

Extending the Constrained Random Simulation Methodology into Physical
Device Verification for Processor-based ASICs

Anita L. Schreiber
High Integrity Software Systems, Dept.02622

Sandia National Laboratories
Albuquerque, New Mexico 87185 USA

alschre@sandia.gov

Melissa N. Wirtz
Embedded Systems/C-Series Modules

National Instruments
Austin, Texas 78759 USA

melissa.wirtz@ni.com

Abstract: The coverage and efficiency of constrained

random simulations for verifying an ASIC have long been

recognized. However, this level of test coverage is often

missing from tests of the actual device. A process to extend

the test coverage provided in constrained random

simulations to software-driven tests performed on actual

devices in hardware systems will be discussed.

Keywords: UVM; OS-VVM; Constrained Random

Coverage; Intelligent Coverage; Processor-based ASIC;

ASIC Verification

Introduction
It is often very challenging to provide a high level of

coverage when verifying an ASIC with actual physical

interfaces. When moving from simulation to real hardware,

the reality of physics comes into play. Real device delays,

board parasitics, routing delays, and clock skews are just a

few of the complications of physical device verification

versus simulation. Directed tests can verify functionality

for a small set of parameters, but the use of directed testing

for a wide variety of configurations can be time consuming

and ineffective. Closing the gap between the level of

verification that is obtained in a simulation environment

and the level of verification that is achievable in physical

hardware is a desired goal of ASIC and system designers.

One method of achieving this goal is possible with

processor-based ASICs. By converting the random

simulation parameters into software running on the

processor within the ASIC to exercise the various IO

interfaces, random and intelligent test coverage of the

physical ASIC can be achieved. Though the process

discussed in this paper utilizes Open Source VHDL

Verification Methodology (OS-VVM) [1], an intelligent

test bench methodology that allows mixing of “Intelligent

Coverage” (coverage driven randomization) with directed,

algorithmic, file based, and constrained random test

approaches, the same process and principles can be applied

using System Verilog and Unified Verification

Methodology (UVM). The method described is tool

independent. For simplicity, this paper will use the terms

OS-VVM and Constrained Random Simulations to refer to

these approaches. An overview of the process will first be

described followed by an example implementation and

results.

Block Diagram of the General Processing ASIC
(GPA)
A simplified block diagram of the device verified through

this process is shown in Figure 1.

G
E

N
E

R
A

L
 P

R
O

C
E

S
S

IN
G

 A
S

IC

T
E

S
T

C
L
O

C
K

J
T

A
G

P
R

S
T

_
N

ARM

µP

SRAM

S
P

I

Interrupts & Timers

FIQ IRQ

GPO

S
S

_
N

[1
:5

]
G

P
_
O

U
T

G
P

IN

GPI

M
O

S
I

M
IS

O
S

C
L
K

Address Decode / MPU

External Memory

ROM

IO Mux/DeMux

G
P

_
O

U
T

Bus Node 2

M
O

S
I[

3
]

SPI 3

M
O

S
I[

4
]

S
S

n
[3

]

M
IS

O
[3

]

Bus Node 1

M
O

S
I[

1
]

S
S

n
[1

]

S
C

L
K

M
IS

O
[1

]

M
O

S
I[

2
]

M
IS

O
[2

]

S
S

n
[4

]

M
IS

O
[4

]

S
S

n
[2

]

R
E

S
E

T
_
N

G
P

_
IN

M
O

S
I[

5
]

S
S

n
[5

]

M
IS

O
[5

]

T
X

1
R

X
1

T
X

2
R

X
2

GPIOCMOS CMOS SPI 4 SPI 5

S
C

L
K

S
C

L
K

Figure 1: GPA Simplified Block Diagram

Built around an ARM processor, the GPA contains a

processor subsystem consisting of internal memory and

external memory interfaces with accesses controlled by an

address decode / memory protection unit (MPU). In

addition to interrupts and timers, general purpose inputs

and outputs are available along with a Serial Peripheral

Interface (SPI) master. The SPI master communicates with

up to five SPI slaves; two are internal interfaces to the

custom Bus Nodes within the ASIC while the remaining

three are available to connect to external SPI slaves.

