SAND2016-0687C

Extending the Constrained Random Simulation Methodology into Physical
Device Verification for Processor-based ASICs

Anita L. Schreiber
High Integrity Software Systems, Dept.02622
Sandia National Laboratories
Albuguerque, New Mexico 87185 USA
alschre@sandia.gov

Abstract: The coverage and efficiency of constrained
random simulations for verifying an ASIC have long been
recognized. However, this level of test coverage is often
missing from tests of the actual device. A process to extend
the test coverage provided in constrained random
simulations to software-driven tests performed on actual
devices in hardware systems will be discussed.

Keywords: UVM; OS-VVM; Constrained Random
Coverage; Intelligent Coverage; Processor-based ASIC;
ASIC Verification

Introduction

It is often very challenging to provide a high level of
coverage when verifying an ASIC with actual physical
interfaces. When moving from simulation to real hardware,
the reality of physics comes into play. Real device delays,
board parasitics, routing delays, and clock skews are just a
few of the complications of physical device verification
versus simulation. Directed tests can verify functionality
for a small set of parameters, but the use of directed testing
for a wide variety of configurations can be time consuming
and ineffective. Closing the gap between the level of
verification that is obtained in a simulation environment
and the level of verification that is achievable in physical
hardware is a desired goal of ASIC and system designers.

One method of achieving this goal is possible with
processor-based ASICs. By converting the random
simulation parameters into software running on the
processor within the ASIC to exercise the various 10
interfaces, random and intelligent test coverage of the
physical ASIC can be achieved. Though the process
discussed in this paper utilizes Open Source VHDL
Verification Methodology (OS-VVM) [1], an intelligent
test bench methodology that allows mixing of “Intelligent
Coverage” (coverage driven randomization) with directed,
algorithmic, file based, and constrained random test
approaches, the same process and principles can be applied
using System Verilog and Unified Verification
Methodology (UVM). The method described is tool
independent. For simplicity, this paper will use the terms
0S-VVM and Constrained Random Simulations to refer to
these approaches. An overview of the process will first be
described followed by an example implementation and
results.

Melissa N. Wirtz
Embedded Systems/C-Series Modules
National Instruments
Austin, Texas 78759 USA
melissa.wirtz@ni.com

Block Diagram of the General Processing ASIC
(GPA)

A simplified block diagram of the device verified through
this process is shown in Figure 1.

A | External Memory -

cccccce Yieccccccccccccae ...-.fT...-
”’ g éﬁ s
' ” |Address Decode/MPUI— o H
(]
(]
: |-> ARM SRAM |- *i :
'
P]
: o [Rov H :
H z Pt fro '
H '%| Interrupts & Timers M '
[]
= '
' [0 | epi H|5 '
]]
o (]
o =3 i ! :
nQ
< 2% A ;
(O] (]
o & 2N N 11 .
N .
Do 10 Mux/DeMux H
[]
o8) '
D [«14 [« 14 H
' =) §g ax
N L) 5939 '
3 !
I L vwil | leg lerlipsls)
z0 | Bus Node 1 || Bus Node 2 |§ §;88 588 583 O 5 '
(] T4 T &
‘~-.-i -.-....i coceeoeee - olee =’
CMOS CMOSs SPI 3 SPI4 SPI5 GPIO

Figure 1: GPA Simplified Block Diagram

Built around an ARM processor, the GPA contains a
processor subsystem consisting of internal memory and
external memory interfaces with accesses controlled by an
address decode / memory protection unit (MPU). In
addition to interrupts and timers, general purpose inputs
and outputs are available along with a Serial Peripheral
Interface (SPI) master. The SPI master communicates with
up to five SPI slaves; two are internal interfaces to the
custom Bus Nodes within the ASIC while the remaining
three are available to connect to external SPI slaves.

Process Overview
The process of extending the random simulations of a
processor-based ASIC involves three main steps:

1. Set up / execute the constrained random simulation to
get the randomized parameter sets for each interface to
be tested.

