Table 1. Note that to 

insure all SPI modes were exercised at each clock 

frequency, the random SPI mode value was subsequently 

inverted until all combinations had been exercised. 

Likewise, the data value resulting from the randomization 

was inverted as many times as necessary to achieve the 

designated SPI length.  

In addition to instantiating the RTL for the SPI master, a 

procedure was developed to output the resulting random 

values for each of the SPI parameters to a text file. Part of 

this file is shown in Table 3. 520 randomized value sets 

were created as a result of the simulation. 

Table 3. SPI Random Values File 

Clock Divide 
SPI 

Mode 
Length Data 

8286            

11 
00 
01 
10 

7993 
241 
14 

6320 

10 
01 
00 
11 

5791 107 

1284 

01 
10 
11 
00 

794 69 

 

Similarly, the RTL file for testing the GPA Bus Nodes was 

developed, using the same technique of inverting the 

random value for the Node TX values and for expanding 

the data. A snippet of the resulting text file is shown in 



 

Table 4. 64 randomized value sets were created as a result 

of the simulation. 

Table 4. Bus Node Random Values File 

Node 1 
TX 

Node 2 
TX 

Length Data 
Dest. 
Port 1 

Dest. 
Port 2 

1     
0      

0 
1 

72 196 18155 17708          

1 
0 

1 
0 

77 125 22166          22200          

0 
1 

0 
1 

105 255 27910          28634          

 

Step 2: Convert the resulting interface parameters 
to processor-accessible value sets 
Now that randomized value sets have been created that 

produce the desired coverage across the interface 

parameters, the next step is to convert the values into data 

that can be accessed by test software running on the 

processor.  

Using the memory map of the processor, a section of 

memory to contain these values is defined and a script is 

developed to write each value set into the defined memory 

region using the selected debugger memory write 

commands. Note that the procedure defined in the RTL 

could also directly write out the debugger memory write 

command script. However, the creation of a file that simply 

contains the resulting random values can be easily 

reviewed for coverage and allows flexibility to use different 

software debuggers in the future without having to re-run 

the simulation. 

Test software to run on the ASIC processor must also be 

developed using the available software drivers for the 

interface under test. This software first reads the number of 

random value sets to be executed and then calls the 

interface software driver for each set of values, comparing 

the resulting data with the expected result.  

For testing the GPA, Python 3 was selected as the scripting 

language to convert the SPI and Bus Node random value 

files to debugger memory write commands. The first 

command writes the number of random values sets to be 

executed and the consecutive memory write commands 

write the randomized value sets as shown in Figure 2. 

 

A test program was then developed for the ARM processor 

of the GPA to run both the randomized tests of the SPI 

master and the Bus Node ports. This purpose of this 

program was to read the randomized parameters from the 

designated memory locations, call the interface driver with 

the randomized values, and initiate the transfer. It also 

compared the resulting data with the expected data after 

each transaction and logged any errors.   

Step 3: Execute the randomized hardware tests 
The final step of the process is to execute the randomized 

hardware tests. The hardware containing the ASIC to be 

tested and all interface modules must be properly 

configured. If desired, any scopes and logic analyzers 

should be connected and set up at this time. The software 

debugger must also be properly set up and connected to the 

processor within the ASIC.  Using the debugger command 

file, the processor memory is then initialized with the 

random value sets. At this point, the processor test software 

is downloaded to the processor and executed.  

The testing of the SPI and Bus Nodes of the GPA was done 

using an FPGA-based development board that provided 

connections for daughter cards containing the GPA as 

shown in Figure 3. This test platform allowed early GPA 

prototypes to be tested throughout the entire GPA 

development cycle. Daughter cards containing the external 

memory needed for the GPA were provided and all of the 

interfaces of the GPA were brought out to connectors. 

The SPI was tested by looping the MOSI output line to the 

MISO input line of the SPI connector. The Bus Nodes were 

tested by connecting the nodes to each other. This test 

platform not only verified the physical interfaces of the 

GPA but the memory interface timing as well. 

 

 

 

A logic analyzer was connected to the SPI port to monitor 

the randomized transactions. During the test, it was visibly 

evident that the SPI modes as well as the SCK frequency 

were looping through the various randomized value sets. 

Figure 4 shows a small section of the resulting waveforms. 

memwrite 4 0x10011000 520 

memwrite 4 0x10011004 8286 

memwrite 4 0x10011008 1 

memwrite 4 0x1001100c 1 

memwrite 4 0x10011010 7993 

memwrite 4 0x10011014 241 

memwrite 4 0x10011018 8286 

memwrite 4 0x1001101c 0 

memwrite 4 0x10011020 0 

Figure 2. Debugger Memory Write Command File 

Figure 3. GPA Development Test Platform 



 

  

Summary and Results 

The process discussed in this paper is straightforward to 

implement without a large investment (depending on the 

tool suite used) and provides a more complete physical 

verification of a processor-based ASIC than achievable 

with directed tests. The GPA described in this paper is 

currently being used in three different embedded 

processing applications, each with unique interface 

requirements and has successfully passed all system tests to 

date.  
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Figure 4. Logic Analyzer Output 
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