Process Overview
The process of extending the random simulations of a

processor-based ASIC involves three main steps:

SAND2016-0687C

1. Set up / execute the constrained random simulation to

get the randomized parameter sets for each interface to

be tested.

2. Convert the resulting interface parameters to

processor-accessible value sets.

3. Execute the randomized hardware tests.

Step 1: Set up and execute the constrained
random simulation
Interface and parameter identification: To set up the

constrained random simulation, the ASIC interfaces and

software parameters for the interface drivers must first be

identified along with the allowed ranges and bounds for

these parameters.

For the GPA, the first interface to be tested was the SPI

master through the external SPI ports. The GPA software

driver for the SPI master allowed configuration of the

following parameters with the constraints as shown in

Table 1:

Table 1. SPI Parameters and Allowed Values

Parameter Description Range

Clock
Divide

System Clock Divisor to
generate SPI Clock (SCK)

8 - 65534

SPI Mode
Polarity (CPOL) and Phase

(CPHA)
0 - 3

Length
SPI transaction length in

bits
1 - 8192

Data SPI data byte value 0 - 255

The processor interface to the two custom Bus Nodes of the

GPA was also through the SPI master, however, with a

limited range of system clock divisors and a fixed SPI

mode. The testing of this interface therefore was built upon

the work done for the SPI ports with the two Bus Nodes

connected to each other external to the GPA. Each node

was configured to either transmit the data or receive the

data. For simplicity since both nodes had to be at the same

clock frequency, the clock divisor was set at the minimum

value to produce the maximum bus clock frequency as a

worst-case condition. The parameters and the allowed

range of values that were randomized are shown in Table 2.

Table 2. Bus Node Parameters and Allowed Values

Parameter Range

Node TX
0 – transmit
1 – receive

Node data value 0 - 255

Transaction length (bits) 1 - 2032

Destination Port – Node 1 16 - 65535

Destination Port – Node 2 16 - 65535

After the parameters and legal ranges are identified,

coverage bins for randomization of these parameters must

be determined along with any cross coverage between bins

that is required. Techniques for setting up the

randomization and coverage parameters will not be

discussed in this paper, the reader is encouraged to research

this based on whether OS-VVM or UVM is being utilized.

Development of the RTL file for simulation: Next, the RTL

file to be simulated is developed. In addition to containing

the processes for randomizing the interface parameters, this

RTL file contains a process to create a text file with each

set of randomized values based off the values created by

the coverage bins of the simulation. This process is called

after each randomization cycle to output the values to the

text file.

Note that it is not required, but very helpful, to include the

RTL of the interface under test in the simulation so that the

randomized output and transactions generated can be

visualized in the resulting simulation waveforms. If the

interface RTL is included, the text file creation process is

called each time the RTL interface is provided randomized

parameters.

For testing of the GPA SPI master, randomization bins

were defined for the parameters in Table 1. Note that to

insure all SPI modes were exercised at each clock

frequency, the random SPI mode value was subsequently

inverted until all combinations had been exercised.

Likewise, the data value resulting from the randomization

was inverted as many times as necessary to achieve the

designated SPI length.

In addition to instantiating the RTL for the SPI master, a

procedure was developed to output the resulting random

values for each of the SPI parameters to a text file. Part of

this file is shown in Table 3. 520 randomized value sets

were created as a result of the simulation.

Table 3. SPI Random Values File

Clock Divide
SPI

Mode
Length Data

8286

11
00
01
10

7993
241
14

6320

10
01
00
11

5791 107

1284

01
10
11
00

794 69

Similarly, the RTL file for testing the GPA Bus Nodes was

developed, using the same technique of inverting the

random value for the Node TX values and for expanding

the data. A snippet of the resulting text file is shown in

Table 4. 64 randomized value sets were created as a result

of the simulation.