2. Convert the resulting interface parameters to
processor-accessible value sets.

3. Execute the randomized hardware tests.

Step 1. Set up and execute the constrained
random simulation

Interface and parameter identification: To set up the
constrained random simulation, the ASIC interfaces and
software parameters for the interface drivers must first be
identified along with the allowed ranges and bounds for
these parameters.

For the GPA, the first interface to be tested was the SPI
master through the external SPI ports. The GPA software
driver for the SPI master allowed configuration of the
following parameters with the constraints as shown in
Table 1:

Table 1. SPI Parameters and Allowed Values

Parameter Description Range
Clock System Clock Divisor to
Divide | generate SPI Clock (SCK) | &~ 69934

Polarity (CPOL) and Phase)

SPI Mode (CPHA) 0-3

Length SPI transagyon length in 1-8192
its
Data SPI data byte value 0-255

The processor interface to the two custom Bus Nodes of the
GPA was also through the SPI master, however, with a
limited range of system clock divisors and a fixed SPI
mode. The testing of this interface therefore was built upon
the work done for the SPI ports with the two Bus Nodes
connected to each other external to the GPA. Each node
was configured to either transmit the data or receive the
data. For simplicity since both nodes had to be at the same
clock frequency, the clock divisor was set at the minimum
value to produce the maximum bus clock frequency as a
worst-case condition. The parameters and the allowed
range of values that were randomized are shown in Table 2.

Table 2. Bus Node Parameters and Allowed Values

Parameter Range
Node TX 0- trans_mit
1 —receive
Node data value 0- 255
Transaction length (bits) 1-2032
Destination Port — Node 1 16 - 65535
Destination Port — Node 2 16 - 65535

After the parameters and legal ranges are identified,
coverage bins for randomization of these parameters must
be determined along with any cross coverage between bins
that is required. Techniques for setting up the
randomization and coverage parameters will not be
discussed in this paper, the reader is encouraged to research
this based on whether OS-VVM or UVM is being utilized.

Development of the RTL file for simulation: Next, the RTL
file to be simulated is developed. In addition to containing
the processes for randomizing the interface parameters, this
RTL file contains a process to create a text file with each
set of randomized values based off the values created by
the coverage bins of the simulation. This process is called
after each randomization cycle to output the values to the
text file.

Note that it is not required, but very helpful, to include the
RTL of the interface under test in the simulation so that the
randomized output and transactions generated can be
visualized in the resulting simulation waveforms. If the
interface RTL is included, the text file creation process is
called each time the RTL interface is provided randomized
parameters.

For testing of the GPA SPI master, randomization bins
were defined for the parameters in Table 1. Note that to
insure all SPI modes were exercised at each clock
frequency, the random SPI mode value was subsequently
inverted until all combinations had been exercised.
Likewise, the data value resulting from the randomization
was inverted as many times as necessary to achieve the
designated SPI length.

In addition to instantiating the RTL for the SPI master, a
procedure was developed to output the resulting random
values for each of the SPI parameters to a text file. Part of
this file is shown in Table 3. 520 randomized value sets
were created as a result of the simulation.

Table 3. SPI Random Values File

L SPI
Clock Divide Mode Length Data

11
00 241
8286 o1 7993 14

10

10
01
6320 00 5791 107

11

01
10
1284 11 794 69

00

Similarly, the RTL file for testing the GPA Bus Nodes was
developed, using the same technique of inverting the
random value for the Node TX values and for expanding
the data. A snippet of the resulting text file is shown in

Table 4. 64 randomized value sets were created as a result
of the simulation.

Table 4. Bus Node Random Values File

Node 1 | Node 2 Length | Data Dest. Dest.
T T 9 Port 1 Port 2
(1) 2 72 | 196 | 18155 | 17708
(1) é 77 125 | 22166 22200
(1) 2 105 | 255 | 27910 28634

Step 2: Convert the resulting interface parameters
to processor-accessible value sets

Now that randomized value sets have been created that
produce the desired coverage across the interface
parameters, the next step is to convert the values into data
that can be accessed by test software running on the
processor.