Table 4. Bus Node Random Values File

Node 1
TX

Node 2
TX

Length Data
Dest.
Port 1

Dest.
Port 2

1
0

0
1

72 196 18155 17708

1
0

1
0

77 125 22166 22200

0
1

0
1

105 255 27910 28634

Step 2: Convert the resulting interface parameters
to processor-accessible value sets
Now that randomized value sets have been created that

produce the desired coverage across the interface

parameters, the next step is to convert the values into data

that can be accessed by test software running on the

processor.

Using the memory map of the processor, a section of

memory to contain these values is defined and a script is

developed to write each value set into the defined memory

region using the selected debugger memory write

commands. Note that the procedure defined in the RTL

could also directly write out the debugger memory write

command script. However, the creation of a file that simply

contains the resulting random values can be easily

reviewed for coverage and allows flexibility to use different

software debuggers in the future without having to re-run

the simulation.

Test software to run on the ASIC processor must also be

developed using the available software drivers for the

interface under test. This software first reads the number of

random value sets to be executed and then calls the

interface software driver for each set of values, comparing

the resulting data with the expected result.

For testing the GPA, Python 3 was selected as the scripting

language to convert the SPI and Bus Node random value

files to debugger memory write commands. The first

command writes the number of random values sets to be

executed and the consecutive memory write commands

write the randomized value sets as shown in Figure 2.

A test program was then developed for the ARM processor

of the GPA to run both the randomized tests of the SPI

master and the Bus Node ports. This purpose of this

program was to read the randomized parameters from the

designated memory locations, call the interface driver with

the randomized values, and initiate the transfer. It also

compared the resulting data with the expected data after

each transaction and logged any errors.

Step 3: Execute the randomized hardware tests
The final step of the process is to execute the randomized

hardware tests. The hardware containing the ASIC to be

tested and all interface modules must be properly

configured. If desired, any scopes and logic analyzers

should be connected and set up at this time. The software

debugger must also be properly set up and connected to the

processor within the ASIC. Using the debugger command

file, the processor memory is then initialized with the

random value sets. At this point, the processor test software

is downloaded to the processor and executed.

The testing of the SPI and Bus Nodes of the GPA was done

using an FPGA-based development board that provided

connections for daughter cards containing the GPA as

shown in Figure 3. This test platform allowed early GPA

prototypes to be tested throughout the entire GPA

development cycle. Daughter cards containing the external

memory needed for the GPA were provided and all of the

interfaces of the GPA were brought out to connectors.

The SPI was tested by looping the MOSI output line to the

MISO input line of the SPI connector. The Bus Nodes were

tested by connecting the nodes to each other. This test

platform not only verified the physical interfaces of the

GPA but the memory interface timing as well.

A logic analyzer was connected to the SPI port to monitor

the randomized transactions. During the test, it was visibly

evident that the SPI modes as well as the SCK frequency

were looping through the various randomized value sets.

Figure 4 shows a small section of the resulting waveforms.

memwrite 4 0x10011000 520

memwrite 4 0x10011004 8286

memwrite 4 0x10011008 1

memwrite 4 0x1001100c 1

memwrite 4 0x10011010 7993

memwrite 4 0x10011014 241

memwrite 4 0x10011018 8286

memwrite 4 0x1001101c 0

memwrite 4 0x10011020 0

Figure 2. Debugger Memory Write Command File

Figure 3. GPA Development Test Platform

Summary and Results

The process discussed in this paper is straightforward to

implement without a large investment (depending on the

tool suite used) and provides a more complete physical

verification of a processor-based ASIC than achievable

with directed tests. The GPA described in this paper is

currently being used in three different embedded

processing applications, each with unique interface

requirements and has successfully passed all system tests to

date.

Acknowledgements

The authors wish to thank Brent Meyer of Sandia National

Laboratories for his initial work with OS-VVM which

provided the basis for the GPA SPI and Bus Node random

simulations.

References
1. Open Source VHDL Verification Methodology (OS-

VVM).

 http://osvvm.org/

Figure 4. Logic Analyzer Output

http://osvvm.org/