Using the memory map of the processor, a section of
memory to contain these values is defined and a script is
developed to write each value set into the defined memory
region using the selected debugger memory write
commands. Note that the procedure defined in the RTL
could also directly write out the debugger memory write
command script. However, the creation of a file that simply
contains the resulting random values can be easily
reviewed for coverage and allows flexibility to use different
software debuggers in the future without having to re-run
the simulation.

Test software to run on the ASIC processor must also be
developed using the available software drivers for the
interface under test. This software first reads the number of
random value sets to be executed and then calls the
interface software driver for each set of values, comparing
the resulting data with the expected result.

For testing the GPA, Python 3 was selected as the scripting
language to convert the SPI and Bus Node random value
files to debugger memory write commands. The first
command writes the number of random values sets to be
executed and the consecutive memory write commands
write the randomized value sets as shown in Figure 2.

memwrite 4 0x10011000 520
memwrite 4 0x10011004 8286
memwrite 4 0x10011008 1
memwrite 4 0x1001100c 1
memwrite 4 0x10011010 7993
memwrite 4 0x10011014 241
memwrite 4 0x10011018 8286
memwrite 4 0x1001101c O
memwrite 4 0x10011020 O

Figure 2. Debugger Memory Write Command File

A test program was then developed for the ARM processor
of the GPA to run both the randomized tests of the SPI
master and the Bus Node ports. This purpose of this
program was to read the randomized parameters from the
designated memory locations, call the interface driver with
the randomized values, and initiate the transfer. It also
compared the resulting data with the expected data after
each transaction and logged any errors.

Step 3: Execute the randomized hardware tests
The final step of the process is to execute the randomized
hardware tests. The hardware containing the ASIC to be
tested and all interface modules must be properly
configured. If desired, any scopes and logic analyzers
should be connected and set up at this time. The software
debugger must also be properly set up and connected to the
processor within the ASIC. Using the debugger command
file, the processor memory is then initialized with the
random value sets. At this point, the processor test software
is downloaded to the processor and executed.

The testing of the SPI and Bus Nodes of the GPA was done
using an FPGA-based development board that provided
connections for daughter cards containing the GPA as
shown in Figure 3. This test platform allowed early GPA
prototypes to be tested throughout the entire GPA
development cycle. Daughter cards containing the external
memory needed for the GPA were provided and all of the
interfaces of the GPA were brought out to connectors.

The SPI was tested by looping the MOSI output line to the
MISO input line of the SPI connector. The Bus Nodes were
tested by connecting the nodes to each other. This test
platform not only verified the physical interfaces of the
GPA but the memory interface timing as well.

[Rs232 |

_ -~ p

Power (SRAM

Regulators &R
& Connenlors.}_‘
\ \FPGAPROM|)

f Clocks)

& Reset Bus Node 1 |— Transceiver]

Bus Node 2 |— Transceiver
| LEDs | | DIP Switches | | Pushbuttons EED

Figure 3. GPA Development Test Platform

A logic analyzer was connected to the SPI port to monitor
the randomized transactions. During the test, it was visibly
evident that the SPl1 modes as well as the SCK frequency
were looping through the various randomized value sets.
Figure 4 shows a small section of the resulting waveforms.

Figure 4. Logic Analyzer Output

Summary and Results

The process discussed in this paper is straightforward to
implement without a large investment (depending on the
tool suite used) and provides a more complete physical
verification of a processor-based ASIC than achievable
with directed tests. The GPA described in this paper is

currently being used in three different embedded
processing applications, each with unique interface
requirements and has successfully passed all system tests to
date.

Acknowledgements

The authors wish to thank Brent Meyer of Sandia National
Laboratories for his initial work with OS-VVM which
provided the basis for the GPA SPI and Bus Node random
simulations.

References
1. Open Source VHDL Verification Methodology (OS-
VVM).

http://osvvm.org/

http://osvvm.org/

